
1 Overview of BB

�BB� is a package intended for two purposes: (1) for solving a nonlinear system
of equations, and (2) for �nding a local optimum (can be minimum or maximum)
of a scalar, objective function. An attractive feature of the package is that it
has minimum memory requirements. Therefore, it is particularly well suited
to solving high-dimensional problems with tens of thousands of parameters.
However, BB can also be used to solve a single nonlinear equation or optimize a
function with just one variable. The functions in this package are made available
with:

> library("BB")

You can look at the basic information on the package, including all the
available functions wtih

> help(package=BB)

The three basic functions are: spg, dfsane, and sane. You should spg for opti-
mization, and either dfsane or sane for solving a nonlinear system of equations.
We prefer dfsane, since it tends to perform slightly better than sane. There are
also 3 higher level functions: BBoptim, BBsolve, and multiStart. BBoptim is
a wrapper for spg in the sense that it calls spg repeatedly with di�erent algo-
rithmic options. It can be used when spg fails to �nd a local optimum, or it
can be used in place of spg. Similarly, BBsolve is a wrapper for dfsane in the
sense that it calls dfsane repeatedly with di�erent algorithmic options. It can
be used when dfsane (sane) fails to �nd a local optimum, or it can be used in
place of dfsane (sane). The multiStart function can accept multiple starting
values. It can be used for either solving a nonlinear system or for optimizing. It
is useful for exploring sensitivity to starting values, and also for �nding multiple
solutions.

The package setRNG is not necessary, but if you want to exactly reproduce
the examples in this guide then do this:

> require("setRNG")

> setRNG(list(kind="Wichmann-Hill", normal.kind="Box-Muller", seed=1236))

after which the example need to be run in the order here (or at least the parts
that generate random numbers). For some examples the RNG is reset again so
they can be reproduced more easily.

2 How to solve a nonlinear system of equations

with BB?

The �rst two examples are from La Cruz and Raydan, Optim Methods and
Software 2003, 18 (583-599).

1

> expo3 <- function(p) {

From La Cruz and Raydan, Optim Methods and Software 2003, 18 (583-599)

n <- length(p)

f <- rep(NA, n)

onm1 <- 1:(n-1)

f[onm1] <- onm1/10 * (1 - p[onm1]^2 - exp(-p[onm1]^2))

f[n] <- n/10 * (1 - exp(-p[n]^2))

f

}

> p0 <- runif(10)

> ans <- dfsane(par=p0, fn=expo3)

Iteration: 0 ||F(x0)||: 0.2024112

iteration: 10 ||F(xn)|| = 0.07536174

iteration: 20 ||F(xn)|| = 0.08777425

iteration: 30 ||F(xn)|| = 0.005029196

iteration: 40 ||F(xn)|| = 0.001517709

iteration: 50 ||F(xn)|| = 0.001769548

iteration: 60 ||F(xn)|| = 0.007896929

iteration: 70 ||F(xn)|| = 0.0001410588

iteration: 80 ||F(xn)|| = 2.002796e-06

> ans

$par

[1] 3.819663e-02 3.031250e-02 2.647897e-02 2.404688e-02 2.233208e-02

[6] 2.101498e-02 1.996221e-02 1.909301e-02 1.835779e-02 -7.493381e-06

$residual

[1] 6.645152e-08

$fn.reduction

[1] 0.6400804

$feval

[1] 96

$iter

[1] 85

$convergence

[1] 0

$message

[1] "Successful convergence"

Let us look at the output from dfsane. It is a list with 7 components. The
most important components to focus on are the two named �par � and �con-

2

vergence�. ans$par provides the solution from dfsane, but this is a root if and
only if ans$convergence is equal to 0, i.e. ans$message should say �Successful
convergence�. Otherwise, the algorithm has failed.

Now, we show an example demonstrating the ability of BB to solve a large
system of equations, N = 10000.

> trigexp <- function(x) {

n <- length(x)

F <- rep(NA, n)

F[1] <- 3*x[1]^2 + 2*x[2] - 5 + sin(x[1] - x[2]) * sin(x[1] + x[2])

tn1 <- 2:(n-1)

F[tn1] <- -x[tn1-1] * exp(x[tn1-1] - x[tn1]) + x[tn1] * (4 + 3*x[tn1]^2) +

2 * x[tn1 + 1] + sin(x[tn1] - x[tn1 + 1]) * sin(x[tn1] + x[tn1 + 1]) - 8

F[n] <- -x[n-1] * exp(x[n-1] - x[n]) + 4*x[n] - 3

F

}

> n <- 10000

> p0 <- runif(n)

> ans <- dfsane(par=p0, fn=trigexp, control=list(trace=FALSE))

> ans$message

[1] "Successful convergence"

> ans$resid

[1] 5.725351e-08

The next example is from Freudenstein and Roth function (Broyden, Math-
ematics of Computation 1965, p. 577-593).

> froth <- function(p){

f <- rep(NA,length(p))

f[1] <- -13 + p[1] + (p[2]*(5 - p[2]) - 2) * p[2]

f[2] <- -29 + p[1] + (p[2]*(1 + p[2]) - 14) * p[2]

f

}

Now, we introduce the function BBsolve. For the �rst starting value, dfsane
used in the default manner does not �nd the zero, but BBsolve, which tries
multiple control parameter settings, is able to successfully �nd the zero.

> p0 <- c(3,2)

> dfsane(par=p0, fn=froth, control=list(trace=FALSE))

$par

[1] -9.822061 -1.875381

$residual

3

[1] 11.63811

$fn.reduction

[1] 25.58882

$feval

[1] 137

$iter

[1] 114

$convergence

[1] 5

$message

[1] "Lack of improvement in objective function"

> BBsolve(par=p0, fn=froth)

Successful convergence.

$par

[1] 5 4

$residual

[1] 3.659749e-10

$fn.reduction

[1] 0.001827326

$feval

[1] 100

$iter

[1] 10

$convergence

[1] 0

$message

[1] "Successful convergence"

$cpar

method M NM

2 50 1

Note that the functions dfsane, sane, and spg produce a warning message if
convergence fails. These warnings have been suppressed in this vignette.

4

For the next starting value, BBsolve �nds the zero of the system, but dfsane
(with defaults) fails.

> p0 <- c(1,1)

> BBsolve(par=p0, fn=froth)

Successful convergence.

$par

[1] 5 4

$residual

[1] 9.579439e-08

$fn.reduction

[1] 6.998875

$feval

[1] 1165

$iter

[1] 247

$convergence

[1] 0

$message

[1] "Successful convergence"

$cpar

method M NM

1 50 1

> dfsane(par=p0, fn=froth, control=list(trace=FALSE))

$par

[1] -9.674222 -1.984882

$residual

[1] 12.15994

$fn.reduction

[1] 24.03431

$feval

[1] 138

$iter

5

[1] 109

$convergence

[1] 5

$message

[1] "Lack of improvement in objective function"

Try random starting values. Run the following set of code many times. This
shows that BBsolve is quite robust in �nding the zero, whereas dfsane (with
defaults) is sensitive to starting values. Admittedly, these are poor starting
values, but still it would be nice to have a strategy that has a high likelihood of
�nding a zero of the nonlinear system.

> # two values generated independently from a poisson distribution with mean = 10

> p0 <- rpois(2,10)

> BBsolve(par=p0, fn=froth)

Successful convergence.

$par

[1] 5 4

$residual

[1] 7.330654e-08

$fn.reduction

[1] 0.07273382

$feval

[1] 91

$iter

[1] 41

$convergence

[1] 0

$message

[1] "Successful convergence"

$cpar

method M NM

2 50 1

> dfsane(par=p0, fn=froth, control=list(trace=FALSE))

$par

[1] 5 4

6

$residual

[1] 5.472171e-08

$fn.reduction

[1] 490.618

$feval

[1] 32

$iter

[1] 31

$convergence

[1] 0

$message

[1] "Successful convergence"

2.1 Finding multiple roots of a nonlinear system of equa-

tions

Now, we introduce the function multiStart. This accepts a matrix of starting
values, where each row is a single starting value. multiStart calls BBsolve for
each starting value. Here is a system of 3 non-linear equations, where each
equation is a high-degree polynomial. This system has 12 real-valued roots and
126 complex-valued roots. Here we will demonstrate how to identify all the 12
real roots using multiStart. Note that we specify the `action' argument in the
following call to multiStart only to highlight that multiStart can be used for
both solving a system of equations and for optimization. The default is `action
= "solve" ', so it is really not needed in this call.

> # Example

> # A high-degree polynomial system (R.B. Kearfott, ACM 1987)

> # There are 12 real roots (and 126 complex roots to this system!)

> #

> hdp <- function(x) {

f <- rep(NA, length(x))

f[1] <- 5 * x[1]^9 - 6 * x[1]^5 * x[2]^2 + x[1] * x[2]^4 + 2 * x[1] * x[3]

f[2] <- -2 * x[1]^6 * x[2] + 2 * x[1]^2 * x[2]^3 + 2 * x[2] * x[3]

f[3] <- x[1]^2 + x[2]^2 - 0.265625

f

}

We generate 100 randomly generated starting values, each a vector of length
equal to 3. (Setting the seed is only necessary to reproduce the result shown
here.)

7

> setRNG(list(kind="Wichmann-Hill", normal.kind="Box-Muller", seed=123))

> p0 <- matrix(runif(300), 100, 3) # 100 starting values, each of length 3

> ans <- multiStart(par=p0, fn=hdp, action="solve")

> sum(ans$conv) # number of successful runs = 99

> pmat <- ans$par[ans$conv,] # selecting only converged solutions

Now, we display the unique real solutions.

> ans <- round(pmat, 4)

> ans[!duplicated(ans),]

[,1] [,2] [,3]

[1,] 0.2799 0.4328 -0.0142

[2,] 0.0000 0.5154 0.0000

[3,] 0.5154 0.0000 -0.0124

[4,] 0.4670 -0.2181 0.0000

[5,] 0.4670 0.2181 0.0000

[6,] 0.0000 -0.5154 0.0000

[7,] 0.2799 -0.4328 -0.0142

[8,] -0.4670 0.2181 0.0000

[9,] -0.2799 0.4328 -0.0142

[10,] -0.5154 0.0000 -0.0124

[11,] -0.2799 -0.4328 -0.0142

[12,] -0.4670 -0.2181 0.0000

We can also visualize these 12 solutions beautifully using a `biplot' based on
the �rst 2 principal components of the converged parameter matrix.

> pc <- princomp(pmat)

> biplot(pc) # you can see all 12 solutions beautifully like on a clock!

8

−0.3 −0.2 −0.1 0.0 0.1

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1

Comp.1

C
om

p.
2

1

2

34

56

7

8

910

11

12

13

1415

16

17

18

19

20

21

22

23

24

25

26

27

282930

31

32

33

34

3536

37

3839

40

41

42

43

44

45

46

47

48

49

50

51

52

53

5455

5657

58

59

60

61

62

63

64

65 66

67

686970

71

72

73

74

75

7677

78

79

808182

83

84

85

8687

88

8990

91

92

939495

96

97

98

99

100

−4 −3 −2 −1 0 1 2

−
4

−
3

−
2

−
1

0
1

2Var 1

Var 2

Var 3

2.2 Power polynomial method: Fleishman system of equa-

tions

Fleishman (Psychometrika 1978, p.521-532) developed an approach for simu-
lating random numbers from non-normal distrinbutions, with speci�ed values
of skewness and kurtosis. This approach involves the solution of a system of
polynomial equations. This system is also discussed in the paper by Demirtas
and Hedeker (Communications in Statistics 2008, p. 1682-1695; Equations on
p. 1684) and is given as follows:

> fleishman <- function(x, r1, r2) {

b <- x[1]

c <- x[2]

d <- x[3]

f <- rep(NA, 3)

f[1] <- b^2 + 6 * b * d + 2 * c^2 + 15 * d^2 - 1

f[2] <- 2*c * (b^2 + 24*b*d + 105*d^2 + 2) - r1

f[3] <- b*d + c^2 * (1 + b^2 + 28 * b * d) + d^2 * (12 + 48 * b* d +

141 * c^2 + 225 * d^2) - r2/24

f

}

9

We only use 3 equations, since 1st equation is trivially solved by a = -c.
Here we describe an experiment based on Fleishman (Psychometrika 1978,

p.521-532), and is reproduced as follows. We randomly picked 10 scenarios
(more or less randomly) from Table 1 of Fleishman (1978):

> rmat <- matrix(NA, 10, 2)

> rmat[1,] <- c(1.75, 3.75)

> rmat[2,] <- c(1.25, 2.00)

> rmat[3,] <- c(1.00, 1.75)

> rmat[4,] <- c(1.00, 0.50)

> rmat[5,] <- c(0.75, 0.25)

> rmat[6,] <- c(0.50, 3.00)

> rmat[7,] <- c(0.50, -0.50)

> rmat[8,] <- c(0.25, -1.00)

> rmat[9,] <- c(0.0, -0.75)

> rmat[10,] <- c(-0.25, 3.75)

We solve the system of equations for the above 10 speci�cations of skewness
and kurtosis 3 times, each time with a di�erent random starting seed.

> # 1

> setRNG(list(kind="Mersenne-Twister", normal.kind="Inversion", seed=13579))

> ans1 <- matrix(NA, nrow(rmat), 3)

> for (i in 1:nrow(rmat)) {

x0 <- rnorm(3) # random starting value

temp <- BBsolve(par=x0, fn=fleishman, r1=rmat[i,1], r2=rmat[i,2])

if (temp$conv == 0) ans1[i,] <- temp$par

}

Successful convergence.

Successful convergence.

Successful convergence.

Successful convergence.

Successful convergence.

Successful convergence.

Successful convergence.

Successful convergence.

Successful convergence.

Successful convergence.

> ans1 <- cbind(rmat, ans1)

> colnames(ans1) <- c("skew", "kurtosis", "B", "C", "D")

> ans1

skew kurtosis B C D

[1,] 1.75 3.75 -0.9296606 3.994967e-01 0.036466986

[2,] 1.25 2.00 -0.9664061 2.230888e-01 0.005862543

10

[3,] 1.00 1.75 0.9274664 1.543072e-01 0.015885481

[4,] 1.00 0.50 1.1146549 2.585245e-01 -0.066013188

[5,] 0.75 0.25 -1.2977959 2.727191e-01 0.150766137

[6,] 0.50 3.00 -0.7933810 5.859729e-02 -0.063637596

[7,] 0.50 -0.50 -1.3482151 1.886967e-01 0.153679396

[8,] 0.25 -1.00 -1.3628960 9.474017e-02 0.146337538

[9,] 0.00 -0.75 1.1336220 -6.936031e-13 -0.046731705

[10,] -0.25 3.75 1.5483100 -6.610187e-02 -0.263217996

> # 2

> setRNG(list(kind="Mersenne-Twister", normal.kind="Inversion", seed=91357))

> ans2 <- matrix(NA, nrow(rmat), 3)

> for (i in 1:nrow(rmat)) {

x0 <- rnorm(3) # random starting value

temp <- BBsolve(par=x0, fn=fleishman, r1=rmat[i,1], r2=rmat[i,2])

if (temp$conv == 0) ans2[i,] <- temp$par

}

Successful convergence.

Successful convergence.

Successful convergence.

Successful convergence.

Successful convergence.

Successful convergence.

Successful convergence.

Successful convergence.

Successful convergence.

Successful convergence.

> ans2 <- cbind(rmat, ans2)

> colnames(ans2) <- c("skew", "kurtosis", "B", "C", "D")

> ans2

skew kurtosis B C D

[1,] 1.75 3.75 -0.9296606 3.994967e-01 0.03646699

[2,] 1.25 2.00 0.9664061 2.230888e-01 -0.00586255

[3,] 1.00 1.75 -0.9274663 1.543073e-01 -0.01588548

[4,] 1.00 0.50 -1.1146552 2.585249e-01 0.06601337

[5,] 0.75 0.25 -1.2977961 2.727192e-01 0.15076629

[6,] 0.50 3.00 0.7933810 5.859729e-02 0.06363759

[7,] 0.50 -0.50 -1.3482151 1.886967e-01 0.15367938

[8,] 0.25 -1.00 1.3628963 9.474021e-02 -0.14633771

[9,] 0.00 -0.75 1.1336221 -2.520587e-13 -0.04673174

[10,] -0.25 3.75 0.7503153 -2.734120e-02 0.07699283

> # 3

> setRNG(list(kind="Mersenne-Twister", normal.kind="Inversion", seed=79135))

11

> ans3 <- matrix(NA, nrow(rmat), 3)

> for (i in 1:nrow(rmat)) {

x0 <- rnorm(3) # random starting value

temp <- BBsolve(par=x0, fn=fleishman, r1=rmat[i,1], r2=rmat[i,2])

if (temp$conv == 0) ans3[i,] <- temp$par

}

Successful convergence.

Successful convergence.

Successful convergence.

Successful convergence.

Successful convergence.

Successful convergence.

Successful convergence.

Successful convergence.

Successful convergence.

Successful convergence.

> ans3 <- cbind(rmat, ans3)

> colnames(ans3) <- c("skew", "kurtosis", "B", "C", "D")

> ans3

skew kurtosis B C D

[1,] 1.75 3.75 0.9207619 4.868014e-01 -0.07251973

[2,] 1.25 2.00 1.1312711 4.094915e-01 -0.12535043

[3,] 1.00 1.75 0.9274666 1.543073e-01 0.01588543

[4,] 1.00 0.50 -1.1146554 2.585250e-01 0.06601345

[5,] 0.75 0.25 1.0591737 1.506888e-01 -0.02819626

[6,] 0.50 3.00 -0.7933811 5.859729e-02 -0.06363759

[7,] 0.50 -0.50 1.1478497 1.201563e-01 -0.05750376

[8,] 0.25 -1.00 -1.3628959 9.474013e-02 0.14633745

[9,] 0.00 -0.75 -1.1336219 -1.156859e-16 0.04673169

[10,] -0.25 3.75 1.5483099 -6.610187e-02 -0.26321798

>

This usually �nds an accurate root of the Fleishman system successfully in
all 50 cases (but may occassionaly fail with di�erent seeds).

An interesting aspect of this exercise is the existence of multiple roots to
the Fleishman system. There are 4 valid roots for any �feasible� combina-
tion of skewness and kurtosis. These 4 roots can be denoted as: (b1, c1,−d1),
(−b1, c1, d1), (b2, c2,−d2), (−b2, c2, d2), where b1, c1, d1, b2, c2, d2 are all positive
(except for the coe�cient c which is zero when skewness is zero). Fleishman
only reports the �rst root, whereas we can locate the other roots using BBsolve.

The experiments demonstrate quite convincingly that the wrapper function
BBsolve can successfully solve the system of equations associated with the power
polynomial method of Fleishman.

12

3 How to optimize a nonlinear objective function

with BB?

The basic function for optimization is spg. It can solve smooth, nonlinear op-
timization problems with box-constraints, and also other types of constraints
using projection. We would like to direct the user to the help page for many
examples of how to use spg. Here we discuss an example involving estimation of
parameters maximizing a log-likelihood function for a binary Poisson mixture
distribution.

> poissmix.loglik <- function(p,y) {

Log-likelihood for a binary Poisson mixture distribution

i <- 0:(length(y)-1)

loglik <- y * log(p[1] * exp(-p[2]) * p[2]^i / exp(lgamma(i+1)) +

(1 - p[1]) * exp(-p[3]) * p[3]^i / exp(lgamma(i+1)))

return (sum(loglik))

}

> # Data from Hasselblad (JASA 1969)

> poissmix.dat <- data.frame(death=0:9,

freq=c(162,267,271,185,111,61,27,8,3,1))

There are 3 model parameters, which have restricted domains. So, we de�ne
these constraints as follows:

> lo <- c(0,0,0) # lower limits for parameters

> hi <- c(1, Inf, Inf) # upper limits for parameters

Now, we maximize the log-likelihood function using both spg and BBoptim,
with a randomly generated starting value for the 3 parameters:

> p0 <- runif(3,c(0.2,1,1),c(0.8,5,8)) # a randomly generated vector of length 3

> y <- c(162,267,271,185,111,61,27,8,3,1)

> ans1 <- spg(par=p0, fn=poissmix.loglik, y=y,

lower=lo, upper=hi, control=list(maximize=TRUE, trace=FALSE))

> ans1

$par

[1] 0.640094 2.663430 1.256131

$value

[1] -1989.946

$gradient

[1] 0.0001523404

$fn.reduction

[1] -209.0405

13

$iter

[1] 42

$feval

[1] 44

$convergence

[1] 0

$message

[1] "Successful convergence"

> ans2 <- BBoptim(par=p0, fn=poissmix.loglik, y=y,

lower=lo, upper=hi, control=list(maximize=TRUE))

iter: 0 f-value: -2198.986 pgrad: 360.6254

iter: 10 f-value: -1991.173 pgrad: 3.212342

iter: 20 f-value: -1990.47 pgrad: 1.571746

iter: 30 f-value: -1990.053 pgrad: 0.6429582

iter: 40 f-value: -1989.946 pgrad: 0.3574752

iter: 50 f-value: -1989.946 pgrad: 0.01283524

iter: 60 f-value: -1989.946 pgrad: 0.0009822543

Successful convergence.

> ans2

$par

[1] 0.6401248 2.6633909 1.2560779

$value

[1] -1989.946

$gradient

[1] 0.0001591616

$fn.reduction

[1] -209.0405

$iter

[1] 65

$feval

[1] 169

$convergence

[1] 0

14

$message

[1] "Successful convergence"

$cpar

method M

2 50

Note that we had to specify the `maximize' option inside the control list to
let the algorithm know that we are maximizing the objective function, since the
default is to minimize the objective function. Also note how we pass the data
vector `y ' to the log-likelihood function, possmix.loglik.

Now, we illustrate how to compute the Hessian of the log-likelihood at the
MLE, and then how to use the Hessian to compute the standard errors for the
parameters. To compute the Hessian we require the package "numDeriv."

> require(numDeriv)

> hess <- hessian(x=ans2$par, func=poissmix.loglik, y=y)

> # Note that we have to supplied data vector `y'

> hess

[,1] [,2] [,3]

[1,] -907.1186 -341.25895 -270.22619

[2,] -341.2590 -192.78641 -61.68141

[3,] -270.2262 -61.68141 -113.47653

> se <- sqrt(diag(solve(-hess)))

> se

[1] 0.1946797 0.2504706 0.3500305

Now, we explore the use of multiple starting values to see if we can iden-
tify multiple local maxima. We have to make sure that we specify `action =

"optimize" ', because the default option in multiStart is "solve".

> # 3 randomly generated starting values

> p0 <- matrix(runif(30, c(0.2,1,1), c(0.8,8,8)), 10, 3, byrow=TRUE)

> ans <- multiStart(par=p0, fn=poissmix.loglik, action="optimize",

y=y, lower=lo, upper=hi, control=list(maximize=TRUE))

Parameter set : 1 ...

iter: 0 f-value: -2629.616 pgrad: 5.149479

iter: 10 f-value: -2001.398 pgrad: 0.01419494

Successful convergence.

Parameter set : 2 ...

iter: 0 f-value: -2046.752 pgrad: 172.2726

iter: 10 f-value: -1990.065 pgrad: 0.8918596

15

iter: 20 f-value: -1990.031 pgrad: 4.181468

iter: 30 f-value: -1990.291 pgrad: 8.707709

Successful convergence.

Parameter set : 3 ...

iter: 0 f-value: -2722.155 pgrad: 7.534183

iter: 10 f-value: -1991.544 pgrad: 3.31378

iter: 20 f-value: -1990.761 pgrad: 8.096627

iter: 30 f-value: -1989.949 pgrad: 0.5093102

iter: 40 f-value: -1989.946 pgrad: 0.0177306

Successful convergence.

Parameter set : 4 ...

iter: 0 f-value: -3692.509 pgrad: 6.213669

iter: 10 f-value: -1990.145 pgrad: 2.718772

iter: 20 f-value: -1990.188 pgrad: 7.280146

iter: 30 f-value: -1989.946 pgrad: 0.0004024514

Successful convergence.

Parameter set : 5 ...

iter: 0 f-value: -2996.35 pgrad: 7.452469

iter: 10 f-value: -1997.898 pgrad: 2.430247

iter: 20 f-value: -1989.959 pgrad: 0.3875152

iter: 30 f-value: -1989.949 pgrad: 0.5795755

iter: 40 f-value: -1989.946 pgrad: 0.01441776

Successful convergence.

Parameter set : 6 ...

iter: 0 f-value: -4492.74 pgrad: 6.965384

iter: 10 f-value: -2001.472 pgrad: 8.750483

Successful convergence.

Parameter set : 7 ...

iter: 0 f-value: -3357.482 pgrad: 6.954945

iter: 10 f-value: -1991.658 pgrad: 2.799363

iter: 20 f-value: -1989.997 pgrad: 0.6908181

iter: 30 f-value: -1989.959 pgrad: 1.203134

iter: 40 f-value: -1989.946 pgrad: 0.001996341

iter: 50 f-value: -1989.946 pgrad: 0.001468834

Successful convergence.

Parameter set : 8 ...

iter: 0 f-value: -3172.301 pgrad: 5.470799

iter: 10 f-value: -2007.457 pgrad: 2.315072

Successful convergence.

Parameter set : 9 ...

iter: 0 f-value: -4019.753 pgrad: 6.606661

iter: 10 f-value: -1993.303 pgrad: 32.41122

iter: 20 f-value: -1990.292 pgrad: 2.832038

iter: 30 f-value: -1989.956 pgrad: 1.914161

iter: 40 f-value: -1989.946 pgrad: 0.02872412

Successful convergence.

16

Parameter set : 10 ...

iter: 0 f-value: -2045.64 pgrad: 3.808228

iter: 10 f-value: -1991.291 pgrad: 2.49011

iter: 20 f-value: -1990.413 pgrad: 1.413719

iter: 30 f-value: -1989.946 pgrad: 0.03627974

iter: 40 f-value: -1989.946 pgrad: 0.01119133

iter: 50 f-value: -1989.946 pgrad: 0.0002614797

Successful convergence.

> # selecting only converged solutions

> pmat <- round(cbind(ans$fvalue[ans$conv], ans$par[ans$conv,]), 4)

> dimnames(pmat) <- list(NULL, c("fvalue","parameter 1","parameter 2","parameter 3"))

> pmat[!duplicated(pmat),]

fvalue parameter 1 parameter 2 parameter 3

[1,] -1996.689 0.3095 2.6448 1.9311

[2,] -1989.946 0.3599 1.2561 2.6634

[3,] -1989.946 0.6401 2.6634 1.2561

[4,] -1995.572 0.4053 2.6018 1.8435

[5,] -1997.205 0.7042 1.9525 2.6274

>

Here multiStart is able to identi�es many solutions. Two of these, the 2nd and
3rd rows, appear to be global maxima with di�erent parameter values. Actually,
there is only one global maximum. It is due to the `label switching' problem
that we see 2 solutions. The multiStart algorithm also identi�es three local
maxima with inferior values.

17

