1 Overview of BB

“BB” is a package intended for two purposes: (1) for solving a nonlinear system
of equations, and (2) for finding a local optimum (can be minimum or maximum)
of a scalar, objective function. An attractive feature of the package is that it
has minimum memory requirements. Therefore, it is particularly well suited
to solving high-dimensional problems with tens of thousands of parameters.
However, BB can also be used to solve a single nonlinear equation or optimize a
function with just one variable. The functions in this package are made available
with:

> library("BB")

You can look at the basic information on the package, including all the
available functions wtih

> help(package=BB)

The three basic functions are: spg, dfsane, and sane. You should spg for opti-
mization, and either dfsane or sane for solving a nonlinear system of equations.
We prefer dfsane, since it tends to perform slightly better than sane. There are
also 3 higher level functions: BBoptim, BBsolve, and multiStart. BBoptim is
a wrapper for spg in the sense that it calls spg repeatedly with different algo-
rithmic options. It can be used when spg fails to find a local optimum, or it
can be used in place of spg. Similarly, BBsolve is a wrapper for dfsane in the
sense that it calls dfsane repeatedly with different algorithmic options. It can
be used when dfsane (sane) fails to find a local optimum, or it can be used in
place of dfsane (sane). The multiStart function can accept multiple starting
values. It can be used for either solving a nonlinear system or for optimizing. It
is useful for exploring sensitivity to starting values, and also for finding multiple
solutions.

The package setRNG is not necessary, but if you want to exactly reproduce
the examples in this guide then do this:

> require("setRNG")
> setRNG(list (kind="Wichmann-Hill", normal.kind="Box-Muller'", seed=1236))

after which the example need to be run in the order here (or at least the parts
that generate random numbers). For some examples the RNG is reset again so
they can be reproduced more easily.

2 How to solve a nonlinear system of equations
with BB?

The first two examples are from La Cruz and Raydan, Optim Methods and
Software 2003, 18 (583-599).

> expo3 <- function(p) {
From La Cruz and Raydan, Optim Methods and Software 2003, 18 (583-599)
n <- length(p)
f <- rep(NA, n)
onml <- 1:(n-1)
flonm1] <- onm1/10 * (1 - plonm1]~2 - exp(-plonm1]~2))
f[n] <- n/10 * (1 - exp(-p[n]~2))
f
}
> pO <- runif(10)
> ans <- dfsane(par=p0, fn=expo3)

Iteration: 0 |[||F(x0)Il: 0.2024112
iteration: 10 ||F(xn)|| = 0.07536174
iteration: 20 ||F(xn)||l = 0.08777425
iteration: 30 ||F(xn)Il = 0.005029196
iteration: 40 ||F(xn)Il = 0.001517709
iteration: 50 ||F(xn)|| = 0.001769548
iteration: 60 ||F(xn)|| = 0.007896929
iteration: 70 ||F(xn)|| = 0.0001410588
iteration: 80 ||F(xn)l| = 2.002796e-06
> ans

$par

[1] 3.819663e-02 3.031250e-02 2.647897e-02 2.404688e-02 2.233208e-02
[6] 2.101498e-02 1.996221e-02 1.909301e-02 1.835779e-02 -7.493381e-06

$residual
[1] 6.645152e-08

$fn.reduction
[1] 0.6400804

$feval
[1] 96

$iter
[1] 85

$convergence
(11 o

$message
[1] "Successful convergence"

Let us look at the output from dfsane. It is a list with 7 components. The
most important components to focus on are the two named “par” and “con-

vergence”. ans$par provides the solution from dfsane, but this is a root if and
only if ans$convergence is equal to 0, i.e. ans$message should say “Successful
convergence’. Otherwise, the algorithm has failed.

Now, we show an example demonstrating the ability of BB to solve a large
system of equations, N = 10000.

> trigexp <- function(x) {
n <- length(x)
F <- rep(NA, n)
F[1] <- 3*x[1]1°2 + 2#x[2] - 5 + sin(x[1] - x[2]) * sin(x[1] + x[2])
tnl <- 2:(n-1)
F[tn1] <- -x[tn1-1] * exp(x[tn1-1] - x[tn1]) + x[tn1] * (4 + 3*x[tn1]"2) +
2 * x[tn1 + 1] + sin(x[tn1] - x[tnl + 1]) * sin(x[tnl1] + x[tnl + 1]) - 8
F[n] <- -x[n-1] * exp(x[n-1] - x[n]) + 4*x[n] - 3

F
}
> n <- 10000
> p0 <- runif(n)
> ans <- dfsane(par=p0, fn=trigexp, control=list(trace=FALSE))
> ans$message

[1] "Successful convergence"
> ans$resid
[1] 5.725351e-08

The next example is from Freudenstein and Roth function (Broyden, Math-
ematics of Computation 1965, p. 577-593).

> froth <- function(p){
f <- rep(NA,length(p))
£[1] <- -13 + p[1] + (p[2]*(5 - p[2]) - 2) * p[2]
f[2] <- -29 + p[1] + (p[2]*(1 + p[2]) - 14) * p[2]
f
}

Now, we introduce the function BBsolve. For the first starting value, dfsane
used in the default manner does not find the zero, but BBsolve, which tries
multiple control parameter settings, is able to successfully find the zero.

> p0 <- ¢(3,2)
> dfsane(par=p0, fn=froth, control=list (trace=FALSE))

$par
[1] -9.822061 -1.875381

$residual

[1] 11.63811

$fn.reduction
[1] 25.58882

$feval
[1] 137

$iter
[1] 114

$convergence
[1] 5

$message
[1] "Lack of improvement in objective function"

> BBsolve(par=p0, fn=froth)

Successful convergence.
$par
(1] 5 4

$residual
[1] 3.659749e-10

$fn.reduction
[1] 0.001827326

$feval
[1] 100

$iter
[1] 10

$convergence
(11 O

$message
[1] "Successful convergence"

$cpar
method M NM
2 50 1

Note that the functions dfsane, sane, and spg produce a warning message if
convergence fails. These warnings have been suppressed in this vignette.

For the next starting value, BBsolve finds the zero of the system, but dfsane
(with defaults) fails.

> p0 <- ¢(1,1)
> BBsolve(par=p0, fn=froth)

Successful convergence.
$par
(11 5 4

$residual
[1] 9.579439e-08

$fn.reduction
[1] 6.998875

$feval
[1] 1165

$iter
[1] 247

$convergence
(11 0

$message
[1] "Successful convergence"

$cpar
method M NM
1 50 1
> dfsane(par=p0, fn=froth, control=list (trace=FALSE))

$par
[1] -9.674222 -1.984882

$residual
[1] 12.15994

$fn.reduction
[1] 24.03431

$feval
[1] 138

$iter

[1]1 109

$convergence
(11 5

$message
[1] "Lack of improvement in objective function"

Try random starting values. Run the following set of code many times. This
shows that BBsolve is quite robust in finding the zero, whereas dfsane (with
defaults) is sensitive to starting values. Admittedly, these are poor starting
values, but still it would be nice to have a strategy that has a high likelihood of
finding a zero of the nonlinear system.

> # two values generated independently from a poisson distribution with mean
> p0 <- rpois(2,10)
> BBsolve(par=p0, fn=froth)

Successful convergence.
$par
(1] 5 4

$residual
[1] 7.330654e-08

$fn.reduction
[1] 0.07273382

$feval
[1] 91

$iter
[1] 41

$convergence
(11 o

$message
[1] "Successful convergence"

$cpar
method M NM
2 50 1

> dfsane(par=p0, fn=froth, control=list(trace=FALSE))

$par
(1] 5 4

10

$residual
[1] 5.472171e-08

$fn.reduction
[1] 490.618

$feval
[1] 32

$iter
[1] 31

$convergence
(11 0

$message
[1] "Successful convergence"

2.1 Finding multiple roots of a nonlinear system of equa-
tions

Now, we introduce the function multiStart. This accepts a matrix of starting
values, where each row is a single starting value. multiStart calls BBsolve for
each starting value. Here is a system of 3 non-linear equations, where each
equation is a high-degree polynomial. This system has 12 real-valued roots and
126 complex-valued roots. Here we will demonstrate how to identify all the 12
real roots using multiStart. Note that we specify the ‘action’ argument in the
following call to multiStart only to highlight that multiStart can be used for
both solving a system of equations and for optimization. The default is ‘action
= Tsolve”, so it is really not needed in this call.

> # Example

> # A high-degree polynomial system (R.B. Kearfott, ACM 1987)

> # There are 12 real roots (and 126 complex roots to this system!)

> #

> hdp <- function(x) {
f <- rep(NA, length(x))
f[1] <- 5 * x[1]°9 - 6 * x[1]°5 * x[2]~2 + x[1] * x[2]~4 + 2 * x[1] * x[3]
f[2] <- -2 * x[1]°6 * x[2] + 2 * x[1]"2 * x[2]"3 + 2 * x[2] * x[3]
f[3] <- x[1]"2 + x[2]"2 - 0.265625
f
}

We generate 100 randomly generated starting values, each a vector of length

equal to 3. (Setting the seed is only necessary to reproduce the result shown
here.)

setRNG (1ist (kind="Wichmann-Hill", normal.kind="Box-Muller", seed=123))

p0 <- matrix(runif(300), 100, 3) # 100 starting values, each of length 3
ans <- multiStart(par=p0, fn=hdp, action='"solve")

sum(ans$conv) # number of successful runs = 99

pmat <- ans$par[ans$conv,] # selecting only converged solutions

vV VvV Vv v Vv

Now, we display the unique real solutions.

> ans <- round(pmat, 4)
> ans[!duplicated(ans),]

[,1] [,2] [,3]

[1,] 0.2799 0.4328 -0.0142

[2,1 0.0000 0.5154 0.0000

[3,] 0.5154 0.0000 -0.0124

[4,] 0.4670 -0.2181 0.0000

[5,]1 0.4670 0.2181 0.0000

[6,]1 0.0000 -0.5154 0.0000
0

(7,1 .2799 -0.4328 -0.0142
[8,]1 -0.4670 0.2181 0.0000
[9,1 -0.2799 0.4328 -0.0142
[10,] -0.5154 0.0000 -0.0124
[11,] -0.2799 -0.4328 -0.0142
[12,] -0.4670 -0.2181 0.0000

We can also visualize these 12 solutions beautifully using a ‘biplot’ based on
the first 2 principal components of the converged parameter matrix.

> pc <- princomp (pmat)
> biplot(pc) # you can see all 12 solutions beautifully like on a clock!

Comp.2

N
- Var 2
2
-
o
o 7] o
-
= 88
9
as|
| 1
g _ 39 %)
| | |
(i1}
28
™ | <Ir
S - 92 42
! T T T T T
-0.3 -0.2 -0.1 0.0 0.1
Comp.1

2.2 Power polynomial method: Fleishman system of equa-
tions

Fleishman (Psychometrika 1978, p.521-532) developed an approach for simu-
lating random numbers from non-normal distrinbutions, with specified values
of skewness and kurtosis. This approach involves the solution of a system of
polynomial equations. This system is also discussed in the paper by Demirtas
and Hedeker (Communications in Statistics 2008, p. 1682-1695; Equations on
p. 1684) and is given as follows:

> fleishman <- function(x, ril, r2) {

b <-
c <-
d <-
f <-
£[1]
f[2]
f£[3]

f
}

x[1]

x[2]

x[3]

rep(NA, 3)

<-b"2+ 6 *b*xd+2*c2+ 15 *xd2 -1

<- 2%c * (b~2 + 24%b*d + 105*d~2 + 2) - rli

<- b¥d + ¢c™2 * (1 + b"2 + 28 * b * d) + d°2 * (12 + 48 * bx d +
141 * ¢c~2 + 225 * d~2) - r2/24

We only use 3 equations, since 1st equation is trivially solved by a = -c.

Here we describe an experiment based on Fleishman (Psychometrika 1978,
p.521-532), and is reproduced as follows. We randomly picked 10 scenarios
(more or less randomly) from Table 1 of Fleishman (1978):

>

> rmat[1,] <- c(1.
> rmat[2,] <- c(1.
> rmat[3,] <- c(1.
> rmat[4,] <- c(1.
> rmat[5,] <- c(0.
> rmat[6,] <- c(0.
> rmat[7,] <- c(0.
> rmat[8,] <- c(0.
> rmat[9,] <- c(0.
>

75,
25,
00,
00,
75,
50,
50,
25,
0,

rmat <- matrix(NA, 10, 2)

3.75)
2.00)
1.75)
0.50)
0.25)
3.00)
-0.50)
-1.00)
-0.75)

rmat[10,] <- c(-0.25, 3.75)

We solve the system of equations for the above 10 specifications of skewness
and kurtosis 3 times, each time with a different random starting seed.

> # 1

> setRNG(list(kind="Mersenne-Twister", normal.kind="Inversion", seed=13579))
> ansl <- matrix(NA, nrow(rmat), 3)

> for (i in 1:nrow(rmat)) {

x0 <- rnorm(3) # random starting value
temp <- BBsolve(par=x0, fn=fleishman, rl=rmat[i,1], r2=rmat([i,2])
if (temp$conv == 0) ansi[i,] <- temp$par

}

Successful
Successful
Successful
Successful
Successful
Successful
Successful
Successful
Successful
Successful

> ansl <- cbind(rmat, ansl)
> colnames(ans1l) <- c('"skew",

convergence.
convergence.
convergence.
convergence.
convergence.
convergence.
convergence.
convergence.
convergence.
convergence.

skew kurtosis

> ansl
[1,] 1.75
[2,] 1.25

3.75 -0.9296606 3.994967e-01
2.00 -0.9664061

Hkurtosisﬂ’ ”B H’ ”CH’ HDH)

B C D
0.036466986

2.230888e-01 0.005862543

10

[3,1] 1.00 1.75 0.9274664 1.543072e-01 0.015885481
[4,] 1.00 0.50 1.1146549 2.585245e-01 -0.066013188
[5,] 0.75 0.25 -1.2977959 2.727191e-01 0.150766137
[6,1 0.50 3.00 -0.7933810 5.859729e-02 -0.063637596
[7,1] 0.50 -0.50 -1.3482151 1.886967e-01 0.153679396
[8,1] 0.25 -1.00 -1.3628960 9.474017e-02 0.146337538
[9,1 0.00 -0.75 1.1336220 -6.936031e-13 -0.046731705
[10,] -0.25 3.75 1.5483100 -6.610187e-02 -0.263217996
> # 2

> setRNG(list(kind="Mersenne-Twister", normal.kind="Inversion", seed=91357))
> ans2 <- matrix(NA, nrow(rmat), 3)
> for (i in 1:nrow(rmat)) {

x0 <- rnorm(3) # random starting value

temp <- BBsolve(par=x0, fn=fleishman, rl=rmat[i,1], r2=rmat[i,2])

if (temp$conv == 0) ans2[i,] <- temp$par

}

Successful
Successful
Successful
Successful
Successful
Successful
Successful
Successful
Successful
Successful

convergence.
convergence.
convergence.
convergence.
convergence.
convergence.
convergence.
convergence.
convergence.
convergence.

> ans2 <- cbind(rmat, ans2)

> colnames(ans2) <- c('"skew", "kurtosis", "B", '"C'", "D")
> ans2
skew kurtosis B C D
[1,1 1.75 3.75 -0.9296606 3.994967e-01 0.03646699
[2,] 1.25 2.00 0.9664061 2.230888e-01 -0.00586255
[3,1 1.00 1.75 -0.9274663 1.543073e-01 -0.01588548
[4,1 1.00 0.50 -1.1146552 2.585249e-01 0.06601337
[5,1 0.75 0.25 -1.2977961 2.727192e-01 0.15076629
[6,1 0.50 3.00 0.7933810 5.859729e-02 0.06363759
[7,] 0.50 -0.50 -1.3482151 1.886967e-01 0.15367938
[8,] 0.25 -1.00 1.3628963 9.474021e-02 -0.14633771
[9,1 0.00 -0.75 1.1336221 -2.520587e-13 -0.04673174
[10,1 -0.25 3.75 0.7503153 -2.734120e-02 0.07699283
> # 3

> setRNG(list (kind="Mersenne-Twister", normal.kind="Inversion'", seed=79135))

11

> ans3 <- matrix(NA, nrow(rmat), 3)
> for (i in 1:nrow(rmat)) {
x0 <- rnorm(3) # random starting value
temp <- BBsolve(par=x0, fn=fleishman, ril=rmat[i,1], r2=rmat([i,2])
if (temp$conv == 0) ans3[i,] <- temp$par
}

Successful convergence.
Successful convergence.
Successful convergence.
Successful convergence.
Successful convergence.
Successful convergence.
Successful convergence.
Successful convergence.
Successful convergence.
Successful convergence.

> ans3 <- cbind(rmat, ans3)
> colnames(ans3) <- c('"skew", "kurtosis", "B", '"C'", "D")
> ans3

skew kurtosis B C D
[1,1 1.75 3.75 0.9207619 4.868014e-01 -0.07251973
[2,] 1.25 2.00 1.1312711 4.094915e-01 -0.12535043
[3,1] 1.00 1.75 0.9274666 1.543073e-01 0.01588543
[4,] 1.00 0.50 -1.1146554 2.585250e-01 0.06601345
[6,] 0.75 0.25 1.0591737 1.506888e-01 -0.02819626
[6,1 0.50 3.00 -0.7933811 5.859729e-02 -0.06363759
[7,] 0.50 -0.50 1.1478497 1.201563e-01 -0.05750376
[8,] 0.25 -1.00 -1.3628959 9.474013e-02 0.14633745
[9,1 0.00 -0.75 -1.1336219 -1.156859e-16 0.04673169
[10,] -0.25 3.75 1.5483099 -6.610187e-02 -0.26321798
>

This usually finds an accurate root of the Fleishman system successfully in
all 50 cases (but may occassionaly fail with different seeds).

An interesting aspect of this exercise is the existence of multiple roots to
the Fleishman system. There are 4 valid roots for any “feasible” combina-
tion of skewness and kurtosis. These 4 roots can be denoted as: (b1, c1, —dy),
(—bl, Ci, d1), (bg, Ca, —dg), (—bg, Co, d2), where bl, Ci, d1, bg, Co, dQ are all positive
(except for the coefficient ¢ which is zero when skewness is zero). Fleishman
only reports the first root, whereas we can locate the other roots using BBsolve.

The experiments demonstrate quite convincingly that the wrapper function
BBsolve can successfully solve the system of equations associated with the power
polynomial method of Fleishman.

12

3 How to optimize a nonlinear objective function
with BB?

The basic function for optimization is spg. It can solve smooth, nonlinear op-
timization problems with box-constraints, and also other types of constraints
using projection. We would like to direct the user to the help page for many
examples of how to use spg. Here we discuss an example involving estimation of
parameters maximizing a log-likelihood function for a binary Poisson mixture
distribution.

> poissmix.loglik <- function(p,y) {
Log-likelihood for a binary Poisson mixture distribution
i <- 0:(length(y)-1)
loglik <- y * log(p[1] * exp(-p[2]) * p[2]~i / exp(lgamma(i+1)) +
(1 - pl[1]) * exp(-p[3]) * p[3]1~i / exp(lgamma(i+1)))
return (sum(loglik))
}
> # Data from Hasselblad (JASA 1969)
> poissmix.dat <- data.frame(death=0:9,
freq=c(162,267,271,185,111,61,27,8,3,1))

There are 3 model parameters, which have restricted domains. So, we define
these constraints as follows:

> 1o <- ¢(0,0,0) # lower limits for parameters
> hi <- ¢(1, Inf, Inf) # upper limits for parameters

Now, we maximize the log-likelihood function using both spg and BBoptim,
with a randomly generated starting value for the 3 parameters:

> p0 <- runif(3,c(0.2,1,1),c(0.8,5,8)) # a randomly generated vector of length 3
>y <- c(162,267,271,185,111,61,27,8,3,1)
> ansl <- spg(par=p0, fn=poissmix.loglik, y=y,
lower=lo, upper=hi, control=list(maximize=TRUE, trace=FALSE))
> ansli

$par
[1] 0.640094 2.663430 1.256131

$value
[1] -1989.946

$gradient
[1] 0.0001523404

$fn.reduction
[1] -209.0405

13

$iter
[1] 42

$feval
[1] 44

$convergence
(11 o

$message
[1] "Successful convergence"

> ans2 <- BBoptim(par=p0, fn=poissmix.loglik, y=y,
lower=lo, upper=hi, control=1list(maximize=TRUE))

iter: 0 f-value: -2198.986 pgrad: 360.6254
iter: 10 f-value: -1991.173 pgrad: 3.212342
iter: 20 f-value: -1990.47 pgrad: 1.571746
iter: 30 f-value: -1990.053 pgrad: 0.6429582
iter: 40 f-value: -1989.946 pgrad: 0.3574752
iter: 50 f-value: -1989.946 pgrad: 0.01283524
iter: 60 f-value: -1989.946 pgrad: 0.0009822543
Successful convergence.

> ans2

$par
[1] 0.6401248 2.6633909 1.2560779

$value
[1] -1989.946

$gradient
[1] 0.0001591616

$fn.reduction
[1] -209.0405

$iter
[1] 65

$feval
[1] 169

$convergence
(11 o

14

$message
[1] "Successful convergence"

$cpar
method M
2 50

Note that we had to specify the ‘mazimize’ option inside the control list to
let the algorithm know that we are maximizing the objective function, since the
default is to minimize the objective function. Also note how we pass the data
vector ‘y’ to the log-likelihood function, possmiz.loglik.

Now, we illustrate how to compute the Hessian of the log-likelihood at the
MLE, and then how to use the Hessian to compute the standard errors for the
parameters. To compute the Hessian we require the package "numDeriv."

> require(numDeriv)

> hess <- hessian(x=ans2$par, func=poissmix.loglik, y=y)
> # Note that we have to supplied data vector “y'

> hess

[,1] [,2] [,3]
[1,] -907.1186 -341.25895 -270.22619
[2,] -341.2590 -192.78641 -61.68141
[3,] -270.2262 -61.68141 -113.47653

> se <- sqrt(diag(solve(-hess)))
> se

[1] 0.1946797 0.2504706 0.3500305

Now, we explore the use of multiple starting values to see if we can iden-
tify multiple local maxima. We have to make sure that we specify ‘action =
"optimize" | because the default option in multiStart is "solve.

> # 3 randomly generated starting values

> pO <- matrix(runif (30, c(0.2,1,1), <¢(0.8,8,8)), 10, 3, byrow=TRUE)

> ans <- multiStart(par=p0, fn=poissmix.loglik, action="optimize",
y=y, lower=lo, upper=hi, control=list(maximize=TRUE))

Parameter set : 1 ...

iter: 0 f-value: -2629.616 pgrad: 5.149479

iter: 10 f-value: -2001.398 pgrad: 0.01419494
Successful convergence.

Parameter set : 2 ...

iter: 0 f-value: -2046.752 pgrad: 172.2726

iter: 10 f-value: -1990.065 pgrad: 0.8918596

15

iter: 20 f-value: -1990.031 pgrad: 4.181468

iter: 30 f-value: -1990.291 pgrad: 8.707709
Successful convergence.

Parameter set : 3 ...

iter: 0 f-value: -2722.155 pgrad: 7.534183

iter: 10 f-value: -1991.544 pgrad: 3.31378

iter: 20 f-value: -1990.761 pgrad: 8.096627

iter: 30 f-value: -1989.949 pgrad: 0.5093102

iter: 40 f-value: -1989.946 pgrad: 0.0177306
Successful convergence.

Parameter set : 4 ...

iter: 0 f-value: -3692.509 pgrad: 6.213669

iter: 10 f-value: -1990.145 pgrad: 2.718772

iter: 20 f-value: -1990.188 pgrad: 7.280146

iter: 30 f-value: -1989.946 pgrad: 0.0004024514
Successful convergence.

Parameter set : 5 ...

iter: 0 f-value: -2996.35 pgrad: 7.452469

iter: 10 f-value: -1997.898 pgrad: 2.430247

iter: 20 f-value: -1989.959 pgrad: 0.38751562

iter: 30 f-value: -1989.949 pgrad: 0.5795755

iter: 40 f-value: -1989.946 pgrad: 0.01441776
Successful convergence.

Parameter set : 6 ...

iter: 0 f-value: -4492.74 pgrad: 6.965384

iter: 10 f-value: -2001.472 pgrad: 8.750483
Successful convergence.

Parameter set : 7 ...

iter: 0 f-value: -3357.482 pgrad: 6.954945

iter: 10 f-value: -1991.658 pgrad: 2.799363

iter: 20 f-value: -1989.997 pgrad: 0.6908181

iter: 30 f-value: -1989.959 pgrad: 1.203134

iter: 40 f-value: -1989.946 pgrad: 0.001996341

iter: 50 f-value: -1989.946 pgrad: 0.001468834
Successful convergence.

Parameter set : 8 ...

iter: 0 f-value: -3172.301 pgrad: 5.470799

iter: 10 f-value: -2007.457 pgrad: 2.315072
Successful convergence.

Parameter set : 9 ...

iter: 0 f-value: -4019.753 pgrad: 6.606661

iter: 10 f-value: -1993.303 pgrad: 32.41122

iter: 20 f-value: -1990.292 pgrad: 2.832038

iter: 30 f-value: -1989.956 pgrad: 1.914161

iter: 40 f-value: -1989.946 pgrad: 0.02872412
Successful convergence.

16

Parameter set : 10 ...

iter: 0 f-value: -2045.64 pgrad: 3.808228

iter: 10 f-value: -1991.291 pgrad: 2.49011

iter: 20 f-value: -1990.413 pgrad: 1.413719

iter: 30 f-value: -1989.946 pgrad: 0.03627974

iter: 40 f-value: -1989.946 pgrad: 0.01119133

iter: 50 f-value: -1989.946 pgrad: 0.0002614797
Successful convergence.

> # selecting only converged solutions

> pmat <- round(cbind(ans$fvalue[ans$conv], ans$par[ans$conv,]), 4)

> dimnames (pmat) <- 1list(NULL, c("fvalue","parameter 1","parameter 2", '"parameter 3"))
> pmat[!duplicated(pmat),]

fvalue parameter 1 parameter 2 parameter 3

[1,] -1996.689 0.3095 2.6448 1.9311
[2,] -1989.946 0.3599 1.2561 2.6634
[3,] -1989.946 0.6401 2.6634 1.2561
[4,] -1995.572 0.4053 2.6018 1.8435
[5,] -1997.205 0.7042 1.9525 2.6274

Here multiStart is able to identifies many solutions. Two of these, the 2nd and
3rd rows, appear to be global maxima with different parameter values. Actually,
there is only one global maximum. It is due to the ‘label switching’ problem
that we see 2 solutions. The multiStart algorithm also identifies three local
maxima with inferior values.

17

