Package 'TOSTER'

May 8, 2024

Version 0.8.3

Title Two One-Sided Tests (TOST) Equivalence Testing
Description Two one-sided tests (TOST) procedure to test equivalence for t-tests, correlations, differences between proportions, and meta-analyses, including power analysis for t -tests and correlations. Allows you to specify equivalence bounds in raw scale units or in terms of effect sizes. See: Lakens (2017) doi:10.1177/1948550617697177.

Maintainer Aaron Caldwell arcaldwell49@gmail.com

URL https://aaroncaldwell.us/TOSTERpkg/
License GPL-3
Imports stats, graphics, jmvcore (>= 0.9.6.4), ggplot2, ggdist, distributional, cowplot, tidyr, utils, R6, lifecycle

Suggests knitr, rmarkdown, broom, car, afex, testhat (>=3.0.0), spelling

VignetteBuilder knitr
Encoding UTF-8
LazyData true
Config/testthat/edition 3
Depends R (>= 3.5)
RoxygenNote 7.2.3
Language en-US
NeedsCompilation no
Author Daniel Lakens [aut],
Aaron Caldwell [aut, cre]

Repository CRAN

Date/Publication 2024-05-08 16:40:02 UTC

R topics documented:

as_htest 3
boot_compare_cor 4
boot_compare_smd 5
boot_cor_test 7
boot_log_TOST 8
boot_ses_calc 11
boot_smd_calc 13
boot_t_test 15
boot_t_TOST 17
brunner_munzel 20
compare_cor 22
compare_smd 24
corsum_test 25
dataTOSTone 27
dataTOSTpaired 28
dataTOSTr 30
dataTOSTtwo 31
datatosttwoprop 33
equ_anova 34
equ_ftest 36
extract_r_paired 37
hawthorne 38
htest-helpers 38
$\log _{-}$TOST 39
plot_cor 41
plot_pes 42
plot_smd 43
powerTOSTone 45
powerTOSTpaired 46
powerTOSTtwo 48
power_eq_f 49
power_twoprop 50
power_t_TOST 52
power_z_cor 54
rbs 55
ses_calc 57
simple_htest 58
smd_calc 61
TOSTmeta 63
TOSTnp-methods 64
TOSTone 65
TOSTpaired 66
TOSTr 68
TOSTt-methods 69
TOSTtwo 70
TOSTtwo.prop 72
tsum_TOST 74
twoprop_test 76
t_TOST 79
wilcox_TOST 81
z_cor_test 84
Index 86
as_htest Convert to class 'htest'

Description

[Maturing]

Convert a TOSTER result object of class 'TOSTt' or 'TOSTnp' to a list of class 'htest'.

Usage

as_htest(TOST)

Arguments

TOST A TOSTER result object of class 'TOSTt' or 'TOSTnp'.

Value

Returns a list containing a list of class 'htest' for the result of each test with the following elements:
data. name A character string giving the names of the data.
estimate Estimated difference in raw units.
method A character string indicating the performed test.
null.value Equivalence bound.
alternative A character string describing the alternative hypothesis.
parameter The degrees of freedom of the distribution of the test statistic.
statistic The value of the test statistic.
p.value The p-value of the test.
conf.int The confidence interval of the difference.

See Also

Other htest: htest-helpers, simple_htest()

Examples

```
res1 = t_TOST(formula = extra ~ group,data = sleep,eqb = . 5,smd_ci = "goulet")
as_htest(res1)
```

boot_compare_cor \quad| Comparing Correlations between independent studies with bootstrap- |
| :--- |
| ping |

Description

[Stable]

A function to compare standardized mean differences (SMDs) between studies. This function is intended to be used to compare the compatibility of original studies with replication studies (lower p -values indicating lower compatibility).

```
Usage
    boot_compare_cor(
        x1,
        y1,
        x2,
        y2,
        alternative = c("two.sided", "less", "greater", "equivalence", "minimal.effect"),
        method = c("pearson", "kendall", "spearman", "winsorized", "bendpercent"),
        alpha = 0.05,
        null = 0,
        R = 1999,
    )
```


Arguments

$\mathrm{x} 1, \mathrm{y} 1 \quad$ numeric vectors of data values. x and y must have the same length from study 1 .
$x 2, y 2$ numeric vectors of data values. x and y must have the same length from study 2.
al ternative a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater", "less", "equivalence" (TOST), or "minimal.effect" (TOST). You can specify just the initial letter.
method a character string indicating which correlation coefficient is to be used for the test. One of "winsorized", "bendpercent","pearson", "kendall", or "spearman", can be abbreviated.
alpha \quad alpha level $($ default $=0.05)$
null a number indicating the null hypothesis. Default is a correlation of zero.
R number of bootstrap replicates
. . further arguments to be passed to or from methods.

Value

A list with class "htest" containing the following components:

- "p.value": numeric scalar containing the p-value for the test under the null hypothesis.
- "estimate": difference in correlations between studies.
- "conf.int": percentile (bootstrap) confidence interval for difference in correlations.
- "null.value": the specified hypothesized value for the null hypothesis.
- "alternative": character string indicating the alternative hypothesis (the value of the input argument alternative). Possible values are "greater", "less", or "two-sided".
- "method": a character string indicating how the association was measured.
- "data.name": Names of input values.
- "boot_res": List of bootstrapped results.
- "call": the matched call.

See Also

Other compare studies: boot_compare_smd(), compare_cor(), compare_smd()

```
boot_compare_smd Comparing SMDs between ndependent studies with bootstrapping
```


Description

[Stable]

A function to compare standardized mean differences (SMDs) between studies. This function is intended to be used to compare the compatibility of original studies with replication studies (lower p -values indicating lower compatibility).

```
Usage
    boot_compare_smd(
        x1,
        y1 = NULL,
        x2,
        y2 = NULL,
        null = 0,
        paired = FALSE,
        alternative = c("two.sided", "less", "greater"),
        R = 1999,
        alpha = 0.05
    )
```


Arguments

x1
y1 an optional (non-empty) numeric vector of data values from study 1.
$x 2 \quad a(n o n-e m p t y)$ numeric vector of data values from study 2.
y2 an optional (non-empty) numeric vector of data values from study 2.
null a number indicating the null hypothesis. For TOST, this would be equivalence bound.
paired a logical indicating whether the SMD is from a paired or independent samples design.
alternative a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". You can specify just the initial letter.
R number of bootstrap replicates
alpha \quad alpha level $($ default $=0.05)$
a (non-empty) numeric vector of data values from study 1.

Value

A list with class "htest" containing the following components:

- "statistic": z-score.
- "p.value": numeric scalar containing the p-value for the test under the null hypothesis.
- "estimate": difference in SMD between studies
- "conf.int": percentile (bootstrap) confidence interval for difference in SMDs
- "null.value": the specified hypothesized value for the null hypothesis.
- "alternative": character string indicating the alternative hypothesis (the value of the input argument alternative). Possible values are "greater", "less", or "two-sided".
- "method": Type of SMD.
- "data.name": "Boostrapped" to denote summary statistics were utilized to obtain results.
- "smd": SMDs input for the function.
- "df_ci": Data frame of confidence intervals.
- "boot_res": List of bootstrapped results.
- "call": the matched call.

See Also

Other compare studies: boot_compare_cor(), compare_cor(), compare_smd()

Description

[Stable]

A function for a bootstrap, percentile, method for correlation coefficients.

Usage

```
    boot_cor_test(
        x,
        y,
        alternative = c("two.sided", "less", "greater", "equivalence", "minimal.effect"),
        method = c("pearson", "kendall", "spearman", "winsorized", "bendpercent"),
        alpha = 0.05,
        null = 0,
        boot_ci = c("basic", "perc"),
        R = 1999,
    )
```


Arguments

x
$y \quad$ an optional (non-empty) numeric vector of data values.
alternative a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater", "less", "equivalence" (TOST), or "minimal.effect" (TOST). You can specify just the initial letter.
method a character string indicating which correlation coefficient is to be used for the test. One of "winsorized", "bendpercent","pearson", "kendall", or "spearman", can be abbreviated.
alpha \quad alpha level $($ default $=0.05)$
null a number indicating the null hypothesis. Default is a correlation of zero.
boot_ci type of bootstrap confidence interval. Options include studentized (stud), empirical/basic (basic) and percentile (perc) confidence intervals.

R
number of bootstrap replicates
... further arguments to be passed to or from methods.

Details

This function uses a percentile bootstrap methods for the confidence intervals. The returned pvalues are calculated from a re-sampled null distribution (similar to boot_t_TOST). See vignette("correlations") for more details.

The bootstrap correlation methods in this package offer two other correlations: a Winsorized correlation and a percentage bend correlation (see Wilcox 2017). These two can modified by adding the trim (Winsorized) or beta (percentage bend) arguments. The default for both arguments is 0.2 but can be modified at the user's discretion. These calculations are based on Rand Wilcox's R functions for his book (Wilcox, 2017), and adapted from their implementation in Guillaume Rousselet's R package "bootcorci".

Value

A list with class "htest" containing the following components:

- "p.value": the p-value of the test.
- "estimate": the estimated measure of association, with name "pb", "wincor", "cor", "tau", or "rho" corresponding to the method employed.
- "null.value": the value of the association measure under the null hypothesis.
- "alternative": character string indicating the alternative hypothesis (the value of the input argument alternative).
- "method": a character string indicating how the association was measured.
- "data.name": a character string giving the names of the data.
- "call": the matched call.

References

Wilcox, R.R. (2009) Comparing Pearson Correlations: Dealing with Heteroscedasticity and Nonnormality. Communications in Statistics - Simulation and Computation, 38, 2220-2234.
Wilcox, R.R. (2017) Introduction to Robust Estimation and Hypothesis Testing, 4th edition. Academic Press.

See Also

Other Correlations: corsum_test(), plot_cor(), power_z_cor(), z_cor_test()

Description

[Stable]

A function for a bootstrap method for TOST with all types of t-tests.

Usage

```
boot_log_TOST(x, ...)
## Default S3 method:
boot_log_TOST(
    x,
    y = NULL,
    hypothesis = c("EQU", "MET"),
    paired = FALSE,
    var.equal = FALSE,
    eqb = 1.25,
    alpha = 0.05,
    null = 1,
    boot_ci = c("stud", "basic", "perc"),
    R = 1999,
)
## S3 method for class 'formula'
boot_log_TOST(formula, data, subset, na.action, ...)
```


Arguments

x	a (non-empty) numeric vector of data values.
	further arguments to be passed to or from methods.
y	an optional (non-empty) numeric vector of data values.
hypothesis	'EQU' for equivalence (default), or 'MET' for minimal effects test, the alternative hypothesis.
paired	a logical indicating whether you want a paired t-test.
var.equal	a logical variable indicating whether to treat the two variances as being equal. If TRUE then the pooled variance is used to estimate the variance otherwise the Welch (or Satterthwaite) approximation to the degrees of freedom is used.
eqb	Equivalence bound. Can provide 1 value (negative value is taken as the lower bound) or 2 specific values that represent the upper and lower equivalence bounds
alpha	alpha level (default $=0.05$)
null	Null hypothesis value for a two-tailed test (default is 1).
boot_ci	type of bootstrap confidence interval. Options include studentized (stud), empirical/basic (basic) and percentile (perc) confidence intervals.
R	number of bootstrap replicates
formula	a formula of the form lhs \sim rhs where lhs is a numeric variable giving the data values and rhs either 1 for a one-sample or paired test or a factor with two levels giving the corresponding groups. If lhs is of class "Pair" and rhs is 1, a paired test is done.

data	an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from envi- ronment(formula).
subset	an optional vector specifying a subset of observations to be used. na.actiona function which indicates what should happen when the data contain NAs. De- faults to getOption("na.action").

Details

The implemented test(s) corresponds to the proposal of Chapter 16 of Efron and Tibshirani (1994), and recommended by He et al (2022). Returns TOSTt class object with bootstrapped based results. This is approximately equivalent to the percentile bootstrap method mentioned by He et al (2014).
For two-sample tests, the test is of $\bar{l} o g(x)-\bar{l} o g(y)$ (mean of x minus mean of y). For paired samples, the test is of the difference scores (z), wherein $z=\log (x)-\log (y)=\log (x) / \log (y)$, and the test is of \bar{z} (mean of the difference/ratio scores).
For details on the calculations in this function see vignette("robustTOST").

Value

An S3 object of class "TOSTt" is returned containing the following slots:

- "TOST": A table of class "data.frame" containing two-tailed t-test and both one-tailed results.
- "eqb": A table of class "data.frame" containing equivalence bound settings.
- "effsize": table of class "data. frame" containing effect size estimates.
- "hypothesis": String stating the hypothesis being tested.
- "smd": List containing the results of the means ratio calculation.
- Items include: d (means ratio estimate), dlow (lower CI bound), dhigh (upper CI bound), d_df (degrees of freedom for SMD), d_sigma (SE), d_lambda (non-centrality), J (bias correction), smd_label (type of SMD), d_denom (denominator calculation)
- "alpha": Alpha level set for the analysis.
- "method": Type of t-test.
- "decision": List included text regarding the decisions for statistical inference.
- "boot": List containing the bootstrap samples.

References

Efron, B., \& Tibshirani, R. J. (1994). An introduction to the bootstrap. CRC press
He, Y., Deng, Y., You, C., \& Zhou, X. H. (2022). Equivalence tests for ratio of means in bioequivalence studies under crossover design. Statistical Methods in Medical Research, 09622802221093721.

Food and Drug Administration (2014). Bioavailability and Bioequivalence Studies Submitted in NDAs or INDs - General Considerations. Center for Drug Evaluation and Research. Docket: FDA-2014-D-0204. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/bioavailability-and-bioequivalence-studies-submitted-ndas-or-inds-general-considerations

See Also

Other Robust tests: boot_t_TOST(), boot_t_test(), brunner_munzel(), log_TOST(), wilcox_TOST() Other TOST: boot_t_TOST(), simple_htest(), t_TOST(), tsum_TOST(), wilcox_TOST()

```
boot_ses_calc Bootstrap SES Calculation
```


Description

[Maturing]

Standardized effect size (SES), these are the effect sizes not considered SMDs.

Usage

```
boot_ses_calc(
        x,
    ...,
    paired = FALSE,
    ses = "rb",
    alpha = 0.05,
    boot_ci = c("basic", "stud", "perc"),
    R = 1999
)
## Default S3 method:
boot_ses_calc(
    x,
    y = NULL,
    paired = FALSE,
    ses = c("rb", "odds", "logodds", "cstat"),
    alpha = 0.05,
    boot_ci = c("basic", "stud", "perc"),
    R = 1999,
)
## S3 method for class 'formula'
boot_ses_calc(formula, data, subset, na.action, ...)
```


Arguments

x
...
paired
a (non-empty) numeric vector of data values.
further arguments to be passed to or from methods.
a logical indicating whether you want a paired t-test.
\(\left.$$
\begin{array}{ll}\text { ses } & \begin{array}{l}\text { Standardized effect size. Default is "rb" for rank-biserial correlation. Options } \\
\text { also include "cstat" for concordance probability, or "odds" for Wilcoxon-Mann- } \\
\text { Whitney odds (otherwise known as Agresti's generalized odds ratio). }\end{array} \\
\text { alpha } & \begin{array}{l}\text { alpha level (default = 0.05) }\end{array} \\
\text { boot_ci } & \begin{array}{l}\text { type of bootstrap confidence interval. Options include studentized (stud), em- } \\
\text { pirical/basic (basic) and percentile (perc) confidence intervals. }\end{array}
$$

R number of bootstrap replicates\end{array}\right]\)| an optional (non-empty) numeric vector of data values. |
| :--- |
| y formula of the form lhs ~ rhs where lhs is a numeric variable giving the data |
| values and rhs either 1 for a one-sample or paired test or a factor with two levels |
| giving the corresponding groups. If lhs is of class "Pair" and rhs is 1, a paired |
| test is done. |

Details

For details on the calculations in this function see vignette("robustTOST").

Value

A data frame containing the standardized effect size.

See Also

Other effect sizes: boot_smd_calc(), ses_calc(), smd_calc()

Examples

```
## Not run:
boot_ses_calc(formula = extra ~ group, data = sleep, paired = TRUE, ses = "r")
## End(Not run)
```


Description

[Maturing]

A function to only calculate standardized mean differences with bootstrap confidence intervals.

Usage

```
    boot_smd_calc(
```

 x ,
 ...,
 paired = FALSE,
 var.equal = FALSE,
 alpha \(=0.05\),
 bias_correction = TRUE,
 rm_correction = FALSE,
 glass = NULL,
 boot_ci = c("stud", "basic", "perc"),
 \(R=1999\)
)
 \#\# Default S3 method:
 boot_smd_calc(
 x ,
 \(y=N U L L\),
 paired = FALSE,
 var.equal = FALSE,
 alpha \(=0.05\),
 \(\mathrm{mu}=0\),
 bias_correction = TRUE,
 rm_correction = FALSE,
 glass = NULL,
 boot_ci = c("stud", "basic", "perc"),
 \(R=1999\),
)
 \#\# S3 method for class 'formula'
 boot_smd_calc(formula, data, subset, na.action, ...)

Arguments

x
...
a (non-empty) numeric vector of data values.
further arguments to be passed to or from methods.

```
paired a logical indicating whether you want a paired t-test.
var.equal a logical variable indicating whether to treat the two variances as being equal.
    If TRUE then the pooled variance is used to estimate the variance otherwise the
    Welch (or Satterthwaite) approximation to the degrees of freedom is used.
alpha alpha level (default =0.05)
bias_correction
    Apply Hedges' correction for bias (default is TRUE).
rm_correction Repeated measures correction to make standardized mean difference Cohen's
    d(rm). This only applies to repeated/paired samples. Default is FALSE.
glass A option to calculate Glass's delta as an alternative to Cohen's d type SMD.
        Default is NULL to not calculate Glass's delta, "glass1" will use the first group's
        SD as the denominator whereas "glass2" will use the 2nd group's SD.
boot_ci type of bootstrap confidence interval. Options include studentized (stud), em-
        pirical/basic (basic) and percentile (perc) confidence intervals.
R number of bootstrap replicates
y an optional (non-empty) numeric vector of data values.
mu Null value. Deviating from zero will give the x-y-mu.
formula a formula of the form lhs ~ rhs where lhs is a numeric variable giving the data
    values and rhs either 1 for a one-sample or paired test or a factor with two levels
    giving the corresponding groups. If lhs is of class "Pair" and rhs is 1, a paired
    test is done.
data an optional matrix or data frame (or similar: see model.frame) containing the
        variables in the formula formula. By default the variables are taken from envi-
        ronment(formula).
subset an optional vector specifying a subset of observations to be used.
na.action a function which indicates what should happen when the data contain NAs. De-
    faults to getOption("na.action").
```


Details

For details on the calculations in this function see vignette("SMD_calcs").

Value

A data frame containing the SMD estimates.

See Also

Other effect sizes: boot_ses_calc(), ses_calc(), smd_calc()

Examples

```
## Not run:
boot_smd_calc(formula = extra ~ group,data = sleep, paired = TRUE, smd_ci = "nct")
## End(Not run)
```

```
    boot_t_test Bootstrapped t-test
```


Description

[Stable]

A function for a bootstrap method for t-tests.

Usage

boot_t_test(x, ...)
\#\# Default S3 method:
boot_t_test(
x ,
$y=$ NULL,
var. equal = FALSE, paired = FALSE,
alternative = c("two.sided", "less", "greater", "equivalence", "minimal.effect"),
mu = 0,
alpha = 0.05,
boot_ci = c("stud", "basic", "perc"),
R = 1999,
)
\#\# S3 method for class 'formula'
boot_t_test(formula, data, subset, na.action, ...)

Arguments

x
... further arguments to be passed to or from methods.
$y \quad$ an optional (non-empty) numeric vector of data values.
var.equal a logical variable indicating whether to treat the two variances as being equal. If TRUE then the pooled variance is used to estimate the variance otherwise the Welch (or Satterthwaite) approximation to the degrees of freedom is used.
paired a logical indicating whether you want a paired t-test.
alternative a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater", "less", "equivalence" (TOST), or "minimal.effect" (TOST). You can specify just the initial letter.
mu a number specifying an optional parameter used to form the null hypothesis. See 'Details'.
alpha \quad alpha level $($ default $=0.05)$

boot_ci	type of bootstrap confidence interval. Options include studentized (stud), em- pirical/basic (basic) and percentile (perc) confidence intervals. number of bootstrap replicates
R	a formula of the form lhs ~ rhs where lhs is a numeric variable giving the data values and rhs either 1 for a one-sample or paired test or a factor with two levels giving the corresponding groups. If lhs is of class "Pair" and rhs is 1, a paired test is done.
data	an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from envi- ronment(formula). an optional vector specifying a subset of observations to be used.
subset	a function which indicates what should happen when the data contain NAs. De- faults to getOption("na.action").

Details

The implemented test(s) corresponds to the proposal of Chapter 16 of Efron and Tibshirani (1994).
For two-sample tests, the test is of $\bar{x}-\bar{y}$ (mean of x minus mean of y). For paired samples, the test is of the difference scores (z), wherein $z=x-y$, and the test is of \bar{z} (mean of the difference scores). For one-sample tests, the test is of \bar{x} (mean of x).
For details on the calculations in this function see vignette("robustTOST").

Value

A list with class "htest" containing the following components:

- "statistic": the value of the t-statistic.
- "parameter": the degrees of freedom for the t-statistic.
- "p.value": the p-value for the test.
- "conf.int": a confidence interval for the mean appropriate to the specified alternative hypothesis.
- "estimate": the estimated mean or difference in means depending on whether it was a onesample test or a two-sample test.
- "null.value": the specified hypothesized value of the mean or mean difference. May be 2 values.
- "stderr": the standard error of the mean (difference), used as denominator in the t-statistic formula.
- "alternative": a character string describing the alternative hypothesis.
- "method": a character string indicating what type of t-test was performed.
- "data.name": a character string giving the name(s) of the data.

References

Efron, B., \& Tibshirani, R. J. (1994). An introduction to the bootstrap. CRC press.

See Also

Other Robust tests: boot_log_TOST(), boot_t_TOST(), brunner_munzel(), log_TOST(), wilcox_TOST()

Examples

\# example code

```
boot_t_test(extra ~ group, data = sleep)
```

boot_t_TOST

Bootstrapped TOST with t-tests

Description

[Stable]

A function for a bootstrap method for TOST with all types of t-tests.

Usage

```
boot_t_TOST(x, ...)
```

\#\# Default S3 method:
boot_t_TOST(
x ,
$y=$ NULL,
hypothesis = "EQU",
paired = FALSE,
var.equal = FALSE,
eqb,
low_eqbound,
high_eqbound,
eqbound_type = "raw",
alpha $=0.05$,
bias_correction = TRUE,
rm_correction = FALSE,
glass = NULL,
mu $=0$,
$R=1999$,
boot_ci = c("stud", "basic", "perc"),
)
\#\# S3 method for class 'formula'
boot_t_TOST(formula, data, subset, na.action, ...)

Arguments	
x	a (non-empty) numeric vector of data values.
	further arguments to be passed to or from methods.
y	an optional (non-empty) numeric vector of data values.
hypothesis	'EQU' for equivalence (default), or 'MET' for minimal effects test, the alternative hypothesis.
paired	a logical indicating whether you want a paired t-test.
var.equal	a logical variable indicating whether to treat the two variances as being equal. If TRUE then the pooled variance is used to estimate the variance otherwise the Welch (or Satterthwaite) approximation to the degrees of freedom is used.
eqb	Equivalence bound. Can provide 1 value (negative value is taken as the lower bound) or 2 specific values that represent the upper and lower equivalence bounds
low_eqbound	lower equivalence bounds (deprecated).
high_eqbound	upper equivalence bounds (deprecated).
eqbound_type	Type of equivalence bound. Can be set to "SMD" for standardized mean difference (i.e., Cohen's d) or "raw" for the mean difference. Default is "raw". Raw is strongly recommended as SMD bounds will produce biased results.
alpha	alpha level $($ default $=0.05$)
bias_correction	
	Apply Hedges' correction for bias (default is TRUE).
rm_correction	Repeated measures correction to make standardized mean difference Cohen's $\mathrm{d}(\mathrm{rm})$. This only applies to repeated/paired samples. Default is FALSE.
glass	A option to calculate Glass's delta as an alternative to Cohen's d type SMD. Default is NULL to not calculate Glass's delta, "glass1" will use the first group's SD as the denominator whereas "glass2" will use the 2nd group's SD.
mu	a number indicating the true value of the mean for the two tailed test (or difference in means if you are performing a two sample test).
R	number of bootstrap replicates
boot_ci	type of bootstrap confidence interval. Options include studentized (stud), empirical/basic (basic) and percentile (perc) confidence intervals.
formula	a formula of the form lhs \sim rhs where lhs is a numeric variable giving the data values and rhs either 1 for a one-sample or paired test or a factor with two levels giving the corresponding groups. If lhs is of class "Pair" and rhs is 1 , a paired test is done.
data	an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).
subset	an optional vector specifying a subset of observations to be used.
na.action	a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").

Details

The implemented test(s) corresponds to the proposal of Chapter 16 of Efron and Tibshirani (1994). Returns TOSTt class object with bootstrapped based results. Please note that the repeated measures "corrected" effect size is not available.

For two-sample tests, the test is of $\bar{x}-\bar{y}$ (mean of x minus mean of y). For paired samples, the test is of the difference scores (z), wherein $z=x-y$, and the test is of \bar{z} (mean of the difference scores). For one-sample tests, the test is of \bar{x} (mean of x).

For details on the calculations in this function see vignette("robustTOST").

Value

An S3 object of class "TOSTt" is returned containing the following slots:

- "TOST": A table of class "data.frame" containing two-tailed t-test and both one-tailed results.
- "eqb": A table of class "data.frame" containing equivalence bound settings.
- "effsize": table of class "data.frame" containing effect size estimates.
- "hypothesis": String stating the hypothesis being tested
- "smd": List containing the results of the standardized mean difference calculations (e.g., Cohen's d).
- Items include: d (estimate), dlow (lower CI bound), dhigh (upper CI bound), d_df (degrees of freedom for SMD), d_sigma (SE), d_lambda (non-centrality), J (bias correction), smd_label (type of SMD), d_denom (denominator calculation)
- "alpha": Alpha level set for the analysis.
- "method": Type of t-test.
- "decision": List included text regarding the decisions for statistical inference.
- "boot": List containing the bootstrap samples.

References

Efron, B., \& Tibshirani, R. J. (1994). An introduction to the bootstrap. CRC press.

See Also

Other Robust tests: boot_log_TOST(), boot_t_test(), brunner_munzel(), log_TOST(), wilcox_TOST()
Other TOST: boot_log_TOST(), simple_htest(), t_TOST(), tsum_TOST(), wilcox_TOST()

```
brunner_munzel Brunner-Munzel Test
```


Description

[Maturing]

This is a generic function that performs a generalized asymptotic Brunner-Munzel test in a fashion similar to t.test.

Usage

```
    brunner_munzel(
        x,
        ...,
        paired = FALSE,
        alternative = c("two.sided", "less", "greater"),
        mu = 0.5,
        alpha = 0.05,
        perm = FALSE,
        max_n_perm = 10000
    )
```

 \#\# Default S3 method:
 brunner_munzel(
 \(x\),
 \(y\),
 paired = FALSE,
 alternative = c("two.sided", "less", "greater"),
 mu = 0.5,
 alpha \(=0.05\),
 perm = FALSE,
 max_n_perm = 10000,
 ...
)
 \#\# S3 method for class 'formula'
 brunner_munzel(formula, data, subset, na.action, ...)

Arguments

X
... further arguments to be passed to or from methods.
paired a logical indicating whether you want a paired test.
alternative a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". You can specify just the initial letter.

mu	a number specifying an optional parameter used to form the null hypothesis (Default $=0.5$). This can be thought of as the null in terms of the relative effect, $\mathrm{p}=\mathrm{P}(\mathrm{X}<\mathrm{Y})+0.5 * \mathrm{P}(\mathrm{X}=\mathrm{Y})$; See 'Details'.
alpha	alpha level (default $=0.05$)
perm	a logical indicating whether or not to perform a permutation test over approximate t-distribution based test (default is FALSE). Highly recommend to set perm $=$ TRUE when sample size per condition is less than 15.
max_n_perm	the maximum number of permutations (default is 10000).
y	an optional (non-empty) numeric vector of data values.
formula	a formula of the form lhs \sim rhs where lhs is a numeric variable giving the data values and rhs either 1 for a one-sample or paired test or a factor with two levels giving the corresponding groups. If lhs is of class "Pair" and rhs is 1, a paired test is done.
data	an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).
subset	an optional vector specifying a subset of observations to be used.
na.action	a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").

Details

This function is made to provide a test of stochastic equality between two samples (paired or independent), and is referred to as the Brunner-Munzel test.
This tests the hypothesis that the relative effect, discussed below, is equal to the null value (default is $\mathrm{mu}=0.5$).
The estimate of the relative effect, which can be considered as value similar to the probability of superiority, refers to the following:

$$
\hat{p}=p(X<Y)+\frac{1}{2} \cdot P(X=Y)
$$

Note, for paired samples, this does not refer to the probability of an increase/decrease in paired sample but rather the probability that a randomly sampled value of X . This is also referred to as the "relative" effect in the literature. Therefore, the results will differ from the concordance probability provided by the ses_calc function.
The brunner_munzel function is based on the npar.t.test and npar.t.test.paired functions within the nparcomp package (Konietschke et al. 2015).

Value

A list with class "htest" containing the following components:

- "statistic": the value of the test statistic.
- "parameter": the degrees of freedom for the test statistic.
- "p.value": the p -value for the test.
- "conf.int": a confidence interval for the relative effect appropriate to the specified alternative hypothesis.
- "estimate": the estimated relative effect.
- "null.value": the specified hypothesized value of the relative effect.
- "stderr": the standard error of the relative effect.
- "alternative": a character string describing the alternative hypothesis.
- "method": a character string indicating what type of test was performed.
- "data.name": a character string giving the name(s) of the data.

References

Brunner, E., Munzel, U. (2000). The Nonparametric Behrens-Fisher Problem: Asymptotic Theory and a Small Sample Approximation. Biometrical Journal 42, 17 -25.

Neubert, K., Brunner, E., (2006). A Studentized Permutation Test for the Nonparametric BehrensFisher Problem. Computational Statistics and Data Analysis.
Munzel, U., Brunner, E. (2002). An Exact Paired Rank Test. Biometrical Journal 44, 584-593.
Konietschke, F., Placzek, M., Schaarschmidt, F., \& Hothorn, L. A. (2015). nparcomp: an R software package for nonparametric multiple comparisons and simultaneous confidence intervals. Journal of Statistical Software 64 (2015), Nr. 9, 64(9), 1-17. http://www.jstatsoft.org/v64/i09/

See Also

Other Robust tests: boot_log_TOST(), boot_t_TOST(), boot_t_test(), log_TOST(), wilcox_TOST()

Examples

data(mtcars)
brunner_munzel(mpg ~ am, data = mtcars)

$$
\text { compare_cor } \quad \text { Comparing two independent correlation coefficients }
$$

Description

[Stable]

A function to compare correlations between studies. This function is intended to be used to compare the compatibility of original studies with replication studies (lower p-values indicating lower compatibility).

Usage

```
    compare_cor(
        r1,
        df1,
        r2,
        df2,
        method = c("fisher", "kraatz"),
        alternative = c("two.sided", "less", "greater", "equivalence", "minimal.effect"),
        null = 0
    )
```


Arguments

r1 Correlation study 1.
df1 Degrees of freedom from study 1 (if a simple correlation the df is $\mathrm{N}-2$).
r2 Correlation study 2.
df2 Degrees of freedom from study 2 (if a simple correlation the df is $\mathrm{N}-2$).
method Method for determining differences. Default, "z", will use Fisher's transformation, while "Kraatz" will use the Kraatz method.
alternative a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater", "less", "equivalence" (TOST), or "minimal.effect" (TOST). You can specify just the initial letter.
null a number indicating the null hypothesis. For TOST, this would be equivalence bound.

Details

This function tests for differences between correlations. @ return A list with class "htest" containing the following components:

- "statistic": z-score
- "p.value": numeric scalar containing the p-value for the test under the null hypothesis.
- "estimate": difference in SMD between studies.
- "null.value": the specified hypothesized value for the null hypothesis.
- "alternative": character string indicating the alternative hypothesis (the value of the input argument alternative). Possible values are "greater", "less", or "two-sided".
- "method": Type of SMD.
- "data.name": "Summary Statistics" to denote summary statistics were utilized to obtain results.
- "cor": Correlation input for the function.
- "call": the matched call.

References

Counsell, A., \& Cribbie, R. A. (2015). Equivalence tests for comparing correlation and regression coefficients. The British journal of mathematical and statistical psychology, 68(2), 292-309. https://doi.org/10.1111/bmsp. 12045
Anderson, S., \& Hauck, W. W. (1983). A new procedure for testing equivalence in comparative bioavailability and other clinical trials. Communications in Statistics-Theory and Methods, 12(23), 2663-2692.

See Also

Other compare studies: boot_compare_cor(), boot_compare_smd(), compare_smd()

```
compare_smd Comparing SMDs between independent studies
```


Description

[Stable]

A function to compare standardized mean differences (SMDs) between studies. This function is intended to be used to compare the compatibility of original studies with replication studies (lower p -values indicating lower compatibility).

```
Usage
    compare_smd(
        smd1,
        n1,
        se1 = NULL,
        smd2,
        n2,
        se2 = NULL,
        paired = FALSE,
        alternative = c("two.sided", "less", "greater", "equivalence", "minimal.effect"),
        null = 0,
        TOST = FALSE
    )
```


Arguments

smd1, smd2	SMDs from study $1 \& 2$, respectively.
$\mathrm{n} 1, \mathrm{n} 2$	sample size(s) from study $1 \& 2$, respectively (can be 1 number or vector of 2 numbers).
se1, se2	User supplied standard errors (SEs). This will override the internal calculations.
paired	a logical indicating whether the SMD is from a paired or independent samples design. If a one-sample design, then paired must be set to TRUE.

alternative	a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater", "less", "equivalence" (TOST), or "minimal.effect" (TOST). You can specify just the initial letter.
null	a number indicating the null hypothesis. For TOST, this would be equivalence bound.
TOST	Defunct: use alternative argument. Logical indicator (default = FALSE) to per- form two one-sided tests of equivalence (TOST).

Details

This function tests for differences between SMDs from independent studies (e.g., original vs replication).

Value

A list with class "htest" containing the following components:

- "statistic": z-score.
- "p.value": numeric scalar containing the p-value for the test under the null hypothesis.
- "estimate": difference in SMD between studies.
- "null.value": the specified hypothesized value for the null hypothesis.
- "alternative": character string indicating the alternative hypothesis (the value of the input argument alternative). Possible values are "greater", "less", or "two-sided".
- "method": Type of SMD.
- "data.name": "Summary Statistics" to denote summary statistics were utilized to obtain results.
- "smd": SMDs input for the function.
- "sample_sizes": Sample sizes input for the function.
- "call": the matched call.

See Also

Other compare studies: boot_compare_cor(), boot_compare_smd(), compare_cor()

```
corsum_test Association/Correlation Test from Summary Statistics
```


Description

[Stable]

Test for association between paired samples, using one of Pearson's product moment correlation coefficient, Kendall's τ (tau) or Spearman's ρ (rho). This is the updated version of the TOSTr function.

Usage

```
corsum_test(
        r,
        n,
        alternative = c("two.sided", "less", "greater", "equivalence", "minimal.effect"),
        method = c("pearson", "kendall", "spearman"),
        alpha = 0.05,
        null = 0
    )
```


Arguments

\(\left.$$
\begin{array}{ll}\mathrm{r} \\
\mathrm{n}\end{array}
$$ \quad $$
\begin{array}{l}\text { observed correlation } \\
\text { alternative }\end{array}
$$ \quad \begin{array}{l}number of pairs of observations

a character string specifying the alternative hypothesis, must be one of "two.sided"

(default), "greater", "less", "equivalence" (TOST), or "minimal.effect" (TOST).

You can specify just the initial letter.\end{array}\right]\)| a character string indicating which correlation coefficient is to be used for the |
| :--- |
| test. One of "pearson", "kendall", or "spearman", can be abbreviated. |
| alpha |
| null |\quad| alpha level (default = 0.05) |
| :--- |
| a number indicating the null hypothesis. Default is a correlation of zero. |

Details

This function uses Fisher's z transformation for the correlations, but uses Fieller's correction of the standard error for Spearman's ρ and Kendall's τ.

Value

A list with class "htest" containing the following components:

- "statistic": z-score.
- "p.value": the p-value of the test.
- "estimate": the estimated measure of association, with name "cor", "tau", or "rho" corresponding to the method employed.
- "null.value": the value of the association measure under the null hypothesis.
- "alternative": character string indicating the alternative hypothesis (the value of the input argument alternative).
- "method": a character string indicating how the association was measured.
- "data.name": a character string giving the names of the data.
- "call": the matched call.

References

Goertzen, J. R., \& Cribbie, R. A. (2010). Detecting a lack of association: An equivalence testing approach. British Journal of Mathematical and Statistical Psychology, 63(3), 527-537. https://doi.org/10.1348/000711009X475 formula page 531.

See Also

Other Correlations: boot_cor_test(), plot_cor(), power_z_cor(), z_cor_test()

```
dataTOSTone TOST One Sample T-Test
```


Description

TOST One Sample T-Test in jamovi. This function is not meant to be utilized in R. See t_TOST function.

Usage

dataTOSTone(

```
        data,
```

 vars,
 mu = 0,
 hypothesis = "EQU",
 low_eqbound \(=-0.5\),
 high_eqbound = 0.5,
 eqbound_type = "raw",
 alpha \(=0.05\),
 desc = FALSE,
 plots = FALSE,
 low_eqbound_d = -999999999,
 high_eqbound_d = -999999999,
 smd_type = "g"
)

Arguments

data	the data as a data frame
vars	a vector of strings naming variables of interest in data
mu	a number (default: 0) to compare against
hypothesis	'EQU' for equivalence (default), or 'MET' for minimal effects test, the alternative hypothesis;
low_eqbound	a number (default: -0.5) the lower equivalence bounds
high_eqbound	a number (default: 0.5) the upper equivalence bounds
eqbound_type	'SMD' (default) or 'raw'; whether the bounds are specified in Cohen's d or raw units respectively
alpha	alpha level (default $=0.05$)
desc	TRUE or FALSE (default), provide descriptive statistics
plots	TRUE or FALSE (default), provide plots

```
low_eqbound_d deprecated
high_eqbound_d deprecated
smd_type 'd' (default) or 'g'; whether the calculated effect size is biased (d) or bias-
    corrected (g).
```


Value

A results object containing:

```
results$text
results$tost
```

results\$eqb a table
results\$effsize a table
results\$desc a table
results\$plots an array of images

Tables can be converted to data frames with asDF or as .data. frame. For example:
results\$tost\$asDF
as.data.frame(results\$tost)

Examples

```
library("TOSTER")
dataTOSTone(data=iris, vars="Sepal.Width", mu=3, low_eqbound=-0.3, high_eqbound=0.3,
    alpha=0.05, desc=TRUE, plots=TRUE)
TOSTone(m=3.05733,mu=3,sd=0.4358663, n=150, low_eqbound_d=-0.3, high_eqbound_d=0.3, alpha=0.05)
```

dataTOSTpaired TOST Paired Samples T-Test

Description

TOST Paired Samples T-Test in jamovi. This function is not meant to be utilized in R. See t_TOST function.

Usage

dataTOSTpaired(
data,
pair1,
pair2,
hypothesis = "EQU",

```
    low_eqbound = -0.5,
    high_eqbound = 0.5,
    eqbound_type = "raw",
    alpha = 0.05,
    desc = FALSE,
    plots = FALSE,
    low_eqbound_dz = -999999999,
    high_eqbound_dz = -999999999,
    indplot = FALSE,
    diffplot = FALSE,
    smd_type = "g"
)
```


Arguments

data	the data as a data frame
pair1	A string naming the first part of the pair
pair2	A string naming the second part of the pair
hypothesis	'EQU' for equivalence (default), or 'MET' for minimal effects test, the alternative hypothesis.
low_eqbound	a number (default: 0.5) the lower equivalence bounds
high_eqbound	a number (default: 0.5) the upper equivalence bounds
eqbound_type	'SMD' (default) or 'raw '; whether the bounds are specified in standardized mean difference (Cohen's dz) or raw units respectively
alpha	alpha level (default $=0.05$)
desc	TRUE or FALSE (default), provide descriptive statistics
plots	TRUE or FALSE (default), provide plots
low_eqbound_dz high_eqbound_dz	deprecated
	deprecated
indplot	TRUE or FALSE (default), provide plot of paired data.
diffplot	TRUE or FALSE (default), provide plot of difference scores.
smd_type	' d ' (default) or ' g '; whether the calculated effect size is biased (d) or biascorrected (g).

Value

A results object containing:

results\$text	a html
results\$tost	a table
results\$eqb	a table
results\$effsize	a table
results\$desc	a table
results\$plots	an image

```
results$indplot an image
results$diffplot an image
```

Tables can be converted to data frames with asDF or as data. frame. For example:

```
results$tost$asDF
as.data.frame(results$tost)
```


References

Mara, C. A., \& Cribbie, R. A. (2012). Paired-Samples Tests of Equivalence. Communications in Statistics - Simulation and Computation, 41(10), 1928-1943. formula page 1932. Note there is a typo in the formula: $\mathrm{n}-1$ should be n (personal communication, 31-08-2016)

Examples

```
    ## Not run:
    library("TOSTER")
    dataTOSTpaired(data = randu, pair1 = "x", pair2="y", low_eqbound = -0.3,
        high_eqbound = 0.3, alpha = 0.05, desc = TRUE, plots = TRUE)
    ## End(Not run)
```

 dataTOSTr TOST Correlation

Description

TOST for correlations in jamovi. This function is not meant to be utilized in R.

```
Usage
    dataTOSTr(
        data,
        pairs,
        cor_type = "pearson",
        hypothesis = "EQU",
        low_eqbound_r = -0.3,
        high_eqbound_r = 0.3,
        alpha = 0.05,
    desc = FALSE,
    plots = FALSE
)
```


Arguments

data	the data as a data frame
pairs	a list of vectors of strings naming variables to correlate from data a character string indicating which correlation coefficient is to be used for the test. One of "pearson", "kendall", or "spearman", can be abbreviated.
cor_type	'EQU' for equivalence (default), or 'MET' for minimal effects test, the alternative hypothesis.
low_eqbound_r	lower equivalence bounds (e.g., -0.3) expressed in a correlation effect size
high_eqbound_r	upper equivalence bounds (e.g., 0.3) expressed in a correlation effect size
alpha	alpha level (default $=0.05)$
desc	TRUE or FALSE (default), provide descriptive statistics
plots	TRUE or FALSE (default), provide plots

Value

A results object containing:

results $\$$ text	a preformatted
results $\$$ tost	a table
results $\$$ desc	a table
results $\$ p l o t s$	an array of images

Tables can be converted to data frames with asDF or as data.frame. For example:
results\$tost\$asDF
as.data.frame(results\$tost)

```
dataTOSTtwo
```

TOST Independent Samples T-Test

Description

TOST Independent Samples T-Test for jamovi. This function is not meant to be utilized in R. See t_TOST function.

Usage

dataTOSTtwo(
data,
deps,
group,
var_equal = FALSE,
hypothesis = "EQU",

```
    low_eqbound = -0.5,
    high_eqbound = 0.5,
    eqbound_type = "raw",
    alpha = 0.05,
    desc = FALSE,
    plots = FALSE,
    descplots = FALSE,
    low_eqbound_d = -999999999,
    high_eqbound_d = -999999999,
    smd_type = "g"
)
```


Arguments

data	the data as a data frame
deps	a vector of strings naming dependent variables in data
group	a string naming the grouping variable in data; must have two levels
var_equal	TRUE or FALSE (default), assume equal variances
hypothesis	'EQU' for equivalence (default), or 'MET' for minimal effects test, the alternative hypothesis.
low_eqbound	a number (default: -0.5) the lower equivalence/MET bounds
high_eqbound	a number (default: 0.5) the upper equivalence/MET bounds
eqbound_type	'SMD' (default) or 'raw'; whether the bounds are specified in Cohen's d or raw units respectively
alpha	alpha level $($ default $=0.05$)
desc	TRUE or FALSE (default), provide descriptive statistics
plots	TRUE or FALSE (default), provide effect size plots
descplots	TRUE or FALSE (default), provide plots
low_eqbound_d	deprecated
high_eqbound_d	deprecated
smd_type	'd' (default) or 'g'; whether the calculated effect size is biased (d) or biascorrected (g).

Value

A results object containing:

```
results$text
results$tost a table
results$eqb a table
results$effsize a table
results$desc a table
results$plots an array of images
results$descplots an array of images
```

Tables can be converted to data frames with asDF or as.data. frame. For example:

```
results$tost$asDF
as.data.frame(results$tost)
```


References

Berger, R. L., \& Hsu, J. C. (1996). Bioequivalence Trials, Intersection-Union Tests and Equivalence Confidence Sets. Statistical Science, 11(4), 283-302.

Gruman, J. A., Cribbie, R. A., \& Arpin-Cribbie, C. A. (2007). The effects of heteroscedasticity on tests of equivalence. Journal of Modern Applied Statistical Methods, 6(1), 133-140, formula for Welch's t-test on page 135

Examples

```
library(TOSTER)
## Load iris dataset, remove one of the three groups so two are left
data<-iris[which(iris$Species!="versicolor"),]
## TOST procedure on the raw data
dataTOSTtwo(data, deps="Sepal.Width", group="Species", var_equal = TRUE, low_eqbound = - 0.5,
    high_eqbound = 0.5, alpha = 0.05, desc = TRUE, plots = TRUE)
```

datatosttwoprop TOST Two Proportions

Description

TOST Two Proportions for jamovi. This function is not meant to be utilized in R.

Usage

```
datatosttwoprop(
```

 data,
 var,
 level,
 group,
 hypothesis = "EQU",
 low_eqbound \(=-0.1\),
 high_eqbound = 0.1,
 alpha \(=0.05\),
 desc = FALSE,
 plot \(=\) FALSE
)

Arguments

data
var
level
group
hypothesis 'EQU' for equivalence (default), or 'MET' for minimal effects test, the alternative hypothesis.
low_eqbound a number (default: -0.1) the lower equivalence bounds
high_eqbound a number (default: 0.1) the upper equivalence bounds
alpha
alpha level $($ default $=0.05)$
desc TRUE or FALSE (default), provide descriptive statistics
plot TRUE or FALSE (default), provide plot

Value

A results object containing:

results\$tost	a table
results\$eqb	a table
results\$desc	a table
results\$plot	an image

Tables can be converted to data frames with asDF or as.data. frame. For example:
results\$tost\$asDF
as.data.frame(results\$tost)
equ_anova Equivalence Test for ANOVA Results

Description

[Stable]

Performs equivalence test on the partial eta-squared (pes) value from ANOVA results.

Usage

equ_anova(object, eqbound, MET = FALSE, alpha = 0.05)

Arguments

object an object of returned by either Anova, aov, or afex_aov
eqbound Equivalence bound for the partial eta-squared.
MET logical indicator to perform a minimal effect test rather than equivalence test (default is FALSE).
alpha alpha used for the test (e.g., 0.05).

Details

For details on the calculations in this function see vignette("the_ftestTOSTER").

Value

Returns a data frame containing the ANOVA results with equivalence tests added.
The following abbreviations are used in the table:

- effect: name of the effect.
- df1: Degrees of Freedom in the numerator (i.e. DF effect).
- df2: Degrees of Freedom in the denominator (i.e., DF error).
- F: F-value.
- p.null: p-value (probability of the data given the null hypothesis).
- pes: partial Eta-Squared measure of effect size.
- eqbound: equivalence bound.
- p.equ: p-value (probability of the data given the equivalence hypothesis)

References

Campbell, H., \& Lakens, D. (2021). Can we disregard the whole model? Omnibus non-inferiority testing for R2 in multi-variable linear regression and in ANOVA. British Journal of Mathematical and Statistical Psychology, 74(1), 64-89. doi: 10.1111/bmsp. 12201

See Also

Other f-test: equ_ftest()
equ_ftest Equivalence Test using an F-test

Description

[Stable]

Performs equivalence test on the partial eta-squared (pes) value for using an F-test.

Usage

equ_ftest(Fstat, df1, df2, eqbound $=$ NULL, eqb, MET $=$ FALSE, alpha $=0.05$)

Arguments

Fstat The F-statistic from the F-test.
df1 Degrees of freedom for the numerator.
df2 Degrees of freedom for the denominator.
eqbound Defunct argument for quivalence bound for the partial eta-squared. Default is NULL.
eqb Defunct argument for quivalence bound for the partial eta-squared.
MET logical indicator to perform a minimal effect test rather than equivalence test (default is FALSE).
alpha alpha used for the test (e.g., 0.05).

Details

For details on the calculations in this function see vignette("the_ftestTOSTER").

Value

Object of class '"htest"

- "statistic": The value of the F-statistic.
- "parameter": The degrees of freedom for the F-statistic.
- "p.value": The he p-value for the test.
- "conf.int": A confidence interval for the partial eta-squared statistic.
- "estimate": Estimate of partial eta-squared.
- "null.value": The specified for the equivalence test.
- "method": A string indicating the type of F-test.
- "data.name": A required string indicating that this was calculated from summary statistics.

References

Campbell, H., \& Lakens, D. (2021). Can we disregard the whole model? Omnibus non-inferiority testing for R2 in multi-variable linear regression and in ANOVA. British Journal of Mathematical and Statistical Psychology, 74(1), 64-89. doi: 10.1111/bmsp. 12201

See Also

Other f-test: equ_anova()

```
extract_r_paired Extract Paired Correlation
```


Description

[Stable]

A function for estimating the correlation from a paired samples t-test. Useful for when using tsum_TOST and the correlation is not available.

Usage

extract_r_paired(m1, sd1, m2, sd2 = NULL, n, tstat = NULL, pvalue = NULL)

Arguments

m1 mean of group 1.
sd1 standard deviation of group 1.
$\mathrm{m} 2 \quad$ mean of group 2.
sd2 standard deviation of group 2.
$\mathrm{n} \quad$ Sample size (number of pairs)
tstat The t-value from a paired samples t-test
pvalue \quad The two-tailed p-value from a paired samples t-test

Value

An estimate of the correlation.

References

Lajeunesse, M. J. (2011). On the meta-analysis of response ratios for studies with correlated and multi-group designs. Ecology, 92(11), 2049-2055
hawthorne Data

Description

A dataset from a study on the Hawthrone effect published by McCambridge et al. The dataset has 5 variables (participant_ID, totaldrinking.x, group, totaldrinking.y, totaldrinking.diff)

Usage

hawthorne

Format

An object of class data. frame with 5474 rows and 5 columns.

Source

McCambridge, J., Wilson, A., Attia, J., Weaver, N., \& Kypri, K. (2019). Randomized trial seeking to induce the Hawthorne effect found no evidence for any effect on self-reported alcohol consumption online. Journal of Clinical Epidemiology, 108, 102-109.

```
htest-helpers Helpers for htest objects
```


Description

Functions to help interpret or display objects of the class htest

Usage

df_htest(htest, test_statistics = TRUE, show_ci = TRUE, extract_names = TRUE)
describe_htest(htest, alpha = NULL, digits = 3)

Arguments

htest A S3 object of the class htest
test_statistics
A logical variable to display the test statistics.
show_ci A logical variable to display the confidence interval.
extract_names A logical variable to take the names from the S 3 object (i.e., statistic for t . test would be "t")
alpha alpha level $($ default $=0.05)$
digits integer indicating the number of decimal places.

See Also

Other htest: as_htest(), simple_htest()

Examples

```
# simple example with t-test
tres = t.test(extra ~ group, data = sleep)
# As a data frame
df_htest(tres)
# Describe t-test results
describe_htest(tres)
```

 log_TOST TOST with log transformed \(t\)-tests

Description

[Stable]

A function for TOST on the log-transformed data using parametric t -tests.

Usage

```
log_TOST(
    x,
    hypothesis = "EQU",
    paired = FALSE,
    var.equal = FALSE,
    eqb = 1.25,
    alpha = 0.05,
    null = 1
)
## Default S3 method:
log_TOST(
    x,
    y = NULL,
    hypothesis = c("EQU", "MET"),
    var.equal = FALSE,
    paired = FALSE,
    eqb = 1.25,
    alpha = 0.05,
    null = 1,
```

)
\#\# S3 method for class 'formula'
log_TOST(formula, data, subset, na.action, ...)

Arguments

x	a (non-empty) numeric vector of data values.
	further arguments to be passed to or from methods.
hypothesis	'EQU' for equivalence (default), or 'MET' for minimal effects test, the alternative hypothesis.
paired	a logical indicating whether you want a paired t-test.
var.equal	a logical variable indicating whether to treat the two variances as being equal. If TRUE then the pooled variance is used to estimate the variance otherwise the Welch (or Satterthwaite) approximation to the degrees of freedom is used.
eqb	Equivalence bound; default is 1.25 (FDA guidelines). Can provide 1 value (reciprocal value is taken as the lower bound) or 2 specific values that represent the upper and lower equivalence bounds.
alpha	alpha level (default $=0.05$)
null	Null hypothesis value for a two-tailed test (default is 1).
y	an optional (non-empty) numeric vector of data values.
formula	a formula of the form lhs \sim rhs where lhs is a numeric variable giving the data values and rhs either 1 for a one-sample or paired test or a factor with two levels giving the corresponding groups. If lhs is of class "Pair" and rhs is 1 , a paired test is done.
data	an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).
subset	an optional vector specifying a subset of observations to be used.
na.action	a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").

Details

For details on the calculations in this function see vignette("robustTOST").
For two-sample tests, the test is of $\bar{l} o g(x)-\bar{l} o g(y)$ (mean of x minus mean of y$)$. For paired samples, the test is of the difference scores (z), wherein $z=\log (x)-\log (y)=\log (x) / \log (y)$, and the test is of \bar{z} (mean of the difference/ratio scores).

Value

An S3 object of class "TOSTt" is returned containing the following slots:

- "TOST": A table of class "data.frame" containing two-tailed t-test and both one-tailed results.
- "eqb": A table of class "data.frame" containing equivalence bound settings.
- "effsize": table of class "data.frame" containing effect size estimates.
- "hypothesis": String stating the hypothesis being tested
- "smd": List containing the results of the means ratio calculation.
- Items include: d (means ratio estimate), dlow (lower CI bound), dhigh (upper CI bound), d_df (degrees of freedom for SMD), d_sigma (SE), d_lambda (non-centrality), J (bias correction), smd_label (type of SMD), d_denom (denominator calculation)
- "alpha": Alpha level set for the analysis.
- "method": Type of t-test.
- "decision": List included text regarding the decisions for statistical inference.

References

He, Y., Deng, Y., You, C., \& Zhou, X. H. (2022). Equivalence tests for ratio of means in bioequivalence studies under crossover design. Statistical Methods in Medical Research, 09622802221093721.
Food and Drug Administration (2014). Bioavailability and Bioequivalence Studies Submitted in NDAs or INDs - General Considerations. Center for Drug Evaluation and Research. Docket: FDA-2014-D-0204. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/bioavailability-and-bioequivalence-studies-submitted-ndas-or-inds-general-considerations

See Also

Other Robust tests: boot_log_TOST(), boot_t_TOST(), boot_t_test(), brunner_munzel(), wilcox_TOST()

Examples

```
data(mtcars)
# Default FDA bioequivalence bounds
log_TOST(mpg ~ am,
data = mtcars)
```

plot_cor Plot correlation coefficients

Description

[Stable]

Function to produce plots of the distribution of standard correlation coefficients.

Usage

```
plot_cor(
        r,
        n,
        method = c("pearson", "spearman", "kendall"),
        type = c("c", "cd"),
        levels = c(0.68, 0.9, 0.95, 0.999)
    )
```


Arguments

r
$\mathrm{n} \quad$ Total number of observations (sample size).
method The method by which the coefficient was calculated: pearson, spearman, or kendall (default is "pearson")
type Choose whether to plot a "consonance" function ("c"), consonance density ("cd"), or both (c("c","cd"); default option).
levels \quad Numeric vector of confidence levels to display

Details

This function was created so that users could create consonance plots of Pearson's correlation coefficient. These types of plots are discussed by Schweder T, Hjort NL. (2016, ISBN:9781316445051) and Rafi Z, Greenland S. (2020) doi :10.1186/s12874-020-01105-9.

Value

Returns plot of the distribution of the correlation coefficient.

See Also

Other Correlations: boot_cor_test(), corsum_test(), power_z_cor(), z_cor_test()
Other plotting functions: plot_pes(), plot_smd()
plot_pes Plot partial eta-squared

Description

[Stable]

Function to produce plots of the distribution of partial eta-squared.

Usage

```
    plot_pes(
        Fstat,
        df1,
        df2,
        type = c("c", "cd"),
        levels = c(0.68, 0.9, 0.95, 0.999)
    )
```


Arguments

Fstat The F-statistic from the F-test.
df1 Degrees of freedom for the numerator.
df2 Degrees of freedom for the denominator.
type Choose whether to plot a "consonance" function ("c"), consonance density ("cd"), or both (c("c","cd"); default option).
levels Numeric vector of confidence levels to display

Details

This function was created so that users could create consonance plots of partial eta-squared from ANOVA-level effects. These types of plots are discussed by Schweder T, Hjort NL. (2016, ISBN:9781316445051) and Rafi Z, Greenland S. (2020) doi:10.1186/s12874-020-01105-9.

Value

Returns plot of the distribution of partial eta-squared

See Also

Other plotting functions: plot_cor(), plot_smd()
plot_smd Plot Distribution of a SMD

Description

[Stable]

Function to produce plots of the distribution of the standardized mean difference

Usage

```
plot_smd(
        d,
        df,
        lambda = NULL,
        sigma = NULL,
        smd_ci = c("goulet", "nct", "t", "z"),
        smd_label = "SMD",
        type = c("c", "cd"),
        levels \(=c(0.5,0.9,0.95,0.999)\)
    )
```


Arguments

d Estimate of the standardized mean difference
df degrees of freedom for the standardized mean difference
lambda The non-centrality parameter for the standardized mean difference
sigma The standard error for the standardized mean difference
smd_ci Method for calculating SMD confidence intervals. Methods include Goulet, noncentral t (nct), central $\mathrm{t}(\mathrm{t})$, and normal method (z).
smd_label Label for the x-axis indicating the SMD measure
type Choose whether to plot a "consonance" function ("c"), consonance density ("cd"), or both (c("c","cd"); default option).
levels Numeric vector of confidence levels to display

Details

This function was created so that users could create plots from their own SMD calculations and were inspired by the concurve R package. The difficulty is that specific information must be past onto this function. The calculations for the standardized mean difference can be found in the vignettes of this package. These types of plots are discussed by Schweder T, Hjort NL. (2016, ISBN:9781316445051) and Rafi Z, Greenland S. (2020) doi :10.1186/s12874-020-01105-9.

Value

Returns plot of the distribution of the standardized mean difference.

See Also

Other plotting functions: plot_cor(), plot_pes()

```
powerTOSTone Power One Sample t-test
```


Description

[Superseded]

Power analysis for TOST for one-sample t-test (Cohen's d). This function is no longer maintained please use power_t_TOST.

Usage

powerTOSTone(alpha, statistical_power, N, low_eqbound_d, high_eqbound_d)
powerTOSTone.raw(alpha, statistical_power, N, sd, low_eqbound, high_eqbound)

Arguments

$$
\text { alpha } \quad \text { alpha used for the test (e.g., 0.05) }
$$

statistical_power
desired power (e.g., 0.8)
N sample size (e.g., 108)
low_eqbound_d lower equivalence bounds (e.g., -0.5) expressed in standardized mean difference (Cohen's d)
high_eqbound_d upper equivalence bounds (e.g., 0.5) expressed in standardized mean difference (Cohen's d)
sd standard deviation.
low_eqbound lower equivalence bounds (e.g., -0.5) expressed in raw scores
high_eqbound upper equivalence bounds (e.g., 0.5) expressed in raw scores

Value

Calculate either achieved power, equivalence bounds, or required N , assuming a true effect size of 0 . Returns a string summarizing the power analysis, and a numeric variable for number of observations, equivalence bounds, or power.

References

Chow, S.-C., Wang, H., \& Shao, J. (2007). Sample Size Calculations in Clinical Research, Second Edition - CRC Press Book. Formula 3.1.9

Examples

```
## Sample size for alpha = 0.05, 90% power, equivalence bounds of
## Cohen's d = -0.3 and Cohen's d = 0.3, and assuming true effect = 0
powerTOSTone(alpha=0.05, statistical_power=0.9, low_eqbound_d=-0.3, high_eqbound_d=0.3)
## Power for sample size of 121, alpha = 0.05, equivalence bounds of
## Cohen's d = -0.3 and Cohen's d = 0.3, and assuming true effect = 0
powerTOSTone(alpha=0.05, N=121, low_eqbound_d=-0.3, high_eqbound_d=0.3)
## Equivalence bounds for sample size of 121, alpha = 0.05, statistical power of
## 0.9, and assuming true effect d = 0
powerTOSTone(alpha=0.05, N=121, statistical_power=.9)
#' ## Sample size for alpha = 0.05, 90% power, equivalence bounds of -0.3 and 0.3 in
## raw units, assuming pooled standard deviation of 1, and assuming true effect d = 0
powerTOSTone.raw(alpha=0.05, statistical_power=0.9, sd = 1, low_eqbound=-0.3, high_eqbound=0.3)
## Power for sample size of 121, alpha = 0.05, equivalence bounds of
## -0.3 and 0.3 in raw units, assuming pooled standard deviation of 1, and assuming true effect = 0
powerTOSTone.raw(alpha=0.05, N=121, sd = 1, low_eqbound=-0.3, high_eqbound=0.3)
## Power for sample size of 121, alpha = 0.05, statistical power of
## 0.9, and assuming true effect = 0
powerTOSTone.raw(alpha=0.05, N=121, statistical_power=.9, sd=1)
```

powerTOSTpaired Power Paired Sample t-test

Description

[Superseded]

Power analysis for TOST for dependent t -test (Cohen's dz). This function is no longer maintained please use power_t_TOST.

Usage

powerTOSTpaired(alpha, statistical_power, N, low_eqbound_dz, high_eqbound_dz)
powerTOSTpaired.raw(
alpha,
statistical_power,
low_eqbound,
high_eqbound,
sdif,
N
)

Arguments

alpha statistical_pow	alpha used for the test (e.g., 0.05) er
	desired power (e.g., 0.8)
N	number of pairs (e.g., 96)
low_eqbound_dz	lower equivalence bounds (e.g., -0.5) expressed in standardized mean difference (Cohen's dz)
high_eqbound_dz	
	upper equivalence bounds (e.g., 0.5) expressed in standardized mean difference (Cohen's dz)
low_eqbound	lower equivalence bounds (e.g., -0.5) expressed in raw mean difference
high_eqbound	upper equivalence bounds (e.g., 0.5) expressed in raw mean difference
sdif	standard deviation of the difference scores

Value

Calculate either achieved power, equivalence bounds, or required N , assuming a true effect size of 0 . Returns a string summarizing the power analysis, and a numeric variable for number of observations, equivalence bounds, or power.

References

Chow, S.-C., Wang, H., \& Shao, J. (2007). Sample Size Calculations in Clinical Research, Second Edition - CRC Press Book. Formula 3.1.9

Examples

```
## Sample size for alpha = 0.05, 80% power, equivalence bounds of
## Cohen's dz = -0.3 and Cohen's d = 0.3, and assuming true effect = 0
powerTOSTpaired(alpha=0.05,statistical_power=0.8,low_eqbound_dz=-0.3,high_eqbound_dz=0.3)
## Sample size for alpha = 0.05, N = 96 pairs, equivalence bounds of
## Cohen's dz = - 0.3 and Cohen's d = 0.3, and assuming true effect = 0
powerTOSTpaired(alpha=0.05,N=96,low_eqbound_dz=-0.3,high_eqbound_dz=0.3)
## Equivalence bounds for alpha = 0.05, N = 96 pairs, statistical power of
## 0.8, and assuming true effect = 0
powerTOSTpaired(alpha=0.05,N=96,statistical_power=0.8)
## Sample size for alpha = 0.05, 80% power, equivalence bounds of -3 and 3 in raw units
## and assuming a standard deviation of the difference scores of 10, and assuming a true effect = 0
powerTOSTpaired.raw(alpha=0.05,statistical_power=0.8,low_eqbound=-3, high_eqbound=3, sdif=10)
## Sample size for alpha = 0.05, N = 96 pairs, equivalence bounds of -3 and 3 in raw units
## and assuming a standard deviation of the difference scores of 10, and assuming a true effect = 0
powerTOSTpaired.raw(alpha=0.05,N=96,low_eqbound=-3, high_eqbound=3, sdif=10)
## Equivalence bounds for alpha = 0.05, N = 96 pairs, statistical power of 0.8
## and assuming a standard deviation of the difference scores of 10, and assuming a true effect = 0
```

```
powerTOSTtwo Power Two Sample t-test
```


Description

[Superseded]

Power analysis for TOST for independent t-test (Cohen's d). This function is no longer maintained please use power_t_TOST.

Usage

powerTOSTtwo(alpha, statistical_power, N, low_eqbound_d, high_eqbound_d)
powerTOSTtwo.raw(
alpha,
statistical_power, N ,
sdpooled, low_eqbound, high_eqbound, delta $=0$
)

Arguments

alpha alpha used for the test (e.g., 0.05)
statistical_power
desired power (e.g., 0.8)
N
sample size per group (e.g., 108)
low_eqbound_d lower equivalence bounds (e.g., -0.5) expressed in standardized mean difference (Cohen's d)
high_eqbound_d upper equivalence bounds (e.g., 0.5) expressed in standardized mean difference (Cohen's d)
sdpooled specify the pooled standard deviation
low_eqbound lower equivalence bounds (e.g., -0.5) expressed in raw scale units (e.g., scalepoints)
high_eqbound upper equivalence bounds (e.g., 0.5) expressed in raw scale units (e.g., scalepoints)
delta hypothesized true value for the difference between the 2 means. Default is zero.

Value

Calculate either achieved power, equivalence bounds, or required N , assuming a true effect size of 0 . Returns a string summarizing the power analysis, and a numeric variable for number of observations, equivalence bounds, or power.

References

Chow, S.-C., Wang, H., \& Shao, J. (2007). Sample Size Calculations in Clinical Research, Second Edition - CRC Press Book. Formula 3.2.4 with k=1

Examples

```
## Sample size for alpha = 0.05, 80% power, equivalence bounds of
## Cohen's d = -0.4 and Cohen's d = 0.4, assuming true effect = 0
powerTOSTtwo(alpha=0.05, statistical_power=0.8, low_eqbound_d=-0.4, high_eqbound_d=0.4)
## Statistical power for alpha = 0.05, N = 108 per group, equivalence bounds of
## Cohen's d = -0.4 and Cohen's d = 0.4, assuming true effect = 0
powerTOSTtwo(alpha=0.05, N=108, low_eqbound_d=-0.4, high_eqbound_d=0.4)
## Equivalence bounds for alpha = 0.05, N = 108 per group, statistical power of
## 0.8, assuming true effect = 0
powerTOSTtwo(alpha=0.05, N=108, statistical_power=0.8)
## Sample size for alpha = 0.05, 80% power, equivalence bounds of -200 and 200 in raw
## units, assuming pooled standard deviation of 350, and assuming true effect = 0
powerTOSTtwo.raw(alpha=0.05,statistical_power=0.8,low_eqbound=-200, high_eqbound=200,sdpooled=350)
## Power for alpha = 0.05, N = 53 per group, equivalence bounds of
## -200 and 200 in raw units, assuming sdpooled = 350 and true effect = 0
powerTOSTtwo.raw(alpha=0.05, N=53, low_eqbound=-200, high_eqbound=200, sdpooled=350)
## Equivalence bounds for alpha = 0.05, N = 108 per group, statistical power of
## 0.8, assuming true effect = 0
powerTOSTtwo.raw(alpha=0.05, N=53, statistical_power=0.8, sdpooled=350)
```

power_eq_f F-test Power

Description

[Stable] Power analysis for TOST for an F-test

Usage

power_eq_f(alpha $=0.05, d f 1, d f 2$, eqbound)

Arguments

alpha alpha used for the test (e.g., 0.05)
df1 Degrees of freedom for the numerator
df2 Degrees of freedom for the denominator
eqbound \quad Equivalence bound for the partial eta-squared

Value

Object of class '"power.htest"

References

Campbell, H., \& Lakens, D. (2021). Can we disregard the whole model? Omnibus non-inferiority testing for R2 in multi-variable linear regression and in ANOVA. British Journal of Mathematical and Statistical Psychology, 74(1), 64-89. doi: 10.1111/bmsp. 12201

See Also

Other power: power_t_TOST(), power_z_cor()

Examples

```
## Statistical power for alpha = 0.05, 3 groups, n = 80 per group, equivalence bound of
## partial eta squared = 0.01, assuming true effect = 0.
## df1 = number of groups - 1 = 3 - 1 = 2.
## df2 = Total N - number of groups = 240-3 = 237.
power_eq_f(alpha=0.05, df1=3, df2 = 237, eqbound = 0.01)
```

```
power_twoprop

\section*{Description}

\section*{[Maturing]}

Power analysis for TOST for difference between two proportions using Z-test (pooled)

\section*{Usage}
powerTOSTtwo.prop(
alpha,
statistical_power,
prop1,
prop2,
N,
low_eqbound_prop,
high_eqbound_prop
)
power_twoprop(
p1,
p2,
\(\mathrm{n}=\mathrm{NULL}\),
null \(=0\),
alpha = NULL,
```

 power = NULL,
 alternative = c("two.sided", "one.sided", "equivalence")
)

```

\section*{Arguments}
```

 alpha a priori alpha-level (i.e., significance level).
 statistical_power
Deprecated. desired power (e.g., 0.8)
prop1 Deprecated. expected proportion in group 1.
prop2 Deprecated. expected proportion in group 2.
$\mathrm{N} \quad$ Deprecated. sample size (e.g., 108)
low_eqbound_prop
Deprecated. lower equivalence bounds (e.g., -0.05) expressed in proportion
high_eqbound_prop
Deprecated. upper equivalence bounds (e.g., 0.05) expressed in proportion
p1, p2 Proportions in each respective group.
$\mathrm{n} \quad$ Sample size per group.
null the null hypothesis value.
power statistical power (1-beta).
alternative equivalence, one-sided, or two-sided test. Can be abbreviated.

```

\section*{Value}

Calculate either achieved power, equivalence bounds, or required N , assuming a true effect size of 0 . Returns a string summarizing the power analysis, and a numeric variable for number of observations, equivalence bounds, or power.

\section*{References}

Silva, G. T. da, Logan, B. R., \& Klein, J. P. (2008). Methods for Equivalence and Noninferiority Testing. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation, 15(1 Suppl), 120-127. https://doi.org/10.1016/j.bbmt.2008.10.004
Julious, S. A. \& Campell, M. J. (2012). Tutorial in biostatistics: sample sizes for parallel group clinical trials with binary data. Statistics in Medicine, 31:2904-2936.

Chow, S.-C., Wang, H., \& Shao, J. (2007). Sample Size Calculations in Clinical Research, Second Edition (2 edition). Boca Raton: Chapman and Hall/CRC.

\section*{Examples}
```


Sample size for alpha = 0.05, 90% power, assuming true effect prop1 = prop 2 = 0.5,

equivalence bounds of 0.4 and 0.6 (so low_eqbound_prop = -0.1 and high_eqbound_prop = 0.1)

\#powerTOSTtwo.prop(alpha = 0.05, statistical_power = 0.9, prop1 = 0.5, prop2 = 0.5,

low_eqbound_prop = -0.1, high_eqbound_prop = 0.1)

```
```

 power_twoprop(alpha = 0.05, power = 0.9, p1 = 0.5, p2 = 0.5,
 null = 0.1, alternative = "e")

Power for alpha = 0.05, N 542 , assuming true effect prop1 = prop 2 = 0.5,

equivalence bounds of 0.4 and 0.6 (so low_eqbound_prop = -0.1 and high_eqbound_prop = 0.1)

\#powerTOSTtwo.prop(alpha = 0.05, N = 542, prop1 = 0.5, prop2 = 0.5,

low_eqbound_prop = -0.1, high_eqbound_prop = 0.1)

power_twoprop(alpha = 0.05, n = 542, p1 = 0.5, p2 = 0.5,
null = 0.1, alternative = "e")

```
\#Example 4.2.4 from Chow, Wang, \& Shao (2007, p. 93)
\#powerTOSTtwo.prop(alpha=0.05, statistical_power=0.8, prop1 \(=0.75, \operatorname{prop} 2=0.8\),
\# low_eqbound_prop \(=-0.2\), high_eqbound_prop \(=0.2\) )
power_twoprop(alpha \(=0.05\), power \(=0.8, \mathrm{p} 1=0.75, \mathrm{p} 2=0.8\),
    null \(=0.2\), alternative \(=" e ")\)
\# Example 5 from Julious \& Campbell (2012, p. 2932)
\#powerTOSTtwo.prop(alpha=0.025, statistical_power=0.9, prop1 \(=0.8\), prop2 \(=0.8\),
\# low_eqbound_prop=-0.1, high_eqbound_prop=0.1)
    power_twoprop(alpha \(=0.025\), power \(=0.9, \mathrm{p} 1=0.8, \mathrm{p} 2=0.8\),
        null \(=0.1\), alternative \(=\) "e")
\# From Machin, D. (Ed.). (2008). Sample size tables for clinical studies (3rd ed).
\# Example 9.4b equivalence of two proportions (p. 113) \#
\# powerTOSTtwo.prop(alpha=0.010, statistical_power=0.8, prop1 \(=0.5\), prop2 \(=0.5\),
\# low_eqbound_prop \(=-0.2\), high_eqbound_prop \(=0.2\) )/2
power_twoprop(alpha \(=0.01\), power \(=0.8, \mathrm{p} 1=0.5, \mathrm{p} 2=0.5\),
    null \(=0.2\), alternative \(=" e ")\)
power_t_TOST
Power calculations for TOST for \(t\)-tests

\section*{Description}

\section*{[Stable]}

Calculates the exact power of two one sided t-tests (TOST) for one, two, and paired samples.

\section*{Usage}
power_t_TOST( \(\mathrm{n}=\mathrm{NULL}\), delta \(=0\), sd \(=1\), eqb, low_eqbound = NULL,
```

 high_eqbound = NULL,
 alpha = NULL,
 power = NULL,
 type = "two.sample"
    ```
)

\section*{Arguments}
\(\mathrm{n} \quad\) number of observations per group. 2 sample sizes, in a vector, can be provided for the two sample case.
delta true difference in means (default is 0 ).
sd population standard deviation. Standard deviation of the differences for paired samples.
eqb Equivalence bound. Can provide 1 value (negative value is taken as the lower bound) or 2 specific values that represent the upper and lower equivalence bounds.
low_eqbound Lower equivalence bounds. Deprecated use eqb.
high_eqbound Upper equivalence bounds. Deprecated use eqb.
alpha a priori alpha-level (i.e., significance level).
power power of the TOST procedure (1-beta).
type string specifying the type of t-test.

\section*{Details}

The exact calculations of power are based on Owen's Q-function or by direct integration of the bivariate non-central \(t\)-distribution (inspired by the PowerTOST package). Approximate power is implemented via the non-central t-distribution or the 'shifted' central t-distribution.

\section*{Note}

The power function in this package is limited. Please see the PowerTOST R package for more options.

\section*{References}

Phillips KF. Power of the Two One-Sided Tests Procedure in Bioequivalence. J Pharmacokin Biopharm. 1990;18(2):137-44. doi: 10.1007/BF01063556
Diletti D, Hauschke D, Steinijans VW. Sample Size Determination for Bioequivalence Assessment by Means of Confidence Intervals. Int J Clin Pharmacol Ther Toxicol. 1991;29(1):1-8.

\section*{See Also}

Other power: power_eq_f(), power_z_cor ()
```

power_z_cor Power Calculations for Correlations

```

\section*{Description}

\section*{[Maturing]}

Calculates the approximate power for a z-test based on a Pearson product-moment correlation.

\section*{Usage}
```

power_z_cor(
n = NULL,
rho = NULL,
power = NULL,
null = 0,
alpha = NULL,
alternative = c("two.sided", "less", "greater", "equivalence")
)
powerTOSTr(alpha, statistical_power, N, low_eqbound_r, high_eqbound_r)

```

\section*{Arguments}
n number of observations.
rho true correlation value (alternative hypothesis).
power statistical power (1-beta).
null the null hypothesis value.
alpha a priori alpha-level (i.e., significance level).
alternative a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater", "less", or "equivalence" (TOST). You can specify just the initial letter.
statistical_power
Deprecated. desired power (e.g., 0.8)
N
Deprecated. number of pairs (e.g., 96)
low_eqbound_r Deprecated. lower equivalence bounds (e.g., -0.3) expressed in a correlation effect size
high_eqbound_r Deprecated. upper equivalence bounds (e.g., 0.3 ) expressed in a correlation effect size

\section*{Value}

An object of the class power.htest. This will include the sample size ( n ), power, beta (1-power), alpha (significance level), null value(s), alternative hypothesis, and a text string detailing the method. powerTOSTr has been replaced by the power_z_cor function. The function is only retained for historical purposes.

\section*{See Also}

Other Correlations: boot_cor_test(), corsum_test(), plot_cor(), z_cor_test()
Other power: power_eq_f(), power_t_TOST()

\section*{Examples}
```


Sample size for alpha = 0.05, 90% power, equivalence bounds of

r = -0.1 and r = 0.1, assuming true effect = 0

\#powerTOSTr(alpha=0.05, statistical_power=0.9, low_eqbound_r=-0.1, high_eqbound_r=0.1)
power_z_cor(alternative = "equivalence", alpha = .05, null = .1, power = .9, rho = 0)

Sample size for alpha = 0.05, N=536, equivalence bounds of

r = -0.1 and r = 0.1, assuming true effect = 0

\#powerTOSTr(alpha=0.05, N=536, low_eqbound_r=-0.1, high_eqbound_r=0.1)
power_z_cor(alternative = "equivalence", alpha = .05, null = .1, n = 536, rho = 0)

Equivalence bounds for alpha = 0.05, N=536, statistical power of

0.9, assuming true effect = 0

\#powerTOSTr(alpha=0.05, N=536, statistical_power=0.9)

```

\section*{Description}

\section*{[Superseded]}

Effect sizes for simple (one or two sample) non-parametric tests. Suggested to use ses_calc function instead.

\section*{Usage}
```

$\operatorname{rbs}(\mathrm{x}, \mathrm{y}=\mathrm{NULL}, \mathrm{mu}=0$, conf.level $=0.95$, paired $=$ FALSE $)$
np_ses(
x ,
$y=$ NULL,
mu $=0$,
conf.level = 0.95,
paired = FALSE,
ses = c("rb", "odds", "cstat")
)

```

\section*{Arguments}

X
\(y \quad\) an optional (non-empty) numeric vector of data values.
mu
conf.level
paired
ses
a (non-empty) numeric vector of data values.
a number indicating the value around which (a-)symmetry (for one-sample or confidence level of the interval.
a logical indicating whether you want to calculate a paired test.
Rank-biserial (rb), odds (odds), and concordance probability (cstat). paired samples) or shift (for independent samples) is to be estimated. See stats::wilcox.test.

\section*{Details}

This method was adapted from the effectsize R package. The rank-biserial correlation is appropriate for non-parametric tests of differences - both for the one sample or paired samples case, that would normally be tested with Wilcoxon's Signed Rank Test (giving the matched-pairs rank-biserial correlation) and for two independent samples case, that would normally be tested with Mann-Whitney's \(U\) Test (giving Glass' rank-biserial correlation). See stats::wilcox.test. In both cases, the correlation represents the difference between the proportion of favorable and unfavorable pairs / signed ranks (Kerby, 2014). Values range from -1 indicating that all values of the second sample are smaller than the first sample, to +1 indicating that all values of the second sample are larger than the first sample.
In addition, the rank-biserial correlation can be transformed into a concordance probability (i.e., probability of superiority) or into a generalized odds (WMW odds or Agresti's generalized odds ratio).

\section*{Ties:}

When tied values occur, they are each given the average of the ranks that would have been given had no ties occurred. No other corrections have been implemented yet.

\section*{Value}

Returns a list of results including the rank biserial correlation, logical indicator if it was a paired method, setting for mu, and confidence interval.

\section*{Confidence Intervals}

Confidence intervals for the standardized effect sizes are estimated using the normal approximation (via Fisher's transformation).

\section*{References}
- Cureton, E. E. (1956). Rank-biserial correlation. Psychometrika, 21(3), 287-290.
- Glass, G. V. (1965). A ranking variable analogue of biserial correlation: Implications for short-cut item analysis. Journal of Educational Measurement, 2(1), 91-95.
- Kendall, M.G. (1948) Rank correlation methods. London: Griffin.
- Kerby, D. S. (2014). The simple difference formula: An approach to teaching nonparametric correlation. Comprehensive Psychology, 3, 11-IT.
- King, B. M., \& Minium, E. W. (2008). Statistical reasoning in the behavioral sciences. John Wiley \& Sons Inc.
- Cliff, N. (1993). Dominance statistics: Ordinal analyses to answer ordinal questions. Psychological bulletin, 114(3), 494.
- Tomczak, M., \& Tomczak, E. (2014). The need to report effect size estimates revisited. An overview of some recommended measures of effect size.
```

ses_calc SES Calculation

```

\section*{Description}

\section*{[Stable]}

Standardized effect size (SES), these are the effect sizes not considered SMDs.

\section*{Usage}
```

ses_calc(x, ..., paired = FALSE, ses = "rb", alpha = 0.05)
\#\# Default S3 method:
ses_calc (
x ,
$y=N U L L$,
paired = FALSE,
ses = c("rb", "odds", "logodds", "cstat"),
alpha $=0.05$,
mu $=0$,
)
\#\# S3 method for class 'formula'
ses_calc(formula, data, subset, na.action, ...)

```

\section*{Arguments}

X
... further arguments to be passed to or from methods.
paired a logical indicating whether you want a paired t-test.
ses Standardized effect size. Default is "rb" for rank-biserial correlation. Options also include "cstat" for concordance probability, or "odds" for Wilcoxon-MannWhitney odds (otherwise known as Agresti's generalized odds ratio).
alpha alpha level \((\) default \(=0.05)\)
y
mu
an optional (non-empty) numeric vector of data values.
number indicating the value around which (a-)symmetry (for one-sample or paired samples) or shift (for independent samples) is to be estimated. See stats::wilcox.test.
\begin{tabular}{ll} 
formula & \begin{tabular}{l} 
a formula of the form lhs \(\sim\) rhs where lhs is a numeric variable giving the data \\
values and rhs either 1 for a one-sample or paired test or a factor with two levels \\
giving the corresponding groups. If lhs is of class "Pair" and rhs is 1, a paired \\
test is done.
\end{tabular} \\
data & \begin{tabular}{l} 
an optional matrix or data frame (or similar: see model.frame) containing the \\
variables in the formula formula. By default the variables are taken from envi- \\
ronment(formula).
\end{tabular} \\
subset & \begin{tabular}{l} 
an optional vector specifying a subset of observations to be used.
\end{tabular} \\
na.action & \begin{tabular}{l} 
a function which indicates what should happen when the data contain NAs. De- \\
faults to getOption("na.action").
\end{tabular}
\end{tabular}

\section*{Details}

For details on the calculations in this function see vignette("robustTOST").

\section*{Value}

A data frame containing the standardized effect size.

\section*{See Also}

Other effect sizes: boot_ses_calc(), boot_smd_calc(), smd_calc()

\section*{Examples}
```


Not run:

ses_calc(formula = extra ~ group, data = sleep, paired = TRUE, ses = "r")

End(Not run)

```
simple_htest One, two, and paired samples hypothesis tests

\section*{Description}

\section*{[Maturing]}

Performs one or two sample t-tests or Wilcoxon-Mann-Whitney rank-based tests with expanded options compared to t.test, brunner_munzel, or wilcox.test.

\section*{Usage}
simple_htest(
x ,
...,
paired = FALSE,
alternative = c("two.sided", "less", "greater", "equivalence", "minimal.effect"), mu \(=\) NULL,
```

 alpha = 0.05
)

Default S3 method:

simple_htest(
x,
y = NULL,
test = c("t.test", "wilcox.test", "brunner_munzel"),
paired = FALSE,
alternative = c("two.sided", "less", "greater", "equivalence", "minimal.effect"),
mu = NULL,
alpha = 0.05,
)

S3 method for class 'formula'

simple_htest(formula, data, subset, na.action, ...)

```

\section*{Arguments}
\begin{tabular}{ll}
x & a (non-empty) numeric vector of data values. \\
\(\ldots\) & further arguments to be passed to or from methods. \\
paired & a logical indicating whether you want a paired t-test. \\
alternative & \begin{tabular}{l} 
a character string specifying the alternative hypothesis, must be one of "two.sided" \\
(default), "greater", "less", "equivalence" (TOST), or "minimal.effect" (TOST). \\
You can specify just the initial letter.
\end{tabular} \\
mu number specifying an optional parameter used to form the null hypothesis. See \\
'details'.
\end{tabular}

\section*{Details}

The type of test, t-test/Wilcoxon-Mann-Whitney/Brunner-Munzel, can be selected with the "test" argument.
alternative = "greater" is the alternative that x is larger than y (on average). If alternative \(=\) "equivalence" then the alternative is that the difference between x and y is between the two null values mu.. If alternative = "minimal. effect" then the alternative is that the difference between x and y is less than the lowest null value or greater than the highest.

For more details on each possible test (brunner_munzel, stats::t.test, or stats::wilcox.test), please read their individual documentation.

\section*{Value}

A list with class "htest" containing the following components:
- statistic: the value of the \(t\)-statistic.
- parameter: the degrees of freedom for the \(t\)-statistic.
- p.value: the p-value for the test.
- conf.int: a confidence interval for the mean appropriate to the specified alternative hypothesis.
- estimate: the estimated mean or difference in means depending on whether it was a one-sample test or a two-sample test.
- null.value: the specified hypothesized value of the mean or mean difference. May be 2 values.
- stderr: the standard error of the mean (difference), used as denominator in the \(t\)-statistic formula.
- alternative: a character string describing the alternative hypothesis.
- method: a character string indicating what type of t-test was performed.
- data.name: a character string giving the name(s) of the data.

\section*{See Also}

Other TOST: boot_log_TOST(), boot_t_TOST(), t_TOST(), tsum_TOST(), wilcox_TOST()
Other htest: as_htest(), htest-helpers

\section*{Examples}
```

data(mtcars)
simple_htest(mpg ~ am,
data = mtcars,
alternative = "e",
mu = 3)

```
```

 smd_calc SMD Calculation
    ```

\section*{Description}

\section*{[Stable]}

A function to only calculate standardized mean differences.

\section*{Usage}
```

smd_calc(
x,
...,
paired = FALSE,
var.equal = FALSE,
alpha = 0.05,
bias_correction = TRUE,
rm_correction = FALSE,
glass = NULL,
smd_ci = c("nct", "goulet", "t", "z")
)

Default S3 method:

smd_calc(
x,
y = NULL,
paired = FALSE,
var.equal = FALSE,
alpha = 0.05,
mu = 0,
bias_correction = TRUE,
rm_correction = FALSE,
glass = NULL,
smd_ci = c("nct", "goulet", "t", "z"),
)

```
\#\# S3 method for class 'formula'
smd_calc(formula, data, subset, na.action, ...)

\section*{Arguments}
x
...
paired
a (non-empty) numeric vector of data values.
further arguments to be passed to or from methods.
a logical indicating whether you want a paired t-test.
\begin{tabular}{ll} 
var.equal & \begin{tabular}{l} 
a logical variable indicating whether to treat the two variances as being equal. \\
If TRUE then the pooled variance is used to estimate the variance otherwise the \\
Welch (or Satterthwaite) approximation to the degrees of freedom is used.
\end{tabular} \\
alpha \\
bias_correction level (default = 0.05)
\end{tabular}\(\quad\)\begin{tabular}{l} 
Apply Hedges' correction for bias (default is TRUE).
\end{tabular}

\section*{Details}

For details on the calculations in this function see vignette("SMD_calcs").

\section*{Value}

A data frame containing the SMD estimates.

\section*{See Also}

Other effect sizes: boot_ses_calc(), boot_smd_calc(), ses_calc()

\section*{Examples}
```


Not run:

smd_calc(formula = extra ~ group,data = sleep, paired = TRUE, smd_ci = "nct")

End(Not run)

```

\section*{Description}

\section*{[Stable]}

A function for providing TOST tests of equivalence from meta-analysis results.

\section*{Usage}
```

 TOSTmeta(
    ```
        ES,
        var,
        se,
        low_eqbound_d,
        high_eqbound_d,
        alpha,
        plot = TRUE,
        verbose = TRUE
    )

\section*{Arguments}
\begin{tabular}{ll} 
ES & \begin{tabular}{l} 
meta-analytic effect size \\
var \\
se
\end{tabular} \\
low_eqbound_d & \begin{tabular}{l} 
standard error \\
lower equivalence bounds (e.g., -0.5) expressed in standardized mean difference \\
(Cohen's d)
\end{tabular} \\
high_eqbound_d & \begin{tabular}{l} 
upper equivalence bounds (e.g., 0.5) expressed in standardized mean difference \\
(Cohen's d)
\end{tabular} \\
alpha & \begin{tabular}{l} 
alpha level (default = 0.05) \\
plot
\end{tabular} \\
set whether results should be plotted (plot = TRUE) or not (plot = FALSE) - \\
defaults to TRUE \\
logical variable indicating whether text output should be generated (verbose = \\
TRUE) or not (verbose = FALSE) - default to TRUE
\end{tabular}

\section*{Value}

Returns TOST Z-value 1, TOST p-value 1, TOST Z-value 2, TOST p-value 2, alpha, low equivalence bound d, high equivalence bound d, Lower limit confidence interval TOST, Upper limit confidence interval TOST

\section*{References}

Rogers, J. L., Howard, K. I., \& Vessey, J. T. (1993). Using significance tests to evaluate equivalence between two experimental groups. Psychological Bulletin, 113(3), 553, formula page 557.

\section*{Examples}
\#\# Run TOSTmeta by specifying the standard error
TOSTmeta(ES=0.12, se=0.09, low_eqbound_d=-0.2, high_eqbound_d=0.2, alpha=0.05)
\#\# Run TOSTmeta by specifying the variance
TOSTmeta(ES=0.12, var=0.0081, low_eqbound_d=-0.2, high_eqbound_d=0.2, alpha=0.05)
\#\# If both variance and se are specified, TOSTmeta will use standard error and ignore variance
TOSTmeta(ES=0.12, var=9999, se = 0.09, low_eqbound_d=-0.2, high_eqbound_d=0.2, alpha=0.05)
TOSTnp-methods Methods for TOSTnp objects

\section*{Description}

Methods defined for objects returned from the wilcox_TOST function.

\section*{Usage}
```


S3 method for class 'TOSTnp'

print(x, digits = 4, ...)

S3 method for class 'TOSTnp'

describe(x, digits = 3, ...)

```

\section*{Arguments}
\begin{tabular}{ll}
x & object of class TOSTnp. \\
digits & Number of digits to print for p-values \\
\(\ldots\) & further arguments passed through, see description of return value for details. \\
& TOSTnp-methods.
\end{tabular}

\section*{Value}
- print: Prints short summary of the tests.
- describe: Verbose description of results.

\section*{Examples}
```


example code

data(mtcars)
res1 = wilcox_TOST(mpg ~ am,data = mtcars,eqb = 3)

PRINT

print(res1)

DESCRIPTION

describe(res1)

```
TOSTone \(\quad\) TOST function for a one-sample t-test (Cohen's d)

\section*{Description}

\section*{[Superseded]}

Development on this function is complete, and for new code we recommend switching to tsum_TOST, which is easier to use, more featureful, and still under active development.

\section*{Usage}
```

 TOSTone(
    ```
        m,
        mu,
        sd,
        n ,
        low_eqbound_d,
        high_eqbound_d,
        alpha,
        plot = TRUE,
        verbose = TRUE
    )
    TOSTone.raw(
        m,
        mu,
        sd,
        n ,
        low_eqbound,
        high_eqbound,
        alpha,
        plot = TRUE,
        verbose = TRUE
    )

\section*{Arguments}
\begin{tabular}{ll}
m & mean \\
mu & value to compare against \\
sd & standard deviation \\
n & sample size \\
low_eqbound_d & \begin{tabular}{l} 
lower equivalence bounds (e.g., -0.5) expressed in standardized mean difference \\
(Cohen's d)
\end{tabular} \\
high_eqbound_d & \begin{tabular}{l} 
upper equivalence bounds (e.g., 0.5) expressed in standardized mean difference \\
(Cohen's d)
\end{tabular}
\end{tabular}
\begin{tabular}{ll} 
alpha & alpha level (default = 0.05) \\
plot & \begin{tabular}{l} 
set whether results should be plotted (plot = TRUE) or not (plot = FALSE) - \\
defaults to TRUE
\end{tabular} \\
verbose & \begin{tabular}{l} 
logical variable indicating whether text output should be generated (verbose = \\
TRUE) or not (verbose = FALSE) - default to TRUE
\end{tabular} \\
low_eqbound & \begin{tabular}{l} 
lower equivalence bounds (e.g., -0.5) expressed in raw units
\end{tabular} \\
high_eqbound & \begin{tabular}{l} 
upper equivalence bounds (e.g., 0.5) expressed in raw units
\end{tabular}
\end{tabular}

\section*{Value}

Returns TOST t -value 1 , TOST p -value 1 , TOST t -value 2 , TOST p -value 2 , degrees of freedom, low equivalence bound, high equivalence bound, Lower limit confidence interval TOST, Upper limit confidence interval TOST

\section*{Examples}
```


Test observed mean of 0.54 and standard deviation of 1.2 in sample of 100 participants

against 0.5 given equivalence bounds of Cohen's d = -0.3 and 0.3, with an alpha = 0.05.

TOSTone(m=0.54,mu=0.5,sd=1.2,n=100,low_eqbound_d=-0.3, high_eqbound_d=0.3, alpha=0.05)

```

\section*{Description}

\section*{[Superseded]}

Development on this function is complete, and for new code we recommend switching to tsum_TOST, which is easier to use, more featureful, and still under active development.

\section*{Usage}

TOSTpaired(
n,
m1,
m2,
sd1,
sd2,
r12,
low_eqbound_dz,
high_eqbound_dz, alpha, plot = TRUE, verbose = TRUE
)
TOSTpaired.raw(
```

 n,
 m1,
 m2,
 sd1,
 sd2,
 r12,
 low_eqbound,
 high_eqbound,
 alpha,
 plot = TRUE,
 verbose = TRUE
)
    ```

\section*{Arguments}
\(\mathrm{n} \quad\) sample size (pairs)
m1 mean of group 1
m2 mean of group 2
sd1 \(1 \quad\) standard deviation of group 1
sd2 standard deviation of group 2
r12 correlation of dependent variable between group 1 and group 2
low_eqbound_dz lower equivalence bounds (e.g., -0.5) expressed in standardized mean difference (Cohen's dz)
high_eqbound_dz
upper equivalence bounds (e.g., 0.5) expressed in standardized mean difference (Cohen's dz)
alpha alpha level \((\) default \(=0.05)\)
plot set whether results should be plotted \((\) plot \(=\) TRUE \()\) or not \((\) plot \(=\) FALSE \()-\) defaults to TRUE
verbose logical variable indicating whether text output should be generated (verbose \(=\) TRUE) or not (verbose = FALSE) - default to TRUE
low_eqbound lower equivalence bounds (e.g., -0.5 ) expressed in raw scores
high_eqbound upper equivalence bounds (e.g., 0.5) expressed in raw scores

\section*{Value}

Returns TOST t -value 1 , TOST p -value 1 , TOST t -value 2 , TOST p -value 2 , degrees of freedom, low equivalence bound, high equivalence bound, low equivalence bound in dz , high equivalence bound in dz, Lower limit confidence interval TOST, Upper limit confidence interval TOST

\section*{References}

Mara, C. A., \& Cribbie, R. A. (2012). Paired-Samples Tests of Equivalence. Communications in Statistics - Simulation and Computation, 41(10), 1928-1943. https://doi.org/10.1080/03610918.2011.626545, formula page 1932. Note there is a typo in the formula: \(\mathrm{n}-1\) should be n (personal communication, 31-8-2016)

\section*{Examples}
\#\# Test means of 5.83 and 5.75 , standard deviations of 1.17 and 1.29 in sample of 65 pairs \#\# with correlation between observations of 0.75 using equivalence bounds in Cohen's dz of \#\# - 0.4 and 0.4 (with default alpha setting of \(=0.05\) ).
TOSTpaired \((n=65, m 1=5.83, m 2=5.75, \mathrm{sd} 1=1.17, \mathrm{sd} 2=1.29, r 12=0.75\), low_eqbound_dz=-0.4,high_eqbound_dz=0.4)

TOSTr TOST function for a correlations

\section*{Description}

\section*{[Superseded]}

Development on TOSTr is complete, and for new code we recommend switching to corsum_test, which is easier to use, more featureful, and still under active development.

\section*{Usage}
\(\operatorname{TOSTr}\left(n, r, l_{\text {l }}\right.\) _eqbound_r, high_eqbound_r, alpha, plot \(=\) TRUE, verbose \(=\) TRUE)

\section*{Arguments}
n
\(r\) observed correlation
low_eqbound_r lower equivalence bounds (e.g., -0.3) expressed in a correlation effect size
high_eqbound_r upper equivalence bounds (e.g., 0.3 ) expressed in a correlation effect size
alpha alpha level \((\) default \(=0.05)\)
plot set whether results should be plotted (plot \(=\) TRUE) or not (plot \(=\) FALSE \()\) defaults to TRUE
verbose logical variable indicating whether text output should be generated (verbose \(=\) TRUE) or not (verbose = FALSE) - default to TRUE

\section*{Value}

Returns TOST p-value 1, TOST p-value 2, alpha, low equivalence bound \(r\), high equivalence bound r, Lower limit confidence interval TOST, Upper limit confidence interval TOST

\section*{References}

Goertzen, J. R., \& Cribbie, R. A. (2010). Detecting a lack of association: An equivalence testing approach. British Journal of Mathematical and Statistical Psychology, 63(3), 527-537. https://doi.org/10.1348/000711009X475 formula page 531.

\section*{Examples}
\(\operatorname{TOSTr}(n=100, r=0.02\), low_eqbound_r=-0.3, high_eqbound_r=0.3, alpha=0.05)
```

TOSTt-methods Methods for TOSTt objects

```

\section*{Description}

Methods defined for objects returned from the t_TOST and boot_t_TOST functions.

\section*{Usage}
```

 ## S3 method for class 'TOSTt'
 print(x, digits = 4, ...)
 ## S3 method for class 'TOSTt'
 plot(
 x,
 type = c("cd", "c", "tnull"),
 estimates = c("raw", "SMD"),
 ci_lines,
 ci_shades,
)
 describe(x, ...)
 ## S3 method for class 'TOSTt'
 describe(x, digits = 3, ...)
    ```

\section*{Arguments}

X
digits \(\quad\) Number of digits to print for p -values
. . . further arguments passed through, see description of return value for details..
type Type of plot to produce. Default is a consonance density plot "cd". Consonance plots (type \(=\) "cd") and null distribution plots (type = "tnull") can also be produced. Note: null distribution plots only available for estimates = "raw".
estimates indicator of what estimates to plot; options include "raw" or "SMD". Default is is both: c("raw","SMD").
ci_lines Confidence interval lines for plots. Default is 1 -alpha*2 (e.g., alpha \(=0.05\) is 90\%)
ci_shades Confidence interval shades when plot type is "cd".

\section*{Value}
- print: Prints short summary of the tests.
- plot: Returns a plot of the effects.
- describe: Verbose description of results.

\section*{Examples}
```

 # example code
 # Print
 res1 = t_TOST(mpg ~ am, data = mtcars, eqb = 3)
 res1
 # Print with more digits
 print(res1, digits = 6)
 # Plot with density plot - only raw values (SLOW)
 \#plot(res1, type = "cd", estimates = "raw")

Plot with consonance - only raw values (SLOW)

\#plot(res1, type = "c", estimates = "raw")

Plot null distribution - only raw values

\#plot(res1, type = "tnull", estimates = "raw")

Get description of the results

describe(res1)

```
    TOSTtwo
    TOST function for an independent t-test (Cohen's d)

\section*{Description}

\section*{[Superseded]}

Development on TOSTtwo is complete, and for new code we recommend switching to tsum_TOST, which is easier to use, more featureful, and still under active development.

\section*{Usage}

TOSTtwo (
m1,
m2,
sd1,
sd2,
n1,
n2,
low_eqbound_d, high_eqbound_d, alpha, var.equal, plot = TRUE, verbose = TRUE
)

TOSTtwo.raw(
```

 m1,
 m2,
 sd1,
 sd2,
 n1,
 n2,
 low_eqbound,
 high_eqbound,
 alpha,
 var.equal,
 plot = TRUE,
 verbose = TRUE
)

```

\section*{Arguments}
m1
m2 mean of group 2
sd1 standard deviation of group 1
sd2 standard deviation of group 2
\(\mathrm{n} 1 \quad\) sample size in group 1
n2 sample size in group 2
low_eqbound_d lower equivalence bounds (e.g., -0.5) expressed in standardized mean difference (Cohen's d)
high_eqbound_d upper equivalence bounds (e.g., 0.5) expressed in standardized mean difference (Cohen's d)
alpha alpha level \((\) default \(=0.05)\)
var.equal logical variable indicating whether equal variances assumption is assumed to be TRUE or FALSE. Defaults to FALSE.
plot set whether results should be plotted \((\) plot \(=\) TRUE \()\) or not \((\) plot \(=\) FALSE \()-\) defaults to TRUE
verbose logical variable indicating whether text output should be generated (verbose \(=\) TRUE) or not (verbose = FALSE) - default to TRUE
low_eqbound lower equivalence bounds (e.g., -0.5 ) expressed in raw scale units (e.g., scalepoints)
high_eqbound upper equivalence bounds (e.g., 0.5) expressed in raw scale units (e.g., scalepoints)

\section*{Value}

Returns TOST t -value 1 , TOST p-value 1 , TOST t -value 2 , TOST p -value 2 , degrees of freedom, low equivalence bound, high equivalence bound, low equivalence bound in Cohen's d, high equivalence bound in Cohen's d, Lower limit confidence interval TOST, Upper limit confidence interval TOST

\section*{References}

Berger, R. L., \& Hsu, J. C. (1996). Bioequivalence Trials, Intersection-Union Tests and Equivalence Confidence Sets. Statistical Science, 11(4), 283-302.
Gruman, J. A., Cribbie, R. A., \& Arpin-Cribbie, C. A. (2007). The effects of heteroscedasticity on tests of equivalence. Journal of Modern Applied Statistical Methods, 6(1), 133-140, formula for Welch's t-test on page 135

\section*{Examples}
```


Eskine (2013) showed that participants who had been exposed to organic

food were substantially harsher in their moral judgments relative to

those exposed to control (d = 0.81, 95% CI: [0.19, 1.45]). A

replication by Moery \& Calin-Jageman (2016, Study 2) did not observe

a significant effect (Control: n = 95, M = 5.25, SD = 0.95, Organic

Food: n = 89, M = 5.22, SD = 0.83). Following Simonsohn's (2015)

recommendation the equivalence bound was set to the effect size the

original study had 33% power to detect (with n = 21 in each condition,

this means the equivalence bound is d = 0.48, which equals a

difference of 0.384 on a 7-point scale given the sample sizes and a

pooled standard deviation of 0.894). Using a TOST equivalence test

with default alpha = 0.05, not assuming equal variances, and equivalence

bounds of d = -0.43 and d = 0.43 is significant, t(182) = -2.69,

p = 0.004. We can reject effects larger than d = 0.43.

TOSTtwo(m1=5.25,m2=5.22,sd1=0.95,sd2=0.83,n1=95,n2=89, low_eqbound_d=-0.43,high_eqbound_d=0.43)

```

\section*{Description}

\section*{[Superseded]}

Development on TOST two. prop is complete, and for new code we recommend switching to twoprop_test, which is easier to use, more featureful, and still under active development.

\section*{Usage}

TOSTtwo.prop(
prop1,
prop2,
n1,
n2,
low_eqbound,
high_eqbound,
alpha,
ci_type = "normal",
plot = TRUE,
verbose = TRUE
)

\section*{Arguments}
\begin{tabular}{ll} 
prop1 & proportion of group 1 \\
prop2 & proportion of group 2 \\
n1 & sample size in group 1 \\
n2 & sample size in group 2 \\
low_eqbound & lower equivalence bounds (e.g., -0.1) expressed in proportions \\
high_eqbound & \begin{tabular}{l} 
upper equivalence bounds (e.g., 0.1) expressed in proportions
\end{tabular} \\
alpha & \begin{tabular}{l} 
alpha level (default = 0.05)
\end{tabular} \\
ci_type & \begin{tabular}{l} 
confidence interval type (default = "normal"). "wilson" produces Wilson score \\
intervals with a Yates continuity correction while "normal" calculates the simple
\end{tabular} \\
asymptotic method with no continuity correction.
\end{tabular}

\section*{Value}

Returns TOST z-value 1 , TOST p-value 1 , TOST \(z\)-value 2 , TOST p-value 2 , low equivalence bound, high equivalence bound, Lower limit confidence interval TOST, Upper limit confidence interval TOST

\section*{References}

Tunes da Silva, G., Logan, B. R., \& Klein, J. P. (2008). Methods for Equivalence and Noninferiority Testing. Biology of Blood Marrow Transplant, 15(1 Suppl), 120-127.

Yin, G. (2012). Clinical Trial Design: Bayesian and Frequentist Adaptive Methods. Hoboken, New Jersey: John Wiley \& Sons, Inc.

\section*{Examples}
```


Equivalence test for two independent proportions equal to . }65\mathrm{ and .70, with 100 samples

per group, lower equivalence bound of -0.1, higher equivalence bound of 0.1, and alpha of 0.05.

TOSTtwo.prop(prop1 = .65, prop2 = .70, n1 = 100, n2 = 100,
low_eqbound = -0.1, high_eqbound = 0.1, alpha = .05)

```
```

 tsum_TOST TOST with t-tests from Summary Statistics
    ```

\section*{Description}

\section*{[Stable]}

A function for TOST with all types of t -tests from summary statistics.

\section*{Usage}
tsum_TOST(
m1,
sd1,
n1,
m2 = NULL,
sd2 = NULL,
n2 = NULL,
r12 = NULL,
hypothesis = c("EQU", "MET"),
paired = FALSE,
var.equal = FALSE,
eqb,
low_eqbound,
high_eqbound,
mu \(=0\),
eqbound_type = c("raw", "SMD"),
alpha = 0.05,
bias_correction = TRUE,
rm_correction = FALSE,
glass = NULL,
smd_ci = c("nct", "goulet", "t", "z")
)

\section*{Arguments}
m1 mean of group 1.
sd1 standard deviation of group 1.
n1 sample size in group 1.
m2 mean of group 2.
sd2 standard deviation of group 2.
n2 sample size in group 2.
r12 correlation of dependent variable between group 1 and group 2.
hypothesis 'EQU' for equivalence (default), or 'MET' for minimal effects test, the alternative hypothesis.
\(\left.\begin{array}{ll}\text { paired } & \begin{array}{l}\text { a logical indicating whether you want a paired t-test. } \\
\text { a logical variable indicating whether to treat the two variances as being equal. } \\
\text { If TRUE then the pooled variance is used to estimate the variance otherwise the } \\
\text { Welch (or Satterthwaite) approximation to the degrees of freedom is used. }\end{array} \\
\text { eqb } & \begin{array}{l}\text { Equivalence bound. Can provide 1 value (negative value is taken as the lower } \\
\text { bound) or } 2 \text { specific values that represent the upper and lower equivalence bounds. } \\
\text { lower equivalence bounds (deprecated). } \\
\text { upper equivalence bounds (deprecated). }\end{array} \\
\text { low_eqbound } \\
\text { high_eqbound } \\
\text { mu number indicating the true value of the mean for the two tailed test (or differ- } \\
\text { ence in means if you are performing a two sample test). }\end{array}\right\}\)\begin{tabular}{l} 
Type of equivalence bound. Can be set to "SMD" for standardized mean differ- \\
ence (i.e., Cohen's d) or "raw" for the mean difference. Default is "raw". Raw \\
is strongly recommended as SMD bounds will produce biased results. \\
alpha level (default = 0.05)
\end{tabular}

\section*{Details}

For details on the calculations in this function see vignette("IntroTOSTt") \& vignette("SMD_calcs").
For two-sample tests, the test is of \(m 1-m 2\) (mean of 1 minus mean of 2 ). For paired samples, the test is of the difference scores ( z ), wherein \(z=m 1-m 2\), and the test is of \(\bar{z}\) (mean of the difference scores). For one-sample tests, the test is of \(\bar{m} 1\) (mean of group 1).

\section*{Value}

An S3 object of class "TOSTt" is returned containing the following slots:
- "TOST": A table of class "data.frame" containing two-tailed t-test and both one-tailed results.
- "eqb": A table of class "data.frame" containing equivalence bound settings.
- "effsize": table of class "data.frame" containing effect size estimates.
- "hypothesis": String stating the hypothesis being tested.
- "smd": List containing the results of the standardized mean difference calculations (e.g., Cohen's d).
- Items include: d (estimate), dlow (lower CI bound), dhigh (upper CI bound), d_df (degrees of freedom for SMD), d_sigma (SE), d_lambda (non-centrality), J (bias correction), smd_label (type of SMD), d_denom (denominator calculation)
- "alpha": Alpha level set for the analysis.
- "method": Type of t-test.
- "decision": List included text regarding the decisions for statistical inference.

\section*{See Also}

Other TOST: boot_log_TOST(), boot_t_TOST(), simple_htest(), t_TOST(), wilcox_TOST()

\section*{Examples}
```


example code

One sample test

tsum_TOST(m1 = 0.55, n1 = 18, sd1 = 4, eqb = 2)

```
```

twoprop_test Test of Proportions between 2 Independent Groups

```

\section*{Description}

\section*{[Maturing]}

This is a hypothesis testing function that mimics prop.test, but focuses only on testing differences in proportions between two groups. This function utilizes a z-test to calculate the p-values (may be inaccurate with small sample sizes).

\section*{Usage}
twoprop_test(
p1,
p2,
n1,
n2,
null \(=\) NULL,
alpha \(=0.05\),
alternative = c("two.sided", "less", "greater", "equivalence", "minimal.effect"), effect_size = c("difference", "odds.ratio", "risk.ratio")
)

\section*{Arguments}
p1, p2 Proportions in each respective group.
\(\mathrm{n} 1, \mathrm{n} 2 \quad\) sample size in each respective group.
null a number indicating the null hypothesis of the difference in proportions between two groups.
alpha \(\quad\) alpha level \((\) default \(=0.05)\)
alternative a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater", "less", "equivalence" (TOST), or "minimal.effect" (TOST). You can specify just the initial letter.
effect_size the effect size estimate, and confidence intervals, to calculate. Options include the difference between both proportions ("difference"), odds ratio ("odds.ratio"), or risk ratio ("risk.ratio").

\section*{Details}

The hypothesis test for differences in proportions can be made on the raw proportions scale, the odds ratio, or the risk ratio (details below). This function uses the large sample size asymptotic approximations for both the p-value and confidence interval calculations. There should be a good deal of caution when sample sizes are small. The p-values for the differences in proportions will differ from base prop.test due to the use of the unpooled standard error (see below).

\section*{Differences in Proportions:}

Differences in proportions test is based on the following calculation:
\[
d=p_{1}-p_{2}
\]

The standard error of \(d\) is calculated as the following:
\[
s e(d)=\sqrt{\frac{p_{1} \cdot\left(1-p_{1}\right)}{n_{1}}+\frac{p_{2} \cdot\left(1-p_{2}\right)}{n_{2}}}
\]

The z-test, with \(d_{0}\) being the null value, is then calculated as the following (standard normal distribution evaluated to calculate p -value):
\[
z=\frac{d-d_{0}}{s e(d)}
\]

The confidence interval can then be calculated as the following:
\[
d_{\text {lower }}, d_{\text {upper }}=d \pm z_{\alpha} \cdot s e(d)
\]

\section*{Risk Ratio:}

The ratio between proportions test is based on the following calculation:
\[
\phi=p_{1} / p_{2}
\]

The standard error of \(\ln (\phi)\) is calculated as the following:
\[
\operatorname{se}(\ln (\phi))=\sqrt{\frac{1-p_{1}}{n_{1} \cdot p_{1}}+\frac{1-p_{2}}{n_{2} \cdot p_{2}}}
\]

The z-test, with \(\phi_{0}\) being the null value, is then calculated as the following (standard normal distribution evaluated to calculate p -value):
\[
z=\frac{\ln (\phi)-\ln \left(\phi_{0}\right)}{\operatorname{se}(\ln (\phi))}
\]

The confidence interval can then be calculated as the following:
\[
\begin{gathered}
\phi_{\text {lower }}=\phi \cdot e^{-z_{\alpha} \cdot \operatorname{se}(\ln (\phi))} \\
\phi_{\text {upper }}=\phi \cdot e^{z_{\alpha} \cdot \operatorname{se}(\ln (\phi))}
\end{gathered}
\]

\section*{Odds Ratio:}

The ratio between proportions test is based on the following calculation: (p1/q1)/(p2/q2)
\[
O R=\frac{p_{1}}{1-p_{1}} / \frac{p_{2}}{1-p_{2}}
\]

The standard error of \(\ln (O R)\) is calculated as the following:
\[
\operatorname{se}(\ln (O R))=\sqrt{\frac{1}{n_{1} \cdot p_{1}+0.5}+\frac{1}{n_{1} \cdot\left(1-p_{1}\right)+0.5}+\frac{1}{n_{2} \cdot p_{2}+0.5}+\frac{1}{n_{2} \cdot\left(1-p_{2}\right)+0.5}}
\]

The z-test, with \(O R_{0}\) being the null value, is then calculated as the following (standard normal distribution evaluated to calculate p -value):
\[
z=\frac{\ln (O R)-\ln \left(O R_{0}\right)}{\operatorname{se}(\ln (O R))}
\]

The confidence interval can then be calculated as the following:
\[
O R_{\text {lower }}, O R_{\text {upper }}=\exp \left(\ln (O R) \pm z_{\alpha} \cdot \operatorname{se}(\ln (O R))\right)
\]

\section*{Value}

An S3 object of the class htest.

\section*{References}

Gart, J. J., \& Nam, J. M. (1988). Approximate interval estimation of the ratio of binomial parameters: a review and corrections for skewness. Biometrics, 323-338.

Tunes da Silva, G., Logan, B. R., \& Klein, J. P. (2008). Methods for Equivalence and Noninferiority Testing. Biology of Blood Marrow Transplant, 15(1 Suppl), 120-127.

Yin, G. (2012). Clinical Trial Design: Bayesian and Frequentist Adaptive Methods. Hoboken, New Jersey: John Wiley \& Sons, Inc.
t_TOST TOST with t-tests

\section*{Description}

\section*{[Stable]}

A function for TOST with all types of t -tests.

\section*{Usage}
```

t_TOST(
x,
...,
hypothesis = "EQU",
paired = FALSE,
var.equal = FALSE,
eqb,
low_eqbound,
high_eqbound,
eqbound_type = "raw",
alpha = 0.05,
bias_correction = TRUE,
rm_correction = FALSE,
glass = NULL,
smd_ci = c("nct", "goulet", "t", "z")
)

Default S3 method:

t_TOST(
x,
y = NULL,
hypothesis = c("EQU", "MET"),
paired = FALSE,
var.equal = FALSE,
eqb,
low_eqbound,
high_eqbound,
eqbound_type = c("raw", "SMD"),
alpha = 0.05,
mu = 0,
bias_correction = TRUE,
rm_correction = FALSE,
glass = NULL,
smd_ci = c("nct", "goulet", "t", "z"),
)

```
```


S3 method for class 'formula'

t_TOST(formula, data, subset, na.action, ...)

```

\section*{Arguments}


\section*{Details}

For details on the calculations in this function see vignette("IntroTOSTt") \& vignette("SMD_calcs"). For two-sample tests, the test is of \(\bar{x}-\bar{y}\) (mean of x minus mean of y ). For paired samples, the test is of the difference scores \((\mathrm{z})\), wherein \(z=x-y\), and the test is of \(\bar{z}\) (mean of the difference scores). For one-sample tests, the test is of \(\bar{x}\) (mean of x ).

\section*{Value}

An S3 object of class "TOSTt" is returned containing the following slots:
- "TOST": A table of class "data.frame" containing two-tailed t-test and both one-tailed results.
- "eqb": A table of class "data.frame" containing equivalence bound settings.
- "effsize": table of class "data. frame" containing effect size estimates.
- "hypothesis": String stating the hypothesis being tested
- "smd": List containing the results of the standardized mean difference calculations (e.g., Cohen's d).
- Items include: d (estimate), dlow (lower CI bound), dhigh (upper CI bound), d_df (degrees of freedom for SMD), d_sigma (SE), d_lambda (non-centrality), J (bias correction), smd_label (type of SMD), d_denom (denominator calculation)
- "alpha": Alpha level set for the analysis.
- "method": Type of t-test.
- "decision": List included text regarding the decisions for statistical inference.

\section*{See Also}

Other TOST: boot_log_TOST(), boot_t_TOST(), simple_htest(), tsum_TOST(), wilcox_TOST()

\section*{Examples}
```

data(mtcars)
t_TOST(mpg ~ am,
data = mtcars,
eqb = 3)

```
wilcox_TOST TOST with Wilcoxon-Mann-Whitney tests

\section*{Description}
[Stable]
A function for TOST using the non-parametric methods of the Wilcoxon-Mann-Whitney family of tests. This function uses the normal approximation and applies a continuity correction automatically.

\section*{Usage}
```

wilcox_TOST(
x,
...,
hypothesis = "EQU",
paired = FALSE,
eqb,
low_eqbound,
high_eqbound,
ses = "rb",
alpha = 0.05
)

Default S3 method:

wilcox_TOST(
x,
y = NULL,
hypothesis = "EQU",
paired = FALSE,
eqb,
low_eqbound,
high_eqbound,
ses = c("rb", "odds", "cstat"),
alpha = 0.05,
mu = 0,
)

S3 method for class 'formula'

wilcox_TOST(formula, data, subset, na.action, ...)

```

\section*{Arguments}
x
... further arguments to be passed to or from methods.
hypothesis 'EQU' for equivalence (default), or 'MET' for minimal effects test, the alternative hypothesis.
paired a logical indicating whether you want a paired t-test.
eqb Equivalence bound. Can provide 1 value (negative value is taken as the lower bound) or 2 specific values that represent the upper and lower equivalence bounds.
low_eqbound lower equivalence bounds (deprecated).
high_eqbound upper equivalence bounds (deprecated).
ses Standardized effect size. Default is "rb" for rank-biserial correlation. Options also include "cstat" for concordance probability, or "odds" for Wilcoxon-MannWhitney odds (otherwise known as Agresti's generalized odds ratio).
alpha alpha level \((\) default \(=0.05)\)
\begin{tabular}{ll} 
y & an optional (non-empty) numeric vector of data values. \\
mu & \begin{tabular}{l} 
number indicating the value around which (a-)symmetry (for one-sample or \\
paired samples) or shift (for independent samples) is to be estimated. See stats::wilcox.test.
\end{tabular} \\
formula & \begin{tabular}{l} 
a formula of the form \(1 \mathrm{hs} \sim\) rhs where lhs is a numeric variable giving the data \\
values and rhs either 1 for a one-sample or paired test or a factor with two levels \\
giving the corresponding groups. If lhs is of class "Pair" and rhs is 1, a paired \\
test is done.
\end{tabular} \\
data & \begin{tabular}{l} 
an optional matrix or data frame (or similar: see model.frame) containing the \\
variables in the formula formula. By default the variables are taken from envi- \\
ronment(formula).
\end{tabular} \\
subset & \begin{tabular}{l} 
an optional vector specifying a subset of observations to be used. \\
na.action
\end{tabular} \begin{tabular}{l} 
a function which indicates what should happen when the data contain NAs. De- \\
faults to getOption("na.action").
\end{tabular}
\end{tabular}

\section*{Details}

For details on the calculations in this function see vignette("robustTOST").
If only \(x\) is given, or if both \(x\) and \(y\) are given and paired is TRUE, a Wilcoxon signed rank test of the null that the distribution of \(x\) (in the one sample case) or of \(x-y\) (in the paired two sample case) is symmetric about mu is performed.
Otherwise, if both \(x\) and \(y\) are given and paired is FALSE, a Wilcoxon rank sum test (equivalent to the Mann-Whitney test: see the Note) is carried out. In this case, the null hypothesis is that the distributions of x and y differ by a location shift.

\section*{Value}

An S3 object of class "TOSTnp" is returned containing the following slots:
- "TOST": A table of class "data.frame" containing two-tailed wilcoxon signed rank test and both one-tailed results.
- "eqb": A table of class "data.frame" containing equivalence bound settings.
- "effsize": table of class "data. frame" containing effect size estimates.
- "hypothesis": String stating the hypothesis being tested.
- "smd": List containing information on standardized effect size.
- "alpha": Alpha level set for the analysis.
- "method": Type of non-parametric test.
- "decision": List included text regarding the decisions for statistical inference.

\section*{References}

David F. Bauer (1972). Constructing confidence sets using rank statistics. Journal of the American Statistical Association 67, 687-690. doi: 10.1080/01621459.1972.10481279.
Myles Hollander and Douglas A. Wolfe (1973). Nonparametric Statistical Methods. New York: John Wiley \& Sons. Pages 27-33 (one-sample), 68-75 (two-sample). Or second edition (1999).

\section*{See Also}

Other Robust tests: boot_log_TOST(), boot_t_TOST(), boot_t_test(), brunner_munzel(), log_TOST()
Other TOST: boot_log_TOST(), boot_t_TOST(), simple_htest(), t_TOST(), tsum_TOST()

\section*{Examples}
```

data(mtcars)
wilcox_TOST(mpg ~ am,
data = mtcars,
eqb = 3)

```
z_cor_test Test for Association/Correlation Between Paired Samples

\section*{Description}

\section*{[Stable]}

Test for association between paired samples, using one of Pearson's product moment correlation coefficient, Kendall's \(\tau\) (tau) or Spearman's \(\rho\) (rho). Unlike the stats version of cor.test, this function allows users to set the null to a value other than zero.

\section*{Usage}
z_cor_test(
x ,
\(y\),
alternative = c("two.sided", "less", "greater", "equivalence", "minimal.effect"), method = c("pearson", "kendall", "spearman"), alpha \(=0.05\),
        null \(=0\)
    )

\section*{Arguments}
\(x, y \quad\) numeric vectors of data values. \(x\) and \(y\) must have the same length.
alternative a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater", "less", "equivalence" (TOST), or "minimal.effect" (TOST). You can specify just the initial letter.
method a character string indicating which correlation coefficient is to be used for the test. One of "pearson", "kendall", or "spearman", can be abbreviated.
alpha \(\quad\) alpha level \((\) default \(=0.05)\)
null a number indicating the null hypothesis. Default is a correlation of zero.

\section*{Details}

This function uses Fisher's z transformation for the correlations, but uses Fieller's correction of the standard error for Spearman's \(\rho\) and Kendall's \(\tau\). See vignette("correlations") for more details.

\section*{Value}

A list with class "htest" containing the following components:
- "p.value": the p-value of the test.
- "estimate": the estimated measure of association, with name "pb", "wincor", "cor", "tau", or "rho" corresponding to the method employed.
- "null.value": the value of the association measure under the null hypothesis.
- "alternative": character string indicating the alternative hypothesis (the value of the input argument alternative).
- "method": a character string indicating how the association was measured.
- "data.name": a character string giving the names of the data.
- "call": the matched call.

\section*{References}

Goertzen, J. R., \& Cribbie, R. A. (2010). Detecting a lack of association: An equivalence testing approach. British Journal of Mathematical and Statistical Psychology, 63(3), 527-537. https://doi.org/10.1348/000711009X475 formula page 531 .

\section*{See Also}

Other Correlations: boot_cor_test(), corsum_test(), plot_cor(), power_z_cor()

\section*{Examples}
```


example code

x <- c(44.4, 45.9, 41.9, 53.3, 44.7, 44.1, 50.7, 45.2, 60.1)
y<- c(2.6, 3.1, 2.5, 5.0, 3.6, 4.0, 5.2, 2.8, 3.8)

Sig test

z_cor_test(x, y, method = "kendall", alternative = "t", null = 0)

MET test

z_cor_test(x, y, method = "kendall", alternative = "min", null = .2)

```

\section*{Index}
```

* Correlations
boot_cor_test,7
corsum_test, }2
plot_cor,41
power_z_cor,54
z_cor_test, 84
* Robust tests
boot_log_TOST, 8
boot_t_test, 15
boot_t_TOST, 17
brunner_munzel, 20
log_TOST, 39
wilcox_TOST, 81
* TOST
boot_log_TOST, 8
boot_t_TOST, 17
simple_htest,}5
t_TOST,79
tsum_TOST, 74
wilcox_TOST, }8
* compare studies
boot_compare_cor, 4
boot_compare_smd, 5
compare_cor, }2
compare_smd, 24
* datasets
hawthorne, 38
* effect sizes
boot_ses_calc, 11
boot_smd_calc, 13
ses_calc,57
smd_calc,61
* f-test
equ_anova, 34
equ_ftest,36
* htest
as_htest, 3
htest-helpers,38
simple_htest,58

```
```

hawthorne, 38
htest-helpers,38
log_TOST, 11, 17, 19, 22, 39, 84
np_ses(rbs), 55
plot.TOSTt (TOSTt-methods), 69
plot_cor, 8, 27, 41, 43, 44, 55, 85
plot_pes, 42, 42,44
plot_smd, 42, 43,43
power_eq_f, 49, 53, 55
power_t_TOST, 45, 46, 48, 50, 52, 55
power_twoprop,50
power_z_cor, 8, 27, 42, 50, 53, 54, 85
powerTOSTone, 45
powerTOSTpaired,46
powerTOSTr (power_z_cor), 54
powerTOSTtwo,48
powerTOSTtwo.prop (power_twoprop), 50
print.TOSTnp (TOSTnp-methods), }6
print.TOSTt (TOSTt-methods), }6
prop.test, 76,77
rbs,55
ses_calc, 12, 14, 55, 57,62
simple_htest, 3, 11, 19, 39, 58, 76, 81, 84
smd_calc, 12, 14, 58,61
stats::t.test,60
stats::wilcox.test, 56, 57, 60,83
t.test, 20,58
t_TOST, 11, 19, 60, 76, 79, 84
TOSTmeta,63
TOSTnp-methods, 64,64
TOSTone, }6
TOSTpaired,66
TOSTr, 25,68
TOSTt-methods,69
TOSTtwo, 70
TOSTtwo.prop, }7
tsum_TOST, 11, 19, 37, 60, 65, 66,70,74, 81,
84
twoprop_test, 72,76
wilcox.test,58
wilcox_TOST, 11, 17, 19, 22, 41, 60, 76, 81,81
z_cor_test, 8, 27, 42, 55, 84

```
```

