Package ‘TreatmentPatterns’

February 10, 2026

Type Package

Title Analyzes Real-World Treatment Patterns of a Study Population of
Interest

Version 3.1.2

Maintainer Maarten van Kessel <m.1.vankessel@erasmusmc.nl>

Description Computes treatment patterns within a given cohort using the Observational
Medical Outcomes Partnership (OMOP) common data model (CDM). As described
in Markus, Verhamme, Kors, and Rijnbeek (2022) <doi:10.1016/j.cmpb.2022.107081>.

URL https://github.com/darwin-eu/TreatmentPatterns,
https://darwin-eu-dev.github.io/TreatmentPatterns/

BugReports https://github.com/darwin-eu/TreatmentPatterns/issues
Language en-US
Depends R (>=4.2)

Imports utils, stats, R6, stringi, jsonlite, checkmate, dplyr, tidyr,
dbplyr, Andromeda, CDMConnector (>= 2.2.0)

Suggests knitr, rmarkdown, tibble, testthat (>= 3.0.0), usethis,
Eunomia, DatabaseConnector (>= 7.0.0), SqlRender,
CohortGenerator, ResultModelManager, webshot2, CirceR, duckdb,
DBI, withr, plotly, sunburstR, networkD3, ggplot2, htmlwidgets,
visOmopResults, PaRe

License Apache License (>=2)
Encoding UTF-8
RoxygenNote 7.3.3
VignetteBuilder knitr
Config/testthat/edition 3
Config/testthat/parallel true

Collate 'CDMlInterface.R' "TreatmentPatterns-package.R'
"TreatmentPatternsResults.R' 'attrition.R' 'computePathways.R'
'constructPathways.R' 'createSankeyDiagram.R'
'createSunburstPlot.R' 'executeTreatmentPatterns.R' 'export.R'

1

https://doi.org/10.1016/j.cmpb.2022.107081
https://github.com/darwin-eu/TreatmentPatterns
https://darwin-eu-dev.github.io/TreatmentPatterns/
https://github.com/darwin-eu/TreatmentPatterns/issues

2 computePathways

'exportPatientLevel.R' 'getResultsDataModelSpecification.R'
'ggSunburst.R' ‘plotEventDuration.R' 'utils.R'

NeedsCompilation no

Author Aniek Markus [aut] (ORCID: <https://orcid.org/0000-0001-5779-4794>),
Maarten van Kessel [cre] (ORCID:
<https://orcid.org/0009-0006-8832-6030>)

Repository CRAN
Date/Publication 2026-02-10 16:30:02 UTC

Contents

computePathways L
createSankeyDiagram oL Lo
createSunburstPlot oL
doEraCollapseNew e
executeTreatmentPatterns L L
EXPOIT . o v e i e e e e e e e e e
exportPatientLevel
getResultsDataModelSpecifications
ggSunburst L e e e
plotEventDuration. L
TreatmentPatternsResults oL oL o

Index

computePathways computePathways

Description

Compute treatment patterns according to the specified parameters within specified cohorts.

Usage

computePathways(
cohorts,
cohortTableName,
cdm = NULL,
connectionDetails = NULL,
cdmSchema = NULL,
resultSchema = NULL,
analysisId = 1,

description = "",
tempEmulationSchema = NULL,
startAnchor = "startDate",

windowStart = 0,

https://orcid.org/0000-0001-5779-4794
https://orcid.org/0009-0006-8832-6030

computePathways

endAnchor = "endDate”,

windowEnd = 0,

minEraDuration = @,
splitEventCohorts = NULL,
splitTime = NULL,
eraCollapseSize = 30,
combinationWindow = 30,
minPostCombinationDuration = 30,

filterTreatments = "First”,
maxPathLength = 5,
overlapMethod = "truncate”,
concatTargets = TRUE
)
Arguments
cohorts (data.frame())
Data frame containing the following columns and data types:
cohortld numeric(1) Cohort ID’s of the cohorts to be used in the cohort table.
cohortName character (1) Cohort names of the cohorts to be used in the co-
hort table.
type character (1) ["target', "event’, ""exit']| Cohort type, describing if the
cohort is a target, event, or exit cohort
cohortTableName
(character(1))
Cohort table name.
cdm (CDMConnector: : cdm_from_con(): NULL)
Optional; Ignores connectionDetails, cdmSchema, and resultSchema
connectionDetails
(DatabaseConnector: :createConnectionDetails(): NULL)
Optional; In congruence with cdmSchema and resultSchema. Ignores cdm.
cdmSchema (character(1): NULL)
Optional; In congruence with connectionDetails and resultSchema. Ignores
cdm.
resultSchema (character(1): NULL)
Optional; In congruence with connectionDetails and cdmSchema. Ignores
cdm.
analysisId (character (1)) Identifier for the TreatmentPatterns analysis.
description (character (1)) Description of the analysis.
tempEmulationSchema
Schema used to emulate temp tables
startAnchor (character(1): "startDate") Start date anchor. One of: "startDate”, "endDate"
windowStart (numeric(1): @) Offset for startAnchor in days.
endAnchor (character(1): "endDate") End date anchor. One of: "startDate”, "endDate"
windowEnd (numeric(1): @) Offset for endAnchor in days.

computePathways

minEraDuration (integer(1): Q)
Minimum time an event era should last to be included in analysis
splitEventCohorts
(character(n): "")
Specify event cohort to split in acute (< X days) and therapy (>= X days)
splitTime (integer(1): 30)
Specify number of days (X) at which each of the split event cohorts should be
split in acute and therapy
eraCollapseSize
(integer(1): 30)
Window of time between which two eras of the same event cohort are collapsed
into one era
combinationWindow
(integer(1): 30)
Window of time two event cohorts need to overlap to be considered a combina-
tion treatment
minPostCombinationDuration
(integer(1): 30)
Minimum time an event era before or after a generated combination treatment
should last to be included in analysis
filterTreatments
(character(1): "First" ["first", "Changes", "all"])
Select first occurrence of (‘First’); changes between (‘Changes’); or all event
cohorts (‘All’).

maxPathLength (integer(1):5)
Maximum number of steps included in treatment pathway
overlapMethod (character(1): "truncate"”) Method to decide how to deal with overlap that

is not significant enough for combination. "keep” will keep the dates as is.
"truncate” truncates the first occurring event to the start date of the next event.

concatTargets (logical(1): TRUE) Should multiple target cohorts for the same person be con-
catenated or not?

Value

(Andromeda: : andromeda()) andromeda object containing non-sharable patient level data outcomes.

Examples

ableToRun <- all(
require("CirceR"”, character.only = TRUE, quietly = TRUE),
require("CDMConnector”, character.only = TRUE, quietly = TRUE),
require("TreatmentPatterns”, character.only = TRUE, quietly = TRUE),
require("dplyr"”, character.only = TRUE, quietly = TRUE)

)

if (ableToRun) {
library(TreatmentPatterns)
library(CDMConnector)

createSankeyDiagram 5

library(dplyr)

withr::local_envvar(
R_USER_CACHE_DIR = tempfile(),
EUNOMIA_DATA_FOLDER = Sys.getenv("EUNOMIA_DATA_FOLDER", unset = tempfile())

)
tryCatch(
{
if (Sys.getenv("skip_eunomia_download_test”) != "TRUE") {
CDMConnector: :downloadEunomiaData(overwrite = TRUE)
}
}7
error = function(e) NA
)

con <- DBI::dbConnect(duckdb: :duckdb(), dbdir = eunomiaDir())
cdm <- cdmFromCon(con, cdmSchema = "main”, writeSchema = "main")

cohortSet <- readCohortSet(
path = system.file(package = "TreatmentPatterns”, "exampleCohorts")

)

cdm <- generateCohortSet(
cdm = cdm,
cohortSet = cohortSet,
name = "cohort_table”

cohorts <- cohortSet %>%
Remove 'cohort' and 'json' columns

select(-"cohort”, -"json") %>%
mutate(type = c("event”, "event”, "event”, "event”, "exit", "event”, "event"”, "target")) %>%
rename (
cohortIld = "cohort_definition_id",
cohortName = "cohort_name"”,
) %>%

select(”cohortId”, "cohortName", "type")

outputEnv <- computePathways(
cohorts = cohorts,
cohortTableName = "cohort_table”,
cdm = cdm

Andromeda: : close(outputEnv)
DBI::dbDisconnect(con, shutdown = TRUE)

createSankeyDiagram createSankeyDiagram

6 createSankeyDiagram

Description

Create sankey diagram.

Usage

createSankeyDiagram(
treatmentPathways,
groupCombinations = FALSE,
colors = NULL,

)
Arguments
treatmentPathways
(data.frame())
The contents of the treatmentPathways.csv-file as a data.frame().
groupCombinations
(logical(1): FALSE)
TRUE Group all combination treatments in category "Combination”.
FALSE Do not group combination treatments.
colors (character(n)) Vector of hex color codes.
Paramaters for sankeyNetwork.
Value
(htmlwidget)
Examples

Dummy data, typically read from treatmentPathways.csv
treatmentPathways <- data.frame(
pathway = c("Acetaminophen”, "Acetaminophen-Amoxicillin+Clavulanate”,
"Acetaminophen-Aspirin”, "Amoxicillin+Clavulanate”, "Aspirin”),
freq = c(206, 6, 14, 48, 221),
sex = rep("all”, 5),
age = rep("all”, 5),
index_year = rep("all”, 5)

)

if (interactive()) {
createSankeyDiagram(treatmentPathways)

3

createSunburstPlot

createSunburstPlot createSunburstPlot

Description

New sunburstPlot function

Usage
createSunburstPlot(treatmentPathways, groupCombinations = FALSE, ...)
Arguments
treatmentPathways
(data.frame())
The contents of the treatmentPathways.csv-file as a data.frame().
groupCombinations
(logical(1): FALSE)
TRUE Group all combination treatments in category "Combination”.
FALSE Do not group combination treatments.
Paramaters for sunburst.
Value
(htmlwidget)
Examples

Dummy data, typically read from treatmentPathways.csv
treatmentPatwhays <- data.frame(
pathway = c("Acetaminophen”, "Acetaminophen-Amoxicillin+Clavulanate”,
"Acetaminophen-Aspirin”, "Amoxicillin+Clavulanate”, "Aspirin"),
freq = c(206, 6, 14, 48, 221),
sex = rep(”all”, 5),
age = rep("all”, 5),
index_year = rep("all”, 5)

)

if (interactive()) {
createSunburstPlot(treatmentPatwhays)

}

8 executeTreatmentPatterns

doEraCollapseNew doEraCollapseNew

Description

doEraCollapseNew

Usage

doEraCollapseNew(andromeda, eraCollapseSize)

Arguments
andromeda (Andromeda: :andromeda())
eraCollapseSize
(integer(1))
Value
NULL

executeTreatmentPatterns
executeTreatmentPatterns

Description

Compute treatment patterns according to the specified parameters within specified cohorts. For
more customization, or investigation of patient level outcomes, you can run computePathways and
export separately.

Usage

executeTreatmentPatterns(
cohorts,
cohortTableName,
cdm = NULL,
connectionDetails = NULL,
cdmSchema = NULL,
resultSchema = NULL,
tempEmulationSchema = NULL,
minEraDuration = 0,
eraCollapseSize = 30
combinationWindow =
minCellCount = 5

30,

executeTreatmentPatterns 9

Arguments

cohorts (data.frame())
Data frame containing the following columns and data types:

cohortld numeric(1) Cohort ID’s of the cohorts to be used in the cohort table.
cohortName character (1) Cohort names of the cohorts to be used in the co-
hort table.
type character (1) ["target', "event’, ""exit'"] Cohort type, describing if the
cohort is a target, event, or exit cohort
cohortTableName
(character(1))
Cohort table name.
cdm (CDMConnector: :cdm_from_con(): NULL)
Optional; Ignores connectionDetails, cdmSchema, and resultSchema.
connectionDetails
(DatabaseConnector: :createConnectionDetails(): NULL)
Optional; In congruence with cdmSchema and resultSchema. Ignores cdm.
cdmSchema (character(1): NULL)
Optional; In congruence with connectionDetails and resultSchema. Ignores
cdm.
resultSchema (character(1): NULL)
Optional; In congruence with connectionDetails and cdmSchema. Ignores
cdm.
tempEmulationSchema
(character (1)) Schema to emulate temp tables.
minEraDuration (integer(1): Q)
Minimum time an event era should last to be included in analysis
eraCollapseSize
(integer(1): 30)
Window of time between which two eras of the same event cohort are collapsed

into one era
combinationWindow

(integer(1): 30)
Window of time two event cohorts need to overlap to be considered a combina-
tion treatment

minCellCount (integer(1): 5)
Minimum count required per pathway. Censors data below x as <x. This mini-
mum value will carry over to the sankey diagram and sunburst plot.

Value

TreatmentPatternsResults

Examples

ableToRun <- all(
require(”CirceR"”, character.only = TRUE, quietly = TRUE),

10 executeTreatmentPatterns

require("CDMConnector”, character.only = TRUE, quietly = TRUE),
require("TreatmentPatterns”, character.only = TRUE, quietly = TRUE),
require("dplyr"”, character.only = TRUE, quietly = TRUE)

)

if (require("CirceR"”, character.only = TRUE, quietly = TRUE)) {
library(TreatmentPatterns)
library(CDMConnector)
library(dplyr)

withr::local_envvar(
R_USER_CACHE_DIR = tempfile(),
EUNOMIA_DATA_FOLDER = Sys.getenv("EUNOMIA_DATA_FOLDER"”, unset = tempfile())

)
tryCatch(
{
if (Sys.getenv("skip_eunomia_download_test”) != "TRUE") {
CDMConnector: :downloadEunomiaData(overwrite = TRUE)
}
}7
error = function(e) NA
)

con <- DBI::dbConnect(duckdb: :duckdb(), dbdir = eunomiaDir())
cdm <- cdmFromCon(con, cdmSchema = "main”, writeSchema = "main")

cohortSet <- readCohortSet(
path = system.file(package = "TreatmentPatterns”, "exampleCohorts")

)

cdm <- generateCohortSet(
cdm = cdm,
cohortSet = cohortSet,
name = "cohort_table”

cohorts <- cohortSet %>%
Remove 'cohort' and 'json' columns

select(-"cohort”, -"json") %>%
mutate(type = c("event”, "event”, "event”, "event”, "exit", "event”, "event”, "target")) %>%
rename (
cohortId = "cohort_definition_id",
cohortName = "cohort_name"”,
) %>%

select("cohortId”, "cohortName"”, "type")

executeTreatmentPatterns(
cohorts = cohorts,
cohortTableName = "cohort_table”,
cdm = cdm

export 11

DBI: :dbDisconnect(con, shutdown = TRUE)
3

export export

Description

Export andromeda generated by computePathways object to sharable csv-files and/or a zip archive.

Usage

export(
andromeda,
outputPath = NULL,
ageWindow = 10,
minCellCount = 5,
censorType = "minCellCount”,
archiveName = NULL,
nonePaths = FALSE,
stratify = FALSE

)
Arguments
andromeda (Andromeda: : andromeda()) Andromeda object.
outputPath (character: NULL) Output path where to write output files to. When set to NULL
no files will be written, and only the results object is returned.
ageWindow (integer(n): 10)

Number of years to bin age groups into. It may also be a vector of integers. L.e.
c(0@, 18, 150) which will results in age group 0-18 which includes subjects
< 19. And age group 18-150 which includes subjects > 18.

minCellCount (integer(1): 5)
Minimum count required per pathway. Censors data below x as <x. This mini-
mum value will carry over to the sankey diagram and sunburst plot.

censorType (character(1))

"minCellCount” Censors pathways <minCellCount to minCellCount.

"remove” Censors pathways <minCellCount by removing them completely.

"mean” Censors pathways <minCellCount to the mean of all frequencies below
minCellCount

archiveName (character(1): NULL)
If not NULL adds the exported files to a ZIP-file with the specified archive name.

12

export

nonePaths (logical(1)) Should None paths be included? This will fetch all persons in-
cluded in the target cohort and assign them a "None"” pathway. Significantly
impacts performance.
stratify (logical (1)) Should pathways be stratified? This will perform pairwise strati-
fication between age, sex, and index year. Significantly impacts performance.
Value

TreatmentPatternsResults object

Examples

ableToRun <- all(
require(”CirceR"”, character.only = TRUE, quietly = TRUE),
require("CDMConnector”, character.only = TRUE, quietly = TRUE),
require("TreatmentPatterns”, character.only = TRUE, quietly = TRUE),
require("dplyr"”, character.only = TRUE, quietly = TRUE)

)

if (ableToRun) {
library(TreatmentPatterns)
library(CDMConnector)
library(dplyr)

withr::local_envvar(
R_USER_CACHE_DIR = tempfile(),

EUNOMIA_DATA_FOLDER = Sys.getenv("EUNOMIA_DATA_FOLDER", unset = tempfile())

)
tryCatch({
if (Sys.getenv("skip_eunomia_download_test"”) != "TRUE") {
CDMConnector: :downloadEunomiaData(overwrite = TRUE)
}

}, error = function(e) NA)

con <- DBI::dbConnect(duckdb: :duckdb(), dbdir = eunomiaDir())
cdm <- cdmFromCon(con, cdmSchema = "main”, writeSchema = "main")

cohortSet <- readCohortSet(
path = system.file(package = "TreatmentPatterns”, "exampleCohorts")

)

cdm <- generateCohortSet(
cdm = cdm,
cohortSet = cohortSet,
name = "cohort_table”

)

cohorts <- cohortSet %>%
Remove 'cohort' and 'json' columns
select(-"cohort"”, -"json") %>%

mutate(type = c("event”, "event”, "event”, "event”, "exit", "event”, "event"”, "target")) %>%

exportPatientLevel

rename (
cohortld = "cohort_definition_id",
cohortName = "cohort_name"”,

) %>%

select("cohortId”, "cohortName"”, "type")

outputEnv <- computePathways(
cohorts = cohorts,
cohortTableName = "cohort_table”,
cdm = cdm

)

results <- export(
andromeda = outputEnv

)

Andromeda: : close(outputEnv)
DBI::dbDisconnect(con, shutdown = TRUE)

13

exportPatientLevel exportPatientLevel

Description

Exports patient-level files for custom data analysis.

Usage

exportPatientlLevel (andromeda, outputPath)

Arguments

andromeda (Andromeda) Andromeda object from computePathways().

outputPath (character (1)) Directory where to write output files to.

Value

NULL

Examples

if (interactive()) {
library(CDMConnector)
library(DBI)
library(TreatmentPatterns)

con <- DBI::dbConnect(duckdb: :duckdb(), dbdir = CDMConnector::eunomiaDir())

14 getResultsDataModelSpecifications

cdm <- cdmFromCon(con, cdmSchema = "main"”, writeSchema = "main")

cohortSet <- readCohortSet(
path = system.file(package = "TreatmentPatterns”, "exampleCohorts")

)

cdm <- generateCohortSet(
cdm = cdm,
cohortSet = cohortSet,
name = "cohort_table”

cohorts <- cohortSet %>%
Remove 'cohort' and 'json' columns

select(-"cohort”, -"json") %>%
mutate(type = c("event”, "event”, "event”, "event”, "exit", "event"”, "event”, "target")) %>%
rename (
cohortId = "cohort_definition_id",
cohortName = "cohort_name”,
) %%

select(”cohortId”, "cohortName", "type")

outputEnv <- computePathways(
cohorts = cohorts,
cohortTableName = "cohort_table”,
cdm = cdm

exportPatientlLevel (outputEnv, tempdir())
3

getResultsDataModelSpecifications
getResultsDataModelSpecifications

Description

Gets the results data model specifications of TreatmentPatterns.

Usage

getResultsDataModelSpecifications()

Value

data.frame

ggSunburst 15

Examples

{
getResultsDataModelSpecifications()

}

ggSunburst ggSunburst

Description

ggSunburst

Usage

ggSunburst(treatmentPathways, groupCombinations = FALSE, unit = "percent")

Arguments

treatmentPathways

(data.frame())

The contents of the treatmentPathways.csv-file as a data.frame().
groupCombinations

(logical(1): FALSE)

TRUE Group all combination treatments in category "Combination”.
FALSE Do not group combination treatments.

unit (character (1)) Either "count"” or "percent”, to scale the plot to.

Value

(gg, ggplot)

Examples

Dummy data, typically read from treatmentPathways.csv
treatmentPatwhays <- data.frame(
pathway = c("Acetaminophen”, "Acetaminophen-Amoxicillin+Clavulanate”,
"Acetaminophen-Aspirin”, "Amoxicillin+Clavulanate”, "Aspirin”),
freq = c(206, 6, 14, 48, 221),
sex = rep("all”, 5),
age = rep("all”, 5),
index_year = rep("all", 5)

)

if (interactive()) {
ggSunburst(treatmentPatwhays)
3

16

plotEventDuration

plotEventDuration plotEventDuration

Description

plotEventDuration

Usage

plotEventDuration(

eventDurations,
minCellCount = 0,
treatmentGroups = "both",
eventlLines = NULL,
includeOverall = TRUE

Arguments

eventDurations (data.frame) Contents of summaryEventDuration.csv file.

minCellCount (numeric(1): @) Min Cell Count per event group.
treatmentGroups

(character(1): "both") "group"”: Only mono-, and combination-events. "individual”:
Only individual (combination) events. "both": Both mono-, and combination-
events, and individual (combination) events.

eventlLines (numeric(n): NULL) Event lines to include, i.e. c(1, 2, 3) includes first (1),

second (2), and third (3) lines of events. NULL will include all eventLines.

includeOverall (logical(1): TRUE) TRUE: Include an overall column with the eventLines.

Value

FALSE: Exclude the overall column.

ggplot

Examples

ableToRun <- all(

)

require(”CirceR"”, character.only = TRUE, quietly = TRUE),
require("CDMConnector”, character.only = TRUE, quietly = TRUE),
require("TreatmentPatterns”, character.only = TRUE, quietly = TRUE),
require("dplyr"”, character.only = TRUE, quietly = TRUE)

if (ableToRun) {

withr::local_envvar(

R_USER_CACHE_DIR = tempfile(),
EUNOMIA_DATA_FOLDER = Sys.getenv("EUNOMIA_DATA_FOLDER", unset = tempfile())

plotEventDuration 17

)
tryCatch({
if (Sys.getenv("skip_eunomia_download_test"”) != "TRUE") {
CDMConnector: :downloadEunomiaData(overwrite = TRUE)
}

}, error = function(e) NA)

con <- DBI::dbConnect(duckdb: :duckdb(), dbdir = eunomiaDir())
cdm <- cdmFromCon(con, cdmSchema = "main”, writeSchema = "main")

cohortSet <- readCohortSet(
path = system.file(package = "TreatmentPatterns”, "exampleCohorts")

)

cdm <- generateCohortSet(
cdm = cdm,
cohortSet = cohortSet,
name = "cohort_table”

cohorts <- cohortSet %>%
Remove 'cohort' and 'json' columns

select(-"cohort”, -"json") %>%
mutate(type = c("event”, "event”, "event”, "event”, "exit", "event"”, "event”, "target")) %>%
rename (
cohortIld = "cohort_definition_id",
cohortName = "cohort_name”,
) %%

select(”cohortId”, "cohortName", "type")

outputEnv <- computePathways(
cohorts = cohorts,
cohortTableName = "cohort_table”,
cdm = cdm

results <- export(outputEnv)

plotEventDuration(
eventDurations = results$summary_event_duration,
minCellCount = 5,
treatmentGroups = "group”,
eventLines = 1:4,
includeOverall = FALSE

Andromeda: : close(outputEnv)
DBI::dbDisconnect(con, shutdown = TRUE)

18 TreatmentPatternsResults

TreatmentPatternsResults
TreatmentPatternsResults Class

Description

Houses the results of a TreatmentPatterns analysis. Each field corresponds to a file. Plotting
methods are provided.

Active bindings

attrition (data.frame)

metadata (data.frame)
treatment_pathways (data.frame)
summary_event_duration (data.frame)
counts_age (data.frame)

counts_sex (data.frame)

counts_year (data.frame)
cdm_source_info (data.frame)
analyses (data.frame)

arguments (list)

Methods
Public methods:

e TreatmentPatternsResults$new()

* TreatmentPatternsResults$saveAsZip()

¢ TreatmentPatternsResults$saveAsCsv()

* TreatmentPatternsResults$uploadResultsToDb()
* TreatmentPatternsResults$load()

* TreatmentPatternsResults$plotSunburst()

* TreatmentPatternsResults$plotSankey()

* TreatmentPatternsResults$plotEventDuration()
* TreatmentPatternsResults$clone()

Method new(): Initializer method

Usage:
TreatmentPatternsResults$new(
attrition = NULL,
metadata = NULL,
treatmentPathways = NULL,
summaryEventDuration = NULL,

TreatmentPatternsResults 19

countsAge NULL,
countsSex = NULL,
countsYear = NULL,
cdmSourceInfo = NULL,
analyses = NULL,
arguments = NULL,
filePath = NULL

)

Arguments:

attrition (data.frame) attrition result.

metadata (data.frame)) metadata result.

treatmentPathways (data.frame)) treatmentPathways result.
summaryEventDuration (data.frame)) summaryEventDuration result.
countsAge (data.frame)) countsAge result.

countsSex (data.frame)) countsSex result.

countsYear (data.frame)) countsYear result.

cdmSourceInfo (data.frame) cdmSourcelnfo result.

analyses (data.frame) Analyses result.

arguments (list) Named list of arguments used.

filePath (character) File path to either a directory or zip-file, containing the csv-files.

Method saveAsZip(): Save the results as a zip-file.

Usage:
TreatmentPatternsResults$saveAsZip(path, name, verbose = TRUE)

Arguments:

path (character(1)) Path to write to.

name (character(1)) File name.

verbose (logical: TRUE) Verbose messaging.

Returns: self

Method saveAsCsv(): Save the results as csv-files.

Usage:
TreatmentPatternsResults$saveAsCsv(path, verbose = TRUE)

Arguments:
path (character(1)) Path to write to.
verbose (logical: TRUE) Verbose messaging.

Returns: self

Method uploadResultsToDb(): Upload results to a resultsDatabase using Resul tModelManager.

Usage:

20

TreatmentPatternsResults

TreatmentPatternsResults$uploadResultsToDb(

connectionDetails,
schema,
prefix = "tp_",

overwrite = TRUE,
purgeSiteDataBeforeUploading = FALSE

)

Arguments:

connectionDetails (ConnectionDetails) ConnectionDetails object from DatabaseConnector.

schema (character(1)) Schema to write tables to.

prefix (character(1): "tp_") Table prefix.

overwrite (logical(1): TRUE) Should tables be overwritten?

purgeSiteDataBeforeUploading (logical: FALSE) Should site data be purged before up-
loading?

Returns: self

Method load(): Load data from files.
Usage:
TreatmentPatternsResults$load(filePath)

Arguments:
filePath (character(1)) Path to a directory or zip-file containing the result csv-files.

Returns: self

Method plotSunburst(): Wrapper for TreatmentPatterns::createSunburstPlot(), but
with data filtering step.

Usage:
TreatmentPatternsResults$plotSunburst(
age = "all”,
sex = "all”,
indexYear = "all",

nonePaths = FALSE,

)
Arguments:
age (character(1)) Age group.
sex (character(1)) Sex group.
indexYear (character(1)) Index year group.
nonePaths (logical(1)) Should None paths be included?
. Parameters for TreatmentPatterns: :createSunburstPlot()

Returns: htmlwidget

Method plotSankey(): Wrapper for TreatmentPatterns::createSankeyDiagram(), but
with data filtering step.

Usage:

TreatmentPatternsResults 21

TreatmentPatternsResults$plotSankey(

age = "all”,
sex = "all”,
indexYear = "all",

nonePaths = FALSE,

)

Arguments:
age (character(1)) Age group.
sex (character(1)) Sex group.
indexYear (character(1)) Index year group.
nonePaths (logical(1)) Should None paths be included?
. Parameters for TreatmentPatterns: :createSankeyDiagram()

Returns: htmlwidget

Method plotEventDuration(): Wrapper for TreatmentPatterns: :plotEventDuration().

Usage:
TreatmentPatternsResults$plotEventDuration(...)

Arguments:
. Parameters for TreatmentPatterns: :plotEventDuration()

Returns: ggplot

Method clone(): The objects of this class are cloneable with this method.

Usage:
TreatmentPatternsResults$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Index

andromeda, 4

computePathways, 2, 8, 11
createSankeyDiagram, 5
createSunburstPlot, 7

doEraCollapseNew, 8
executeTreatmentPatterns, 8
export, 8, 11
exportPatientLevel, 13

getResultsDataModelSpecifications, 14
ggSunburst, 15

plotEventDuration, 16

sankeyNetwork, 6
sunburst, 7

TreatmentPatternsResults, 18

22

	computePathways
	createSankeyDiagram
	createSunburstPlot
	doEraCollapseNew
	executeTreatmentPatterns
	export
	exportPatientLevel
	getResultsDataModelSpecifications
	ggSunburst
	plotEventDuration
	TreatmentPatternsResults
	Index

