Package ‘ggvis’

February 10, 2026

Title Interactive Grammar of Graphics
Version 0.4.10

Description An implementation of an interactive grammar of graphics,
taking the best parts of 'ggplot2', combining them with the reactive
framework of 'shiny' and drawing web graphics using 'vega'.

License GPL-2 | file LICENSE

URL https://ggvis.rstudio.com/
Depends R (>=3.0)

Imports assertthat, dplyr (>= 0.5.0), htmltools (>= 0.2.4), jsonlite
(>=0.9.11), magrittr, methods, rlang, shiny (>=0.11.1)

Suggests knitr (>= 1.6), lubridate, MASS, mgcv, rmarkdown, testthat
(>=0.8.1)

Encoding UTF-8
LazyData true
RoxygenNote 7.3.3
NeedsCompilation no

Author Hadley Wickham [aut, cre],

Winston Chang [aut],

Posit [cph],

jQuery Foundation [cph] (jQuery library and jQuery Ul library),

jQuery contributors [ctb, cph] (jQuery library; authors listed in
inst/www/lib/jquery/AUTHORS.txt),

jQuery UI contributors [ctb, cph] (jQuery UI library; authors listed in
inst/www/lib/jquery-ui/AUTHORS.txt),

Mike Bostock [ctb, cph] (D3 library),

D3 contributors [ctb] (D3 library; authors listed at
https://github.com/d3/d3/graphs/contributors),

Trifacta Inc. [cph] (Vega library),

Vega contributors [ctb] (Vega library; authors listed at
https://github.com/trifacta/vega/graphs/contributors),

Sebastidan Décima [ctb, cph] (javascript-detect-element-resize library)

Maintainer Hadley Wickham <hadley@posit.co>

1

https://ggvis.rstudio.com/

2 Contents

Repository CRAN
Date/Publication 2026-02-10 14:50:02 UTC

Contents
add_axiS e 3
add_data L e e e e e 5
add_guide_axis 6
add_guide_legend 6
add_legend e 7
add_props 9
add_relative_scales e 10
add_tooltip e e 10
AULO_GIOUD .+ ¢ v v v e 11
AXIS_PIOPS « v v v v e 12
band e 13
COCAINE v v i it i e i e e e e e 13
compute_align. e 14
compute_bin e e e e e e e e 15
compute_boxplot 17
COMPULE_COUNE . & v v v v v o e 18
compute_density e e e e e e e 19
compute_model_prediction 20
compute_stack e e e e e e 22
compute_tabulate L. e e 23
explain 24
EXPlain.gEVIS e e e e e 25
EXPOIT_PNZ « . . o vt e e e e e e e e e e 25
get_data L 26
GEVIS . o e e e e e e 26
ggvisControlOutput e 27
GEVIS_MESSAZE .+« v v o e 28
group_by . .o e e 28
handle_brush 29
handle click 29
handle_resize e e 30
input_checkbox L 31
nput_select 32
input_slider e e 34
INPUL_EXE .« . . o o o o e e e e e e e e e 35
ishroker L e 36
layer_bars e e e e 37
layer_boxplots. 38
layer_densities e e 39
layer_guess e e e e e e e e e 41
layer_histograms e e 41

layer_lines e 43

add_axis 3
layer_model_predictions L e 44
left_right e 45
legend_props e e e 46
linked_brush 47
marks e e 48
padding 50
PIOP - o o o e e e e e e 50
PIOPS o o o o e e e e e e e 52
prop_domain e e e e e e e e 55
resolution e 56
scaled_value e e e e 56
Scales e e e e 57
scale_datetime e e 58
scale NUMETIC o o e, 60
scale_ordinal L L e, 62
SEL_OPLIONS e 65
set_scale_label e 66
Shiny-ggvis e e e e e e 66
SHOW_SPEC o o e e e e e 68
Show_tooltip. L e 68
sidebarBottomPage 69
singular e 69
VECIOT_LYPE .« v v v v e 71
vega_data_parsero e e e e 71
waggle . . .o e 72
ZEIO_TANZE . o v v v v v v e 72
Do>% e e e e 73

Index 74

add_axis Add a vega axis specification to a ggvis plot

Description

Axis specifications allow you to either override the default axes, or additional axes.

Usage

add_

axis(

vis,

type,

scale = NULL,

orient = NULL,

title = NULL,
title_offset = NULL,
format = NULL,

ticks = NULL,

add_axis

values = NULL,

subdivide = NULL,

tick_padding = NULL,
tick_size_major = NULL,
tick_size_minor = tick_size_major,
tick_size_end = tick_size_major,
offset = NULL,

layer = "back”,

grid = TRUE,

properties =

)

hide_axis(vis,

Arguments
vis
type

scale

orient

title

title_offset
format

ticks

values

subdivide

tick_padding

NULL

scale)

A ggvis object.
The type of axis. Either x or y.

The name of the scale backing the axis component. Defaults to the scale type -
you will need to specify if you want (e.g.) a scale for a secondary y-axis.

The orientation of the axis. One of top, bottom, left or right. The orientation can
be used to further specialize the axis type (e.g., a y axis oriented for the right
edge of the chart) - defaults to bottom for x axes, and left for y axes.

A title for the axis. By default, it uses the name of the field in the first data set
used by the scale. Use "" to suppress the title.

The offset (in pixels) from the axis at which to place the title.
The formatting pattern for axis labels. Vega uses D3’s format pattern.

A desired number of ticks. The resulting number may be different so that values
are "nice" (multiples of 2, 5, 10) and lie within the underlying scale’s range.

Explicitly set the visible axis tick values.

If provided, sets the number of minor ticks between major ticks (the value 9
results in decimal subdivision).

The padding, in pixels, between ticks and text labels.

tick_size_major, tick_size_minor, tick_size_end

offset

layer

grid

properties

The size, in pixels, of major, minor and end ticks.

The offset, in pixels, by which to displace the axis from the edge of the enclosing
group or data rectangle.

A string indicating if the axis (and any gridlines) should be placed above or
below the data marks. One of "front" or "back" (default).

A flag indicating if gridlines should be created in addition to ticks.

Optional mark property definitions for custom axis styling. Should be an object
created by axis_props, with properties for ticks, majorTicks, minorTicks, grid,
labels, title, and axis.

add_data 5

Details

More information about axes can be found in the "axes and legends" vignettes.

Compared to ggplot2

In ggplot2, axis (and legend) properties are part of the scales specification. In vega, they are sepa-
rate, which allows the specification of multiple axes, and more flexible linkage between scales and
axes.

See Also

Vega axis documentation: https://vega.github.io/vega/docs/axes/

Examples

mtcars %>% ggvis(x = ~wt, y = ~mpg, fill = ~cyl) %>%
layer_points() %>%
add_axis("x", title = "Weight”, orient = "top")

Suppress axis with hide_axis

mtcars %>% ggvis(x = ~wt, y = ~mpg, fill = ~cyl) %>%
layer_points() %>%
hide_axis("x") %>% hide_axis("y")

mtcars %>% ggvis(x = ~wt, y = ~mpg) %>% layer_points() %>%
add_axis("x", title = "Weight”, ticks = 40,
properties = axis_props(
ticks = list(stroke = "red"),
majorTicks = list(strokeWidth = 2),
grid = list(stroke = "red"),
labels = list(
fill = "steelblue”,
angle = 50,
fontSize = 14,
align = "left",
baseline = "middle”,
dx =3
),
title = list(fontSize = 16),
axis = list(stroke = "#333", strokeWidth = 1.5)

add_data Add dataset to a visualisation

Description

Add dataset to a visualisation

https://vega.github.io/vega/docs/axes/

6 add_guide_legend

Usage
add_data(vis, data, name = deparse2(substitute(data)), add_suffix = TRUE)

Arguments
vis Visualisation to modify.
data Data set to add.
name Data of data - optional, but helps produce informative error messages.
add_suffix Should a unique suffix be added to the data object’s ID? This should only be
FALSE when the spec requires a data set with a specific name.
Examples

mtcars %>% ggvis(~mpg, ~wt) %>% layer_points()
NULL %>% ggvis(~mpg, ~wt) %>% add_data(mtcars) %>% layer_points()

add_guide_axis Defunct function for adding an axis

Description

This function has been replaced with add_axis.

Usage
add_guide_axis(...)

Arguments
Other arguments.
add_guide_legend Defunct function for adding a legend
Description

This function has been replaced with add_legend.

Usage
add_guide_legend(...)

Arguments

Other arguments.

add_legend

add_legend

Add a vega legend specification to a ggvis plot

Description

Axis specifications allow you to either override the default legends, or supply additional legends.

Usage
add_legend(

vis,
scales = NULL,
orient = "right",
title = NULL,

format = NULL,
values = NULL,

properties =

)

NULL

hide_legend(vis, scales)

Arguments
vis
scales
orient

title

format
values

properties

Details

A ggvis object.

The name of one or more scales for which to add a legend. Typically one of

"size", "shape", "fill", "stroke", although custom scale names may also be used.
Multiple names can also be used, like c("fill", "shape”).

The orientation of the legend. One of "left" or "right". This determines how the
legend is positioned within the scene. The default is "right".

A title for the legend. By default, it uses the name the fields used in the legend.
Use "" to suppress the title.

The formatting pattern for axis labels. Vega uses D3’s format pattern.
Explicitly set the visible legend values.

Optional mark property definitions for custom legend styling. Should be an ob-
ject created by legend_props, with properties for title, label, symbols, gradient,
legend.

More information about axes can be found in the "axes and legends" vignettes.

Compared to ggplot2

In ggplot2, legend (and axis) properties are part of the scales specification. In vega, they are sepa-
rate, which allows the specification of multiple legends, and more flexible linkage between scales

and legends.

8 add_legend

Examples

mtcars %>% ggvis(x = ~wt, y = ~mpg, fill = ~cyl) %>%
layer_points() %>%
add_legend("fill"”, title = "Cylinders")

Suppress legend with hide_legend

mtcars %>% ggvis(x = ~wt, y = ~mpg, fill = ~cyl) %>%
layer_points() %>%
hide_legend("fill")

Combining two properties in one legend

mtcars %>%
ggvis(x = ~wt, y = ~mpg, fill = ~factor(cyl), shape = ~factor(cyl)) %>%
layer_points() %>%
add_legend(c("fill", "shape"))

Control legend properties with a continuous legend, with x and y position
in pixels.
mtcars %>% ggvis(x = ~wt, y = ~mpg, fill = ~cyl) %>%
layer_points() %>%
add_legend("fill"”, title = "Cylinders",
properties = legend_props(
title = list(fontSize = 16),
labels = list(fontSize = 12, fill = "#00OF"),
gradient = list(stroke = "red”, strokeWidth = 2),
legend = list(x = 500, y = 50)
)
)

Control legend properties with a categorical legend, with x and y position
in the scaled data space.
mtcars %>% ggvis(x = ~wt, y = ~mpg, fill = ~factor(cyl)) %>%
layer_points() %>%
add_legend("fill", title = "Cylinders”,
properties = legend_props(
title = list(fontSize = 16),
labels list(fontSize = 14, dx = 5),
symbol = list(stroke = "black”, strokeWidth = 2,
shape = "square"”, size = 200),
legend = list(
x = scaled_value("x", 4.5),
y = scaled_value("y", 30)
)
)

)

Control legend position using x_rel and y_rel which specify relative
position, going from @ to 1. (@, @) is the bottom-left corner, and
(1, 1) is the upper-right corner. The values control the position of
the upper-left corner of the legend.
mtcars %>% ggvis(x = ~wt, y = ~mpg, fill = ~cyl) %>%

layer_points() %>%

add_props 9

add_relative_scales() %>%
add_legend("fill”, title = "Cylinders",
properties = legend_props(
legend = list(
x = scaled_value("x_rel”, 0.8),
y = scaled_value("y_rel”, 1)
)
)
)

add_props Add visual properties to a visualisation

Description

Add visual properties to a visualisation

Usage
add_props(vis, ..., .props = NULL, inherit = NULL, env = parent.frame())
Arguments
vis Visualisation to modify.
A set of name-value pairs. The name should be a valid vega property.
The first two unnamed components are taken to be x and y. Any additional
unnamed components will raise an error.

.props When calling props from other functions, you’ll often have a list of quoted
function functions. You can pass that function to the .props argument instead
of messing around with substitute. In other words, .props lets you opt out of
the non-standard evaluation that props does.

inherit If TRUE, the defaults, will inherit from properties from the parent layer If FALSE,
it will start from nothing.

env The environment in which to evaluate variable properties.

Examples

mtcars %>% ggvis(~wt, ~mpg) %>% layer_points()
mtcars %>% ggvis() %>% add_props(~wt, ~mpg) %>% layer_points()
mtcars %>% ggvis(~wt) %>% add_props(y = ~mpg) %>% layer_points()

10 add_tooltip

add_relative_scales Add x_rel and y_rel scales

Description

This function adds scales named x_rel and y_rel, each of which has a domain of O to 1, and the
range is the plot’s width or height. These scales are useful for positioning visual elements relative
to the plotting area. For example, with legends.

Usage

add_relative_scales(vis)

Arguments

vis A ggvis object.

See Also

add_legend for a usage example.

add_tooltip Add tooltips to a plot.

Description

Add tooltips to a plot.

Usage

add_tooltip(vis, html, on = c("hover”, "click"))

Arguments
vis Visualisation to add tooltips to.
html A function that takes a single argument as input. This argument will be a list

containing the data in the mark currently under the mouse. It should return a
string containing HTML or NULL to hide tooltip for the current element.

on Should tooltips appear on hover, or on click?

auto_group 11

Examples

Run these examples only in interactive R sessions
if (interactive()) {

all_values <- function(x) {
if(is.null(x)) return(NULL)
paste@(names(x), ": ", format(x), collapse = "
")

}

base <- mtcars %>% ggvis(x = ~wt, y = ~mpg) %>%
layer_points()

base %>% add_tooltip(all_values, "hover")

base %>% add_tooltip(all_values, "click")

The data sent from client to the server contains only the data columns that
are used in the plot. If you want to get other columns of data, you should
to use a key to line up the item from the plot with a row in the data.

mtc <- mtcars

mtc$id <- T:nrow(mtc) # Add an id column to use ask the key

all_values <- function(x) {
if(is.null(x)) return(NULL)
row <- mtc[mtc$id == x$id, 1]
paste@(names(row), ": ", format(row), collapse = "
")

}

mtc %>% ggvis(x = ~wt, y = ~mpg, key := ~id) %>%
layer_points() %>%
add_tooltip(all_values, "hover")

auto_group Automatically group data by grouping variables

Description

Use auto_group to group up a dataset on all categorical variables specified by props, and have each
piece rendered by the same mark.

Usage

auto_group(vis, exclude = NULL)

Arguments
vis The ggvis visualisation to modify.
exclude A vector containing names of props to exclude from auto grouping. It is often

useful to exclude c("x", "y"), when one of those variables is categorical.

12

See Also

To manually specify grouping variables, see group_by.

Examples

One line

mtcars %>% ggvis(~disp, ~mpg, stroke

One line for each level of cyl

mtcars %>% ggvis(~disp, ~mpg, stroke
layer_paths()

mtcars %>% ggvis(~disp, ~mpg, stroke
layer_paths()

The grouping column can already be
mtcars2 <- mtcars
mtcars2$cyl <- factor(mtcars2$cyl)

= ~factor(cyl)) %>% layer_paths()

= ~factor(cyl)) %>% group_by(cyl) %>%

= ~factor(cyl)) %>% auto_group() %>%

stored as a factor

mtcars2 %>% ggvis(~disp, ~mpg, stroke = ~cyl) %>% auto_group() %>%

layer_paths()

axis_props

axis_props

Create an axis_props object for controlling axis properties.

Description

The items in each of the lists can be a literal value, like 5 or "blue", or they can be a scaled_value

object.

Usage

axis_props(

ticks = NULL,
majorTicks = NULL,
minorTicks = NULL,
grid = NULL,
labels = NULL,
title = NULL,

axis = NULL

Arguments

ticks
majorTicks
minorTicks
grid
labels
title

axis

A named list of line properties for ticks.

A named list of line properties for major ticks.
A named list of line properties for minor ticks.
A named list of line properties for grid lines.

A named list of text properties for axis labels.
A named list of text properties for the axis title.
A named list of line properties for the axis line.

band 13

band A band

Description

Bands are used to set the width or height on categorical scales - a band represent the height or width
allocated for one level of a factor.

Usage
band(offset = NULL, mult = NULL)

is.prop_band(x)

Arguments
offset, mult Additive and multiplicate offsets used to adjust the band size. For example, use
mult = @.9 to make a bar take up 90% of the space allocated for its category.
X object to test for band-ness
Examples

df <- data.frame(label = c("a", "b", "c"), n = c(10, 9, 4))

base <- df %>% ggvis(~label, y2 = 0, y = ~n)
base %>% layer_rects(width = band())

base %>% layer_rects(width = band(offset = -1))
base %>% layer_rects(width = band(mult = 0.9))

A nominal scale with padding is more symmetrical than band with a mult
base %>% layer_rects(width = band(mult = 0.75))
base %>% layer_rects(width = band()) %>%

scale_nominal("x", padding = 0.25, points = FALSE)

cocaine Cocaine seizures in the US.

Description
This dataset comes from STRIDE, the System to Retrieve Information from Drug Evidence. It
contains all concaine seizures in the US from 2007 that have a known weight.

Usage

cocaine

14 compute_align

Format

Data frame with 3380 observations of 5 variables.

Variables

state State where seizure occured.

potency Purity of cocaine, as percentage (100% = pure cocaine, 0% = all filler)
weight Weight, in grams.

month Month in which seizure occured.

price Estimated value in USD.

Use

Use of this data requires your agreement to refer to your analyses as "unvalidated DEA data and to
claim authorship and responsibility for any inferences and/or conclusions you may draw from this
information."

compute_align Align positions using length.

Description

This compute function is often used in conjunction with compute_count, when used on data with
a continuous X variable. By default, the computed width will be equal to the resolution of the data,
or, in other words the smallest difference between two values in the data.

Usage
compute_align(x, var, length = NULL, align = 0.5, dir = "x")

Arguments
X Dataset-like object to align. Built-in methods for data frames, grouped data
frames and ggvis visualisations.
var Name of variable to compute width of.
length An absolute length to use. If NULL (the default), the width will be equivalent to
the resolution of the data.
align Where does the existing variable fall on the new bins? 0 = left edge, 0.5 = center,
1 =right edge.
dir Direction, i.e. "x" or "y". Used to generate variable names in output.
Details

An absolute width for each x can be specified by using the width argument. If width is NULL (the
default), it will use the resolution of the data as the width.

compute_bin

Value

The original data frame, with additional columns:

"dir’min_ left boundary of bin
*dir’max_ right boundary of bin
"dir’len_ width of bin

See Also

compute_bin For counting cases within ranges of a continuous variable.

compute_count For counting cases at specific values of a variable.

Examples

mtcars %>% compute_count(~disp) %>% compute_align(~x_)
mtcars %>% compute_count(~mpg) %>% compute_align(~x_)

Use a specific width
pressure %>% compute_count(~temperature) %>% compute_align(~x_)
pressure %>% compute_count(~temperature) %>% compute_align(~x_, length = 5)

It doesn't matter whether you transform inside or outside of a vis
mtcars %>% compute_count(~cyl, ~wt) %>%
compute_align(~x_, length = .5) %>%
ggvis(x = ~xmin_, x2 = ~xmax_, y = ~count_, y2 = @) %>%
layer_rects()

mtcars %>%
ggvis(x = ~xmin_, x2 = ~xmax_, y = ~count_, y2 = Q) %>%
compute_count(~cyl, ~wt) %>%
compute_align(~x_) %>%
layer_rects()

Varying align

mtcars %>%
ggvis(x = ~xmin_, x2 = ~xmax_, y = ~count_, y2 = @) %>%
compute_count(~cyl, ~wt) %>%
compute_align(~x_, length = 0.5, align = input_slider(Q, 1)) %>%
layer_rects()

15

compute_bin Bin data along a continuous variable

Description

Bin data along a continuous variable

16

Usage
compute_bin(
X)
X_var,
w_var = NULL,
width = NULL,

compute_bin

center = NULL,
boundary = NULL,
closed = c("right”, "left"),

pad = FALSE,
binwidth
)
Arguments
X

X_var, w_var

width

center

boundary

closed

pad

binwidth

Value

Dataset-like object to bin. Built-in methods for data frames, grouped data frames
and ggvis visualisations.

Names of x and weight variables. The x variable must be continuous.

The width of the bins. The default is NULL, which yields 30 bins that cover the
range of the data. You should always override this value, exploring multiple
widths to find the best to illustrate the stories in your data.

The center of one of the bins. Note that if center is above or below the range of
the data, things will be shifted by an appropriate number of widths. To center
on integers, for example, use width=1 and center=0, even if @ is outside the
range of the data. At most one of center and boundary may be specified.

A boundary between two bins. As with center, things are shifted when boundary
is outside the range of the data. For example, to center on integers, use width =
1 and boundary = 0.5, even if 1 is outside the range of the data. At most one of
center and boundary may be specified.

One of "right” or "left” indicating whether right or left edges of bins are
included in the bin.

If TRUE, adds empty bins at either end of x. This ensures frequency polygons
touch 0. Defaults to FALSE.

Deprecated; use width instead.

A data frame with columns:

count_
X

xmin_

xmax_

width_

the number of points
mid-point of bin

left boundary of bin
right boundary of bin
width of bin

compute_boxplot 17

See Also

compute_count For counting cases at specific locations of a continuous variable. This is useful
when the variable is continuous but the data is granular.

Examples

mtcars %>% compute_bin(~mpg)
mtcars %>% compute_bin(~mpg, width = 10)
mtcars %>% group_by(cyl) %>% compute_bin(~mpg, width = 10)

It doesn't matter whether you transform inside or outside of a vis
mtcars %>% compute_bin(~mpg) %>% ggvis(~x_, ~count_) %>% layer_paths()
mtcars %>% ggvis(~ x_, ~ count_) %>% compute_bin(~mpg) %>% layer_paths()

Missing values get own bin

mtcars2 <- mtcars

mtcars2$mpglsample (32, 5)] <- NA

mtcars2 %>% compute_bin(~mpg, width = 10)

But are currently silently dropped in histograms
mtcars2 %>% ggvis() %>% layer_histograms(~mpg)

compute_boxplot Calculate boxplot values

Description

Calculate boxplot values

Usage

compute_boxplot(x, var = NULL, coef = 1.5)

Arguments
X Dataset-like object to compute boxplot values. There are built-in methods for
data frames, grouped data frames, and ggvis visualisations.
var Name of variable for which to compute boxplot values. The variable must be
continuous.
coef The maximum length of the whiskers as multiple of the inter-quartile range.
Default value is 1.5.
Value

A data frame with columns:

min_ Lower whisker = smallest observation greater than or equal to lower hinge - 1.5
*IQR

18 compute_count

lower_ Lower hinge (25th percentile)
median_ Median (50th percentile)
upper_ Upper hinge (75th percentile)
max_ Upper whisker = largest observation less than or equal to upper hinge + 1.5 *
IQR
outliers_ A vector of values that are outside of the min and max
See Also

layer_boxplots

Examples

mtcars %>% compute_boxplot(~mpg)
mtcars %>% group_by(cyl) %>% compute_boxplot(~mpg)

compute_count Count data at each location

Description

Count data at each location

Usage

compute_count(x, x_var, w_var = NULL)

Arguments
X Dataset-like object to count. Built-in methods for data frames, grouped data
frames and ggvis visualisations.
X_var, w_var Names of x and weight variables.
Value

A data frame with columns:

count_ the number of points

X_ the x value where the count was made

The width of each "bin" is set to the resolution of the data — that is, the smallest difference between
two x values.

See Also

compute_bin For counting cases within ranges of a continuous variable.

compute_align For calculating the "width" of data.

compute_density 19

Examples

mtcars %>% compute_count(~cyl)

Weight the counts by car weight value
mtcars %>% compute_count(~cyl, ~wt)

If there's one weight value at each x, it effectively just renames columns.
pressure %>% compute_count(~temperature, ~pressure)

Also get the width of each bin

pressure %>% compute_count(~temperature, ~pressure) %>% compute_align(~x_)

It doesn't matter whether you transform inside or outside of a vis
mtcars %>% compute_count(~cyl, ~wt) %>%
compute_align(~x_) %>%
ggvis(x = ~xmin_, x2 = ~xmax_, y = ~count_, y2 = @) %>%
layer_rects()

mtcars %>%
ggvis(x = ~xmin_, x2 = ~xmax_, y = ~count_, y2 = @) %>%
compute_count(~cyl, ~wt) %>%
compute_align(~x_) %>%
layer_rects()

compute_density Compute density of data.

Description

Compute density of data.

Usage
compute_density(
X)
x_var,
w_var = NULL,
kernel = "gaussian”,
trim = FALSE,
n = 256L,

na.rm = FALSE,

)

Arguments
X Dataset (data frame, grouped_df or ggvis) object to work with.
x_var, w_var Names of variables to use for x position, and for weights.

kernel Smoothing kernel. See density for details.

20 compute_model_prediction

trim If TRUE, the default, density estimates are trimmed to the actual range of the
data. If FALSE, they are extended by the default 3 bandwidths (as specified by
the cut parameter to density).

n Number of points (along x) to use in the density estimate.

na.rm If TRUE missing values will be silently removed, otherwise they will be removed
with a warning.

Additional arguments passed on to density.

Value

A data frame with columns:

pred_ regularly spaced grid of n locations
resp_ density estimate
Examples

mtcars %>% compute_density(~mpg, n = 5)

mtcars %>% group_by(cyl) %>% compute_density(~mpg, n = 5)

mtcars %>% ggvis(~mpg) %>% compute_density(~mpg, n = 5) %>%
layer_points(~pred_, ~resp_)

compute_model_prediction
Create a model of a data set and compute predictions.

Description

Fit a 1d model, then compute predictions and (optionally) standard errors over an evenly spaced
grid.

Usage

compute_model_prediction(
X,
formula,
model = NULL,
se = FALSE,
level = 0.95,
n = 80L,
domain = NULL,
method

compute_smooth(x, formula, ..., span = 0.75, se = FALSE)

compute_model_prediction 21

Arguments

X

formula

model

se

level
n

domain

method

span

Details

Dataset-like object to model and predict. Built-in methods for data frames,
grouped data frames and ggvis visualisations.

Formula passed to modelling function. Can use any variables from data.
arguments passed on to model function

Model fitting function to use - it must support R’s standard modelling inter-
face, taking a formula and data frame as input, and returning predictions with
predict. If not supplied, will use loess for <= 1000 points, otherwise it will
use gam. Other modelling functions that will work include 1m, glm and rlm.

include standard errors in output? Requires appropriate method of predict_grid,
since the interface for returning predictions with standard errors is not consistent
acrossing modelling frameworks.

the confidence level of the standard errors.
the number of grid points to use in the prediction

If NULL (the default), the domain of the predicted values will be the same as
the domain of the prediction variable in the data. It can also be a two-element
numeric vector specifying the min and max.

Deprecated. Please use model instead.

Smoothing span used for loess model.

compute_model_prediction fits a model to the data and makes predictions with it. compute_smooth
is a special case of model predictions where the model is a smooth loess curve whose smoothness
is controlled by the span parameter.

Value

A data frame with columns:

resp_

pred_

regularly spaced grid of n locations

predicted value from model

pred_lwr_ and pred_upr_

pred_se_

Examples

upper and lower bounds of confidence interval (if se = TRUE)

the standard error (width of the confidence interval) (if se = TRUE)

Use a small value of n for these examples

mtcars %>%
mtcars %>%
mtcars %>%

compute_model_prediction(mpg ~ wt, n
compute_model_prediction(mpg ~ wt, n = 10, se = TRUE)
group_by(cyl) %>% compute_model_prediction(mpg ~ wt, n = 10)

10)

compute_smooth defaults to loess
mtcars %>% compute_smooth(mpg ~ wt)

22 compute_stack

Override model to suppress message or change approach
mtcars %>% compute_model_prediction(mpg ~ wt, n = 10, model = "loess")
mtcars %>% compute_model_prediction(mpg ~ wt, n = 10, model "Im")

Set the domain manually
mtcars %>%
compute_model_prediction(mpg ~ wt, n = 20, model = "1m"”, domain = c(@, 8))

Plot the results

mtcars %>% compute_model_prediction(mpg ~ wt) %>%
ggvis(~pred_, ~resp_) %>%
layer_paths()

mtcars %>% ggvis() %>%
compute_model_prediction(mpg ~ wt) %>%
layer_paths(~pred_, ~resp_)

compute_stack Stack overlapping data.

Description

Stack overlapping data.

Usage

compute_stack(x, stack_var = NULL, group_var = NULL)

Arguments
X A data object
stack_var A string specifying the stacking variable.
group_var A string specifying the grouping variable.
Value

A data frame with columns:

stack_upr_ the lower y coordinate for a stack bar
stack_lwr_ the upper y coordinate for a stack bar
Examples

mtcars %>% cbind(count = 1) %>% compute_stack(~count, ~cyl)

Shouldn't use or affect existing grouping
mtcars %>% cbind(count = 1) %>% group_by(am) %>% compute_stack(~count, ~cyl)

If given a ggvis object, will use x variable for stacking by default
mtcars %>% ggvis(x = ~cyl, y = ~wt) %>%

compute_tabulate 23

compute_stack(stack_var = ~wt, group_var = ~cyl) %>%
layer_rects(x = ~cyl - 0.5, x2 = ~cyl + 0.5, y = ~stack_upr_,
y2 = ~stack_lwr_)

Collapse across hair & eye colour data across sex
hec <- as.data.frame(xtabs(Freq ~ Hair + Eye, HairEyeColor))
hec %>% compute_stack(~Freq, ~Hair)

Without stacking - bars overlap
hec %>% ggvis(~Hair, ~Freq, fill = ~Eye, fillOpacity := @.5) %>%
layer_rects(y2 = @, width = band())

With stacking

hec %>% ggvis(x = ~Hair, y = ~Freq, fill = ~Eye, fillOpacity := 0.5) %>%
compute_stack(~Freq, ~Hair) %>%
layer_rects(y = ~stack_lwr_, y2 = ~stack_upr_, width = band())

layer_bars stacks automatically:

hec %>% ggvis(~Hair, ~Freq, fill = ~Eye, fillOpacity := @.5) %>%
group_by(Eye) %>%
layer_bars(width = 1)

compute_tabulate Count data at each location of a categorical variable

Description

Count data at each location of a categorical variable

Usage

compute_tabulate(x, x_var, w_var = NULL)

Arguments
X Dataset-like object to count. Built-in methods for data frames, grouped data
frames and ggvis visualisations.
x_var, w_var Names of x and weight variables.
Value

A data frame with columns:

count_ the number of points

X_ value of bin

24 explain

See Also

compute_bin For counting cases within ranges of a continuous variable.

compute_count For counting cases at specific locations of a continuous variable. This is useful
when the variable is continuous but the data is granular.

Examples

library(dplyr)

The tabulated column must be countable (not numeric)

Not run: mtcars %>% compute_tabulate(~cyl)

mtcars %>% mutate(cyl = factor(cyl)) %>% compute_tabulate(~cyl)

Or equivalently:
mtcars %>% compute_tabulate(~factor(cyl))

If there's one weight value at each x, it effectively just renames columns.
pressure %>% compute_tabulate(~factor(temperature), ~pressure)

It doesn't matter whether you transform inside or outside of a vis
mtcars %>% compute_tabulate(~factor(cyl)) %>%

ggvis(x = ~x_, y = ~count_, y2 = @) %>%

layer_rects(width = band())

mtcars %>%
ggvis(x = ~x_, y = ~count_, y2 = @) %>%
compute_tabulate(~factor(cyl)) %>%
layer_rects(width = band())

compute_tabulate is used automatically in layer_bars when no y prop
is supplied.
mtcars %>% ggvis(x = ~factor(cyl)) %>% layer_bars()

explain Explain details of an object

Description
This is a generic function which gives more details about an object than print, and is more focussed
on human readable output than str.

See Also

dplyr::explain for more information.

Examples

p <- mtcars %>% ggvis(x = ~cyl) %>% layer_bars()
explain(p)

explain.ggvis 25

explain.ggvis Print out the structure of a ggvis object in a friendly format

Description

Print out the structure of a ggvis object in a friendly format

Usage
S3 method for class 'ggvis'
explain(x, ...)

Arguments
X Visualisation to explain

Needed for compatibility with generic. Ignored by this method.

export_png Export a PNG or SVG from a ggvis object

Description

This requires that the external program vg2png is installed. This is part of the vega node.js module.

Usage
export_png(vis, file = NULL)

export_svg(vis, file = NULL)
Arguments

vis A ggvis object.

file Output file name. If NULL, defaults to "plot.svg" or "plot.png".
See Also

https://github.com/trifacta/vega for information on installing vg2png and vg2svg.

Examples

Not run:
mtcars %>% ggvis(x = ~wt) %>% export_png()

End(Not run)

https://github.com/trifacta/vega

26 ggvis

get_data Get data from a ggvis object

Description

This function is useful for inspecting the data in a ggvis object.

Usage

get_data(vis)

Arguments

vis A ggvis object.

Examples

p <- cocaine %>% ggvis(~price) %>% layer_bars()
get_data(p)

ggvis Visualise a data set with a ggvis graphic.

Description

ggvis is used to turn a dataset into a visualisation, setting up default mappings between variables
in the dataset and visual properties. Nothing will be displayed until you add additional layers.

Usage

ggvis(data = NULL, ..., env = parent.frame())
Arguments

data A data object.

Property mappings. If not named, the first two mappings are taken to be x and
y. Common properties are X, y, stroke, fill, opacity, shape

env Environment in which to evaluate properties.

ggvisControlOutput 27

Examples

If you don't supply a layer, ggvis uses layer_guess() to guess at
an appropriate type:

mtcars %>% ggvis(~mpg, ~wt)

mtcars %>% ggvis(~mpg, ~wt, fill = ~cyl)

mtcars %>% ggvis(~mpg, ~wt, fill := "red")

mtcars %>% ggvis(~mpg)

ggvis has a functional interface: every ggvis function takes a ggvis
an input and returns a modified ggvis as output.
layer_points(ggvis(mtcars, ~mpg, ~wt))

To make working with this interface more natural, ggvis imports the
pipe operator from magrittr. x %>% f(y) is equivalent to f(x, y) so
we can rewrite the previous command as

mtcars %>% ggvis(~mpg, ~wt) %>% layer_points()

For more complicated plots, add a line break after %>%
mtcars %>%

ggvis(~mpg, ~wt) %>%

layer_points() %>%

layer_smooths()

ggvisControlOutput Create a ggvis control output element in Ul

Description
This is effectively the same as uiOutput, except that on the client side it may call some plot resizing
functions after new controls are drawn.

Usage
ggvisControlOutput (outputId, plotId = NULL)

Arguments
outputId The output variable to read the value from.
plotId An optional plot ID or vector of plot IDs. The plots will have their .onCon-
trolOutput functions called after the controls are drawn.
Details

ggvisControlOutput is intended to be used with bind_shiny on the server side.

Examples

ggvisControlOutput("plot1”)

28 group_by

ggvis_message Send a message to ggvis running on client

Description

This will be sent to the client and passed to a handler in ggvis.messages on the client side. The
handler is specified by type.

Usage

ggvis_message(session, type, data = NULL, id = NULL)

Arguments
session A session object.
type A string representing the type of the message.
data An object (typically a list) containing information for the client.
id A unique identifier for ggvis message handler (optional).
group_by Divide data into groups.
Description

Divide data into groups.

Arguments
X a visualisation
variables to group by.
add By default, when add = FALSE, group_by will override existing groups. To in-

stead add to the existing groups, use add = TRUE

handle_brush 29

handle_brush Handle brush events on a visualisation.

Description
Currently for brush events to be triggered on a visualisation, you must use a . brush property. This
limitation will be lifted in the future.

Usage
handle_brush(vis, on_move = NULL, fill = "black")

Arguments
vis Visualisation to listen to.
on_move Callback function with arguments:
items A data frame containing information about the items under the plot. An
empty data.frame if no points under the brush.
page_loc Location of the brush with repsect to the page
plot_loc Location of the brush with respect to the plot
session The session, used to communicate with the browser
fill Colour of the brush.
Examples

Display tooltip when objects are brushed
mtcars %>%
ggvis(x = ~wt, y = ~mpg, size.brush := 400) %>%
layer_points() %>%

handle_brush(function(items, page_loc, session, ...) {
show_tooltip(session, page_loc$r + 5, page_loc$t, html = nrow(items))
b))
handle_click Handle mouse actions on marks.
Description

Handle mouse actions on marks.

Usage
handle_click(vis, on_click = NULL)

handle_hover(vis, on_mouse_over = NULL, on_mouse_out = NULL)

30 handle_resize

Arguments

vis Visualisation to listen to.
on_click, on_mouse_over
Callback function with arguments:

data A data frame with one row
location A named list with components x and y
session The session, used to communicate with the browser

on_mouse_out Callback function with argument:

session The session, used to communicate with the browser

Examples

nyn

location <- function(location, ...) cat(location$x, "x", location$y, "\n")
mtcars %>% ggvis(~mpg, ~wt) %>% layer_points() %>%
handle_click(location)
mtcars %>% ggvis(~mpg, ~wt) %>% layer_points() %>%
handle_hover(function(...) cat("over\n"), function(...) cat("off\n"))
mtcars %>% ggvis(~mpg, ~wt) %>% layer_points() %>%

handle_hover(function(data, ...) str(data))
handle_resize Handlers and interactive inputs for plot sizing.
Description

Handlers and interactive inputs for plot sizing.
Usage

handle_resize(vis, on_resize)

plot_width(vis)

plot_height(vis)

Arguments
vis Visualisation to listen to.
on_resize Callback function with arguments:

width,height Width and height in pixels
padding A named list of four components giving the padding in each direction

session The session, used to communicate with the browser

input_checkbox 31

Examples

This example just prints out the current dimensions to the console
mtcars %>% ggvis(~mpg, ~wt) %>%

layer_points() %>%

handle_resize(function(width, height, ...) cat(width, "x", height, "\n"))

Use plot_width() and plot_height() to dynamically get the plot size
inside the plot.

mtcars %>% ggvis(~mpg, ~wt) %>% layer_text(text := plot_width())
mtcars %>% ggvis(~mpg, ~wt) %>% layer_text(text := plot_height())

input_checkbox Create an interactive checkbox.

Description

Create an interactive checkbox.

Usage

input_checkbox(
value = FALSE,
label = "",
id = rand_id("checkbox_"),
map = identity

)
Arguments
value Initial value (TRUE or FALSE).
label Display label for the control, or NULL for no label.
id A unique identifier for this input. Usually generated automatically.
map A function with single argument x, the value of the control on the client. Returns
a modified value.
See Also

Other interactive input: input_select(), input_slider(), input_text()

Examples

input_checkbox(label = "Confidence interval”)
input_checkbox(label = "Confidence interval”, value = TRUE)

Used in layer_smooths
mtcars %>% ggvis(~wt, ~mpg) %>%
layer_smooths(se = input_checkbox(label = "Confidence interval”))

32 input_select

Used with a map function, to convert the boolean to another type of value
model_type <- input_checkbox(label = "Use flexible curve",

map = function(val) if(val) "loess” else "1m")
mtcars %>% ggvis(~wt, ~mpg) %>%

layer_model_predictions(model = model_type)

input_select Create interactive control to select one (or more options) from a list.

Description

* input_radiobuttons only ever selects one value
* input_checkboxgroup can alway select multiple values

* input_select canselect only oneif multiple = FALSE, otherwise the user can select multiple
by using modifier keys

Usage

input_select(
choices,
selected = NULL,
multiple = FALSE,
label = "",
id = rand_id("select_"),
map = identity,
selectize = FALSE

)
input_radiobuttons(
choices,
selected = NULL,
label = "",

id = rand_id("radio_"),
map = identity

)
input_checkboxgroup(
choices,
selected = NULL,
label = "",

id = rand_id("radio_"),
map = identity

input_select

Arguments

choices

selected

multiple
label
id

map

selectize

See Also

33

List of values to select from. If elements of the list are named, then that name —
rather than the value — is displayed to the user. It’s also possible to group related
inputs by providing a named list whose elements are (either named or unnamed)
lists, vectors, or factors. In this case, the outermost names will be used as the
group labels (leveraging the <optgroup> HTML tag) for the elements in the
respective sublist. See the example section for a small demo of this feature.

The initially selected value (or multiple values if multiple = TRUE). If not spec-
ified then defaults to the first value for single-select lists and no values for mul-
tiple select lists.

Is selection of multiple items allowed?
Display label for the control, or NULL for no label.
A unique identifier for this input. Usually generated automatically.

A function with single argument x, the value of the control on the client. Returns
a modified value.

Whether to use selectize.js or not.

Other interactive input: input_checkbox(), input_slider(), input_text()

Examples

Dropdown

input_select(c("a", "b", "c"))
input_select(c("a”, "b", "c"), multiple = TRUE)

input_select(c("a", "b", "c"), selected

"C”)

If you want to select variable names, you need to convert
the output of the input to a name with map so that they get
computed correctly

input_select(names(mtcars), map = as.name)

Radio buttons

input_radiobuttons(choices = c("Linear” = "1m"”, "LOESS" = "loess"),
label = "Model type")

input_radiobuttons(choices = c("Linear” = "1m", "LOESS"” = "loess"),
selected = "loess”,

label = "Model type")

Used in layer_model_predictions
mtcars %>% ggvis(~wt, ~mpg) %>%
layer_model_predictions(model = input_radiobuttons(
choices = c("Linear” = "1m", "LOESS" = "loess"),
selected = "loess”,
label = "Model type"))

Checkbox group

mtcars %>% ggvis(x = ~wt, y = ~mpg) %>%

34 input_slider

layer_points(

fill := input_checkboxgroup(
choices = c("Red” = "r", "Green” = "g", "Blue" = "b"),
label = "Point color components”,
map = function(val) {

rgb(0.8 x "r" %in% val, 0.8 x "g" %in% val, 0.8 x "b" %in% val)

3

)

)

input_slider Create an interactive slider.

Description

Create an interactive slider.

Usage
input_slider(
min,
max,
value = (min + max)/2,
step = NULL,

round = FALSE,
format = NULL,

locale = "us",
ticks = TRUE,
animate = FALSE,
sep = ",",

pre = NULL,

post = NULL,
label = "",

id = rand_id("slider_"),
map = identity

)
Arguments
min, max The minimum and maximum values (inclusive) that can be selected.
value The initial value of the slider, either a number, a date (class Date), or a date-time
(class POSIXt). A length one vector will create a regular slider; a length two
vector will create a double-ended range slider. Must lie between min and max.
step Specifies the interval between each selectable value on the slider. Either NULL,

the default, which uses a heuristic to determine the step size or a single number.
If the values are dates, step is in days; if the values are date-times, step is in
seconds.

input_text

round

format
locale
ticks

animate

sep
pre
post
label
id

map

See Also

35

TRUE to round all values to the nearest integer; FALSE if no rounding is desired;
or an integer to round to that number of digits (for example, 1 will round to the
nearest 10, and -2 will round to the nearest .01). Any rounding will be applied
after snapping to the nearest step.

A string specifying how to format the value.
A string specifying the locale to use for formatting.

FALSE to hide tick marks, TRUE to show them according to some simple heuris-
tics.

TRUE to show simple animation controls with default settings; FALSE not to; or a
custom settings list, such as those created using animationOptions().

Separator between thousands places in numbers.

A prefix string to put in front of the value.

A suffix string to put after the value.

Display label for the control, or NULL for no label.

A unique identifier for this input. Usually generated automatically.

A function with single argument x, the value of the control on the client. Returns
a modified value.

Other interactive input: input_checkbox(), input_select(), input_text()

Examples

input_slider(o, 100)

input_slider(Q, 100, label

"binwidth")

input_slider(@, 100, value = 50)

Supply two values to value to make a double-ended sliders
input_slider(@, 100, c(25, 75))

You can use map to transform the outputs
input_slider(-5, 5, label = "Log scale”, map = function(x) 10 * x)

input_text

Create an interactive text or numeric input box.

Description

input_numeric only allows numbers and comes with a spin box control. input_text allows any

type of input.

Usage

input_text(value, label = "", id = rand_id("text_"), map = identity)

input_numeric(value, label = "", id = rand_id("numeric_"), map = identity)

36 is.broker

Arguments
value Initial value.
label Display label for the control, or NULL for no label.
id A unique identifier for this input. Usually generated automatically.
map A function with single argument x, the value of the control on the client. Returns
a modified value.
See Also

Other interactive input: input_checkbox(), input_select(), input_slider()

Examples

fill_text <- input_text(label = "Point color”, value = "red")
mtcars %>% ggvis(~wt, ~mpg, fill := fill_text) %>% layer_bars()

size_num <- input_numeric(label = "Point size"”, value = 25)
mtcars %>% ggvis(~wt, ~mpg, size := size_num) %>% layer_points()
is.broker Determine if an object is a broker object
Description

Determine if an object is a broker object

Usage

is.broker(x)

Arguments

X An object to test.

layer_bars 37

layer_bars Display data with bars (a barchart).

Description

This will add bars to a plot. The exact behavior is complicated because the term bar chart is used to
describe four important variations on a theme. The action of layer_bars depends on two factors:
whether or not a y prop has been specified, and whether the x props is continuous or categorical.

Usage
layer_bars(vis, ..., stack = TRUE, width = NULL)
Arguments
vis Visualisation to modify
Visual properties used to override defaults.
stack If there are multiple bars to be drawn at an x location, should the bars be stacked?
If FALSE, the bars will be overplotted on each other.
width Width of each bar. When X is continuous, this controls the width in the same
units as X. When x is categorical, this controls the width as a proportion of the
spacing between items (default is 0.9).
Visualisations

If no y prop has been specified, then this will count the number of entries at each unique x value.
There will be one bar at each unique x value, and the y value (or height) of each bar will represent
the count at that x value.

If a y prop has been specified, then those y values will be used as weights for a weighted count at
each unique x value. If no x values appear more than once in the data, then the end result is a plot
where the height of the bar at each x value is simply the y value. However, if an x value appear
more than once in the data, then this will sum up the y values at each x.

If the x variable is continuous, then a continuous x axis will be used, and the width of each bar is
by default equal to the resolution of the data — that is, the smallest difference between any two x
values.

If the x variable is categorical, then a categorical x axis will be used. By default, the width of each
bar is 0.9 times the space between the items.

See Also

layer_histograms For bar graphs of counts at each unique x value, in contrast to a histogram’s
bins along x ranges.

compute_count and compute_tabulate for more information on how data is transformed.

38 layer_boxplots

Examples

Discrete x: bar graph of counts at each x value
cocaine %>% ggvis(~state) %>% layer_bars()

Continuous x: bar graph of counts at unique locations
cocaine %>% ggvis(~month) %>% layer_bars()

Use y prop to weight by additional variable. This is also useful
if you have pretabulated data

cocaine %>% ggvis(~state, ~weight) %>% layer_bars()

cocaine %>% ggvis(~month, ~weight) %>% layer_bars()

For continuous x, layer_bars is useful when the variable has a few
unique values that you want to preserve. If you have many unique

values and you want to bin, use layer_histogram

cocaine %>% ggvis(~price) %>% layer_bars()

cocaine %>% ggvis(~price) %>% layer_histograms(width = 100)

If you have unique x values, you can use layer_bars() as an alternative
to layer_points()

pressure %>% ggvis(~temperature, ~pressure) %>% layer_points()

pressure %>% ggvis(~temperature, ~pressure) %>% layer_bars()

When x is continuous, width controls the width in x units

pressure %>% ggvis(~temperature, ~pressure) %>% layer_bars(width = 10)

When x is categorical, width is proportional to spacing between bars

pressure %>% ggvis(~factor(temperature), ~pressure) %>%
layer_bars(width = 0.5)

Stacked bars
If grouping var is continuous, you need to manually specify grouping
ToothGrowth %>% group_by(dose) %>%
ggvis(x = ~supp, y = ~len, fill = ~dose) %>% layer_bars()
If grouping var is categorical, grouping is done automatically
cocaine %>% ggvis(x = ~state, fill = ~as.factor(month)) %>%
layer_bars()

layer_boxplots Display data with a boxplot.

Description

This will add boxplots to a plot. The action of layer_boxplots depends on whether the x prop is
continuous or categorical.

Usage

layer_boxplots(vis, ..., coef = 1.5, width = NULL)

layer_densities 39

Arguments
vis Visualisation to modify
Visual properties used to override defaults.
coef The maximum length of the whiskers as multiple of the inter-quartile range.
Default value is 1.5.
width Width of each bar. When x is continuous, this controls the width in the same
units as X. When x is categorical, this controls the width as a proportion of the
spacing between items (default is 0.9).
Details

The upper and lower "hinges" correspond to the first and third quartiles (the 25th and 75th per-
centiles). This differs slightly from the method used by the boxplot function, and may be apparent
with small samples. See boxplot.stats for more information on how hinge positions are calcu-
lated for boxplot.

The upper whisker extends from the hinge to the highest value that is within 1.5 * IQR of the hinge,
where IQR is the inter-quartile range, or distance between the first and third quartiles. The lower
whisker extends from the hinge to the lowest value within 1.5 * IQR of the hinge. Data beyond the
end of the whiskers are outliers and plotted as points (as specified by Tukey).

See Also

compute_boxplot for more information on how data is transformed.

Examples
library(dplyr)

mtcars %>% ggvis(~factor(cyl), ~mpg) %>% layer_boxplots()
Set the width of the boxes to half the space between tick marks
mtcars %>% ggvis(~factor(cyl), ~mpg) %>% layer_boxplots(width = @.5)

Continuous x: boxes fill width between data values

mtcars %>% ggvis(~cyl, ~mpg) %>% layer_boxplots()

Setting width=0.5 makes it 0.5 wide in the data space, which is 1/4 of the
distance between data values in this particular case.

mtcars %>% ggvis(~cyl, ~mpg) %>% layer_boxplots(width = @.5)

Smaller outlier points
mtcars %>% ggvis(~factor(cyl), ~mpg) %>% layer_boxplots(size := 20)

layer_densities Transformation: density estimate

40 layer_densities

Description

transform_density is a data transformation that computes a kernel density estimate from a dataset.
layer_density combines transform_density with mark_path and mark_area to display a smooth
line and its standard errror.

Usage
layer_densities(
vis,
kernel = "gaussian”,
adjust =1,
density_args = list(),
area = TRUE
)
Arguments
vis The visualisation to modify
Visual properties, passed on to props.
kernel Smoothing kernel. See density for details.
adjust Multiple the default bandwidth by this amount. Useful for controlling wiggli-

ness of density.
density_args Other arguments passed on to compute_density and thence to density.

area Should there be a shaded region drawn under the curve?

Examples

Basic density estimate
faithful %>% ggvis(~waiting) %>% layer_densities()
faithful %>% ggvis(~waiting) %>% layer_densities(area = FALSE)

Control bandwidth with adjust
faithful %>% ggvis(~waiting) %>% layer_densities(adjust = .25)
faithful %>% ggvis(~waiting) %>%

layer_densities(adjust = input_slider(0.1, 5))

Control stroke and fill
faithful %>% ggvis(~waiting) %>%
layer_densities(stroke := "red”, fill := "red")

With groups

PlantGrowth %>% ggvis(~weight, fill = ~group) %>% group_by(group) %>%
layer_densities()

PlantGrowth %>% ggvis(~weight, stroke = ~group) %>% group_by(group) %>%
layer_densities(strokeWidth := 3, area = FALSE)

layer_guess 41

layer_guess Guess the right type of layer based on current properties.

Description

layer_guess provides the magic behind the default behaviour of ggvis.

Usage
layer_guess(vis, ...)
Arguments
vis The visualisation to add the new layer to.
Other arguments passed on individual layers.
Defaults

e Continuous x, layer_histograms
* Categorical x, layer_bars

* Continuous x and y, layer_points

Examples

A scatterplot:
mtcars %>% ggvis(~mpg, ~wt)
mtcars %>% ggvis(~mpg, ~wt) %>% layer_guess()

A histogram:
mtcars %>% ggvis(~mpg)
mtcars %>% ggvis(~mpg) %>% layer_guess()

layer_histograms Display binned data

Description

Display binned data

42 layer_histograms

Usage
layer_histograms(
vis,
width = NULL,

center = NULL,

boundary = NULL,

closed = c("right”, "left"),
stack = TRUE,

binwidth

)

layer_fregpolys(
vis,

width = NULL,

center = NULL,

boundary = NULL,

closed = c("right”, "left"),
binwidth

Arguments

vis Visualisation to modify
Visual properties used to override defaults.

width The width of the bins. The default is NULL, which yields 30 bins that cover the
range of the data. You should always override this value, exploring multiple
widths to find the best to illustrate the stories in your data.

center The center of one of the bins. Note that if center is above or below the range of
the data, things will be shifted by an appropriate number of widths. To center
on integers, for example, use width=1 and center=0, even if @ is outside the
range of the data. At most one of center and boundary may be specified.

boundary A boundary between two bins. As with center, things are shifted when boundary
is outside the range of the data. For example, to center on integers, use width =
1 and boundary = 0.5, even if 1 is outside the range of the data. At most one of
center and boundary may be specified.

closed One of "right” or "left” indicating whether right or left edges of bins are
included in the bin.
stack If TRUE, will automatically stack overlapping bars.
binwidth Deprecated; use width instead.
See Also

layer_bars For bar graphs of counts at each unique x value, in contrast to a histogram’s bins along
X ranges.

layer_lines 43

Examples

Create histograms and frequency polygons with layers
mtcars %>% ggvis(~mpg) %>% layer_histograms()

mtcars %>% ggvis(~mpg) %>% layer_histograms(width = 2)
mtcars %>% ggvis(~mpg) %>% layer_fregpolys(width = 2)

These are equivalent to combining compute_bin with the corresponding
mark
mtcars %>% compute_bin(~mpg) %>% ggvis(~x_, ~count_) %>% layer_paths()

With grouping

mtcars %>% ggvis(~mpg, fill = ~factor(cyl)) %>% group_by(cyl) %>%
layer_histograms(width = 2)

mtcars %>% ggvis(~mpg, stroke = ~factor(cyl)) %>% group_by(cyl) %>%
layer_fregpolys(width = 2)

layer_lines Layer lines on a plot.

Description

layer_lines differs from layer_paths in that layer_lines sorts the data on the x variable, so
the line will always proceed from left to right, whereas layer_paths will draw a line in whatever
order appears in the data.

Usage
layer_lines(vis, ...)
Arguments
vis Visualisation to modify.
Visual properties.
See Also

layer_paths

Examples

mtcars %>% ggvis(~wt, ~mpg, stroke = ~factor(cyl)) %>% layer_lines()

Equivalent to
mtcars %>% ggvis(~wt, ~mpg, stroke = ~factor(cyl)) %>%
group_by(cyl) %>% dplyr::arrange(wt) %>% layer_paths()

44

layer_model_predictions

layer_model_predictions

Overlay model predictions or a smooth curve.

Description

layer_model_predictions fits a model to the data and draw it with layer_paths and, optionally,
layer_ribbons. layer_smooths is a special case of layering model predictions where the model
is a smooth loess curve whose smoothness is controlled by the span parameter.

Usage

layer_model_predictions(

vis,

model,

formula = NULL,
model_args = NULL,
se = FALSE,

domain = NULL

)
layer_smooths(vis, ..., span = 0.75, se = FALSE)
Arguments

vis Visualisation to modify
Visual properties. Stroke properties control only affect line, fill properties only
affect standard error band.

model Name of the model as a string, e.g. "loess"”, "Im", or "MASS: :rlm". Must be
the name of a function that produces a standard model object with a predict
method. For layer_smooth this is always "loess".

formula Model formula. If not supplied, guessed from the visual properties, constructing
y ™~ X.

model_args A list of additional arguments passed on to the model function.

se Also display a point-wise standard error band? Defaults to FALSE because inter-
pretation is non-trivial.

domain If NULL (the default), the domain of the predicted values will be the same as

the domain of the prediction variable in the data. It can also be a two-element
numeric vector specifying the min and max.

span For layer_smooth, the span of the loess smoother.

left_right

Examples

mtcars %>% ggvis(~wt, ~mpg) %>% layer_smooths()
mtcars %>% ggvis(~wt, ~mpg) %>% layer_smooths(se = TRUE)

Use group by to display multiple smoothes
mtcars %>% ggvis(~wt, ~mpg) %>% group_by(cyl) %>% layer_smooths()

Control appearance with props
mtcars %>% ggvis(~wt, ~mpg) %>%
layer_smooths(se = TRUE, stroke := "red"”, fill := "red”, strokeWidth := 5)

Control the wiggliness with span. Default is 0.75

mtcars %>% ggvis(~wt, ~mpg) %>% layer_points() %>%
layer_smooths(span = 0.2)

mtcars %>% ggvis(~wt, ~mpg) %>% layer_points() %>%
layer_smooths(span = 1)

Map to an input to modify interactively

mtcars %>% ggvis(~wt, ~mpg) %>% layer_points() %>%
layer_smooths(span = input_slider(0.2, 1))

Use other modelling functions with layer_model_predictions
mtcars %>% ggvis(~wt, ~mpg) %>%
layer_points() %>%
layer_model_predictions(model = "1m") %>%
layer_model_predictions(model = "MASS::rlm", stroke := "red")

Custom domain for predictions
mtcars %>% ggvis(~wt, ~mpg) %>% layer_points() %>%

layer_model_predictions(model = "1m", domain = c(@, 8))
mtcars %>% ggvis(~wt, ~mpg) %>% layer_points() %>%
layer_model_predictions(model = "1m",

domain = input_slider(@, 10, value = c(1, 4)))

layer_smooths() is just compute_smooth() + layer_paths()
Run loess or other model outside of a visualisation to see what variables

you get.
mtcars %>% compute_smooth(mpg ~ wt)
mtcars %>% compute_model_prediction(mpg ~ wt, model = "1m")

mtcars %>%
ggvis(~wt, ~mpg) %>%
layer_points() %>%
compute_smooth(mpg ~ wt) %>%
layer_paths(~pred_, ~resp_, strokeWidth := 2)

left_right Interactive inputs bound to arrow keys.

Description

Interactive inputs bound to arrow keys.

46 legend_props

Usage

left_right(min, max, value = (min + max)/2, step = (max - min)/40)

up_down(min, max, value = (min + max)/2, step = (max - min)/40)

Arguments
min A minimum value.
max A maximum value.
value The initial value before any keys are pressed. Defaults to half-way between min
and max.
step How much each key press changes value. Defaults to 40 steps along range
Examples

size <- left_right(1, 801, value = 51, step = 50)
opacity <- up_down(@, 1, value = 0.9, step = 0.05)

mtcars %>% ggvis(~mpg, ~wt, size := size, opacity := opacity) %>%
layer_points()

legend_props Create an axis_props object for controlling legend properties.

Description

The items in each of the lists can be a literal value, like 5 or "blue", or they can be a scaled_value
object.

Usage

legend_props(
title = NULL,
labels = NULL,
symbols = NULL,
gradient = NULL,
legend = NULL

)
Arguments
title A named list of text properties for the legend title.
labels A named list of text properties for legend labels.
symbols A named list of line properties for symbols (for discrete legend items).
gradient A named list of line properties a continuous color gradient.
legend A named list of line properties for the overall legend. The x and y position can

be set here, which will override automatic positioning.

linked_brush 47

linked_brush Create a linked brush object.

Description

A linked brush has two sides: input and output

Usage
linked_brush(keys, fill = "red")

Arguments
keys vector of all possible keys, if known.
fill brush colour

Value

A list with components:

input A function that takes a visualisation as an argument and adds an input brush to
that plot
selected A reactive providing a logical vector that describes which points are under the
brush
fill A reactive that gives the fill colour of points under the brush
Note

linked_brush is very new and is likely to change substantially in the future

Examples

1b <- linked_brush(keys = 1:nrow(mtcars), "red")

Change the colour of the points

mtcars %>%

ggvis(~disp, ~mpg) %>%

layer_points(fill := 1b$fill, size.brush := 400) %>%
1b$input ()

Display one layer with all points and another layer with selected points
library(shiny)
mtcars %>%

ggvis(~disp, ~mpg) %>%

layer_points(size.brush := 400) %>%

1b$input() %>%

layer_points(fill := "red", data = reactive(mtcars[lb$selected(), 1))

48 marks

marks Vega marks.

Description

These functions create mark objects, corresponding to vega marks. Marks are leaves in the plot tree,
and control the details of the final rendering. Marks are equivalent to the basic geoms in ggplot2
(e.g. point, line, polygon), where ggvis layers correspond to combinations of geoms and statistical
transforms.

Usage

emit_points(vis, props)

layer_points(vis, ..., data = NULL)

emit_images(vis, props)

layer_images(vis, ..., data = NULL)
emit_arcs(vis, props)
layer_arcs(vis, ..., data = NULL)
emit_ribbons(vis, props)
layer_ribbons(vis, ..., data = NULL)
emit_paths(vis, props)
layer_paths(vis, ..., data = NULL)
emit_rects(vis, props)
layer_rects(vis, ..., data = NULL)
emit_text(vis, props)
layer_text(vis, ..., data = NULL)
Arguments
vis Visualisation to modify
props, ... A props object, named according to the properties listed below.
data An optional dataset, if you want to override the usual data inheritance for this

mark.

marks

Details

49

Note that by supplying a fill property to mark_path will produce a filled property. mark_point is
an alias to mark_symbol.

Properties

You can set the following mark properties:

x The first (typically left-most) x-coordinate.

x2 The second (typically right-most) x-coordinate.
width The width of the mark (if supported).

y The first (typically top-most) y-coordinate.

y2 The second (typically bottom-most) y-coordinate.
height The height of the mark (if supported).
opacity The overall opacity.

fill The fill color.

fillOpacity The fill opacity

stroke The stroke color.

strokeWidth The stroke width, in pixels.
strokeOpacity The stroke opacity.

size [symbol] The pixel area of the symbol. For example in the case of circles, the radius is
determined in part by the square root of the size value.

shape [symbol] The symbol shape to use. One of circle (default), square, cross, diamond,
triangle-up, or triangle-down (symbol only)

innerRadius [arc] The inner radius of the arc, in pixels.
outerRadius [arc] The outer radius of the arc, in pixels.
startAngle [arc] The start angle of the arc, in radians.
endAngle [arc] The end angle of the arc, in radians.

interpolate [area, line] The line interpolation method to use. One of linear, step-before, step-
after, basis, basis-open, cardinal, cardinal-open, monotone.

tension [area, line] Depending on the interpolation type, sets the tension parameter.

url [image] The URL from which to retrieve the image.

align [image, text] The horizontal alignment of the object. One of left, right, center.
baseline [image, text] The vertical alignment of the object. One of top, middle, bottom.
text [text] The text to display.

dx [text] The horizontal margin, in pixels, between the text label and its anchor point. The
value is ignored if the align property is center.

dy [text] The vertical margin, in pixels, between the text label and its anchor point. The value
is ignored if the baseline property is middle.

angle [text] The rotation angle of the text, in degrees.

50 prop

font [text] The typeface to set the text in (e.g., Helvetica Neue).

fontSize [text] The font size, in pixels.

 fontWeight [text] The font weight (e.g., bold).

fontStyle [text] The font style (e.g., italic).

To each property, you can assign any property object (prop) either locally (i.e. in the mark), or in a
parent layer.

padding Define padding.

Description

Define padding.

Usage

padding(top = NULL, right = NULL, bottom = NULL, left = NULL)

Arguments

top, right, bottom, left
Amount of padding on each border. Can either be a single number, "auto", or
"strict"

Examples

p <- mtcars %>% ggvis(~wt, ~mpg) %>% layer_points()
p %>% set_options(padding = padding())
p %>% set_options(padding = padding(10, 10, 10, 10))

prop Create a property.

Description

Properties are used to describe the visual properties of marks. You create a single property defintion
with prop, and manage sets of named properties with props (which also provides shortcuts for
creating the most common kind of properties)

51

env = parent.frame(),

prop
Usage
prop(
property,
X’
scale = NULL,
offset = NULL,
mult = NULL,
event = NULL,
label = NULL
)
is.prop(x)

is.prop_constant(x)

is.prop_variable(x)

is.prop_reactive(x)

Arguments

property

X

scale

offset, mult

env

event

label

See Also

A property, like "x", "x2", "y", "fill", and so on.

The value of the property. This can be an atomic vector (a constant), a name or
quoted call (a variable), a single-sided formula (a constant or variable depending
on its contents), or a delayed reactive (which can be either variable or constant).

If NULL, automatically determine behavior by the kind of value (constant, vari-
able, or reactive). If TRUE use the default scale associated with property. If
FALSE, do not scale the value. Otherwise supply a string to select a custom
scale. If x is an interactive input, then this defaults to the scale parameter of the
input.

Additive and multiplicate pixel offset used to adjust scaled values. These are
useful if you want to place labels offset from points.

If x is a quoted call this provides the environment in which to look for variables
not in the data. You should not need this in ordinary operation.

non non

An event to which this property applies. One of "update”, "enter",
"brush".

A label for this prop to use for reporting errors.

exit", "hover"
, ,

props to manage multiple properties and to succintly create the most common types.

Examples

prop("x”, 1)
prop("x", ~1)

52

props

prop("fill”, quote(cyl))
prop("fill”, ~cyl)
prop(”"x", input_slider(@, 100))

If you have a variable name as a string
var <- "cyl”
prop(”"x", as.name(var))

Use a custom scale
prop("y”, quote(cyl), scale = "y-2")

Don't scale variable (i.e. it already makes sense in the visual space)
prop("fill”, ~colour, scale = FALSE)

Use a constant, but scaled
prop("x", 5, scale = TRUE)

Use other events
prop("y", quote(cyl), scale = "y-2")

props Manage a list of properties.

Description

props () provides a tool for concise creation of prop objects using a set of conventions designed to
capture the most common use cases. If you need something less common, you’ll need to use prop
to access all possible options.

Usage

props(..., .props = NULL, inherit = TRUE, env = parent.frame())

is.ggvis_props(x)

Arguments

A set of name-value pairs. The name should be a valid vega property.
The first two unnamed components are taken to be x and y. Any additional
unnamed components will raise an error.

.props When calling props from other functions, you’ll often have a list of quoted
function functions. You can pass that function to the .props argument instead
of messing around with substitute. In other words, .props lets you opt out of
the non-standard evaluation that props does.

inherit If TRUE, the defaults, will inherit from properties from the parent layer If FALSE,
it will start from nothing.

env The environment in which to evaluate variable properties.

X an object to test for props-ness.

props 53

Heuristics

If the values are not already objects of class prop, props uses the following heuristics to when
creating the prop:

* atomic vectors, e.g. x = 1: scaled = FALSE

* an interative input, e.g. x = input_slider: scaled = FALSE

* aformula containing a single value, e.g. x ~ 1: scaled = TRUE

 aformula containing a name or expression, x ~ mpg: scaled = TRUE

Non-standard evaluation

props uses non-standard evaluation in a slightly unusual way: if you provide a formula input, the
LHS of the formula will provide the name of the component. In otherwise, props(x =y ~ 1) is the
same as props(y ~ 1).

You can combine variables from the dataset and variables defined in the local environment: expres-
sions will be evaluated in the environment which the formula was defined.

If you have the name of a variable in a string, see the props vignette for how to create the needed
property mapping.

Enter, exit, hover, and update events

There are four different property events that the marks can use. These can, for example, be used
to change the appearance of a mark when the mouse cursor is hovering over it: when the mark is
hovered over, it uses the hover event, and when the mark isn’t hovered over, it uses the update event

* enter: This event is used by marks when they are added to a plot.

» update: This event is used by marks after they have entered, and also after they have been
hovered over.

« exit: This event is used by marks as they are removed from a plot.

e hover: This event is used when the mouse cursor is over the mark.

You can specify the event for a property, by putting a period and the event after the property name.
For example, props(fill.update := "black”, fill.hover := "red") will make a mark have a
black fill normally, and red fill when it is hovered over.

The default event is update, so if you run props(fill := "red"), this is equivalent to props (fill.update
:="red").

In practice, the enter and exit events are useful only when the update has a duration (and is therefore
not instantaneous). The update event can be thought of as the "default" state.

Key property

In addition to the standard properties, there is a special optional property called key. This is useful
for plots with dynamic data and smooth transitions: as the data changes, the key is used to tell the
plot how the new data rows should be matched to the old data rows. Note that the key must be an
unscaled value. Additionally, the key property doesn’t have a event, since it is independent of enter,
update, exit, and hover events.

54

props

Properties

You can set the following mark properties:

x The first (typically left-most) x-coordinate.

x2 The second (typically right-most) x-coordinate.
width The width of the mark (if supported).

y The first (typically top-most) y-coordinate.

y2 The second (typically bottom-most) y-coordinate.
height The height of the mark (if supported).
opacity The overall opacity.

fill The fill color.

fillOpacity The fill opacity

stroke The stroke color.

strokeWidth The stroke width, in pixels.
strokeOpacity The stroke opacity.

size [symbol] The pixel area of the symbol. For example in the case of circles, the radius is
determined in part by the square root of the size value.

shape [symbol] The symbol shape to use. One of circle (default), square, cross, diamond,
triangle-up, or triangle-down (symbol only)

innerRadius [arc] The inner radius of the arc, in pixels.
outerRadius [arc] The outer radius of the arc, in pixels.
startAngle [arc] The start angle of the arc, in radians.
endAngle [arc] The end angle of the arc, in radians.

interpolate [area, line] The line interpolation method to use. One of linear, step-before, step-
after, basis, basis-open, cardinal, cardinal-open, monotone.

tension [area, line] Depending on the interpolation type, sets the tension parameter.

url [image] The URL from which to retrieve the image.

align [image, text] The horizontal alignment of the object. One of left, right, center.
baseline [image, text] The vertical alignment of the object. One of top, middle, bottom.
text [text] The text to display.

dx [text] The horizontal margin, in pixels, between the text label and its anchor point. The
value is ignored if the align property is center.

dy [text] The vertical margin, in pixels, between the text label and its anchor point. The value
is ignored if the baseline property is middle.

angle [text] The rotation angle of the text, in degrees.

font [text] The typeface to set the text in (e.g., Helvetica Neue).
fontSize [text] The font size, in pixels.

fontWeight [text] The font weight (e.g., bold).

fontStyle [text] The font style (e.g., italic).

To each property, you can assign any property object (prop) either locally (i.e. in the mark), or in a
parent layer.

prop_domain 55

Examples

Set to constant values

props(x := 1, y := 2)

Map to variables in the dataset

props(x = ~mpg, y = ~cyl)

Set to a constant value in the data space
props(x =1, y = 1)

Use an interactive slider

props(opacity := input_slider(@, 1))

To control other settings (like custom scales, mult and offset)
use a prop object
props(prop("x"”, "old"”, scale = "x", offset = -1))

Red when hovered over, black otherwise (these are equivalent)
props(fill := "black”, fill.hover := "red")
props(fill.update := "black”, fill.hover := "red")

Use a column called id as the key (for dynamic data)
props(key := ~id)

Explicitly create prop objects. The following are equivalent:
props(fill = ~cyl)

props(fill.update = ~cyl)

props(prop("fill”, ~cyl))

props(prop("fill”, ~cyl, scale = "fill", event = "update”))

Prop objects can be programmatically created and added:
property <- "fill”

expr <- parse(text = "wt/mpg”)[[1]]

p <- prop(property, expr)

props(p)

Using .props
props(.props = list(x =1, y = 2))
props(.props = list(x = ~mpg, y = ~cyl))

props(.props = list(quote(x := ~mpg)))
prop_domain Property domain
Description

Property domain.

Usage

prop_domain(x, data)

56 scaled_value

Arguments
X property to dispatch on
data name of data set
resolution Compute the "resolution"” of a data vector.
Description

The resolution is is the smallest non-zero distance between adjacent values. If there is only one
unique value, then the resolution is defined to be one.

Usage

resolution(x, zero = TRUE)

Arguments

X numeric vector

zero should a zero value be automatically included in the computation of resolution
Details

If x is an integer vector, then it is assumed to represent a discrete variable, and the resolution is 1.

Examples

resolution(1:10)

resolution((1:10) - 9.5)

resolution((1:10) - 0.5, FALSE)

resolution(c(1,2, 10, 20, 50))
resolution(as.integer(c(1, 10, 20, 50))) # Returns 1

scaled_value Create a scaled_value object

Description

These are for use with legends and axes.

Usage

scaled_value(scale, value)

Arguments

scale The name of a scale, e.g., "x", "fill".
value A value which will be transformed using the scale.

scales 57

scales Add a scale to a ggvis plot

Description

This creates a scale object for a given scale and variable type, and adds it to a ggvis plot. The scale
object is populated with default settings, which depend on the scale (e.g. fill, x, opacity) and the
type of variable (e.g. numeric, nominal, ordinal). Any settings that are passed in as arguments will
override the defaults.

Arguments

vis A ggvis object.

scale The name of a scale, such as "x", "y", "fill", "stroke", etc.

type A variable type. One of "numeric", "nominal", "ordinal", "logical", "datetime".
other arguments passed to the scale function. See the help for scale_numeric,
scale_ordinal and scale_datetime for more details. For example, you might
supply trans = "log" to create a log scale.

name If NULL, the default, the scale name is the same as scale. Set this to a custom
name to create multiple scales for stroke or fill, or (god forbid) a secondary y
scale.

Scale selection

ggvis supports the following types of scales. Typical uses for each scale type are listed below:

* numeric For continuous numeric values.

» nominal For character vectors and factors.

* ordinal For ordered factors (these presently behave the same as nominal).
* logical For logical (TRUE/FALSE) values.

¢ datetime For dates and date-times.

Each type has a corresponding function: scale_numeric, scale_nominal, and so on.

The scale types for ggvis are mapped to scale types for Vega, which include "ordinal", "quantita-
tive", and "time". See ggvis_scale for more details.

Given a scale and type, the range is selected based on the combination of the scale and type. For
example, you get a different range of colours depending on whether the data is numeric, ordinal, or
nominal. Some scales also set other properties. For example, nominal/ordinal position scales also
add some padding so that points are spaced away from plot edges.

Not all combinations have an existing default scale. If you use a combination that does not have an
existing combination, it may suggest you're displaying the data in a suboptimal way. For example,
there is no default for a numeric shape scale, because there’s no obvious way to map continuous
values to discrete shapes.

58

Examples

p <- mtcars %>%

scale_datetime

ggvis(x = ~wt, y = ~mpg, fill = ~factor(cyl), stroke = ~hp) %>%

layer_points()

can also supply additional arguments or override the defaults

trans = "log")

p %>% scale_numeric("x")

p %>% scale_numeric("stroke")
p %>% scale_nominal ("fill")
You

p %>% scale_numeric("x",

p %>%

scale_numeric(”stroke”, range

c("red”, "blue”))

scale_datetime

Add a date-time scale to a ggvis object.

Description

A date/time scale controls the mapping of date and time variables to visual properties.

Usage

scale_datetime(
vis,
property,
domain = NULL,
range = NULL,
reverse = NULL,
round = NULL,
utc = NULL,
clamp = NULL,
nice = NULL,

expand = NULL,
name = property,

label = NULL,
override = NULL
)
Arguments
vis A ggvis object.
property The name of a property, such as "x", "y", "fill", "stroke", etc.
domain The domain of the scale, representing the set of data values. For ordinal scales,

a character vector; for quantitative scales, a numeric vector of length two. Either
value (but not both) may be NA, in which case domainMin or domainMax is set.
For dynamic scales, this can also be a reactive which returns the appropriate
type of vector.

scale_datetime

range

reverse

round

utc

clamp

nice

expand

name

label

override

See Also

59

The range of the scale, representing the set of visual values. For numeric values,
the range can take the form of a two-element array with minimum and max-
imum values. For ordinal data, the range may by an array of desired output
values, which are mapped to elements in the specified domain. The following

range literals are also available: "width", "height", "shapes", "category10", "cat-
egory20".

If true, flips the scale range.

If true, rounds numeric output values to integers. This can be helpful for snap-
ping to the pixel grid.

if TRUE, uses UTC times. Default is FALSE.

If TRUE, values that exceed the data domain are clamped to either the minimum
or maximum range value. Default is FALSE.

If specified, modifies the scale domain to use a more human-friendly value
range. Should be a string indicating the desired time interval; legal values are

non

"second", "minute", "hour", "day", "week", "month", or "year".

A multiplier for how much the scale should be expanded beyond the domain of
the data. For example, if the data goes from 10 to 110, and expand is 0.05, then
the resulting domain of the scale is 5 to 115. Set to 0 and use nice=FALSE if you
want exact control over the domain.

non

Name of the scale, such as "x",
like "foo".

Label for the scale. Used for axis or legend titles.

y", "fill", etc. Can also be an arbitrary name

Should the domain specified by this ggvis_scale object override other ggvis_scale
objects for the same scale? Useful when domain is manually specified. For ex-
ample, by default, the domain of the scale will contain the range of the data,
but when this is TRUE, the specified domain will override, and the domain can
be smaller than the range of the data. If FALSE, the domain will not behave this
way. If left NULL, then it will be treated as TRUE whenever domain is non-NULL.

scales, scale_numeric, https://vega.github.io/vega/docs/scales/#time

Other scales: scale_numeric(), scale_ordinal()

Examples

set.seed(2934)

dat <- data.frame(
time = as.Date("2013-07-01") + 1:100,

value =

)

seq(1, 10, length.out = 100) + rnorm(100)

p <- dat %>% ggvis(~time, ~value) %>% layer_points()

Start and end on month boundaries
p %>% scale_datetime("x", nice = "month")

https://vega.github.io/vega/docs/scales/#time

60

scale_numeric

dist <- data.frame(times = as.POSIXct("2013-07-01", tz = "GMT") +

rnorm(200) * 60 * 60 * 24 * 7)

p <- dist %>% ggvis(x = ~times) %>% layer_histograms()

p

Start and end on month boundaries
p %>% scale_datetime("x", nice = "month")

p %>% scale_datetime("x", utc = TRUE)

scale_numeric

Add a numeric scale to a ggvis object.

Description

A numeric (quantitative) scale controls the mapping of continuous variables to visual properties.

Usage

scale_numeric(
vis,
property,
domain = NULL,
range = NULL,
reverse = NULL,
round = NULL,
trans = NULL,
clamp = NULL,
exponent = NULL,
nice = NULL,
zero = NULL,

expand = NULL,
name = property,

label = NULL,

override = NULL

Arguments
vis

property

domain

A ggvis object.

The name of a visual property, such as "x", "y", "fill", "stroke". Note both

x and x2 use the "x" scale (similarly for y and y2). fillOpacity, opacity and
strokeOpacity use the "opacity" scale.

The domain of the scale, representing the set of data values. For ordinal scales,
a character vector; for quantitative scales, a numeric vector of length two. Either
value (but not both) may be NA, in which case domainMin or domainMax is set.
For dynamic scales, this can also be a reactive which returns the appropriate
type of vector.

scale_numeric

range

reverse

round

trans

clamp

exponent

nice

zero

expand

name

label

override

Details

61

The range of the scale, representing the set of visual values. For numeric values,
the range can take the form of a two-element array with minimum and max-
imum values. For ordinal data, the range may by an array of desired output
values, which are mapped to elements in the specified domain. The following

range literals are also available: "width", "height", "shapes", "category10", "cat-
egory20".

If true, flips the scale range.

If true, rounds numeric output values to integers. This can be helpful for snap-
ping to the pixel grid.

"non non non

A scale transformation: one of "linear", "log", "pow", "sqrt",
tize", "threshold". Default is "linear".

non

quantile", "quan-

If TRUE, values that exceed the data domain are clamped to either the minimum
or maximum range value. Default is FALSE.

Sets the exponent of the scale transformation. For pow transform only.

If TRUE, modifies the scale domain to use a more human-friendly number range
(e.g., 7 instead of 6.96). Default is FALSE.

If TRUE, ensures that a zero baseline value is included in the scale domain. This
option is ignored for non-quantitative scales. Default is FALSE.

A multiplier for how much the scale should be expanded beyond the domain of
the data. For example, if the data goes from 10 to 110, and expand is 0.05, then
the resulting domain of the scale is 5 to 115. Set to 0 and use nice=FALSE if
you want exact control over the domain. If left NULL, behavior will depend on
the scale type. For positional scales (x and y), expand will default to 0.05. For
other scales, it will default to O.

Name of the scale, such as "x", "y", "fill", etc. Can also be an arbitrary name
like "foo".

Label for the scale. Used for axis or legend titles.

Should the domain specified by this ggvis_scale object override other ggvis_scale
objects for the same scale? Useful when domain is manually specified. For ex-
ample, by default, the domain of the scale will contain the range of the data,
but when this is TRUE, the specified domain will override, and the domain can
be smaller than the range of the data. If FALSE, the domain will not behave this
way. If left NULL, then it will be treated as TRUE whenever domain is non-NULL.

The default values for most of the arguments is NULL. When the plot is created, these NULL values
will be replaced with default values, as indicated below.

See Also

scales, scale_ordinal, https://vega.github.io/vega/docs/scales/#quantitative

Other scales: scale_datetime(), scale_ordinal()

https://vega.github.io/vega/docs/scales/#quantitative

62 scale_ordinal

Examples
p <- mtcars %>% ggvis(~wt, ~mpg, fill = ~hp) %>% layer_points()
p %>% scale_numeric("y")

non n

p %>% scale_numeric("y"”, trans = "pow"”, exponent = 0.5)
p %>% scale_numeric("y", trans = "log")

Can control other properties other than x and y
p %>% scale_numeric("fill"”, domain = c(@, 120), clamp = TRUE)

Set range of data from @ to 3
p %>% scale_numeric("x", domain = c(@, 3), clamp = TRUE, expand = 0,
nice = FALSE)

Lower bound is set to lower limit of data, upper bound set to 3.
p %>% scale_numeric(”x"”, domain = c(NA, 3), clamp = TRUE, nice = FALSE)

scale_ordinal Add a ordinal, nominal, or logical scale to a ggvis object.

Description

Ordinal, nominal, and logical scales are all categorical, and are treated similarly by ggvis.

Usage

scale_ordinal(
vis,
property,
domain = NULL,
range = NULL,
reverse = NULL,
round = NULL,

points = NULL,
padding = NULL,

sort = NULL,
name = property,
label = NULL,
override = NULL
)
scale_nominal(
vis,
property,

domain = NULL,
range = NULL,

scale_ordinal

)

reverse = NULL,
round = NULL,

points = NULL,
padding = NULL,

sort = NULL,
name = property,
label = NULL,

override = NULL

scale_logical(

sort = NULL,
name = property,
label = NULL,
override = NULL
)
Arguments
vis A ggvis object.
property The name of a property, such as "x", "y", "fill", "stroke", etc.
domain The domain of the scale, representing the set of data values. For ordinal scales,
a character vector; for quantitative scales, a numeric vector of length two. Either
value (but not both) may be NA, in which case domainMin or domainMax is set.
For dynamic scales, this can also be a reactive which returns the appropriate
type of vector.
range The range of the scale, representing the set of visual values. For numeric values,
the range can take the form of a two-element array with minimum and max-
imum values. For ordinal data, the range may by an array of desired output
values, which are mapped to elements in the specified domain. The following
range literals are also available: "width", "height", "shapes", "category 10", "cat-
egory20".
reverse If true, flips the scale range.
round If true, rounds numeric output values to integers. This can be helpful for snap-
ping to the pixel grid.
points If TRUE (default), distributes the ordinal values over a quantitative range at uni-

vis,
property,
domain = NULL,
range = NULL,
reverse = NULL,
round = NULL,

points = NULL,
padding = NULL,

63

formly spaced points. The spacing of the points can be adjusted using the
padding property. If FALSE, the ordinal scale will construct evenly-spaced bands,
rather than points. Note that if any mark is added with a band() prop, then the

scale for that prop will automatically have points set to FALSE.

64

padding

sort

name

label

override

See Also

scale_ordinal

Applies spacing among ordinal elements in the scale range. The actual effect
depends on how the scale is configured. If the points parameter is true, the
padding value is interpreted as a multiple of the spacing between points. A
reasonable value is 1.0, such that the first and last point will be offset from the
minimum and maximum value by half the distance between points. Otherwise,
padding is typically in the range [0, 1] and corresponds to the fraction of space
in the range interval to allocate to padding. A value of 0.5 means that the range
band width will be equal to the padding width. For positional (x and y) scales,
the default padding is 0.1. For other scales, the default padding is 0.5.

If TRUE, the values in the scale domain will be sorted according to their natural
order. Default is FALSE.

Name of the scale, such as "x", "y", "fill", etc. Can also be an arbitrary name
like "foo".
Label for the scale. Used for axis or legend titles.

Should the domain specified by this ggvis_scale object override other ggvis_scale
objects for the same scale? Useful when domain is manually specified. For ex-
ample, by default, the domain of the scale will contain the range of the data,
but when this is TRUE, the specified domain will override, and the domain can
be smaller than the range of the data. If FALSE, the domain will not behave this
way. If left NULL, then it will be treated as TRUE whenever domain is non-NULL.

scales, scale_numeric, https://vega.github.io/vega/docs/scales/#ordinal.

Other scales: scale_datetime(), scale_numeric()

Examples

p <- PlantGrowth %>% ggvis(~group, ~weight) %>% layer_points()

©

%>% scale_nominal(”"x", padding
p %>% scale_nominal ("x", padding

)
»

p %>% scale_nominal(”x", reverse = TRUE)

p <- ToothGrowth %>% group_by(supp) %>%
ggvis(~len, fill = ~supp) %>%
layer_histograms(width = 4, stack = TRUE)

Control range of fill scale
p %>% scale_nominal("fill", range = c("pink", "lightblue"))

There's no default range when the data is categorical but the output range
is continuous, as in the case of opacity. In these cases, you can
manually specify the range for the scale.
mtcars %>% ggvis(x = ~wt, y = ~mpg, opacity = ~factor(cyl)) %>%
layer_points() %>%
scale_nominal("opacity"”, range = c(0.2, 1))

https://vega.github.io/vega/docs/scales/#ordinal

set_options

65

set_options

Set options for a ggvis plot

Description

Set options for a ggvis plot

Usage
set_options(
vis,
width = NULL,

height = NULL,
keep_aspect = NULL,
resizable = NULL,
padding = NULL,
duration = NULL,

renderer =

NULL,

hover_duration = NULL

Arguments
vis

width, height

keep_aspect

resizable

padding

duration

renderer

Visualisation to modify

Width and height of plot, in pixels. Default is 600x400. width or height can
also be "auto”, in which case the plot will size to fit in the containing div. This is
useful only in a Shiny app or custom HTML output. Note that height="auto"
should only be used when the plot is placed within a div that has a fixed height;
if not, automatic height will not work, due to the way that web browsers do
vertical layout.

Should the aspect ratio be preserved? The default value is FALSE, or the value
of getOption("ggvis.keep_aspect”), if it is set.

If TRUE, allow the user to resize the plot. The default value is TRUE, or the value
of getOption("ggvis.resizable"), if it is set. Not compatible when width
or height is "auto”.

A padding object specifying padding on the top, right, left, and bottom. See
padding.

Duration of transitions, in milliseconds.

The renderer to use in the browser. Can be "canvas” or "svg" (the default).

hover_duration The amount of time for hover transitions, in milliseconds.

See Also

getOption and options, for getting and setting global options.

default_options to see the default options.

66 shiny-ggvis

Examples

mtcars %>%
ggvis(~wt, ~mpg) %>%
layer_points() %>%
set_options(width = 300, height = 200, padding = padding(10, 10, 10, 10))

Display the default options
str(default_options())

set_scale_label Set the label for a scale

Description

Set the label for a scale

Usage

set_scale_label(vis, scale, label)

Arguments
vis A ggvis object.
scale The name of a scale, like "x".
label Text to use for the label.
shiny-ggvis Connect a ggvis graphic to a shiny app.
Description

Embedding ggvis in a shiny app is easy. You need to make a place for it in your ui.r with
ggvisOutput, and tell your server.r where to draw it with bind_shiny. It’s easiest to learn
by example: there are many shiny apps in demo/apps/ that you can learn from.

Usage

bind_shiny(
vis,
plot_id,
controls_id = NULL,

session = shiny::getDefaultReactiveDomain()

shiny-ggvis 67

bind_shiny_ui(vis, controls_id, session = shiny::getDefaultReactiveDomain())

ggvisOutput(plot_id = rand_id("plot_id"))

Arguments
vis A ggvis object, or a reactive expression that returns a ggvis object.
plot_id unique identifier to use for the div containing the ggvis plot.
controls_id Unique identifier for controls div.
Other arguments passed to as. vega.
session A Shiny session object.

Client-side

In your UL, use ggvisOutput() in ui.r to insert an html placeholder for the plot.

If you’re going to be using interactive controls generated by ggvis, use renderUI() to add a place
holder. By convention, if the id of plot placehold is called "plot", call the controls placeholder
"plot_ui".

Server-side

When you run ggvis plot interactively, it is automatically plotted because it triggers the default
print method. In shiny apps, you need to explicitly render the plot to a specific placeholder with
bind_shiny:

p %>% bind_shiny("plot")

If the plot has controls, and you’ve reserved space for them in the UI, supply the name of the
placeholder as the third argument:

p %>% bind_shiny("plot"”, "plot_ui")

Examples

Run these examples only in interactive R sessions
if (interactive()) {

Simplest possible app:
library(shiny)
runApp(list(
ui = bootstrapPage(
ggvisOutput("p"),
uiOutput("p_ui”)
),
server = function(..., session) {
mtcars %>%
ggvis(~wt, ~mpg) %>%
layer_points() %>%
layer_smooths(span = input_slider(@, 1)) %>%
bind_shiny("p", "p_ui")

68 show_tooltip

))

show_spec Print out the vega plot specification

Description

Print out the vega plot specification

Usage

show_spec(vis, pieces = NULL)

Arguments
vis Visualisation to print
pieces Optional, a character or numeric vector used to pull out selected pieces of the
spec
Examples

base <- mtcars %>% ggvis(~mpg, ~wt) %>% layer_points()
base %>% show_spec()
base %>% show_spec("scales™)

show_tooltip Send a message to the client to show or hide a tooltip

Description

Send a message to the client to show or hide a tooltip

Usage

show_tooltip(session, 1 =0, t =0, html = "")

hide_tooltip(session)

Arguments
session A Shiny session object.
1 Pixel location of left edge of tooltip (relative to page)
t Pixel location of top edge of tooltip (relative to page)

html HTML to display in the tooltip box.

sidebarBottomPage 69

sidebarBottomPage Create a page with a sidebar

Description

This creates a page with a sidebar, where the sidebar moves to the bottom when the width goes
below a particular value.

Usage

sidebarBottomPage(sidebarPanel, mainPanel, shiny_headers = TRUE)
sidebarBottomPanel(...)

mainTopPanel(...)

Arguments

sidebarPanel The sidebarBottomPanel containing input controls.
mainPanel The mainTopPanel containing the main content.

shiny_headers Should Shiny headers be embedded in the page? This should be TRUE for
interactive/dynamic pages, FALSE for static pages.

Additional tags.

Examples

sidebarBottomPage(sidebarBottomPanel(), mainTopPanel())

singular singular.

Description

Use singular when you want constant X or y position.

Usage

singular()

scale_singular(
vis,
property,
name = property,
label = name,
points = TRUE,

70 singular

domain = NULL,
override = NULL

)
Arguments

vis A ggvis object.

property The name of a property, such as "x", "y", "fill", "stroke", etc.

name Name of the scale, such as "x", "y", "fill", etc. Can also be an arbitrary name
like "foo".

label Label for the scale. Used for axis or legend titles.

points If TRUE (default), distributes the ordinal values over a quantitative range at uni-
formly spaced points. The spacing of the points can be adjusted using the
padding property. If FALSE, the ordinal scale will construct evenly-spaced bands,
rather than points. Note that if any mark is added with a band() prop, then the
scale for that prop will automatically have points set to FALSE.

domain The domain of the scale, representing the set of data values. For ordinal scales,
a character vector; for quantitative scales, a numeric vector of length two. Either
value (but not both) may be NA, in which case domainMin or domainMax is set.
For dynamic scales, this can also be a reactive which returns the appropriate
type of vector.

override Should the domain specified by this ggvis_scale object override other ggvis_scale
objects for the same scale? Useful when domain is manually specified. For ex-
ample, by default, the domain of the scale will contain the range of the data,
but when this is TRUE, the specified domain will override, and the domain can
be smaller than the range of the data. If FALSE, the domain will not behave this
way. If left NULL, then it will be treated as TRUE whenever domain is non-NULL.

Examples
mtcars %>% ggvis("", ~mpg) %>%

layer_points() %>%
scale_nominal("x") %>%

add_axis("x", title = "", tick_size_major = 0)
OR
mtcars %>% ggvis("", ~mpg) %>%

layer_points() %>%
scale_singular("x")

OR, even simpler
mtcars %>% ggvis(singular(), ~mpg) %>% layer_points()

In the other direction:
mtcars %>% ggvis(~mpg, singular()) %>% layer_points()

vector_type 71

vector_type Determine the "type" of a vector

Description

The vector_type collapses down the class of base vectors into something useful more for visuali-

non non

sation, yielding one of "datetime", "numeric", "ordinal", "nominal" or "logical".

Usage

vector_type(x)

Arguments

X a vector

See Also

default_scale, which uses this when picking the default scale.

vega_data_parser Determine the vega data type for a vector

Description

This is used to specify the data type so that the appropriate parser is used when Vega receives the
data.

Usage

vega_data_parser(x)

Arguments

X A vector.

72 zero_range

waggle Waggle back and forth between two numbers

Description

Waggle back and forth between two numbers

Usage

waggle(min, max, value = (min + max)/2, step = (max - min)/50@, fps = 10)

Arguments
min A minimum value.
max A maximum value.
value Starting value. Defaults to half-way between min and max.
step How much value changes at each frame. Defaults to 50 steps between min and
max so it takes 5 seconds to waggle once.
fps number of frames per second.
Examples

span <- waggle(0.2, 1)

mtcars %>% ggvis(~mpg, ~wt) %>%
layer_points() %>%
layer_smooths(span = span)

zero_range Determine if range of vector is close to zero, with a specified tolerance

Description

The machine epsilon is the difference between 1.0 and the next number that can be represented by
the machine. By default, this function uses epsilon * 100 as the tolerance. First it scales the values
so that they have a mean of 1, and then it checks if the difference between them is larger than the

tolerance.
Usage

zero_range(x, tol = .Machine$double.eps * 100)
Arguments

X numeric range: vector of length 2

tol A value specifying the tolerance. Defaults to .Machine$double.eps * 100.

%>% 73

Value

logical TRUE if the relative difference of the endpoints of the range are not distinguishable from 0.

Examples

eps <- .Machine$double.eps

zero_range(c(1, 1 + eps)) # TRUE

zero_range(c(1, 1 + 99 * eps)) # TRUE

zero_range(c(1, 1 + 101 * eps)) # FALSE - Crossed the tol threshold
zero_range(c(1, 1 + 2 * eps), tol = eps) # FALSE - Changed tol

Scaling up or down all the values has no effect since the values
are rescaled to 1 before checking against tol

zero_range(100000 * c(1, 1 + eps)) # TRUE
zero_range (100000 * c(1, 1 + 200 * eps)) # FALSE
zero_range(.00001 * c(1, 1 + eps)) # TRUE
zero_range(.00001 * c(1, 1 + 200 x eps)) # FALSE

NA values
zero_range(c(1, NA)) # NA
zero_range(c(1, NaN)) # NA

Infinite values

zero_range(c(1, Inf)) # FALSE
zero_range(c(-Inf, Inf)) # FALSE
zero_range(c(Inf, Inf)) # TRUE

%>% Pipe graphics

Description

Like dplyr, ggvis also uses the pipe function, %>% to turn function composition into a series of
imperative statements.

Arguments

lhs, rhs A visualisation and a function to apply to it

Examples

Instead of

layer_points(ggvis(mtcars, ~mpg, ~wt))

you can write

mtcars %>% ggvis(~mpg, ~wt) %>% layer_points()

Index

+ datasets
cocaine, 13

* interactive input
input_checkbox, 31
input_select, 32
input_slider, 34
input_text, 35

x scales
scale_datetime, 58
scale_numeric, 60
scale_ordinal, 62

%>%, 13

add_axis, 3, 6
add_data, 5
add_guide_axis, 6
add_guide_legend, 6
add_legend, 6,7, 10
add_props, 9
add_relative_scales, 10
add_tooltip, 10
animationOptions(), 35
auto_group, 11
axis_props, 4,12

band, 13, 63, 70

bind_shiny, 27

bind_shiny (shiny-ggvis), 66
bind_shiny_ui (shiny-ggvis), 66
boxplot.stats, 39

cocaine, 13
compute_align, 14, 18
compute_bin, 15,15, 18, 24
compute_boxplot, 17, 39
compute_count, 14, 15,17, 18, 24, 37
compute_density, 19, 40
compute_model_prediction, 20
compute_smooth
(compute_model_prediction), 20

74

compute_stack, 22
compute_tabulate, 23, 37

default_options, 65
density, 19, 20, 40

emit_arcs (marks), 48
emit_images (marks), 48
emit_paths (marks), 48
emit_points (marks), 48
emit_rects (marks), 48
emit_ribbons (marks), 48
emit_text (marks), 48
explain, 24, 24
explain.ggvis, 25
export_png, 25
export_svg (export_png), 25

gam, 21

get_data, 26

getOption, 65

ggvis, 26,41
ggvis_message, 28
ggvis_scale, 57
ggvisControlOutput, 27
ggvisOutput (shiny-ggvis), 66
glm, 21

group_by, 12,28

handle_brush, 29
handle_click, 29

handle_hover (handle_click), 29
handle_resize, 30

hide_axis (add_axis), 3
hide_legend (add_legend), 7
hide_tooltip (show_tooltip), 68

input_checkbox, 31, 33, 35, 36
input_checkboxgroup (input_select), 32
input_numeric (input_text), 35
input_radiobuttons (input_select), 32

INDEX

input_select, 31, 32, 35, 36
input_slider, 31, 33, 34, 36
input_text, 31, 33, 35, 35
is.broker, 36
is.ggvis_props (props), 52
is.prop (prop), 50
is.prop_band (band), 13
is.prop_constant (prop), 50
is.prop_reactive (prop), 50
is.prop_variable (prop), 50

layer_arcs (marks), 48
layer_bars, 37,41, 42
layer_boxplots, /8, 38
layer_densities, 39
layer_freqpolys (layer_histograms), 41
layer_guess, 41
layer_histograms, 37, 41, 41
layer_images (marks), 48
layer_lines, 43
layer_model_predictions, 44
layer_paths, 43
layer_paths (marks), 48
layer_points, 41
layer_points (marks), 48
layer_rects (marks), 48
layer_ribbons (marks), 48
layer_smooths
(layer_model_predictions), 44
layer_text (marks), 48
left_right, 45
legend_props, 7, 46
linked_brush, 47
1m, 21
loess, 21

mainTopPanel, 69
mainTopPanel (sidebarBottomPage), 69
marks, 48, 50

options, 65

padding, 50, 65

plot_height (handle_resize), 30
plot_width (handle_resize), 30
predict, 21,44
prop, 50, 50, 52, 54
prop_domain, 55
props, 40, 48, 50, 51, 52

75

renderUI, 67
resolution, 56
rim, 21

scale_datetime, 57, 58, 61, 64
scale_logical (scale_ordinal), 62
scale_nominal (scale_ordinal), 62
scale_numeric, 57, 59, 60, 64
scale_ordinal, 57, 59, 61, 62
scale_singular (singular), 69
scaled_value, 12, 46, 56
scales, 57, 59,61, 64
set_default_scale (scales), 57
set_dscale (scales), 57
set_options, 65
set_scale_label, 66
shiny-ggvis, 66
show_spec, 68
show_tooltip, 68
sidebarBottomPage, 69
sidebarBottomPanel, 69
sidebarBottomPanel (sidebarBottomPage),
69
singular, 69

uiOutput, 27
up_down (left_right), 45

vector_type, 71
vega_data_parser, 71

waggle, 72

zero_range, 72

	add_axis
	add_data
	add_guide_axis
	add_guide_legend
	add_legend
	add_props
	add_relative_scales
	add_tooltip
	auto_group
	axis_props
	band
	cocaine
	compute_align
	compute_bin
	compute_boxplot
	compute_count
	compute_density
	compute_model_prediction
	compute_stack
	compute_tabulate
	explain
	explain.ggvis
	export_png
	get_data
	ggvis
	ggvisControlOutput
	ggvis_message
	group_by
	handle_brush
	handle_click
	handle_resize
	input_checkbox
	input_select
	input_slider
	input_text
	is.broker
	layer_bars
	layer_boxplots
	layer_densities
	layer_guess
	layer_histograms
	layer_lines
	layer_model_predictions
	left_right
	legend_props
	linked_brush
	marks
	padding
	prop
	props
	prop_domain
	resolution
	scaled_value
	scales
	scale_datetime
	scale_numeric
	scale_ordinal
	set_options
	set_scale_label
	shiny-ggvis
	show_spec
	show_tooltip
	sidebarBottomPage
	singular
	vector_type
	vega_data_parser
	waggle
	zero_range
	>
	Index

