Package ‘haplo.stats’

February 13, 2026

Version 1.9.8.2
Date 2026-02-13

Title Statistical Analysis of Haplotypes with Traits and Covariates
when Linkage Phase is Ambiguous

Description Routines for the analysis of indirectly measured haplotypes. The statistical methods as-
sume that all subjects are unrelated and that haplotypes are ambiguous (due to unknown link-
age phase of the genetic markers). The main func-
tions are: haplo.em(), haplo.glm(), haplo.score(), and haplo.power(); all of which have de-
tailed examples in the vignette.

License GPL (>=2)

Depends R (>=4.4.0), methods, stats, graphics, arsenal
Imports rms

Suggests knitr, testthat

VignetteBuilder knitr

URL https://CRAN.R-project.org/package=haplo.stats
RoxygenNote 7.3.2
NeedsCompilation yes

Author Schaid Daniel [aut],
Jason P. Sinnwell [aut, cre]

Maintainer Jason P. Sinnwell <sinnwell.jason@mayo.edu>
Repository CRAN
Date/Publication 2026-02-13 17:10:19 UTC

Contents

anova.haplo.glm
ChiSQ.POWEr e
dglm.fit L
fPOWer e e e
find.haplo.beta.qt

https://CRAN.R-project.org/package=haplo.stats

Contents

fitted.haplo.glm 7
GEeNO.COUNL.PAITS v vttt et e e e e e e e 7
genolto2 e 8
gethapPair 9
GInv 11
haplo.cc L L 12
haplo.design 14
haplo.em e e e 15
haplo.em.control 18
haplo.em.fitter 19
haplo.glm e 20
haplo.glm.control e 25
haplo.group L 27
haplo.hash 28
haplo.model.frame 29
haplo.power.cc e 30
haplo.power.qt. 32
haplo.scan e e e e 35
haplo.score L L e 37
haplo.score.merge L e 41
haplo.score.slide 42
hapPower.demo 45
hlademo. e 46
locator.haplo. L 47
locus L 48
louisdinfo 49
na.geno.keepo L e 50
plothaplo.score L 50
plot.haplo.score.slide 51
plotseghap L 53
printhaplo.cc L 54
printhaplo.em e e e e 55
printhaplo.group 56
printhaplo.scan 57
printhaplo.score 57
print.haplo.score.merge e e e e 58
printhaplo.score.slide L. L 59
printBanner 59
residuals.haplo.glm L. 60
SCOre.Sim.control e e e 61
seqhap 62
seghap.dat e e e 65
SEtUPGENO o L e e e e e e e e 66
summary.haplo.em L 67
summary.haplo.glm 68
SUMMArYGeNO v v v e e e e e e e e e e e e e e e e e 69
veovhaplo.glm oo 70

x.sexcheck e 70

anova.haplo.glm 3

Index 72

anova.haplo.glm Analysis of variance for haplo.glm model fit

Description

Perform an analysis of variance between two haplo.glm model fits using the deviances from the

fitted objects
Usage
S3 method for class 'haplo.glm'
anova(object, ..., dispersion=NULL, test="Chisq")
Arguments
object A haplo.glm or glm object
More model fits to compare against the fit in the first argument
dispersion the dispersion parameter for the fitting family. By default it is obtained from the
object(s)
test character string for the test of model comparison. Only "Chisq" supported for

haplo.glm objects

Details

Uses print.anova for the displayed result

Value

A data.frame of the anova class, with these columns: Df, Deviance, Resid.Df, Resid.Dev, p-value

See Also

haplo.glm

Examples

data(hla.demo)

geno <- as.matrix(hla.demo[,c(17,18,21:24)1)

keep <- lapply(is.na(geno) | geno==0, 1, any) # SKIP THESE THREE LINES
hla.demo <- hla.demo[keep,] # IN AN ANALYSIS

geno <- geno[keep,] #

attach(hla.demo)

label <-c("DQB","DRB","B")

y <- hla.demo$resp

y.bin <- 1x(hla.demo$resp.cat=="1ow")

set up a genotype array as a model.matrix for inserting into data frame

4 chisq.power

Note that hla.demo is a data.frame, and we need to subset to columns
of interest. Also also need to convert to a matrix object, so that
setupGeno can code alleles and convert geno to 'model.matrix' class.

geno <- setupGeno(geno, miss.val=c(0,NA))

geno now has an attribute 'unique.alleles' which must be passed to
haplo.glm as allele.lev=attributes(geno)$unique.alleles, see below

my.data <- data.frame(geno=geno, age=hla.demo$age, male=hla.demo$male,
y=y, y.bin=y.bin)

fit.gaus <- haplo.glm(y ~ male + geno, family = gaussian, na.action=
"na.geno.keep”, data=my.data, locus.label=label,
control = haplo.glm.control(haplo.freq.min=0.02))

glmfit.gaus <- glm(y~male, family=gaussian, data=my.data)

anova.haplo.glm(glmfit.gaus, fit.gaus)

chisq.power Power and sample size for the chi-square distribution

Description
Power and sample size for the chi-square distribution given non-centrality, degrees of freedom,
alpha, N (for chisq.power), and power (for chisq.sample.size)

Usage

chisq.power(n, nc, df, alpha)
chisqg.power.dif(n, nc, df, alpha, power)
chisq.sample.size(nc, df=df, alpha, power, lower=20, upper=100000)

Arguments

n sample size (for power)

nc non-centrality parameter

df degrees of freedom

alpha type-I error rate

power desired power (for sample size)

lower lower bound for search space for sample size

upper upper bound for search space for sample size
Value

power, the difference in power from target power, and sample size, respectively for the three differ-
ent functions

dglm.fit 5

dglm.fit Internal functions for the HaploStats package. See the help file for the
main functions (haplo.em, haplo.score, haplo.glm) for details on some
of these functions.
Description

Internal function for the HaploStats package

f . power Power and sample size for the F distribution

Description

Power and sample size for the F distribution given non-centrality, degrees of freedom, alpha, N (for
f.power), and power (for f.sample.size)

Usage

f.power(n, nc, df1, alpha)
f.power.dif(n, nc, df1, alpha, power)
f.sample.size(nc, df1, alpha, power, lower=20, upper=10000)

Arguments
n sample size
nc non-centrality parameter
df1 degrees of freedom for numerator of f distribution
alpha type-I error
power desired power (for sample size)
lower lower limit for search space for sample size solution
upper upper limit for search space for sample size solution
Value

power, the difference in power from target power, and sample size, respectively for the three func-
tions, assuming an F distribution for the test statistic

6 find.haplo.beta.qt

find.haplo.beta.qt Find beta coefficients for risk haplotypes, for specified r2

Description

Find betas for risk haplotypes and intercept (beta for base.index haplotype) with a given 12

Usage

find.haplo.beta.qt(haplo, haplo.freq, base.index, haplo.risk, r2, y.mu=0, y.var=1)
find.beta.qt.phase.known(beta.size, haplo.risk, base.index, haplo,

haplo.freq, r2, y.mu, y.var)

find.intercept.qt.phase.known(beta.no.intercept, base.index, haplo, haplo.freq, y.mu)

Arguments

haplo matrix of haplotypes, with rows the different haplotypes and columns the alleles
of the haplotypes. For H haplotypes of L loci, haplo has dimension H x L.

haplo.freq vector of length H for the population haplotype frequencies (corresponding to
the rows of haplo)

base.index integer index of the haplotype considered to be the base-line for logistic regres-
sion (index between 1 and H); often, the most common haplotype is chosen for
the base-line.

haplo.risk vector of relative risks for haplotypes

r2 correlation coefficient

y.mu mean of y, a quantitative trait

y.var variance of y, a quantitative trait

beta.size beta values for risk haplotypes in find.beta.qt.phase.known

beta.no.intercept
beta vector for haplotypes for quantitative trait, excluding the beta for intercept

Value

beta estimates for haplotypes or intercept

fitted.haplo.glm 7

fitted.haplo.glm Fitted values from haplo.glm fit

Description

The fitted values for each person, collapsed over their expanded fitted values due to their multiple
possible haplotype pairs

Usage
S3 method for class 'haplo.glm'
fitted(object, ...)

Arguments
object A haplo.glm object

Optional arguments for the method

Details

Many of the subjects in a haplo.glm fit are expanded in the model matrix with weights used to reflect
the posterior probability of the subject’s haplotype pairs given their genotype. The working fitted
values within the fitted object are from this expanded model matrix, and the fitted values from this
method are calculated from the weighted fitted value for the subject across all their haplotype pairs.

Value

vector of fitted values

See Also

haplo.glm

geno.count.pairs Counts of Total Haplotype Pairs Produced by Genotypes

Description

Provide a count of all possible haplotype pairs for each subject, according to the phenotypes in the
rows of the geno matrix. The count for each row includes the count for complete phenotypes, as
well as possible haplotype pairs for phenotypes where there are missing alleles at any of the loci.

Usage

geno.count.pairs(geno)

8 genolto2

Arguments
geno Matrix of alleles, such that each locus has a pair of adjacent columns of alleles,
and the order of columns corresponds to the order of loci on a chromosome.
If there are K loci, then geno has 2*K columns. Rows represent all observed
alleles for each subject, their phenotype.
Details

When a subject has no missing alleles, and has h heterozygous sites, there are 2**(h-1) haplotype
pairs that are possible ("**’=power). For loci with missing alleles, we consider all possible pairs of
alleles at those loci. Suppose that there are M loci with missing alleles, and let the vector V have
values 1 or 0 acccording to whether these loci are imputed to be heterozygous or homozygous, re-
spectively. The length of V is M. The total number of possible states of V is 2**M. Suppose that the
vector W, also of length M, provides a count of the number of possible heterozygous/homozygous
states at the loci with missing data. For example, if one allele is missing, and there are K possible
alleles at that locus, then there can be one homozygous and (K-1) heterozygous genotypes. If two
alleles are missing, there can be K homozygous and K(K-1)/2 heterozygous genotypes. Suppose
the function H(h+V) counts the total number of heterozygous sites among the loci without missing
data (of which h are heterozygous) and the imputed loci (represented by the vector V). Then, the
total number of possible pairs of haplotypes can be respresented as SUM(W*H(h+V)), where the
sum is over all possible values for the vector V.

Value

Vector where each element gives a count of the number haplotype pairs that are consistent with a
subject’s phenotype, where a phenotype may include 0, 1, or 2 missing alleles at any locus.

See Also

haplo.em, summaryGeno

Examples

data(hla.demo)

genohla <- hla.demo[,c(17,18,21:24)]
geno <- setupGeno(genohla)
count.geno <- geno.count.pairs(geno)
print(count.geno)

genolto2 convert genotype matrix from 1-column 2-column

Description

convert 1-column genotype matrix to 2-column genotype matrix, converting from a minor allele
count (0,1,2) to (1/1, 1/2, 2/2) where 2 is the minor allele. (not supported for x-linked markers)

get.hapPair 9

Usage
genolto2(geno, locus.label=NULL)

Arguments
geno 1-column representation of genotype matrix for 2-allele loci. Values are O, 1, or
2, usually the count of minor alleles
locus.label Vector of labels for loci, If a locus name is "A", its columns will be "A.1" and
IIA'2||
Value

a 2-column genotype matrix

Examples

genol <- matrix(c(9,0,1,

1,0,2,

2,1,0), ncol=3, byrow=TRUE)
genolto2(genol, locus.label=c("A", "B", "C"))

demonstrate how NA and 3 will be coded
genol1[1,3] <- NA
genol1[1,1] <- 3
genolto2(genol)

get.hapPair Get a list of objects for haplotype pairs

Description
Get a list of objects for modeling haplotype pairs from a set of unique haplotypes and their frequen-
cies, given the baseline haplotype

Usage
get.hapPair(haplo, haplo.freq, base.index)

Arguments
haplo matrix of haplotypes, with rows the different haplotypes and columns the alleles
of the haplotypes. For H haplotypes of L loci, haplo has dimension H x L.
haplo.freq vector of length H for the population haplotype frequencies (corresponding to
the rows of haplo)
base.index integer index of the haplotype considered to be the base-line for logistic regres-

sion (index between 1 and H); often, the most common haplotype is chosen for
the base-line.

10 get.hapPair

Value

list with components:

p.g Genotype probability under Hardy-Weinberg Equilibrium, where the genotype
is the haplotype pair
x.haplo Design matrix for all pairs of haplotypes, excluding the baseline haplotype. Ef-

fects are coded to an additive effect for the haplotypes.

haplo.indx two-column matrix containing the indices for the haplotypes in x.haplo. The
indices are the row of the haplotype in haplo.

Examples

haplo <- rbind(

c(1, 2, 2, 1, 2),
c(1, 2, 2, 1, 1,
c(1, 1, 2, 1, 1,
c(1, 2, 1, 1, 2),
c(1, 2, 2, 2, 1,
c(1, 2, 1, 1, 1,
c(1, 1, 2, 2, 1,
c(1, 1, 1, 1, 2),
c(1, 2, 1, 2, 1,
c(1, 1, 1, 2, n,
c(2, 2, 1, 1, 2),
c(1, 1, 2, 1, 2),
c(1, 1, 2, 2, 2),
c(1, 2, 2, 2, 2),
c(2, 2, 2, 1, 2),
c(1, 1, 1, 1, 1,
c(2, 1, 1, 1, 1,
c(2, 1, 2, 1, 1,
c(2, 2, 1, 1, 1,
c(2, 2, 1, 2, 1,
c(2, 2, 2, 1, 1))

dimnames(haplo)[[2]] <- paste("loc”, 1:ncol(haplo), sep=".")
haplo <- data.frame(haplo)

haplo.freq <- c(0.170020121, 0.162977867, 0.123742455, 0.117706237, 0.097585513, 0.084507042,
0.045271630, 0.039235412, ©.032193159, 0.019114688, 0.019114688, 0.013078471,
0.013078471, 0.013078471, 0.013078471, 0.006036217, 0.006036217, 0.006036217,

0.006036217, 0.006036217, 0.006036217)

hPair <- get.hapPair(haplo, haplo.freq, base.index=1)
names (hPair)
dim(hPair$x.haplo)

Ginv 11

Ginv Compute Generalized Inverse of Input Matrix

Description

Singular value decomposition (svd) is used to compute a generalized inverse of input matrix.

Usage
Ginv(x, eps=le-6)

Arguments

X A matrix.

eps minimum cutoff for singular values in svd of x
Details

The svd function uses the LAPACK standard library to compute the singular values of the input
matrix, and the rank of the matrix is determined by the number of singular values that are at least
as large as max(svd)*eps, where eps is a small value. For S-PLUS, the Matrix library is required
(Ginv loads Matrix if not already done so).

Value

List with components:

Ginv Generalized inverse of x.
rank Rank of matrix x.
References

Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical recipes in C. The art of scientific
computing. 2nd ed. Cambridge University Press, Cambridge.1992. page 61.

Anderson, E., et al. (1994). LAPACK User’s Guide, 2nd edition, STAM, Philadelphia.

See Also

svd

Examples

for matrix x, extract the generalized inverse and
rank of x as follows

x <- matrix(c(1,2,1,2,3,2),ncol=3)

save <- Ginv(x)

ginv.x <- save$Ginv

rank.x <- save$rank

12

haplo.cc

haplo.cc

Haplotype Association Analysis in a Case-Control design

Description

Combine results from haplo.score, haplo.group, and haplo.glm for case-control study designs. An-
alyze the association between the binary (case-control) trait and the haplotypes relevant to the un-
related individuals® genotypes.

Usage

haplo.cc(y, geno, x.adj=NA, locus.label=NA, ci.prob=0.95,
miss.val=c(@,NA), weights=NULL, eps.svd=1e-5, simulate=FALSE,
sim.control=score.sim.control(), control=haplo.glm.control())

Arguments

y
geno

x.adj

ci.prob

locus.label
miss.val

weights

eps.svd

simulate

sim.control

Vector of trait values, must be 1 for cases and 0 for controls.

Matrix of alleles, such that each locus has a pair of adjacent columns of alleles,
and the order of columns corresponds to the order of loci on a chromosome. If
there are K loci, then ncol(geno) = 2*K. Rows represent alleles for each subject.

Matrix of non-genetic covariates used to adjust the score statistics. Note that
intercept should not be included, as it will be added in this function.

Probability level for confidence interval on the Odds Ratios of each haplotype
to span the true value.

Vector of labels for loci, of length K (see definition of geno matrix)
Vector of codes for missing values of alleles

the weights for observations (rows of the data frame). By default, all observa-
tions are weighted equally. One use is to correct for over-sampling of cases in a
case-control sample.

epsilon value for singular value cutoff; to be used in the generalized inverse
calculation on the variance matrix of the score vector. The degrees of freedom
for the global score test is 1 less than the number of haplotypes that are scored
(k-1). The degrees of freedom is calculated from the rank of the variance matrix
for the score vector. In some instances of numeric instability, the singular value
decomposition indicates full rank (k). One remedy has been to give a larger
epsilon value.

Logical: if [F]alse, no empirical p-values are computed; if [T]rue, simulations
are performed within haplo.score. Specific simulation parameters can be con-
trolled in the sim.control parameter list.

A list of control parameters to determine how simulations are performed for
simulated p-values. The list is created by the function score.sim.control and the
default values of this function can be changed as desired. See score.sim.control
for details.

haplo.cc 13

control A list of control parameters for managing the execution of haplo.cc. The list is
created by the function haplo.glm.control, which also manages control parame-
ters for the execution of haplo.em.
Details

All function calls within haplo.cc are for the analysis of association between haplotypes and the
case-control status (binomial trait). No additional covariates may be modeled with this function.
Odd Ratios are in reference to the baseline haplotype. Odds Ratios will change if a different baseline
is chosen using haplo.glm.control.

Value

A list including the haplo.score object (score.lst), vector of subject counts by case and control group
(group.count), haplo.glm object (fit.Ist), confidence interval probability (ci.prob), and a data frame
(cc.df) with the following components:

haplotypes The first K columns contain the haplotypes used in the analysis.

Hap-Score Score statistic for association of haplotype with the binary trait.

p-val P-value for the haplotype score statistic, based on a chi-square distribution with
1 degree of freedom.

sim.p.val Vector of p-values for score.haplo, based on simulations in haplo.score (omitted
when simulations not performed). P-value of score.global based on simulations
(set equal to NA when simulate=F).

pool.hf Estimated haplotype frequency for cases and controls pooled together.

control.hf Estimated haplotype frequency for control group subjects.

case.hf Estimated haplotype frequency for case group subjects.

glm.eff The haplo.glm function modeled the haplotype effects as: baseline (Base), ad-
ditive haplotype effect (Eff), or rare haplotypes pooled into a single group (R).

OR.lower Lower limit of the Odds Ratio Confidence Interval.

OR Odds Ratio based on haplo.glm model estimated coefficient for the haplotype.

OR.upper Upper limit of the Odds Ratio Confidence Interval.

References

Schaid et al Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA. Score tests for asso-
ciation of traits with haplotypes when linkage phase is ambiguous. Amer J Hum Genet. 70
(2002): 425-434.

Lake et al Lake S, LH, Silverman E, Weiss S, Laird N, Schaid DJ. Estimation and tests of haplotype-
environment interaction when linkage phase is ambiguous. Human Heredity. 55 (2003): 56-65

See Also

haplo.em, haplo.score, haplo.group, haplo.score.merge, haplo.glmprint.haplo.cc

14 haplo.design

Examples

For a genotype matrix geno.test, case/control vector y.test

The function call will be like this

cc.test <- haplo.cc(y.test, geno.test, locus.label=locus.label, haplo.min.count=3, ci.prob=0.95)
#

haplo.design Build a design matrix for haplotypes

Description

Build a design matrix for haplotypes estimated from a haplo.em object.

Usage

haplo.design(obj, haplo.effect="additive", hapcodes=NA, min.count=5, haplo.base=NA)

Arguments

obj an object created from haplo.em

haplo.effect The "effect" pattern of haplotypes on the response. This parameter determines
the coding for scoring the haplotypes. Valid coding options for heterozygous and
homozygous carriers of a haplotype are "additive" (1, 2, respectively), "domi-
nant" (1,1, respectively), and "recessive" (0, 1, respectively).

hapcodes codes assigned in haplo.em, corresponding to the row numbers in the haplotypes
matrix item in obj

min.count The minimum number of estimated counts of the haplotype in the sample in
order for a haplotype to be included in the design matrix.

haplo.base code for which haplotype will be the reference group, or to be considered the
baseline of a model. The code is the row number of the haplotypes matrix in
obj. This haplotype is removed from the design matrix.

Details
First a matrix is made for the possible haplotypes for each person, coded for the haplo.effect,
weighted by the posterior probability of those possible haplotypes per person, and then collapsed
back to a single row per person.

Value
Matrix of columns for haplotype effects. Column names are "hap.k" where k is the row number of
the unique haplotypes within the haplo.em object’s "haplotypes" item.

See Also

haplo.em

haplo.em 15

Examples

data(hla.demo)
attach(hla.demo)

geno <- hla.demo[,c(17,18,21:24)]
label <-c("DQB","DRB","B")

keep <- lapply(is.na(geno) | geno==0, 1, any)
save.em.keep <- haplo.em(geno=geno[keep,], locus.label=label)

save.df <- haplo.design(save.em.keep, min.count=10)
dim(save.df)

names (save.df)
save.df[1:10,]

haplo.em EM Computation of Haplotype Probabilities, with Progressive Inser-
tion of Loci

Description

For genetic marker phenotypes measured on unrelated subjects, with linkage phase unknown, com-
pute maximum likelihood estimates of haplotype probabilities. Because linkage phase is unknown,
there may be more than one pair of haplotypes that are consistent with the oberved marker pheno-
types, so posterior probabilities of pairs of haplotypes for each subject are also computed. Unlike
the usual EM which attempts to enumerate all possible pairs of haplotypes before iterating over
the EM steps, this "progressive insertion" algorithm progressively inserts batches of loci into hap-
lotypes of growing lengths, runs the EM steps, trims off pairs of haplotypes per subject when the
posterior probability of the pair is below a specified threshold, and then continues these insertion,
EM, and trimming steps until all loci are inserted into the haplotype. The user can choose the batch
size. If the batch size is chosen to be all loci, and the threshold for trimming is set to 0, then this
algorithm reduces to the usual EM algorithm.

Usage

haplo.em(geno, locus.label=NA, miss.val=c(@, NA), weight, control=
haplo.em.control())

Arguments

geno

locus.label
miss.val
weight

control

Details

haplo.em

matrix of alleles, such that each locus has a pair of adjacent columns of alleles,
and the order of columns corresponds to the order of loci on a chromosome.
If there are K loci, then ncol(geno) = 2*K. Rows represent the alleles for each
subject.

vector of labels for loci.
vector of values that represent missing alleles in geno.

weights for observations (rows of geno matrix).

list of control parameters. The default is constructed by the function haplo.em.control.

The default behavior of this function results in the following parameter set-
tings: loci.insert.order=1:n.loci, insert.batch.size=min(4,n.loci), min.posterior=

0.0001, tol=0.00001, max.iter=500, random.start=0 (no random start), iseed=NULL

(no saved seed to start random start), verbose=0 (no printout during EM itera-
tions). See haplo.em.control for more details.

The basis of this progressive insertion algorithm is from the sofware snphap by David Clayton.
Although some of the features and control parameters of this S-PLUS version are modeled after
snphap, there are substantial differences, such as extension to allow for more than two alleles per
locus, and some other nuances on how the alogrithm is implemented.

Value

list with components:

converge
Inlike
1Inlike.nolLD
1r

df.1r

hap.prob

locus.label

subj.id

indicator of convergence of the EM algorithm (1 = converge, 0 = failed).
value of Inlike at last EM iteration (maximum Inlike if converged).
value of Inlike under the null of linkage equilibrium at all loci.

likelihood ratio statistic to test the final Inlike against the Inlike that assumes
complete linkage equilibrium among all loci (i.e., haplotype frequencies are
products of allele frequencies).

degrees of freedom for likelihood ratio statistic. The df for the unconstrained
final model is the number of non-zero haplotype frequencies minus 1, and the df
for the null model of complete linkage equilibrium is the sum, over all loci, of
(number of alleles - 1). The df for the Ir statistic is dffunconstrained] - df[null].
This can result in negative df, if many haplotypes are estimated to have zero
frequency, or if a large amount of trimming occurs, when using large values of
min.posterior in the list of control parameters.

vector of mle’s of haplotype probabilities. The ith element of hap.prob corre-
sponds to the ith row of haplotype.

vector of labels for loci, of length K (see definition of input values).

vector of id’s for subjects used in the analysis, based on row number of input
geno matrix. If subjects are removed, then their id will be missing from subj.id.

haplo.em

rows.rem

indx.subj

nreps

max.pairs

hap1code

hap2code
post

haplotype

control

Note

17

now defunct, but set equal to a vector of length 0, to be compatible with other
functions that check for rows.rem.

vector for row index of subjects after expanding to all possible pairs of haplo-
types for each person. If indx.subj=i, then i is the ith row of geno. If the ith
subject has n possible pairs of haplotypes that correspond to their marker geno-
type, then i is repeated n times.

vector for the count of haplotype pairs that map to each subject’s marker geno-
types.

vector of maximum number of pairs of haplotypes per subject that are consistent
with their marker data in the matrix geno. The length of max.pairs = nrow(geno).
This vector is computed by geno.count.pairs.

vector of codes for each subject’s first haplotype. The values in haplcode are
the row numbers of the unique haplotypes in the returned matrix haplotype.

similar to haplcode, but for each subject’s second haplotype.

vector of posterior probabilities of pairs of haplotypes for a person, given their
marker phenotypes.

matrix of unique haplotypes. Each row represents a unique haplotype, and the
number of columns is the number of loci.

list of control parameters for algorithm. See haplo.em.control

Sorted order of haplotypes with character alleles is system-dependent, and can be controlled via
the LC_COLLATE locale environment variable. Different locale settings can cause results to be
non-reproducible even when controlling the random seed.

See Also

setupGeno, haplo.em.control

Examples

data(hla.demo)
attach(hla.demo)

geno <- hla.demo[,c(17,18,21:24)]
label <-c("DQB”,"DRB","B")
keep <- lapply(is.na(geno) | geno==0, 1, any)

save.em.keep <- haplo.em(geno=geno[keep,], locus.label=label)

warning: output will not exactly match

print.haplo.em(save.em.keep)

18

haplo.em.control

haplo.em.control

Create the Control Parameters for the EM Computation of Haplotype
Probabilities, with Progressive Insertion of Loci

Description

Create a list of parameters that control the EM algorithm for estimating haplotype frequencies,
based on progressive insertion of loci. Non-default parameters for the EM algorithm can be set as
parameters passed to haplo.em.control.

Usage

haplo.em.control(loci.insert.order=NULL, insert.batch.size = 6,

Arguments

min.posterior = 1e-09, tol = 1e-05,
max.iter=5000, random.start=0, n.try = 10,
iseed=NULL, max.haps.limit=2e6, verbose=0)

loci.insert.order

Numeric vector with specific order to insert the loci. If this value is NULL, the
insert order will be in sequential order (1, 2, ..., No. Loci).

insert.batch.size

min.posterior

tol

max.iter

random.start

n.try

iseed

Number of loci to be inserted in a single batch.

Minimum posterior probability of a haplotype pair, conditional on observed
marker genotypes. Posteriors below this minimum value will have their pair
of haplotypes "trimmed" off the list of possible pairs. If all markers in low LD,
we recommend using the default. If markers have at least moderate LD, can
increase this value to use less memory.

If the change in log-likelihood value between EM steps is less than the tolerance
(tol), it has converged.

Maximum number of iterations allowed for the EM algorithm before it stops and
prints an error. If the error is printed, double max.iter.

If random.start = 0, then the inititial starting values of the posteriors for the first
EM attempt will be based on assuming equal posterior probabilities (conditional
on genotypes). If random.start = 1, then the initial starting values of the first EM
attempt will be based on assuming a uniform distribution for the initial posterior
probabilities.

Number of times to try to maximize the Inlike by the EM algorithm. The first try
uses, as initial starting values for the posteriors, either equal values or uniform
random variables, as determined by random.start. All subsequent tries will use
random uniform values as initial starting values for the posterior probabilities.

An integer or a saved copy of .Random.seed. This allows simulations to be
reproduced by using the same initial seed.

haplo.em.fitter 19

max.haps.limit Maximum number of haplotypes for the input genotypes. It is used as the
amount of memory to allocate in C for the progressive-insertion E-M steps.
Within haplo.em, the first step is to try to allocate the sum of the result of
geno.count.pairs(), if that exceeds max.haps.limit, start by allocating max.haps.limit.
If that is exceeded in the progressive-insertions steps, the C function doubles the
memory until it can no longer request more.

verbose Logical, if TRUE, print procedural messages to the screen. If FALSE, do not
print any messages.
Details

The default is to use n.try = 10. If this takes too much time, it may be worthwhile to decrease n.try.
Other tips for computing haplotype frequencies for a large number of loci, particularly if some have
many alleles, is to decrease the batch size (insert.batch.size), increase the memory (max.haps.limit),
and increase the probability of trimming off rare haplotypes at each insertion step (min.posterior).

Value

A list of the parameters passed to the function.

See Also

haplo.em, haplo.score

Examples

This is how it is used within haplo.score

> score.gauss <- haplo.score(resp, geno, trait.type="gaussian”,
> em.control=haplo.em.control(insert.batch.size = 2, n.try=1))
haplo.em.fitter Compute engine for haplotype EM algorithm
Description

For internal use within the haplo.stats library

Usage

haplo.em.fitter(n.loci, n.subject, weight, geno.vec, n.alleles,
max.haps, max.iter, loci.insert.order, min.posterior,
tol, insert.batch.size, random.start, iseedl, iseed2,
iseed3, verbose)

20 haplo.glm

Arguments
n.loci number of loci in genotype matrix
n.subject number of subjects in the sample
weight numeric weights
geno.vec vectorized genotype matrix
n.alleles numeric vector giving number of alleles at each marker
max . haps maximum unique haplotypes in the sample
max.iter maximum iterations to perform in the fitter

loci.insert.order
order to insert loci for progressive insertion

min.posterior after insertion and maximization, discard haplotype pairs per person that do not
meet minimum posterior prob

tol convergence tolerance for E-M steps
insert.batch.size
number of markers to insert per batch

random.start logical; if TRUE, allow for random starting values of haplotype frequencies

iseed1 random seed for algorithm

iseed2 random seed for algorithm

iseed3 random seed for algorithm

verbose logical, print long, verbose output from E-M steps?
Details

For internal use within the haplo.stats library

haplo.glm GLM Regression of Trait on Ambiguous Haplotypes

Description

Perform glm regression of a trait on haplotype effects, allowing for ambiguous haplotypes. This
method performs an iterative two-step EM, with the posterior probabilities of pairs of haplotypes
per subject used as weights to update the regression coefficients, and the regression coefficients
used to update the posterior probabilities.

Usage

haplo.glm(formula=formula(data), family=gaussian, data=parent.frame(),
weights, na.action="na.geno.keep"”, start=NULL,
locus.label=NA, control=haplo.glm.control(),
method="glm.fit", model=TRUE, x=FALSE, y=TRUE,
contrasts=NULL, ...)

haplo.glm 21

Arguments

formula a formula expression as for other regression models, of the form response ~
predictors. For details, see the documentation for Im and formula.

family a family object. This is a list of expressions for defining the link, variance func-
tion, initialization values, and iterative weights for the generalized linear model.
Supported families are: gaussian, binomial, poisson. Currently, only the logit
link is implemented for binimial.

data a data frame in which to interpret the variables occurring in the formula. A
CRITICAL element of the data frame is the matrix of genotypes, denoted here
as "geno", although an informative name should be used in practice. This geno
matrix is actually a matrix of alleles, such that each locus has a pair of adjacent
columns of alleles, and the order of columns corresponds to the order of loci
on a chromosome. If there are K loci, then ncol(geno) = 2*K. Rows represent
the alleles for each subject. It is also CRITICAL that this matrix is defined
as a model.matrix, so the columns of the matrix are packaged together into a
single matrix object. If geno is a matrix of alleles, then before adding it to the
data frame, use the setupGeno() function, which will assign this correct class.
The function will also recode alleles to numeric starting from 1, while saving
the original alleles in the unique.alleles attribute. This attribute is required in
haplo.glm.

weights the weights for observations (rows of the data frame). By default, all observa-
tions are weighted equally.

na.action a function to filter missing data. This is applied to the model.frame. The default
value of na.action=na.geno.keep will keep observations with some (but not all)
missing alleles, but exclude observations missing any other data (e.g., response
variable, other covariates, weight). The EM algorithm for ambiguous haplotypes
accounts for missing alleles. Similar to the usual glm, na.fail creates an error
if any missing values are found, and a third possible alternative is na.exclude,
which deletes observations that contain one or more missing values for any data,
including alleles.

start a vector of initial values on the scale of the linear predictor.
locus.label vector of labels for loci.

control list of control parameters. The default is constructed by the function haplo.glm.control.
The items in this list control the regression modeling of the haplotypes (e.g., ad-
ditive, dominant, recessive effects of haplotypes; which haplotype is chosen as
the baseline for regression; how to handle rare haplotypes; control of the glm
function - maximum number of iterations), and the EM algorithm for estimating
initial haplotype frequencies. See haplo.glm.control for details.

method currently, glm.fit is the only method allowed.

model logical, if model=TRUE, the model.frame is returned.
X logical, if x=TRUE, the model.matrix is returned.

y logical, if y=TRUE, the response variable is returned.
contrasts currently ignored

other arguments that may be passed - currently ignored.

22 haplo.glm

Details

To properly prepare the data frame, the genotype matrix must be processed by setupGeno, and then
included in the data frame with the response and other variables.

For binomial family, the initialization of values gives warnings if non-integer number of successes,
which is a concern in these models because of the weights of posterior probability of each haplotype
pair per subject. We supress the warnings by defining a haplo.binomial family, which we use if
family=binomial is used.

Value

An object of class "haplo.glm" is returned. The output object from haplo.glm has all the components
of a glm object, with a few more. It is important to note that some of the returned components
correpond to the "expanded" version of the data. This means that each observation is expanded into
the number of terms in the observation’s posterior distribution of haplotype pairs, given the marker
data. For example, when fitting the response y on haplotype effects, the value of y[i], for the ith
observation, is replicated m[i] times, where m[i] is the number of pairs of haplotypes consistent
with the observed marker data. The returned components that are expanded are indicated below by
[expanded] in the definition of the component.

These expanded components may need to be collapsed, depending on the objective of the user.
For example, when considering the influence of an observation, it may make sense to examine
the expanded residuals for a single observation, perhaps plotted against the haplotypes for that
observation. In contrast, it would not be sensible to plot all residuals against non-genetic covariates,
without first collapsing the expanded residuals for each observation. To collapse, one can use the
average residual per observation, weighted according to the posterior probabilities. The appropriate
weight can be computed as wt = weight.expanded * haplo.post.info[[post]]. Then, the weighted
average can be calculated as with(fit, tapply(residuals * wt, haplo.post.info[["indx"]], sum).

coefficients the coefficients of the linear.predictors, which multiply the columns of the model
matrix. The names of the coefficients are the names of the column of the model
matrix. For haplotype coefficients, the names are the concatentation of name of
the geno matrix with a haplotype number. The haplotype number corresponds to
the index of the haplotype. The default print will show the coefficients with hap-
lotype number, along with the alleles that define the haplotype, and the estimated
haplotype frequency. If the model is over-determined there will be missing val-
ues in the coefficients corresponding to inestimable coefficients.

residuals [expanded] residuals from the final weighted least squares fit; also known as
working residuals, these are typically not interpretable without rescaling by the
weights (see glm.object and residuals.haplo.glm).

fitted.values [expanded] fitted mean values, obtained by transforming linear.predictors using
the inverse link function (see glm.object).

effects [expaded] orthogonal, single-degree-of-freedom effects (see Im.object).
R the triangular factor of the decomposition (see Im.object).
rank the computed rank (number of linearly independent columns in the model ma-

trix), which is the model degrees of freedom - see Im.object.

assign the list of assignments of coefficients (and effects) to the terms in the model (see
Im.object).

haplo.glm 23

df.residual [expanded] number of degrees of freedom for residuals, corresponding to the
expanded data.

prior.weights [expanded] input weights after expanding according to the number of pairs of
haplotypes consistent with an observation’s marker genotype data.

family a 3 element character vector giving the name of the family, the link and the
variance function; mainly for printing purposes.

linear.predictors
[expanded] linear fit, given by the product of the model matrix and the coeffi-
cients. In a glm, eta.

deviance up to a constant, minus twice the maximized log-likelihood. Similar to the resid-
ual sum of squares.

null.deviance the deviance corresponding to the model with no predictors.

call an image of the call that produced the object, but with the arguments all named
and with the actual formula included as the formula argument.

iter the number of IRLS iterations used to compute the estimates, for the last step of
the EM fit of coefficients.

y expanded response.

contrasts a list containing sufficient information to construct the contrasts used to fit any
factors occurring in the model (see Im.object).

Inlike log-likelihood of the fitted model.

Inlike.null log-likelihood of the null model (intercept-only).

1rt likelihood ratio test statistic to test whether all coefficients (excepet intercept)
are zero: 2*(Inlike - Inlike.null)

terms an object of mode expression and class term summarizing the formula, but not
complete for the final model. Because this does not represent expansion of the
design matrix for the haplotypes, it is typically not of direct relevance to users.

control list of all control parameters
haplo.unique the data.frame of unique haplotypes

haplo.base the index of the haplotype used as the base-line for the regression model. To see
the actual haplotype definition, use the following: with(fit, haplo.unique[haplo.base,]),
where fit is the saved haplo.glm object (e.g., fit <- haplo.glm(y ~ geno, ...)).

haplo.freq the final estimates of haplotype frequencies, after completing EM steps of updat-
ing haplotype frequencies and regression coefficients. The length of haplo.freq
is the number of rows of haplo.unique, and the order of haplo.freq is the same as
that for the rows of haplo.unique. So, the frequencies of the unique haplotypes
can be viewed as with(fit, cbind(haplo.unique, haplo.freq)).

haplo.freq.init
the initial estimates of haplotype frequencies, based on the EM algorithm for
estimating haplotype frequencies, ingnoring the trait. These can be compared
with haplo.freq, to see the impact of using the regression model to update the
haplotype frequencies.

converge.em T/F whether the EM-glm steps converged

24 haplo.glm

haplo.common the indices of the haplotypes determined to be "common" enough to estimate
their corresponding regression coefficients.

haplo.rare the indices of all the haplotypes determined to be too rare to estimate their spe-
cific regression coefficients.

haplo.rare.term
T/F whether the "rare" term is included in the haplotype regression model.

haplo.names the names of the coefficients that represent haplotype effects.

haplo.post.info
a data.frame of information regarding the posterior probabilites. The columns of
this data.frame are: indx (the index of the input obsevation; if the ith observation
is repeated m times, then indx will show m replicates of i; hence, indx will
correspond to the "expanded" observations); hapl and hap2 (the indices of the
haplotypes; if hapl=j and hap2=k, then the two haplotypes in terms of alleles
are haplo.unique[j,] and haplo.unique[k,] from the fitted object); post.init (the
initial posterior probability, based on haplo.freq.init); post (the final posterior
probability, based on haplo.freq).

X the model matrix, with [expanded] rows, if x=T.

info the observed information matrix, based on Louis’ formula. The upper left sub-
matrix is for the regression coefficient, the lower right submatrix for the haplo-
type frequencies, and the remaining is the information between regression coef-
ficients and haplotype frequencies.

var.mat the variance-covariance matrix of regression coefficients and haplotype frequen-
cies, based on the inverse of info. Upper left submatrix is for regression coeffi-
cients, lower right submatrix for haplotype frequencies.

haplo.elim the indices of the haplotypes eliminated from the info and var.mat matrices be-
cause their frequencies are less than haplo.min.info (the minimum haplotype fre-
quency required for computation of the information matrix - see haplo.glm.control)

missing a matrix of logical values, indicating whether rows of data were removed for
missing values in either genotype matrix (genomiss) or any other variables (yxmiss),
such as y, other covariates, or weights.

rank.info rank of information (info) matrix.

References

Lake S, Lyon H, Silverman E, Weiss S, Laird N, Schaid D (2002) Estimation and tests of haplotype-
environment interaction when linkage phase is ambiguous. Human Heredity 55:56-65.

See Also

haplo.glm.control, haplo.em, haplo.model. frame

Examples

cat(” FOR REGULAR USAGE, DO NOT DISCARD GENOTYPES WITH MISSING VALUES\n")
cat(” WE ONLY SUBSET BY keep HERE SO THE EXAMPLES RUN FASTER\n")

data(hla.demo)

haplo.glm.control 25

geno <- as.matrix(hla.demo[,c(17,18,21:24)1])

keep <- lapply(is.na(geno) | geno==0, 1, any) # SKIP THESE THREE LINES
hla.demo <- hla.demo[keep,] # IN AN ANALYSIS

geno <- geno[keep,] #

attach(hla.demo)

label <-c("DQB","DRB","B")

y <- hla.demo$resp

y.bin <- 1%x(hla.demo$resp.cat=="1ow")

set up a genotype array as a model.matrix for inserting into data frame
Note that hla.demo is a data.frame, and we need to subset to columns

of interest. Also also need to convert to a matrix object, so that

setupGeno can code alleles and convert geno to 'model.matrix' class.

geno <- setupGeno(geno, miss.val=c(@,NA))

geno now has an attribute 'unique.alleles' which must be passed to
haplo.glm as allele.lev=attributes(geno)$unique.alleles, see below

my.data <- data.frame(geno=geno, age=hla.demo$age, male=hla.demo$male,
y=y, y.bin=y.bin)

fit.gaus <- haplo.glm(y ~ male + geno, family = gaussian, na.action=
"na.geno.keep”,allele.lev=attributes(geno)$unique.alleles,
data=my.data, locus.label=label,
control = haplo.glm.control(haplo.freq.min=0.02))
fit.gaus

haplo.glm.control Create list of control parameters for haplo.glm

Description

Create a list of control pararameters for haplo.glm. If no parameters are passed to this function,
then all default values are used.

Usage

haplo.glm.control (haplo.effect="add"”, haplo.base=NULL,
haplo.min.count=NA, haplo.freq.min=.01,
sum.rare.min=0.001, haplo.min.info0=0.001,
keep.rare.haplo=TRUE,
eps.svd=sqrt(.Machine$double.eps),
glm.c=glm.control(maxit=500),
em.c=haplo.em.control())

26 haplo.glm.control

Arguments

haplo.effect the "effect" of a haplotypes, which determines the covariate (x) coding of hap-
lotypes. Valid options are "additive" (causing x = 0, 1, or 2, the count of a
particular haplotype), "dominant" (causing x = 1 if heterozygous or homozy-
gous carrier of a particular haplotype; x = 0 otherwise), and "recessive" (causing
x = 1 if homozygous for a particular haplotype; x = 0 otherwise).

haplo.base the index for the haplotype to be used as the base-line for regression. By default,
haplo.base=NULL, so that the most frequent haplotype is chosen as the base-
line.

haplo.min.count
The minimum number of expected counts for a haplotype from the sample to be
included in the model. The count is based on estimated haplotype frequencies.
Suggested minimum is 5.

haplo.freq.min the minimum haplotype frequency for a haplotype to be included in the regres-
sion model as its own effect. The haplotype frequency is based on the EM
algorithm that estimates haplotype frequencies independent of trait.

sum.rare.min the sum of the "rare" haplotype frequencies must be larger than sum.rare.min in
order for the pool of rare haplotypes to be included in the regression model as a
separate term. If this condition is not met, then the rare haplotypes are pooled
with the base-line haplotype (see keep.rare.haplo below).

haplo.min.info the minimum haplotype frequency for determining the contribution of a haplo-
type to the observed information matrix. Haplotypes with less frequency are
dropped from the observed information matrix. The haplotype frequency is that
from the final EM that iteratively updates haplotype frequencies and regression
coefficients.

keep.rare.haplo
TRUE/FALSE to determine if the pool of rare haplotype should be kept as a
separate term in the regression model (when keep.rare.haplo=TRUE), or pooled
with the base-line haplotype (when keep.rare.haplo=FALSE).

eps.svd argument to be passed to Ginv for the generalized inverse of the information
matrix, helps to determine the number of singular values

glm.c list of control parameters for the usual glm.control (see glm.control).

em.c list of control parameters for the EM algorithm to estimate haplotype frequen-

cies, independent of trait (see haplo.em.control).

Value

the list of above components

See Also

haplo.glm, haplo.em.control, glm.control

Examples

NOT RUN

haplo.group

27

using the data set up in the example for haplo.glm,
the control function is used in haplo.glm as follows
> fit <- haplo.glm(y ~ male + geno, family = gaussian,

>

ETRE

>
>
>

na.action="na.geno.keep”,

data=my.data, locus.label=locus.label,
control = haplo.glm.control(haplo.min.count=5,
em.c=haplo.em.control(n.try=1)))

haplo.group

Frequencies for Haplotypes by Grouping Variable

Description

Calculate maximum likelihood estimates of haplotype probabilities for the entire dataset and sepa-
rately for each subset defined by the levels of a group variable. Only autosomal loci are considered.

Usage

haplo.group(group, geno, locus.label=NA,

Arguments

group

geno

locus.label
miss.val

weight

control

Details

miss.val=0, weight=NULL,
control=haplo.em.control())

Group can be of logical, numeric, character, or factor class type.

Matrix of alleles, such that each locus has a pair of adjacent columns of alleles,
and the order of columns corresponds to the order of loci on a chromosome.
If there are K loci, then geno has 2*K columns. Rows represent all observed
alleles for each subject.

Vector of labels for loci, of length K (see definition of geno matrix).
Vector of codes for allele missing values.

weights for observations (rows of geno matrix). One reason to use is to adjust
for disproportionate sample of sub-groups. Weights only used in the frequency
calculation for the pooled subject.

list of control parameters for haplo.em (see haplo.em.control).

Haplo.em is used to compute the maximum likelihood estimates of the haplotype frequencies for
the total sample, then for each of the groups separately.

28

Value

list

group.df

group.count

n.loci

References

haplo.hash

A list as an object of the haplo.group class. The three elements of the list are
described below.

A data frame with the columns described as follows. -haplotype: Names for the
K columns for the K alleles in the haplotypes. -total: Estimated frequencies for
haplotypes from the total sample. -group.name.i: Estimated haplotype frequen-
cies for the haplotype if it occurs in the group referenced by ’i’. Frequency is
NA if it doesn’t occur for the group. The column name is the actual variable
name joined with the ith level of that variable.

Vector containing the number of subjects for each level of the grouping variable.

Number of loci occuring in the geno matrix.

Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA. "Score tests for association of traits
with haplotypes when linkage phase is ambiguous." Amer J Hum Genet. 70 (2002): 425-434.

See Also

print.haplo.group, haplo.em

Examples

data(hla.demo)

geno <- as.matrix(hla.demo[,c(17,18,21:24)1)

remove any subjects with missing alleles for faster examples,
but you may keep them in practice

keep <- lapply(is.na(geno) | geno==0, 1, any)

hla.demo <- hla.demo[keep,]

geno <- genol[keep,]

attach(hla.demo)

y.ord <- as.numeric(resp.cat)
y.bin <-ifelse(y.ord==1,1,0)
group.bin <- haplo.group(y.bin, geno, miss.val=0)
print.haplo.group(group.bin)

haplo.hash

Integer Rank Codes for Haplotypes

Description

Create a vector of integer codes for the input matrix of haplotypes. The haplotypes in the input
matrix are converted to character strings, and if there are C unique strings, the integer codes for the
haplotypes will be 1, 2, ..., C.

haplo.model.frame 29

Usage
haplo.hash(hap)

Arguments
hap A matrix of haplotypes. If there are N haplotypes for K loci, hap have dimen-
sions N x K.
Details

The alleles that make up each row in hap are pasted together as character strings, and the unique
strings are sorted so that the rank order of the sorted strings is used as the integer code for the unique
haplotypes.

Value

List with elements:

hash Vector of integer codes for the input data (hap). The value of hash is the row
number of the unique haplotypes given in the returned matrix hap.mtx.
hap.mtx Matrix of unique haplotypes.
See Also
haplo.em
haplo.model.frame Sets up a model frame for haplo.glm
Description

For internal use within the haplo.stats library

Usage

haplo.model.frame(m, locus.label=NA, control=haplo.glm.control())

Arguments
m model.frame from evaluated formula
locus.label labels for loci in genotype matrix
control control parameters for haplo.glm
Details

See haplo.glm description in help file and user manual

30

Value

haplo.power.cc

A model frame with haplotypes modeled as effects

haplo.power.cc

Compute either power or sample size for haplotype associations in a
case-control study.

Description

For a given set of haplotypes, their population frequencies, and assumed logistic regression coef-
ficients (log-odds-ratios per haplotype, assuming a log-additive model of haplotype effects), deter-
mine either the sample size (total number of subjects) to achieve a stated power or the power for a

stated sample size.

Usage

haplo.power.cc(haplo, haplo.freq, base.index, haplo.beta, case.frac,
prevalence, alpha, sample.size=NULL, power=NULL)

Arguments

haplo

haplo.freq

base.index

haplo.beta

case.frac

prevalence
alpha

sample.size

power

matrix of haplotypes, with rows the different haplotypes and columns the alleles
of the haplotypes. For H haplotypes of L loci, haplo has dimension H x L.

vector of length H for the population haplotype frequencies (corresponding to
the rows of haplo)

integer index of the haplotype considered to be the base-line for logistic regres-
sion (index between 1 and H); often, the most common haplotype is chosen for
the base-line.

vector of length H for the haplotype effects: each beta is the log-odds-ratio
for the corresponding haplotype effect. The base-line hapoltype should have
a beta=0, as this base-line beta coefficient will be automatically calculated ac-
cording to the haplotype frequencies, the other haplo.beta’s, and the disease
prevalence.

fraction of cases in the total sample size (e.g., case.frac = .5 for typical case-
control studies with equal numbers of cases and controls)

popultaion disease prevalence (used to calculate the base-line intercept beta)
type-I error rate

total sample size (if power is to be calcualted). Either sample.size or power must
be specified, but not both.

desired power (if sample.size is to be calculated). Either sample.size or power
must be specified, but not both.

haplo.power.cc 31

Details

Asympotic power calcuations are based on the non-centrality parameter of a non-central chi-square
distribution. This non-centrality parameter is determined by the specified regression coefficients
(values in haplo.beta), as well as the distribution of haplotypes (determined by haplo.freq). To
account for haplotypes with unknown phase, all possible haplotype pairs are enumerated, and the
EM algorithm is used to determine the posterior probabilities of pairs of haplotypes, conditional on
unphased genotype data. Because this function uses the function haplo.em, the number of possible
haplotypes can be large when there is a large number of loci (i.e., large number of columns in the
haplo matrix). If too large, the function haplo.em will run out of memory, making this function
(haplo.power.cc) fail. If this occurs, then consider reducing the "size" of the haplotypes, by re-
ducing the number of columns of haplo, and adjusting the corresponding vectors (e.g., haplo.freq,
haplo.beta).

Value
list with components:

ss.phased.haplo

sample size for phased haplotypes
ss.unphased.haplo

sample size for unphased haplotypes
power.phased. haplo

power for phased haplotypes
power .unphased. haplo

power for unphased haplotypes

References

Schaid, DJ. Power and sample size for testing associations of haplotypes with complex traits. Ann
Hum Genet (2005) 70:116-130.

See Also

haplo.emhaplo.power.qt

Examples
haplo <- rbind(
c(1, 2, 2, 1, 2),
c(1, 2, 2, 1, 1),
c(1, 1, 2, 1, 1),
c(1, 2, 1, 1, 2),
c(1, 2, 2, 2, 1),
c(1, 2, 1, 1, 1),
c(1, 1, 2, 2, 1,
c(1, 1, 1, 1, 2),
c(1, 2, 1, 2, 1),
c(1, 1, 1, 2, 1,
c(2, 2, 1, 1, 2),
c(1, 1, 2, 1, 2),

32

haplo.power.qt
c(1, 1, 2, 2, 2),
c(1, 2, 2, 2, 2),
c(2, 2, 2, 1, 2),
c(1, 1, 1, 1, 1,
c(2, 1, 1, 1, 1,
c(2, 1, 2, 1, 1),
c(2, 2, 1, 1, 1,
c(2, 2, 1, 2, 1,
c(2, 2, 2, 1, 1)

dimnames(haplo)[[2]] <- paste("loc”, 1:ncol(haplo), sep=".")
haplo <- data.frame(haplo)

haplo.freq <- c(0.170020121, 0.162977867, 0.123742455, 0.117706237, 0.097585513, 0.084507042,
0.045271630, 0.039235412, 0.032193159, 0.019114688, 0.019114688, 0.013078471,
0.013078471, 0.013078471, 0.013078471, 0.006036217, 0.006036217, 0.006036217,

0.006036217, 0.006036217, ©.006036217)

define index for risk haplotypes (having alleles 1-1 at loci 2 and 3)
haplo.risk <- (1:nrow(haplo))[haplo$loc.2==1 & haplo$loc.3==1]

define index for baseline haplotype
base.index <- 1

specify OR for risk haplotypes
or <- 1.25

determine beta regression coefficients for risk haplotypes

haplo.beta <- numeric(length(haplo.freq))
haplo.betalhaplo.risk] <- log(or)

Note that non-risk haplotypes have beta=0, as does the intercept
(haplotype with base.index value).

Compute total sample size for given power

haplo.power.cc(haplo, haplo.freq, base.index, haplo.beta, case.frac=.5,
prevalence=.1, alpha=.05, power=.8)

Compute power for given sample size

haplo.power.cc(haplo, haplo.freq, base.index, haplo.beta, case.frac=.5,
prevalence=.1, alpha=.05, sample.size=11978)

haplo.power.qt Compute either power or sample size for haplotype associations with
a quantitative trait.

haplo.power.qt

Description

33

For a given set of haplotypes, their population frequencies, and assumed linear regression coeffi-
cients (additive model of haplotype effects on a quantitative trait), determine either the sample size
to achieve a stated power or the power for a stated sample size.

Usage

haplo.power.qt(haplo, haplo.freq, base.index, haplo.beta, y.mu, y.var,
alpha, sample.size = NULL, power = NULL)

Arguments

haplo

haplo.freq

base.index

haplo.beta

y.mu
y.var
alpha

sample.size

power

Details

matrix of haplotypes, with rows the different haplotypes and columns the alleles
of the haplotypes. For H haplotypes of L loci, haplo has dimension H x L.

vector of length H for the population haplotype frequencies (corresponding to
the rows of haplo)

integer index of the haplotype considered to be the base-line for logistic regres-
sion (index between 1 and H); often, the most common haplotype is chosen for
the base-line.

vector of length H for the haplotype effects: each beta is the amount of expected
change per haplotype from the base-line average, and the beta for the base-line
(indexed by base.index) is the beta for the intercept.

population mean of quantitative trait, y.
popultaion variance of quantitative trait, y.
type-I error rate

sample size (if power is to be calcualted). Either sample.size or power must be
specified, but not both.

desired power (if sample.size is to be calculated). Either sample.size or power
must be specified, but not both.

Asympotic power calcuations are based on the non-centrality parameter of a non-central F distribu-
tion. This non-centrality parameter is determined by the specified regression coefficients (values
in haplo.beta), as well as the distribution of haplotypes (determined by haplo.freq). To account
for haplotypes with unknown phase, all possible haplotype pairs are enumerated, and the EM algo-
rithm is used to determine the posterior probabilities of pairs of haplotypes, conditional on unphased
genotype data. Because this function uses the function haplo.em, the number of possible haplotypes
can be large when there is a large number of loci (i.e., large number of columns in the haplo matrix).
If too large, the function haplo.em will run out of memory, making this function (haplo.power.qt)
fail. If this occurs, then consider reducing the "size" of the haplotypes, by reducing the number of
columns of haplo, and adjusting the corresponding vectors (e.g., haplo.freq, haplo.beta).

34 haplo.power.qt

Value
list with components:

ss.phased.haplo

sample size for phased haplotypes
ss.unphased. haplo

sample size for unphased haplotypes
power .phased.haplo

power for phased haplotypes
power.unphased.haplo

power for unphased haplotypes

References

Schaid, DJ. Power and sample size for testing associations of haplotypes with complex traits. Ann
Hum Genet (2005) 70:116-130.

See Also

find.haplo.beta.qt, haplo.em, haplo.power.cc

Examples
haplo <- rbind(
c(1, 2, 2, 1, 2),
c(1, 2, 2, 1, 1,
c(1, 1, 2, 1, 1),
c(1, 2, 1, 1, 2),
c(1, 2, 2, 2, 1),
c(1, 2, 1, 1, 1),
c(1, 1, 2, 2, 1,
c(1, 1, 1, 1, 2),
c(1, 2, 1, 2, 1),
c(1, 1, 1, 2, 1,
c(2, 2, 1, 1, 2),
c(1, 1, 2, 1, 2),
c(1, 1, 2, 2, 2),
c(1, 2, 2, 2, 2),
c(2, 2, 2, 1, 2),
c(1, 1, 1, 1, 1,
c(2, 1, 1, 1, 1),
c(2, 1, 2, 1, 1),
c(2, 2, 1, 1, 1,
c(2, 2, 1, 2, 1),
c(2, 2, 2, 1, 1))

dimnames(haplo)[[2]] <- paste("loc”, 1:ncol(haplo), sep=".")
haplo <- data.frame(haplo)

haplo.freq <- c(0.170020121, ©.162977867, 0.123742455, 0.117706237,
0.097585513, 0.084507042, 0.045271630, 0.039235412, 0.032193159,
0.019114688, 0.019114688, 0.013078471, 0.013078471, 0.013078471,

haplo.scan 35

0.013078471, 0.006036217, 0.006036217, 0.006036217,
0.006036217, ©.006036217, 0.006036217)

define index for risk haplotypes (having alleles 1-1 at loci 2 and 3)
haplo.risk <- (1:nrow(haplo))[haplo$loc.2==1 & haplo$loc.3==1]

define index for baseline haplotype
base.index <- 1

Because it can be easier to speficy genetic effect size in terms of
a regression model R-squared value (r2), we use an

auxiliary function to set up haplo.beta based on a specifed r2 value:

tmp <- find.haplo.beta.qgt(haplo,haplo.freq,base.index,haplo.risk,
r2=0.01, y.mu=0, y.var=1)

haplo.beta <- tmp$beta
Compute sample size for given power

haplo.power.qt(haplo, haplo.freq, base.index, haplo.beta, y.mu=0,
y.var=1, alpha=.05, power=.80)

Compute power for given sample size

haplo.power.qt(haplo, haplo.freq, base.index, haplo.beta, y.mu=0,
y.var=1, alpha=.05, sample.size = 2091)

haplo.scan Search for a trait-locus by sliding a fixed-width window over each
marker locus and scanning all possible haplotype lengths within the
window
Description

Search for haplotypes that have the strongest association with a binary trait (typically case/control
status) by sliding a fixed-width window over each marker locus and scanning all possible haplotype
lengths within the window. For each haplotype length, a score statistic is computed to compare
the set of haplotypes with a given length between cases versus controls. The locus-specific score
statistic is the maximum score statistic calculated on loci containing that locus. The maximum
score statistic over all haplotype lengths within all possible windows is used for a global test for
association. Permutations of the trait are used to compute p-values.

Usage

haplo.scan(y, geno, width=4, miss.val=c(@, NA),
em.control=haplo.em.control(),
sim.control=score.sim.control())

36 haplo.scan

haplo.scan.obs(y, em.obj, width)

haplo.scan.sim(y.reord, save.lst, nloci)

Arguments
y Vector of binary trait values, must be 1 for cases and 0 for controls.
y.reord Same as y, except the order is permuted
geno Matrix of alleles, such that each locus has a pair of adjacent columns of alleles,
and the order of columns corresponds to the order of loci on a chromosome. If
there are K loci, then ncol(geno) = 2*K. Rows represent alleles for each subject.
width Width of sliding the window
miss.val Vector of codes for missing values of alleles
em.control A list of control parameters to determine how to perform the EM algorithm for
estimating haplotype frequencies when phase is unknown. The list is created by
the function haplo.em.control - see this function for more details.
sim.control A list of control parameters to determine how simulations are performed for
simulated p-values. The list is created by the function score.sim.control and the
default values of this function can be changed as desired. See score.sim.control
for details.
em.obj Object returned from haplo.em, performed on geno
save.lst Information on haplotypes needed for haplo.scan.sim, already calculated in haplo.scan
nloci number of markers
Details

Search for a region for which the haplotypes have the strongest association with a binary trait by
sliding a window of fixed width over each marker locus, and considering all haplotype lengths
within each window. To acount for unknown linkage phase, the function haplo.em is called prior to
scanning, to create a list of haplotype pairs and posterior probabilities. To illustrate the scanning,
consider a 10-locus dataset. When placing a window of width 3 over locus 5, the possible haplotype
lengths that contain locus 5 are three (loci 3-4-5, 4-5-6, and 5-6-7), two (loci 4-5, and 5-6) and one
(locus 5). For each of these loci subsets a score statistic is computed, which is based on the differ-
ence between the mean vector of haplotype counts for cases and that for controls. The maximum of
these score statistics, over all possible haplotype lengths within a window, is the locus-specific test
statistic. The global test statistic is the maximum over all computed score statistics. To compute
p-values, the case/control status is randomly permuted. Simulations are performed until precision
criteria are met for all p-values; the criteria are controlled by score.sim.control. See the note for
long run times.

Value

A list that has class haplo.scan, which contains the following items:

call The call to haplo.scan

haplo.score 37

scan.df A data frame containing the maximum test statistic for each window around
each locus, and its simulated p-value.
max.loc The loci (locus) which contain(s) the maximum observed test statistic over all
haplotype lengths and all windows.
globalp A p-value for the significance of the global maximum statistic.
nsim Number of simulations performed
Note

For datasets with many estimated haplotypes, the run-time can be very long.

References

Cheng et al-1 Cheng R, Ma JZ, Wright FA, Lin S, Gau X, Wang D, Elston RC, Li MD. "Nonpara-
metric disequilibrium mapping of functional sites using haplotypes of multiple tightly linked
single-nucleotide polymorphism markers". Genetics 164 (2003):1175-1187.

Cheng et al-2 Cheng R, Ma JZ, Elston RC, Li MD. "Fine Mapping Functional Sites or Regions
from Case-Control Data Using Haplotypes of Multiple Linked SNPs." Annals of Human Ge-
netics 69 (2005): 102-112.

See Also

haplo.em, haplo.em.control, score.sim.control

Examples

create a random genotype matrix with 10 loci, 5@ cases, 50 controls
set.seed(1)

tmp <- ifelse(runif(2000)>.3, 1, 2)

geno <- matrix(tmp, ncol=20)

y <- rep(c(0,1),c(50,50))

search 10-locus region, typically don't limit the number of
simulations, but run time can get long with many simulations

scan.obj <- haplo.scan(y, geno, width=3,
sim.control = score.sim.control(min.sim=10, max.sim=20))

print(scan.obj)

haplo.score Score Statistics for Association of Traits with Haplotypes

Description

Compute score statistics to evaluate the association of a trait with haplotypes, when linkage phase
is unknown and diploid marker phenotypes are observed among unrelated subjects. For now, only
autosomal loci are considered.

38

Usage

haplo.score

haplo.score(y, geno, trait.type="gaussian”, offset = NA, x.adj = NA,

Arguments

y

geno

trait.type

offset
x.adj

min.count

skip.haplo

locus.label
miss.val
haplo.effect

eps.svd

simulate

sim.control

min.count=5, skip.haplo=min.count/(2xnrow(geno)),
locus.label=NA, miss.val=c(@,NA), haplo.effect="additive",
eps.svd=1e-5, simulate=FALSE, sim.control=score.sim.control(),
em.control=haplo.em.control())

Vector of trait values. For trait.type = "binomial", y must have values of 1 for
event, O for no event.

Matrix of alleles, such that each locus has a pair of adjacent columns of alleles,
and the order of columns corresponds to the order of loci on a chromosome. If
there are K loci, then ncol(geno) = 2*K. Rows represent alleles for each subject.

Character string defining type of trait, with values of "gaussian", "binomial",

"poisson", "ordinal".
Vector of offset when trait.type = "poisson"

Matrix of non-genetic covariates used to adjust the score statistics. Note that
intercept should not be included, as it will be added in this function.

The minimum number of counts for a haplotype to be included in the model.

First, the haplotypes selected to score are chosen by minimum frequency greater

than skip.haplo (based on min.count, by default). It is also used when haplo.effect
is either dominant or recessive. This is explained best in the recessive instance,

where only subjects who are homozygous for a haplotype will contribute in-

formation to the score for that haplotype. If fewer than min.count subjects are

estimated to be affected by that haplotype, it is not scored. A warning is issued

if no haplotypes can be scored.

Minimum haplotype frequency for which haplotypes are scored in the model.
By default, the frequency is based on "min.count" divided by the 2*N total hap-
lotype occurrences in the sample.

Vector of labels for loci, of length K (see definition of geno matrix)
Vector of codes for missing values of alleles

the "effect" of a haplotypes, which determines the covariate (x) coding of hap-
lotypes. Valid options are "additive" (causing x = 0, 1, or 2, the count of a
particular haplotype), "dominant" (causing x = 1 if heterozygous or homozy-
gous carrier of a particular haplotype; x = 0 otherwise), and "recessive" (causing
x = 1 if homozygous for a particular haplotype; x = 0 otherwise).

epsilon value for singular value cutoff; to be used in the generalized inverse cal-
culation on the variance matrix of the score vector (see help(Ginv) for details).

Logical: if FALSE, no empirical p-values are computed; if TRUE, simula-
tions are performed. Specific simulation parameters can be controlled in the
sim.control parameter list.

A list of control parameters to determine how simulations are performed for
simulated p-values. The list is created by the function score.sim.control and the
default values of this function can be changed as desired. See score.sim.control
for details.

haplo.score

em.control

Details

39

A list of control parameters to determine how to perform the EM algorithm for
estimating haplotype frequencies when phase is unknown. The list is created by
the function haplo.em.control - see this function for more details.

Compute the maximum likelihood estimates of the haplotype frequencies and the posterior proba-
bilities of the pairs of haplotypes for each subject using an EM algorithm. The algorithm begins
with haplotypes from a subset of the loci and progressively discards those with low frequency be-
fore inserting more loci. The process is repeated until haplotypes for all loci are established. The
posterior probabilities are used to compute the score statistics for the association of (ambiguous)
haplotypes with traits. The glm function is used to compute residuals of the regression of the trait
on the non-genetic covariates.

Value

List with the following components:

score.global

df

score.global.p

Global statistic to test association of trait with haplotypes that have frequencies
>= skip.haplo.

Degrees of freedom for score.global.

P-value of score.global based on chi-square distribution, with degrees of free-
dom equal to df.

score.global.p.sim

score.haplo

score.haplo.p

P-value of score.global based on simulations (set equal to NA when simulate=F).

Vector of score statistics for individual haplotypes that have frequencies >=
skip.haplo.

Vector of p-values for score.haplo, based on a chi-square distribution with 1 df.

score.haplo.p.sim

score.max.p.sim

haplotype

hap.prob

locus.label
call

haplo.effect

simulate

Vector of p-values for score.haplo, based on simulations (set equal to NA when
simulate=F).

Simulated p-value indicating for simulations the number of times a maximum
score.haplo value exceeds the maximum score.haplo from the original data (equal
to NA when simulate=F).

Matrix of hapoltypes analyzed. The ith row of haplotype corresponds to the ith
item of score.haplo, score.haplo.p, and score.haplo.p.sim.

Vector of haplotype probabilies, corresponding to the haplotypes in the matrix
haplotype.

Vector of labels for loci, of length K (same as input argument).

The call to the haplo.score function; useful for recalling what parameters were
used.

The haplotype effect model parameter that was selected for haplo.score.

Same as function input parameter. If [T]rue, simulation results are included in
the haplo.score object.

40 haplo.score

n.val.global Vector containing the number of valid simulations used in the global score statis-
tic simulation. The number of valid simulations can be less than the number of
simulations requested (by sim.control) if simulated data sets produce unstable
variances of the score statistics.

n.val.haplo Vector containing the number of valid simulations used in the p-value simula-
tions for maximum-score statistic and scores for the individual haplotypes.

References

Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA. "Score tests for association of traits
with haplotypes when linkage phase is ambiguous.” Amer J Hum Genet. 70 (2002): 425-434.

See Also

haplo.em, plot.haplo.score, print.haplo.score, haplo.em.control, score.sim.control

Examples

establish all hla.demo data,

remove genotypes with missing alleles just so haplo.score runs faster
with missing values included, this example takes 2-4 minutes

FOR REGULAR USAGE, DO NOT DISCARD GENOTYPES WITH MISSING VALUES

data(hla.demo)

geno <- as.matrix(hla.demo[,c(17,18,21:24)1)
keep <- lapply(is.na(geno) | geno==0, 1, any)
hla.demo <- hla.demo[keep,]

geno <- geno[keep,]

attach(hla.demo)

label <- c("DQB","DRB","B")

For quantitative, normally distributed trait:

score.gaus <- haplo.score(resp, geno, locus.label=label,
trait.type = "gaussian")
print(score.gaus)

For ordinal trait:
y.ord <- as.numeric(resp.cat)
score.ord <- haplo.score(y.ord, geno, locus.label=label,
trait.type="ordinal")
print(score.ord)

For a binary trait and simulations,
limit simulations to 500 in score.sim.control, default is 20000
y.bin <-ifelse(y.ord==1,1,0)
score.bin.sim <- haplo.score(y.bin, geno, trait.type = "binomial”,
locus.label=1abel, simulate=TRUE,
sim.control=score.sim.control(min.sim=200,max.sim=500))

print(score.bin.sim)

haplo.score.merge 41

For a binary trait, adjusted for sex and age:

x <- cbind(male, age)

score.bin.adj <- haplo.score(y.bin, geno, trait.type = "binomial”,
locus.label=1abel, x.adj=x)

print(score.bin.adj)

haplo.score.merge Merge haplo.score And haplo.group Objects

Description

Combine information from returned objects of haplo.score and haplo.group, ’score’ and ’group’ re-
spectively. ’score’ and "group’ are sorted differently and ’score’ keeps a subset of all the haplotypes
while ’group’ has all of them. To combine results from the two objects, merge them by haplotype
and sort by score of the haplotype. The merged object includes all haplotypes; i.e. those appearing
in “group’, but the print default only shows haplotypes which have a score.

Usage

haplo.score.merge(score, group)

Arguments
score Object returned from haplo.score of class "haplo.score".
group Object returned from haplo.group of class "haplo.group".
Details

Haplo.score returns score statistic and p-value for haplotypes with an overall frequency above
the user-specified threshold, skip.haplo. For haplotypes with frequencies below the threshold, the
score and p-value will be NA. Overall haplotype frequencies and for sub-groups are estimated by
haplo.group.

Value
Data frame including haplotypes, score-statistics, score p-value, estimated haplotype frequency for
all subjects, and haplotype frequency from group subsets.

Side Effects

Warning: The merge will not detect if the group and score objects resulted from different subject
phenotypes selected by memory-usage parameters, rm.geno.na and enum.limit. Users must use
the same values for these parameters in haplo.score and haplo.group so the merged objects are
consistent.

See Also

haplo.score, haplo.group

42

haplo.score.slide

Examples

data(hla.demo)

geno <- as.matrix(hla.demo[,c(17,18,21:24)1)
keep <- l!apply(is.na(geno) | geno==0, 1, any)
hla.demo <- hla.demo[keep,]

geno <- genolkeep,]

attach(hla.demo)

y.ord <- as.numeric(resp.cat)

y.bin <-ifelse(y.ord==1,1,0)

group.bin <- haplo.group(y.bin, geno, miss.val=0)
score.bin <- haplo.score(y.bin, geno, trait.type="binomial")

score.merged <- haplo.score.merge(score.bin, group.bin)

print(score.merged)

haplo.score.slide Score Statistics for Association of Traits with Haplotypes

Description

Used to identify sub-haplotypes from a group of loci. Run haplo.score on all contiguous subsets
of size n.slide from the loci in a genotype matrix (geno). From each call to haplo.score, report
the global score statistic p-value. Can also report global and maximum score statistics simulated
p-values.

Usage

haplo.score.slide(y, geno, trait.type="gaussian”, n.slide=2,

offset = NA, x.adj = NA, min.count=5,
skip.haplo=min.count/(2*nrow(geno)),
locus.label=NA, miss.val=c(@,NA),
haplo.effect="additive"”, eps.svd=le-5,
simulate=FALSE, sim.control=score.sim.control(),
em.control=haplo.em.control())

Arguments
y Vector of trait values. For trait.type = "binomial", y must have values of 1 for
event, O for no event.
geno Matrix of alleles, such that each locus has a pair of adjacent columns of alleles,
and the order of columns corresponds to the order of loci on a chromosome. If
there are K loci, then ncol(geno) = 2*K. Rows represent alleles for each subject.
trait.type Character string defining type of trait, with values of "gaussian", "binomial",

"poisson"”, "ordinal".

haplo.score.slide

n.slide

offset

x.adj

min.count

skip.haplo

locus.label
miss.val

haplo.effect

eps.svd

simulate

sim.control

em.control

Details

43

Number of loci in each contiguous subset. The first subset is the ordered loci
numbered 1 to n.slide, the second subset is 2 through n.slide+1 and so on. If
the total number of loci in geno is n.loci, then there are n.loci - n.slide + 1 total
subsets.

Vector of offset when trait.type = "poisson"

Matrix of non-genetic covariates used to adjust the score statistics. Note that
intercept should not be included, as it will be added in this function.

The minimum number of counts for a haplotype to be included in the model.

First, the haplotypes selected to score are chosen by minimum frequency greater

than skip.haplo (based on min.count, by default). It is also used when haplo.effect
is either dominant or recessive. This is explained best in the recessive instance,

where only subjects who are homozygous for a haplotype will contribute in-

formation to the score for that haplotype. If fewer than min.count subjects are

estimated to be affected by that haplotype, it is not scored. A warning is issued

if no haplotypes can be scored.

For haplotypes with frequencies < skip.haplo, categorize them into a common
group of rare haplotypes.

Vector of labels for loci, of length K (see definition of geno matrix).
Vector of codes for missing values of alleles.

The "effect" pattern of haplotypes on the response. This parameter determines
the coding for scoring the haplotypes. Valid coding options for heterozygous and
homozygous carriers of a haplotype are "additive" (1, 2, respectively), "domi-
nant" (1,1, respectively), and "recessive" (0, 1, respectively).

epsilon value for singular value cutoff; to be used in the generalized inverse
calculation on the variance matrix of the score vector.

Logical, if [FJalse (default) no empirical p-values are computed. If [T]rue sim-
ulations are performed. Specific simulation parameters can be controlled in the
sim.control parameter list.

A list of control parameters used to perform simulations for simulated p-values
in haplo.score. The list is created by the function score.sim.control and the
default values of this function can be changed as desired.

A list of control parameters used to perform the em algorithm for estimating
haplotype frequencies when phase is unknown. The list is created by the func-
tion haplo.em.control and the default values of this function can be changed as
desired.

Haplo.score.slide is useful for a series of loci where little is known of the association between a
trait and haplotypes. Using a range of n.slide values, the region with the strongest association will
consistently have low p-values for locus subsets containing the associated haplotypes. The global p-
value measures significance of the entire set of haplotypes for the locus subset. Simulated maximum
score statistic p-values indicate when one or a few haplotypes are associated with the trait.

44

Value

haplo.score.slide

List with the following components:

df

n.loci
simulate
haplo.effect
n.slide
locus.label

n.val.haplo

n.val.global

References

Data frame with start locus, global p-value, simulated global p-value, and simu-
lated maximum-score p-value.

Number of loci given in the genotype matrix.

Same as parameter description above.

The haplotype effect model parameter that was selected for haplo.score.
Same as parameter description above.

Same as parameter description above.

Vector containing the number of valid simulations used in the maximum-score
statistic p-value simulation. The number of valid simulations can be less than the
number of simulations requested (by sim.control) if simulated data sets produce
unstable variables of the score statistics.

Vector containing the number of valid simulations used in the global score statis-
tic p-value simulation.

Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA. "Score tests for association of traits
with haplotypes when linkage phase is ambiguous.” Amer J Hum Genet. 70 (2002): 425-434.

See Also

haplo.score, plot.haplo.score.slide, score.sim.control

Examples

data(hla.demo)

*

ETE Y

ETS

Continuous trait slide by 2 loci on all 11 loci, uncomment to run it.

Takes > 20 minutes to run

geno.11 <- hla.demo[,-c(1:4)]

label.11 <- c("DPB”,”DPA”,”DMA”,"DMB","TAP1","TAP2","DQB", "DQA", "DRB","B","A")
slide.gaus <- haplo.score.slide(hla.demo$resp, geno.11, trait.type = "gaussian”,

locus.label=1label.11, n.slide=2)

print(slide.gaus)
plot(slide.gaus)

Run shortened example on 9 loci

For an ordinal trait, slide by 3 loci, and simulate p-values:
geno.9 <- hla.demo[,-c(1:6,15,16)]

label.9 <- c("DPA”,"DMA","DMB","TAP1","DQB","DQA","DRB","B","A")

y.ord <- as.numeric(hla.demo$resp.cat)

data is set up, to run, run these lines of code on the data that was

hapPower.demo 45

set up in this example. It takes > 15 minutes to run

slide.ord.sim <- haplo.score.slide(y.ord, geno.9, trait.type = "ordinal”,
n.slide=3, locus.label=label.9, simulate=TRUE,
sim.control=score.sim.control(min.sim=200, max.sim=500))

note, results will vary due to simulations
print(slide.ord.sim)
plot(slide.ord.sim)
plot(slide.ord.sim, pval="global.sim")
plot(slide.ord.sim, pval="max.sim")

hapPower . demo Set of haplotypes and frequencies for power and sample size calcula-
tions

Description

An example set of haplotypes and frequencies for power and sample size calculations in haplo.power.cc
and haplo.power.qt

Usage

data(hapPower.demo)

Format

A data frame with 21 observations on the following 6 variables.

loc.1 allele 1 in the haplotype
loc.2 allele 2 in the haplotype
loc.3 allele 3 in the haplotype
loc.4 allele 4 in the haplotype
loc.5 allele S in the haplotype

haplo.freq numeric, frequency of haplotype

References
Schaid, DJ. Power and sample size for testing associations of haplotypes with complex traits. Ann

Hum Genet (2005) 70:116-130.

Examples

data(hapPower.demo)

46

hla.demo

hla.demo

HILA Loci and Serologic Response to Measles Vaccination

Description

A data frame with genotypes at eleven HLA-region loci genotyped for 220 subjects, phase not
known. Contains measles vaccination response with covariate data.

Usage

data(hla.demo)

Format

A data frame with 220 observations on the following 26 variables.

resp numeric, Quantitative response to Measles Vaccination

resp.cat Category of vaccination response, a factor with levels high low normal

male numeric, indicator of gener, 1=male, O=female

age numeric, subject’s age

DPB.
DPB.
DPA.
DPA.
DMA.
DMA.
DMB.
DMB.

al
a2
al
a2
al
a2
al
a2

first allele of genotype
second allele of genotype
first allele of genotype
second allele of genotype
first allele of genotype
second allele of genotype
first allele of genotype

second allele of genotype

TAP1.a1 first allele of genotype

TAP1.a2 second allele of genotype

TAP2.a1 first allele of genotype

TAP2.a2 second allele of genotype

DQB.
DQB.
DOA.
DQA.
DRB.
DRB.

al
a2
al
a2
al
a2

first allele of genotype
second allele of genotype
first allele of genotype
second allele of genotype
first allele of genotype

second allele of genotype

B.al first allele of genotype

B.a2 second allele of genotype

A.a1l first allele of genotype

A.a2 second allele of genotype

locator.haplo 47

Source
Data set kindly provided by Gregory A. Poland, M.D. and the Mayo Clinic Vaccine Research Group
for illustration only, and my not be used for publication.
References
Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA. "Score tests for association of traits
with haplotypes when linkage phase is ambiguous.” Amer J Hum Genet. 70 (2002): 425-434.
Examples

data(hla.demo)

locator.haplo Find Location from Mouse Clicks and Print Haplotypes on Plot

Description

Much like the R/Splus locator function is used to find x-y coordinates on a plot. Find all x-y
coordinates that are chosen by the user’s mouse clicks. Then print haplotype labels at the chosen
positions.

Usage

locator.haplo(obj)

Arguments

obj An object (of class haplo.score) that is returned from haplo.score.

Details

After plotting the results in obj, as from plot(obj), the function locator.haplo is used to place on the
plot the text strings for haplotypes of interest. After the function call (e.g., locator.haplo(obj)), the
user can click, with the left mouse button, on as many points in the plot as desired. Then, clicking
with the middle mouse button will cause the haplotypes to be printed on the plot. The format of a
haplotype is "a:b:c", where a, b, and c are alleles, and the separator ":" is used to separate alleles on
a haplotype. The algorithm chooses the closest point that the user clicks on, and prints the haplotype
either above the point (for points on the lower-half of the plot) or below the point (for points in the

upper-half of the plot).

Value
List with the following components:
x.coord Vector of x-coordinates.

y.coord Vector of y-coordinates.

hap. txt Vector of character strings for haplotypes.

48

See Also

haplo.score

Examples

locus

follow the pseudo-code

score.out <-

haplo.score(y, geno, trait.type = "gaussian")

plot(score.out)

locator.haplo(score.out)

locus

Creates an object of class "locus"

Description

Creates an object containing genotypes for multiple individuals. The object can then use method
functions developed for objects of class "locus".

Usage

locus(allelel, allele2, chrom.label=NULL,locus.alias=NULL,
x.linked=FALSE, sex=NULL, male.code="M", female.code="F", miss.val=NA)

Arguments

allelel

allele2

chrom. label

locus.alias

x.linked
sex
male.code
female.code

miss.val

A vector containing the labels for 1 allele for a set of individuals, or optionally
a matrix with 2 columns each containing an allele for each person.

A vector containing the labels for the second allele for a set of individuals. If
allele 1 is a matrix, allele 2 need not be specified.

A label describing the chromosome the alleles belong to

A vector containing one or more aliases describing the locus. The first alias in
the vector will be used as a label for printing in some functions such as multilo-
cus.print().

A logical value denoting whether the chromosome is x linked

A vector containing the gender of each individual (required if x.linked=T)
The code denoting a male in the sex vector

The code denoting a female in the sex vector

a vector of codes denoting missing values for allelel and allele2. Note that NA
will always be treated as a missing value, even if not specified in miss.val. Also
note that if multiple missing value codes are specified, the original missing value
code for a specific individual can not be retrieved from the locus object.

louis.info 49

Value

Returns an object of class locus which inherits from class model.matrix containing the following

elements:

geno a matrix with 2 columns where each row contains numeric codes for the 2 alleles
for an individual.

chrom.label a chromosome label

locus.alias a vector of aliases for the locus

x.linked a logical value specifying if the locus is x-linked or not

allele.labels a vector of labels corresponding to the numeric codes in matrix geno (similar to
levels in a factor)

male.code a code to be used to identify males for an x.linked locus.
female.code a code to be used to identify females for an x.linked locus.
Examples

b‘l <_ C(“Au,"AHyHBH’Ilcll’HEll’nD")
b2 <_ C("A”,”A“,”C”,”E”,”F”,”G")
loc1 <- locus(b1,b2,chrom=4,locus.alias="D4S1111")

loci

a second example which uses more parameters, some may not be supported.
cl <- c(1e1,10, 112,112,21,112)

c2 <- c(101,101,112, 100,21, 10)

gender <- rep(c("M","F"),3)
loc2 <- locus(cl,c2,chrom="X",locus.alias="DXS1234", x.linked=TRUE, sex=gender)

loc2

louis.info Louis Information for haplo.glm

Description

For internal use within the haplo.stats library’s haplo.glm function

Usage

louis.info(fit, epsilon=1e-8)

Arguments

fit glm fitted object

epsilon cut-off for singular values in the generalized inverse of the information matrix

50 plot.haplo.score

na.geno.keep Remove rows with NA in covariates, but keep genotypes with NAs

Description
Removes rows with NA in response or covariates, but keeps subjects with NAs in their genotypes if
not missing all alleles.

Usage

na.geno.keep(m)

Arguments

m model matrix

Value

a model matrix with rows removed if exclusion criteria requires it

plot.haplo.score Plot Haplotype Frequencies versus Haplotype Score Statistics

Description

Method function to plot a class of type haplo.score

Usage
S3 method for class 'haplo.score'
plot(x, ...)
Arguments
X The object returned from haplo.score (which has class haplo.score).
Dynamic parameter for the values of additional parameters for the plot method.
Details

This is a plot method function used to plot haplotype frequencies on the x-axis and haplotype-
specific scores on the y-axis. Because haplo.score is a class, the generic plot function can be used,
which in turn calls this plot.haplo.score function.

Value

Nothing is returned.

plot.haplo.score.slide 51

References

Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA. "Score tests for association of traits
with haplotypes when linkage phase is ambiguous.” Amer J Hum Genet. 70 (2002): 425-434.

See Also

haplo.score

Examples

data(hla.demo)

geno <- as.matrix(hla.demo[,c(17,18,21:24)1)
keep <- lapply(is.na(geno) | geno==0, 1, any)
hla.demo <- hla.demo[keep,]

geno <- genolkeep,]

attach(hla.demo)

label <- c("DQB","DRB","B")

For quantitative, normally distributed trait:

score.gaus <- haplo.score(resp, geno, locus.label=label,
trait.type = "gaussian")

plot.haplo.score(score.gaus)
try: locator.haplo(1)

plot.haplo.score.slide
Plot a haplo.score.slide Object

Description

Method function to plot an object of class haplo.score.slide. The p-values from haplo.score.slide
are for sub-haplotypes of a larger chromosomal region, and these are plotted to visualize the change
in p-values as the sub-haplotype "slides" over a chromosome. Plot -log10(p-value) on the y-axis vs.
the loci over which it was computed on the x-axis.

Usage
S3 method for class 'haplo.score.slide'
plot(x, pval="global”, dist.vec=1:x$n.loci, ...)
Arguments
X The object returned from haplo.score.slide
pval Character string for the choice of p-value to plot. Options are: "global" (the

global score statistic p-value based on an asymptotic chi-square distribution),
"global.sim" (the global score statistic simulated p-value), and "max.sim" (the
simulated p-value for the maximum score statistic).

52 plot.haplo.score.slide

dist.vec Numeric vector for position (i.e., in cM) of the loci along a chromosome. Dis-
tances on x-axis will correspond to these positions.

Dynamic parameter for the values of additional parameters for the plot method.
Some useful options for manageing the x-axis labels are cex.axis, las, and srt.

Details

The x-axis has tick marks for all loci. The y-axis is the -log10() of the selected p-value. For each
haplo.score result, plot a horizontal line at the height of -log10(p-value) drawn across the loci over
which it was calculated. Therefore a p-value of 0.001 for the first 3 loci will plot as a horizontal
line plotted at y=3 covering the first three tick marks. If the p-value for a set of loci is zero or very
near zero, it is set to a minimum. Global asymptotic p-values of zero are set to the minimum of an
epsilon or the lowest non-zero p-value in the region. Simulated p-values equal to zero are set to 0.5
divided by the total number of simulations performed.

Value

Nothing is returned.

References

Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA. "Score tests for association of traits
with haplotypes when linkage phase is ambiguous.” Amer J Hum Genet. 70 (2002): 425-434.

See Also

haplo.score.slide

Examples

This example has a long run-time, therefore it is commented

data(hla.demo)

attach(hla.demo)

geno.11 <- hla.demo[,-c(1:4)]

label.11 <- c("DPB","DPA","DMA", 6 "DMB","TAP1","TAP2", 6 "DQB","DQA","DRB","B","A")

ETRE g

#For an ordinal trait, slide by 3 loci, and simulate p-values:

y.ord <- as.numeric(resp.cat)

slide.ord.sim <- haplo.score.slide(y.ord, geno.11, trait.type = "ordinal”,
n.slide=3, locus.label=label.11, simulate=TRUE,
sim.control=score.sim.control(min.sim=500))

print(slide.ord.sim)

plot(slide.ord.sim)

plot(slide.ord.sim, pval="global.sim”, las=2, cex.axis=.8)
plot(slide.ord.sim, pval="max.sim"”, srt=90, cex.axis=.8)

* o3 o o

plot.seqghap 53

plot.seghap Plot a seqhap object

Description

Method to plot an object of class seghap. The p-values at each locus are based on sequentially
combined loci, and they are plotted to visualize the p-values when scanning each locus using seqhap
methods. Plots -log10(p-value) on the y-axis vs. the loci over which it was computed on the x-axis.

Usage

S3 method for class 'seghap'
plot(x, pval="hap", single=TRUE,

minp=.Machine$double.eps, ...)
Arguments
X The object returned from seqhap
pval Character string for the choice of p-value to plot. Options are: "hap" (sequen-

tial haplotype asymptotic p-value), "hap.sim" (sequential haplotype simulated
p-value), "sum" (sequential summary asymptotic p-value), and "sum.sim" (se-
quential summary simulated p-value).

single Logical, indicating whether to plot p-values for single-locus association tests.
If TRUE, the pointwise p-values from the single-locus will be plotted using a
dotted line.

minp Smallest "allowable" p-value; any p-value smaller will be set to log10(minp).
The default is the value closest to zero that can be represented in Splus/R.

Dynamic parameter for the values of additional parameters for the plot method.
Accept the ylim parameter for plot() and other parameters for lines(), points(),
and axis(). Recommended values to make locus labels vertical on the x-axis: for
R: las=2, cex.axis=1.2 for S+: srt=90, cex.axis=1.2, adj=1

Details

The x-axis has tick marks for all loci. The y-axis is the -log10() of the selected p-value. For the
sequential result for each locus, a horizontal line at the height of -log10(p-value) is drawn across
the loci combined. The start locus is indicated by a filled triangle and other loci combined with the
start locus are indicated by an asterisk or circle.

If the permutation p-value is zero, for plotting purposes it is set to 1/(n.sim+1).

Value

Nothing is returned.

54 print.haplo.cc

References

Yu Z, Schaid DJ. (2007) Sequential haplotype scan methods for association analysis. Genet Epi-
demiol, in print.

See Also

seghap, print.seghap

Examples

Not run:
data(seghap.dat)
mydata.y <- seghap.dat[,1]
mydata.x <- seghap.dat[,-1]
data(seghap.pos)
myobj <- seghap(y=mydata.y, geno=mydata.x, pos=seghap.pos$pos)
plot(myobj)

End(Not run)

print.haplo.cc Print a haplo.cc object

Description

Display results for a haplotype analysis on a case-control study.

Usage

S3 method for class 'haplo.cc'
print(x, order.by=c("score"”,"haplotype”,"freq"), digits=max(options()$digits-2, 5),

nlines=NULL, ...)
Arguments
X A haplo.cc object, made by the haplo.cc function.
order.by Order the printed data frame by the column: haplotype score (score), haplotype
alleles (haplotype), or haplotype frequency (freq).
digits Number of digits to display for the numeric columns of the data frame.
nlines Print the first nlines of the cc.df data frame of the haplo.cc object, keeps output

short if desired.

Dynamic parameter for the values of additional parameters for the print method.

Value

Nothing is returned.

print.haplo.em 55

See Also

haplo.cc

Examples

for a haplo.cc object named cc.test,
#it order results by haplotype
print.haplo.cc(cc.test, order.by="haplotype”)

print.haplo.em Print contents of a haplo.em object

Description

Print a data frame with haplotypes and their frequencies. Likelihood information is also printed.

Usage

S3 method for class 'haplo.em'

print(x, digits=max(options()$digits-2, 5), nlines=NULL, ...)
Arguments

X A haplo.em object

digits number of significant digits to print for numeric values

nlines To shorten output, print the first 1:nlines rows of the large data frame.

optional arguments for print

Value

Nothing is returned

See Also

haplo.em

56 print.haplo.group

print.haplo.group Print a haplo.group object

Description

Method function to print a class of type haplo.group

Usage
S3 method for class 'haplo.group'
print(x, digits=max(options()$digits-2, 5), nlines=NULL, ...)

Arguments
X The object returned from haplo.group (which has old class haplo.group).
digits Set the number of significant digits to print for haplotype probabilities.
nlines For shorter output, print first 1:nlines rows of the large data frame

Optional arguments for the print method

Details

This is a print method function used to print information from the haplo.group class, with haplotype-
specific information given in a table. Because haplo.group is a class, the generic print function can
be used, which in turn calls this print.haplo.group function.

Value

Nothing is returned.

References

Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA. Expected haplotype frequencies for
association of traits with haplotypes when linkage phase is ambiguous. Submitted to Amer J] Hum
Genet.

See Also

haplo.score, haplo.group, haplo.em

print.haplo.scan 57

print.haplo.scan Print a haplo.scan object

Description

Print a haplo.scan object

Usage

S3 method for class 'haplo.scan'

print(x, digits=max(options()$digits - 2, 5), ...)
Arguments

X An object created by haplo.scan

digits Significant digits shown for numeric data

Options parameters for the print function

Value

NULL

See Also

haplo.scan

print.haplo.score Print a haplo.score object

Description

Method function to print a class of type haplo.score

Usage
S3 method for class 'haplo.score'
print(x, digits, nlines=NULL, ...)
Arguments
X The object returned from haplo.score (which has class haplo.score).
digits Number of digits to round the numeric output.
nlines Print the first ’nlines’ rows of the large data frame for fast, short view of the
results.

Dynamic parameter for the values of additional parameters for the print method.

58 print.haplo.score.merge

Details

This is a print method function used to print information from haplo.score class, with haplotype-
specific information given in a table. Because haplo.score is a class, the generic print function can
be used, which in turn calls this print.haplo.score function.

Value

If print is assigned, the object contains the table of haplotype scores that was printed by the method

See Also

haplo.score

print.haplo.score.merge
Print a haplo.score.merge object

Description

Method function to print a class of type haplo.score.merge

Usage

S3 method for class 'haplo.score.merge'
print(x, order.by="score"”, all.haps=FALSE,

digits=max(options()$digits-2, 5), nlines=NULL, ...)
Arguments
X The object returned from haplo.score.merge (which has old class {S} haplo.score.merge).
order.by Column of the haplo.score.merge object by which to order the results
all.haps Logical, if (T)rue prints a row for all haplotypes. If (F)alse, the default, only
prints the haplotypes kept in haplo.score for modelling.
digits Set the number of significant digits to print for the numeric output.
nlines Print the first 'nlines’ rows of the large data frame for a short view of the results.
Dynamic parameter for the values of additional parameters for the print method.
Details

This is a print method function used to print information from the haplo.score.merge class. Be-
cause haplo.score.merge is a class, the generic print function can be used, which in turn calls this
print.haplo.score.merge function.

Value

Nothing is returned.

print.haplo.score.slide 59

References

Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA. Expected haplotype frequencies for

association of traits with haplotypes when linkage phase is ambiguous. Submitted to Amer J Hum
Genet.

See Also

haplo.score.merge, haplo.score, haplo.group

Examples

#see example for haplo.score.merge

print.haplo.score.slide
Print the contents of a haplo.score.slide object

Description

Print the data frame returned from haplo.score.slide

Usage

S3 method for class 'haplo.score.slide'

print(x, digits=max(options()$digits - 2, 5), ...)
Arguments

X A haplo.score.slide object

digits Number of digits to print for numeric output

Optional arguments for the print method

printBanner Print a nice banner

Description

Print a centered banner that carries to multiple lines

Usage

printBanner(str, banner.width=options()$width, char.perline=.75*banner.width, borde

n_n

r="=

)

60

Arguments

str
banner.width

char.perline

border

Details

residuals.haplo.glm

character string - a title within the banner
width of banner, the default is set to fit current options

number of characters per line for the title, the default is 75% of the banner.width
parameter

type of character for the border

This function prints a nice banner in both R and S-PLUS

Value

nothing is returned

See Also

options

Examples

printBanner(”"This is a pretty banner”, banner.width=40, char.perline=30)

the output looks like this:

#

This is a pretty banner

#

residuals.haplo.glm Accessing residuals for haplo.glm fit

Description

Access the residuals from a haplo.glm model fit

Usage
S3 method for class 'haplo.glm'
residuals(object, type=c("deviance”, "pearson”,
"working", "response”), ...)
Arguments
object A haplo.glm object

type

non

Type of residuals to return. Options are "deviance" (default), "pearson”, "work-
ing", and "response". Partial residuals not supported in this method.

Optional arguments

score.sim.control

Details

61

Many of the subjects in a haplo.glm fit are expanded in the model matrix with weights used to
reflect the posterior probability of the subject’s haplotype pairs given their genotype. The working
residuals within the fitted object are from this expanded model matrix, and the residuals in this
method are calculated from the weighted fitted value for the subject across all their haplotype pairs.

Value

Residuals for each person in the model.

See Also

haplo.glm, residuals.glm, fitted.haplo.glm

score.sim.control

Create the list of control parameters for simulations in haplo.score

Description

In the call to haplo
tions. This list is ¢
values.

Usage

.score, the sim.control parameter is a list of parameters that control the simula-
reated by this function, score.sim.control, making it easy to change the default

score.sim.control(p.threshold=0.25, min.sim=1000, max.sim=20000.,verbose=FALSE)

Arguments

p.threshold

min.sim

max.sim

verbose

A paremeter used to determine p-value precision from Besag and Clifford (1991).
For a p-value calculated after min.sim simulations, continue doing simulations
until the p-value’s sample standard error is less than p.threshold * p-value. The
dafault value for p.threshold = 1/4 corresponds approximately to having a two-
sided 95% confidence interval for the p-value with a width as wide as the p-value
itself. Therefore, simulations are more precise for smaller p-values. Addition-
ally, since simulations are stopped as soon as this criteria is met, p-values may
be biased high.

The minimum number of simulations to run. To run exactly min.sim simula-
tions, set max.sim = min.sim. Also, if run-time is an issue, a lower minimum
(e.g. 500) may be useful, especially when doing simulations in haplo.score.slide.

The upper limit of simulations allowed. When the number of simulations reaches
max.sim, p-values are approximated based on simulation results at that time.

Logical, if (T)rue, print updates from every simulation to the screen. If (F)alse,
do not print these details.

62 seqhap

Details

In simulations for haplo.score, employ the simulation p-value precision criteria of Besag and Clif-
ford (1991). The criteria ensures both the global and the maximum score statistic simulated p-values
be precise for small p-values. First, perform min.sim simulations to guarantee sufficient precision
for the score statistics on individual haplotypes. Then continue simulations as needed until sim-
ulated p-values for both the global and max score statistics meet precision requirements set by
p-threshold.

Value

A list of the control parameters:

p.threshold As described above

min.sim As described above.

max.sim As described above

verbose As described above
References

Besag, J and Clifford, P. "Sequential Monte Carlo p-values." Biometrika. 78, no. 2 (1991): 301-304.

See Also

haplo.score

Examples

it would be used in haplo.score as appears below

#
score.sim.500 <- haplo.score(y, geno, trait.type="gaussian”, simulate=T,
sim.control=score.sim.control(min.sim=500, max.sim=2000)
seghap Sequential Haplotype Scan Association Analysis for Case-Control
Data
Description

Seghap implements sequential haplotype scan methods to perform association analyses for case-
control data. When evaluating each locus, loci that contribute additional information to haplotype
associations with disease status will be added sequentially. This conditional evaluation is based
on the Mantel-Haenszel (MH) test. Two sequential methods are provided, a sequential haplotype
method and a sequential summary method, as well as results based on the traditional single-locus
method. Currently, seghap only works with bialleleic loci (single nucleotide polymorphisms, or
SNPs) and binary traits.

seqhap 63

Usage

seghap(y, geno, pos, locus.label=NA, weight=NULL,
mh.threshold=3.84, r2.threshold=0.95, haplo.freq.min=0.005,
miss.val=c(@, NA), sim.control=score.sim.control(),
control=haplo.em.control())

S3 method for class 'seghap'

print(x, digits=max(options()$digits-2, 5), ...)
Arguments
y vector of binary response (1=case, O=control). The length is equal to the number

of rows in geno.

geno matrix of alleles, such that each locus has a pair of adjacent columns of alleles,
and the order of columns corresponds to the order of loci on a chromosome.
If there are K loci, then ncol(geno)=2*K. Rows represent the alleles for each
subject. Currently, only bi-allelic loci (SNPs) are allowed.

pos vector of physical positions (or relative physical positions) for loci. If there are
K loci, length(pos)=K. The scale (in kb, bp, or etc.) doesn’t affect the results.

locus.label vector of labels for the set of loci

weight weights for observations (rows of geno matrix).

mh.threshold threshold for the Mantel-Haenszel statistic that evaluates whether a locus con-
tributes additional information of haplotype association to disease, conditional
on current haplotypes. The default is 3.84, which is the 95th percentile of the
chi-square distribution with 1 degree of freedom.

r2.threshold threshold for a locus to be skipped. When scanning locus k, loci with correla-
tions r-squared (the square of the Pearson’s correlation) greater than r2.threshold
with locus k will be ignored, so that the haplotype growing process continues
for markers that are further away from locus k.

haplo.freq.min the minimum haplotype frequency for a haplotype to be included in the associa-
tion tests. The haplotype frequency is based on the EM algorithm that estimates
haplotype frequencies independent of trait.

miss.val vector of values that represent missing alleles.

sim.control A list of control parameters to determine how simulations are performed for
permutation p-values, similar to the strategy in haplo.score. The list is created
by the function score.sim.control and the default values of this function can
be changed as desired. Permutations are performed until a p.threshold accu-
racy rate is met for the three region-based p-values calculated in seqhap. See
score.sim.control for details.

control A list of parameters that control the EM algorithm for estimating haplotype fre-
quencies when phase is unknown. The list is created by the function haplo.em.control
- see this function for more details.

X a seghap object to print
digits Number of significant digits to print for numeric values

Additional parameters for the print method

64

Details

No further details

Value

seqhap

list with components:

converge

locus.label

pos

n.sim

inlist

chi.
chi.
chi.
hap.
hap.
hap.
hap.
sum.
.df

sum

sum.

sum.

stat
p.point
p.region
stat

df
p.point
p.region
stat

p.point

p.region

References

indicator of convergence of the EM algorithm (see haplo.em); 1 = converge,
O=failed

vector of labels for loci
chromosome positions for loci, same as input.
number of permutations performed for emperical p-values

matrix that shows which loci are combined for association analysis in the se-
quential scan. The non-zero values of the kth row of inlist are the indices of the
loci combined when scanning locus k.

chi-square statistics of single-locus analysis.

permuted pointwise p-values of single-locus analysis.
permuted regional p-value of single-locus analysis.
chi-square statistics of sequential haplotype analysis.

degrees of freedom of sequential haplotype analysis.
permuted pointwise p-values of sequential haplotype analysis.
permuted region p-value of sequential haplotype analysis.
chi-square statistics of sequential summary analysis.

degrees of freedom of sequential summary analysis.
permuted pointwise p-values of sequential summary analysis.

permuted regional p-value of sequential summary analysis.

Yu Z, Schaid DJ. (2007) Sequential haplotype scan methods for association analysis. Genet Epi-

demiol, in print.

See Also

haplo.em, print.seghap, plot.seqghap, score.sim.control

Examples

load example data with response and genotypes.

data(seghap.dat)

mydata.y <- seghap.dat[,1]
mydata.x <- seghap.dat[,-1]

load positions
data(seqghap.pos)

pos <- seghap.pos$pos

seqhap.dat 65

run seghap with default settings

Not run:
this example takes 5-10 seconds to run
myobj <- seghap(y=mydata.y, geno=mydata.x, pos=pos)
print.seghap(myobj)

End(Not run)

seghap.dat Simulated data for seqhap examples

Description

Simulated data set for the demonstration of seqhap functionality. Contains one column for disease
status and columns representing 10 SNP loci with a known association. seghap.pos contains a
column for chromosome position, as required by seghap.

Usage

data(seghap.dat)
data(seghap.pos)

Format
A data frame with 1000 observations on the following 21 variables.

disease numeric, indicator of disease status O=no, 1=yes
m1.1 first allele of genotype
m1.2 second allele of genotype
m2.1 first allele of genotype
m2.2 second allele of genotype
m3.1 first allele of genotype
m3.2 second allele of genotype
m4.1 first allele of genotype
m4.2 second allele of genotype
m5.1 first allele of genotype
m5.2 second allele of genotype
m6.1 first allele of genotype
m6.2 second allele of genotype
m7.1 first allele of genotype
m7.2 second allele of genotype
m8.1 first allele of genotype

m8.2 second allele of genotype

66 setupGeno

m9.1 first allele of genotype
m9.2 second allele of genotype
m10.1 first allele of genotype

m10@.2 second allele of genotype

References
Yu Z, Schaid DJ (2007) Sequantial haplotype scan methods for association analysis. Gen Epi, in
print.

Examples

data(seghap.dat)

setupGeno Create a group of locus objects from a genotype matrix, assign to
‘model.matrix’ class.

Description
The function makes each pair of columns a locus object, which recodes alleles to numeric and saves
the original alleles as an attribute of the model.matrix.

Usage
setupGeno(geno, miss.val=c(@,NA), locus.label=NULL)

Arguments
geno Matrix of alleles, such that each locus has a pair of adjacent columns of alleles,
and the order of columns corresponds to the order of loci on a chromosome. If
there are K loci, then ncol(geno) = 2*¥K. Rows represent alleles for each subject.
miss.val A vector of codes denoting missing values for allelel and allele2. Note that NA
will always be treated as a missing value, even if not specified in miss.val. Also
note that if multiple missing value codes are specified, the original missing value
code for a specific individual can not be retrieved from the loci object.
locus.label vector of labels for the loci
Details

This function contains the essential parts of the loci function, which is no longer within haplo.stats

Value

A ’model.matrix’ object with the alleles recoded to numeric values, and the original values are
stored in the "unique.alleles’ attribute. The ith item of the unique.alleles list is a vector of unique
alleles for the ith locus.

summary.haplo.em 67

Note

A matrix that contains all elements of mode character will be sorted in alphabetic order. This order
may differ across platforms according to your setting of LC_COLLATE. See the note in haplo.em
about how this sort order affects results.

See Also

locus, haplo.glm, haplo.em

Examples

Create some loci to work with
al <- 1:6
a2 <-7:12

b-l <- C(”A”,"A",“B”,"C“,“E",”D")
b2 <‘C(”A”,"A”,”C",”E”,"F“,"G”)

cl <- c(u»lo—ln,111®lr’11115:v’11132n’112111,11»]1211)
c2 <- C("]O@”,"101”,"0“,"1@@”,"21","110")

myGeno <- data.frame(al,a2,b1,b2,c1,c2)
myGeno <- setupGeno(myGeno)

myGeno

attributes(myGeno)$unique.alleles

summary.haplo.em Summarize contents of a haplo.em object

Description

Display haplotype pairs and their posterior probabilities by subject. Also display a table with num-
ber of max haplotype pairs for a subject versus how many were kept (max vs. used).

Usage

S3 method for class 'haplo.em'

summary (object, show.haplo=FALSE, digits=max(options()$digits-2, 5), nlines=NULL, ...

Arguments
object A haplo.em object
show.haplo Logical. If TRUE, show the alleles of the haplotype pairs, otherwise show only
the recoded values.
digits number of significant digits to be printed for numeric values
nlines To shorten output, print the first 1:nlines rows of the large data frame.

Optional arguments for the summary method

68 summary.haplo.glm

Value

A data.frame with a row for every subject’s possible haplotype pairs and the posterior probabilities
of that pair given their genotypes.

See Also

haplo.em

Examples

data(hla.demo)

geno <- hla.demo[,c(17,18,21:24)]

label <-c("DQB”,"DRB","B")

keep <- lapply(is.na(geno) | geno==0, 1, any)

save.em.keep <- haplo.em(geno=geno[keep,], locus.label=label)
save.df <- summary(save.em.keep)
save.df[1:10,]

summary.haplo.glm Print and summary of a haplo.glm object

Description

Do print and summary as in regular glm, then display extra information on haplotypes used in the
model fit

Usage

S3 method for class 'haplo.glm'
summary (object, show.all.haplo=FALSE,

show.missing=FALSE, ...)
S3 method for class 'summary.haplo.glm'
print(x, digits = max(getOption("digits”)-3,3), ...)
Arguments
X A haplo.glm object
object A haplo.glm object

show.all.haplo Logical. If TRUE, print all haplotypes considered in the model.

show.missing Logical. If TRUE, print number of rows removed because of missing values
(NA) in y or x-covariates, or all alleles missing in geno

digits Number of numeric digits to print.

Optional arguments for summary method

summaryGeno 69

Details

Uses print.glm for the first section, then prints information on the haplotypes.

Value

If print is assigned, the object contains a list with the coefficient and haplotype data.frames which
are printed by the method.

See Also
haplo.glm

summaryGeno Summarize Full Haplotype Enumeration on Genotype Matrix

Description
Provide a summary of missing allele information for each individual in the genotype matrix. The
number of loci missing zero, one, or two alleles is computed, as well as the total number of haplo-
type pairs that could result from the observed phenotype.

Usage

summaryGeno(geno, miss.val=0)

Arguments
geno Matrix of alleles, such that each locus has a pair of adjacent columns of alleles,
and the order of columns corresponds to the order of loci on a chromosome.
If there are K loci, then geno has 2*K columns. Rows represent all observed
alleles for each subject.
miss.val Vector of codes for allele missing values.
Details

After getting information on the individual loci, this function makes a call to geno.count.pairs().
The E-M steps to estimate haplotype frequencies considers haplotypes that could result from a phe-
notype with a missing allele. It will not remove a subject’s phenotype, only the unlikely haplotypes
that result from it.

Value
Data frame with columns representing the number of loci with zero, one, and two missing alleles,
then the total haplotype pairs resulting from full enumeration of the phenotype.

See Also

geno.count.pairs, haplo.em

70 Xx.sexcheck

vcov.haplo.glm variance-covariance matrix of a fitted haplo.glm object

Description

Returns the variance-covariance matrix of the main parameters of a fitted haplo.glm object

Usage
S3 method for class 'haplo.glm'
vcov(object, freq=TRUE, ...)
Arguments
object A haplo.glm object
freq Logical. If TRUE, return the full covariance matrix including the entries for the

frequency parameters

Optional arguments for print method

Details

var.mat is pre-computed in haplo.glm, the generalized inverse of the Louis information matrix

Value

Variance-covariance matrix of model parameters

See Also

haplo.glm

x.sexcheck consistency checks for x.linked locus

Description

Given an x.linked locus object and a vector of gender codes, the function will check to make sure
the gender codes match the codes used to originally define the locus, and that no individuals defined
as males are heterozygous.

Usage

x.sexcheck(x, sex, stop=FALSE)

Xx.sexcheck

Arguments

X

sex

stop

Value

71

an object of class locus

a vector of codes identifying the gender of each individual contained in the locus
object

if T, any warnings are converted to errors and execution is halted immediately

T if one or more errors were found F if no errors were found

See Also

locus

Examples

cl <= c(101,10, 112,112,21,112)
c2 <- c(101,101,112,100,21, 10)

gender <- rep(c("M","F"),3)
loc2 <- locus(cl,c2,chrom="X",locus.alias="DXS1234", x.linked=TRUE, sex=gender)

loc2

Index

* classes
locus, 48

+ datasets
hapPower .demo, 45
hla.demo, 46
seghap.dat, 65

x design
haplo.power.cc, 30
haplo.power.qt, 32

* glm
anova.haplo.glm, 3
fitted.haplo.glm, 7
haplo.glm, 20
haplo.glm.control, 25
na.geno.keep, 50
residuals.haplo.glm, 60
summary.haplo.glm, 68
vcov.haplo.glm, 70

* matrix
Ginv, 11

+x models
haplo.design, 14
haplo.model. frame, 29

* power
chisq.power, 4
f.power, 5
find.haplo.beta.qt, 6

* scores
haplo.score, 37
haplo.score.merge, 41
haplo.score.slide, 42
plot.haplo.score.slide, 51
print.haplo.score.merge, 58
score.sim.control, 61

+ utilities
genolto2, 8

anova.haplo.glm, 3
anova.haplo.glmlist (anova.haplo.glm), 3

72

chisq.power, 4
chisq.sample.size (chisq.power), 4

dglm.fit, 5

f.power, 5
f.sample.size (f.power), 5
find.beta.qt.phase.known
(find.haplo.beta.qt), 6
find.haplo.beta.qt, 6, 34
find.intercept.logistic
(haplo.power.cc), 30
find.intercept.qt.phase.known
(find.haplo.beta.qt), 6
fitted.haplo.glm, 7,61

geno.count.pairs, 7, 69
genolto2, 8
get.hapPair, 9

Ginv, 11
glm.control, 26

haplo.binomial (dglm.fit), 5
haplo.cc, 12, 55
haplo.chistat (dglm.fit), 5
haplo.design, 14
haplo.em, 8, 13, 14,15, 19, 24, 31, 34, 37, 40,
55, 64, 67-69
haplo.em.control, 17, 18, 26, 37, 40
haplo.em.fitter, 19
haplo.enum (dglm.fit), 5
haplo.glm, 3,7, 13,20, 26, 61, 67, 69, 70
haplo.glm.control, 24, 25
haplo.group, 13,27, 41
haplo.hash, 28
haplo.model. frame, 24, 29
haplo.power.cc, 30, 34
haplo.power.qt, 31, 32
haplo.scan, 35, 57
haplo.score, 13, 19, 37,41, 44,48, 62

INDEX

haplo.score.glm(dglm.fit), 5
haplo.score.merge, 13,41
haplo.score.podds (dglm.fit), 5
haplo.score.slide, 42, 52
hapPower .demo, 45

hla.demo, 46

locator.haplo, 47
locus, 48, 67,71
louis.info, 49

mf.gindx (dglm.fit), 5
na.geno.keep, 50

plot.haplo.score, 40, 50
plot.haplo.score.slide, 44, 51
plot.seghap, 53, 64
print.haplo.cc, 13, 54
print.haplo.em, 55
print.haplo.glm(haplo.glm), 20
print.haplo.group, 56
print.haplo.scan, 57
print.haplo.score, 40, 57
print.haplo.score.merge, 58
print.haplo.score.slide, 59
print.seghap, 54, 64
print.seghap (seghap), 62
print.summary.haplo.glm

(summary.haplo.glm), 68
printBanner, 59

residScaledGlmFit (dglm.fit), 5
residuals.glm, 61/
residuals.haplo.glm, 60

score.sim.control, 37, 40, 44, 61, 64
seghap, 54, 62

seghap.dat, 65

seghap.pos (seghap.dat), 65
setupGeno, 17, 66

sr.class (dglm.fit), 5

sr.class<- (dglm.fit), 5
summary.haplo.em, 67
summary.haplo.glm, 68
summaryGeno, 8, 69

varfunc.glm.fit (dglm.fit),5
vcov.haplo.glm, 70

x.sexcheck, 70

73

	anova.haplo.glm
	chisq.power
	dglm.fit
	f.power
	find.haplo.beta.qt
	fitted.haplo.glm
	geno.count.pairs
	geno1to2
	get.hapPair
	Ginv
	haplo.cc
	haplo.design
	haplo.em
	haplo.em.control
	haplo.em.fitter
	haplo.glm
	haplo.glm.control
	haplo.group
	haplo.hash
	haplo.model.frame
	haplo.power.cc
	haplo.power.qt
	haplo.scan
	haplo.score
	haplo.score.merge
	haplo.score.slide
	hapPower.demo
	hla.demo
	locator.haplo
	locus
	louis.info
	na.geno.keep
	plot.haplo.score
	plot.haplo.score.slide
	plot.seqhap
	print.haplo.cc
	print.haplo.em
	print.haplo.group
	print.haplo.scan
	print.haplo.score
	print.haplo.score.merge
	print.haplo.score.slide
	printBanner
	residuals.haplo.glm
	score.sim.control
	seqhap
	seqhap.dat
	setupGeno
	summary.haplo.em
	summary.haplo.glm
	summaryGeno
	vcov.haplo.glm
	x.sexcheck
	Index

