

# Package ‘pglm’

February 9, 2026

**Version** 0.2-4

**Date** 2026-02-06

**Title** Panel Generalized Linear Models

**Depends** R (>= 2.10), maxLik, plm

**Imports** statmod, Formula

**Suggests** lmtest, car

**Description** Estimation of panel models for glm-like models:

this includes binomial models (logit and probit), count models (poisson and negbin) and ordered models (logit and probit), as described in:  
Baltagi (2013) Econometric Analysis of Panel Data, ISBN-13:978-1-118-67232-7,  
Hsiao (2014) Analysis of Panel Data <[doi:10.1017/CBO9781139839327](https://doi.org/10.1017/CBO9781139839327)> and  
Croissant and Millo (2018), Panel Data Econometrics with R, ISBN:978-1-118-94918-4.

**License** GPL (>= 2)

**URL** <https://cran.r-project.org/package=pglm>

**NeedsCompilation** no

**Author** Yves Croissant [aut, cre]

**Maintainer** Yves Croissant <[yves.croissant@univ-reunion.fr](mailto:yves.croissant@univ-reunion.fr)>

**Repository** CRAN

**Date/Publication** 2026-02-09 07:20:02 UTC

## Contents

|              |          |
|--------------|----------|
| Fairness     | 2        |
| HealthIns    | 3        |
| PatentsRD    | 4        |
| PatentsRDUS  | 5        |
| pglm         | 6        |
| UnionWage    | 8        |
| <b>Index</b> | <b>9</b> |

---

Fairness*Perveived Fairness of Rules for Allocating Seats in Trains and Parking Spaces*

---

**Description**

observations of 401 individuals  
*number of observations* : 5614  
*country* : France  
*economic topic* : public economics  
*econometrics topic* : ordered response

**Usage**

```
data(Fairness)
```

**Format**

A datafram containing :

**id** the individual index  
**answer** a factor with levels 0 (very unfair), 1 (essentially unfair), 2 (essentially fair) and 3 (very fair)  
**good** one of 'tgv' (French fast train) and 'Parking'  
**rule** the allocation rule, a factor with levels 'peak', 'admin', 'lottery', 'addsupply', 'queuing', 'moral' and 'compensation'  
**driving** does the individual has the driving license ?  
**education** does the individual has a diploma ?  
**recurring** does the allocation problem is reccuring ?

**Source**

provided by the authors.

**References**

Charles Raux, Stephanie Souche and Yves Croissant (2009) "How fair is pricing perceived to be? An empirical study", *Public Choice*, **139**(1), 227-240.

---

|           |                                           |
|-----------|-------------------------------------------|
| HealthIns | <i>Health Insurance and Doctor Visits</i> |
|-----------|-------------------------------------------|

---

### Description

observations of 401 individuals  
*number of observations* : 20186  
*country* : United States  
*economic topic* : Health Economics  
*econometrics topic* : censored dependant variable

### Usage

```
data(HealthIns)
```

### Format

A time serie containing :

**id** the individual index  
**year** the year  
**med** medical expenses  
**mdu** number of face-to face medical visits  
**coins** coinsurance rate  
**disease** count of chronic diseases  
**sex** a factor with level 'male' and 'female'  
**age** the age  
**size** the size of the family  
**child** a factor with levels 'no' and 'yes'

### Source

Manning, W. G., J. P. Newhouse, N. Duan, E. B. Keeler and A. Leibowitz (1987) "Health Insurance and the Demand for Medical Care: Evidence from a Randomized Experiment", *American Economic Review*, **77**(3), 251-277.

Deeb P. , and P.K. Trivedi (2002) "The structure of demand for medical care: latent class versus two-part models", *Journal of Health Economics*, **21**, 601-625..

### References

<https://cameron.econ.ucdavis.edu/musbook/mus.html>.

## Description

annual observations of 181 firms from 1983 to 1991

*number of observations* : 1629

*country* : world

*economic topic* : producer behavior

*econometrics topic* : count data

## Usage

```
data(PatentsRD)
```

## Format

A dataframe containing :

**firm** firm's id

**year** year

**sector** firm's main industry sector, one of aero (aerospace), chem (chemistry), comput (computer), drugs, elec (electricity), food, fuel (fuel and mining), glass, instr (instruments), machin (machinery), metals, other, paper, soft (software), motor (motor vehicles)

**geo** geographic area, one of eu (European Union), japan, usa, rotw (rest of the world)

**patent** numbers of European patent applications

**rdexp** log of R and D expenditures

**spil** log of spillovers

## Source

Cincer, Michele (1997) "Patents, R & D and technological spillovers at the firm level : some evidence from econometric count models for panel data", *Journal of Applied Econometrics*, **12**(3), may–june, 265–280.

## References

Journal of Applied Econometrics data archive : <http://qed.econ.queensu.ca/jae/>.

## Description

yearly observations of 346 production units

*number of observations* : 3460

*country* : United States

*economic topic* : industrial economics

*econometrics topic* : count data

## Usage

```
data(PatentsRDUS)
```

## Format

A dataframe containing :

**cusip** compustat's identifying number for the firm

**year** year

**ardssic** a two-digit code for the applied R&D industrial classification

**scisect** is the firm in the scientific sector ?

**capital72** book value of capital in 1972

**sumpat** the sum of patents applied for between 1972-1979

**rd** R&D spending during the year (in 1972 dollars)

**patents** the number of patents applied for during the year that were eventually granted

## Source

Hall, Browyn, Zvi Griliches and Jerry Hausman (1986) "Patents and R and D: Is there a Lag?", *International Economic Review*, 27, 265-283.

## References

<https://cameron.econ.ucdavis.edu/racd/racddata.html>, chapter 9..

## Description

Estimation by maximum likelihood of glm (binomial and Poisson) and 'glm-like' models (Negbin and ordered) on longitudinal data

## Usage

```
pglm(formula, data, subset, na.action,
      effect = c("individual", "time", "twoways"),
      model = c("random", "pooling", "within", "between"),
      family, other = NULL, index = NULL, start = NULL, R = 20, ...)
```

## Arguments

|           |                                                                                |
|-----------|--------------------------------------------------------------------------------|
| formula   | a symbolic description of the model to be estimated,                           |
| data      | the data: a pdata.frame object or an ordinary data.frame,                      |
| subset    | an optional vector specifying a subset of observations,                        |
| na.action | a function which indicates what should happen when the data contains 'NA's,    |
| effect    | the effects introduced in the model, one of "individual", "time" or "twoways", |
| model     | one of "pooling", "within", "between", "random",,                              |
| family    | the distribution to be used,                                                   |
| other     | for developer's use only,                                                      |
| index     | the index,                                                                     |
| start     | a vector of starting values,                                                   |
| R         | the number of function evaluation for the gaussian quadrature method used,     |
| ...       | further arguments.                                                             |

## Value

An object of class "pglm", a list with elements:

|              |                                                                         |
|--------------|-------------------------------------------------------------------------|
| coefficients | the named vector of coefficients,                                       |
| logLik       | the value of the log-likelihood,                                        |
| hessian      | the hessian of the log-likelihood at convergence,                       |
| gradient     | the gradient of the log-likelihood at convergence,                      |
| call         | the matched call,                                                       |
| est.stat     | some information about the estimation (time used, optimisation method), |
| freq         | the frequency of choice,                                                |
| residuals    | the residuals,                                                          |

```

fitted.values the fitted values,
formula        the formula (a mFormula object),
expanded.formula
                  the formula (a formula object),
model          the model frame used,
index          the index of the choice and of the alternatives.

```

## Author(s)

Yves Croissant

## Examples

```

## an ordered probit example
data('Fairness', package = 'pglm')
Parking <- subset(Fairness, good == 'parking')
op <- pgm(as.numeric(answer) ~ education + rule,
           Parking[1:105, ],
           family = ordinal('probit'), R = 5, print.level = 3,
           method = 'bfgs', index = 'id', model = "random")

## a binomial (probit) example
data('UnionWage', package = 'pglm')
anb <- pgm(union ~ wage + exper + rural, UnionWage, family = binomial('probit'),
           model = "pooling", method = "bfgs", print.level = 3, R = 5)

## a gaussian example on unbalanced panel data
data(Hedonic, package = "plm")
ra <- pgm(mv ~ crim + zn + indus + nox + age + rm, Hedonic, family = gaussian,
          model = "random", print.level = 3, method = "nr", index = "townid")

## some count data models
data("PatentsRDUS", package="pglm")
la <- pgm(patents ~ lag(log(rd), 0:5) + scisect + log(capital72) + factor(year), PatentsRDUS,
           family = negbin, model = "within", print.level = 3, method = "nr",
           index = c('cusip', 'year'))
la <- pgm(patents ~ lag(log(rd), 0:5) + scisect + log(capital72) + factor(year), PatentsRDUS,
           family = poisson, model = "pooling", index = c("cusip", "year"),
           print.level = 0, method="nr")

## a tobit example
data("HealthIns", package="pglm")
HealthIns$med2 <- HealthIns$med / 1000
HealthIns2 <- HealthIns[-2209, ]
set.seed(2)
subs <- sample(1:20186, 200, replace = FALSE)
HealthIns2 <- HealthIns2[subs, ]
la <- pgm(med ~ mdu + disease + age, HealthIns2,
           model = 'random', family = 'tobit', print.level = 0,
           method = 'nr', R = 5)

```

UnionWage

*Unionism and Wage Rate Determination***Description**

yearly observations of 545 individuals from 1980 to 1987

*number of observations* : 4360

*country* : United States

*economic topic* : labor economics

*econometrics topic* : endogeneity

**Usage**

```
data(UnionWage)
```

**Format**

A dataframe containing :

**id** the individual index

**year** the year

**exper** the experience, computed as age - 6 - schooling

**health** does the individual has health disability ?

**hours** the number of hours worked

**married** is the individual married ?

**rural** does the individual lives in a rural area ?

**school** years of schooling

**union** does the wage is set by collective bargaining

**wage** hourly wage in US dollars

**sector** one of agricultural, mining, construction, trade, transportation, finance, businessrepair, personalservice, entertainment, manufacturing, pro.rel.service, pub.admin

**occ** one of proftech, manoffpro, sales, clerical, craftfor, operative, laborfarm, farmlabor, service

**com** one of black, hisp and other

**region** the region, one of NorthEast, NothernCentral, South and other

**Source**

Journal of Applied Econometrics data archive : <http://qed.econ.queensu.ca/jae/>.

**References**

Vella, F. and M. Verbeek (1998) ‘Whose wages do unions raise ? A dynamic model of unionism and wage”, *Journal of Applied Econometrics*, **13**, 163–183.

# Index

## \* datasets

Fairness, [2](#)  
HealthIns, [3](#)  
PatentsRD, [4](#)  
PatentsRDUS, [5](#)  
UnionWage, [8](#)

## \* regression

`pglm`, [6](#)

Fairness, [2](#)

HealthIns, [3](#)

`negbin (pglm)`, [6](#)

`ordinal (pglm)`, [6](#)

PatentsRD, [4](#)

PatentsRDUS, [5](#)

`pglm`, [6](#)

UnionWage, [8](#)