Correspondence discriminant analysis: a multivariate method for comparing classes of protein and nucleic acid sequences

G. Perrière, J.R. Loby1 and J. Thioulouse

Abstract

This report describes two applications of a multivariate method for studying classes of nucleotide or protein sequences: correspondence discriminant analysis (CDA). The first example is the discrimination between Escherichia coli proteins according to their subcellular location (membrane, cytoplasm and periplasm). The high resolution of the method made it possible to predict the subcellular location of E. coli proteins for whom this information is not known. The second example is discrimination between the coding sequences of leading and lagging strands in four bacteria: Mycoplasma genitalium, Haemophilus influenzae, E.coli and Bacillus subtilis. The programs used for computing the analysis are integrated in a publicly available package that runs on MacOS 7.x or Windows 95 operating systems (http://biomserv.univ-lyon1.fr/ADE-4.html). These programs are also accessible through our World Wide Web server (http://biomserv.univ-lyon1.fr/NetMul.html).

Introduction

Discriminant analysis (DA) is a multivariate technique that has been used in sequence analysis to study the properties of protein sequences (Klein et al., 1984), predict splice junctions in mRNA (Nakata et al., 1985; Iida, 1988), discriminate between protein secondary structural segments (Kanehisa, 1988), separate intracellular and extracellular proteins (Nakashima and Nishikawa, 1994), and locate internal exons in human DNA (Solovyev et al., 1994). This report describes the use of an extension of DA, correspondence discriminant analysis (CDA). CDA was initially developed to analyse ecological data (Chessel and Thioulouse, 1996) and is appropriate for comparing individuals belonging to several groups. It is particularly useful for describing how groups differ in terms of variables.

The two examples described show how CDA can be used to study pre-defined groups of protein or nucleic acid sequences. The first example discriminates between proteins according to their subcellular location in Escherichia coli. Multivariate techniques have been employed previously to try to separate proteins according to their location. For example, a study using correspondence analysis (CA) has shown that it is possible to distinguish integral membrane proteins from the others in E.coli (Loby and Gautier, 1994). Another study used DA to show that it is possible to differentiate intracellular from extracellular proteins on the basis of their amino acid composition (Nakashima and Nishikawa, 1994). However, in both cases, the methods used have only produced a partition of the proteins into two groups. This report shows how CDA can distinguish between three classes of proteins, membrane proteins (MP), cytoplasmic proteins (CP) and periplasmic proteins (PP), on a single factorial map. The second example discriminates between coding sequences (CDS) according to their location on the leading or lagging strands of the chromosome for species of bacteria, Mycoplasma genitalium, Haemophilus influenzae, E.coli and Bacillus subtilis. Leading CDS are defined by the fact they are transcribed divergently from the origin of replication, while lagging CDS are transcribed convergently.

Algorithm

CDA is a powerful tool because it combines the advantages of standard CA and DA. Like CA, CDA removes the effect of sequence length and takes into account the global amino acid or codon frequencies. Like DA, CDA takes into account difference in the variability of groups, and the row scores maximize the between-class variance. The method could be thought of as an extension of DA to deal with contingency tables, or as an extension of CA to take into account the belonging of individuals to different groups. CDA is a descriptive method in that it describes how individuals from different groups differ, but it is also a predictive method in that an individual from an unknown group can be tentatively assigned to a group. A complete description of the algorithm can be found in section 5.6 of the ADE-4 documentation (Chessel and Thioulouse, 1996) (ftp://biomserv.univ-lyon1.fr/pub/mac/ADE/ADE4/DocThem/Thema-5.6.hqx).

The first step in a CDA was the computation of a standard CA on the table containing the absolute
frequencies of amino acids or codons. The individuals (proteins or CDS) were ordered in their pre-defined groups within the table. Then CDA itself was then computed. A Monte Carlo test was used to check the significance of the discrimination. This method consisted of repeated random permutations of rows between the pre-defined groups. Once the factor scores for the rows and the columns had been obtained, supplementary individuals were projected into the analysis to assign them to a group. The threshold on a given axis of the analysis T allowing the separation of two classes is equal to:

$$T = \frac{\bar{s}_1 \bar{x}_2 + \bar{s}_2 \bar{x}_1}{\bar{s}_1 + \bar{s}_2}$$

(1)

where \bar{x}_1, \bar{x}_2 and \bar{s}_1, \bar{s}_2 are the averages and standard deviations of the factor scores for the two classes considered. The factor score F_j^k for an individual j on axis k is equal to:

$$F_j^k = \frac{N_{j}}{N_i} \times \sum_{i=1}^{n} \frac{A_i^k \times N_{ij}}{N_i}$$

(2)

where N_{ij} is the number of amino acids or codons i in the individual j, and A_i^k is the factor score of the amino acid or codon i on axis k. The reliability of the assignment was estimated using a cross-validation test. The data set was split randomly into two parts, a training set and a test set. The CDA was computed on the training set and the assignment was carried out on the individuals belonging to the test set.

Implementation

CDA is one of the methods implemented in the ADE-4 package (Thioulouse et al., 1995). This package runs on the MacOS 7.x and Windows 95 systems. Instructions on how to download and use it can be found at http://biomserver.univ-lyon1.fr/ADE-4.html. The ADE-4 modules required to perform CDA are: ADE-Trans, COA, CategVar and Discrimin. The method is also implemented on the NetMul World Wide Web server (Thiouloise and Chevenet, 1996). This server can be reached at http://biomserver.univ-lyon1.fr/NetMul.html. All the analyses presented here were computed on a Macintosh and on the Web server. Factorial map and Gauss curves were drawn on a Macintosh with the ADE graphical modules ScatterClass and Graph1DClass.

Data sets

The initial data set used to study the discrimination of proteins according to their subcellular location was 3472

E.coli proteins from SWISS-PROT release 32 (Bairoch and Apweiler, 1996). Any hypothetical proteins, plasmid proteins, proteins with <50 amino acids, proteins without any indication of their subcellular location in the features, and proteins for which the subcellular location was unsure ('putative', 'potential', 'probable' or 'obtained by similarity') were removed from the dataset. Proteins simply anchored in the inner membrane were not considered. Indeed, in many cases it was not possible to determine whether the unanchored terminal region of the protein lay on the periplasmic or in the cytoplasmic side of the membrane. Of the 413 remaining proteins, 188 (45.5%) were MP, 162 (39.2%) were CP and 63 (15.3%) were PP. Because the subcellular location of MP is more often documented than for the other groups of proteins, MP were over-represented in the dataset compared to their real percentage in E.coli. Lobry and Gautier (1994) estimated that they account for 10%. A total of 1077 proteins matching the conditions given above, except that no subcellular location was given in the SWISS-PROT features, were used as supplementary individuals in the analysis.

The differences in codon usage in leading and lagging strands in M. genitalium, H. influenzae, E.coli and B.subtilis were studied using only large sequences that included the replication origin. For each species, partial CDS and CDS of <50 codons were removed. The complete genome of M. genitalium is available as a single sequence (Fraser et al., 1995) and 466 CDS were extracted from this sequence; 374 (80%) were in the leading group and 92 (20%) in the lagging group. The deviation from the universal genetic code for this species was taken into account when computing codon frequencies. The complete genome of H. influenzae is also available as a single sequence (Fleischmann et al., 1995) and 1647 CDS were extracted, including 883 (54%) in the leading group and 764 (46%) in the lagging group. The 1616 174 bp fragment located between min67.4 and min4.1 of the E.coli chromosome was used (Daniels et al., 1992; Yura et al., 1992; Blattner et al., 1993; Burland et al., 1993; Plunkett et al., 1993; Sofia et al., 1994) and 1416 CDS were extracted; 774 (55%) were in the leading group and 642 (45%) in the lagging group. The 276 699 bp sequence located between degree 348 and degree 12 of the B.subtilis chromosome was used. This sequence (accession number BS0328) was taken from the NRSub database release 7 (Perrière et al., 1996) and 246 CDS were extracted, including 180 (73%) in the leading group and 66 (27%) in the lagging group.

All the data sets presented in this section, as well as the detail of the results obtained in the analyses, can be downloaded through anonymous FTP at ftp://biom3.univ-lyon1.fr/pub/datasets/CAIOS96/.
Results

The factorial map obtained by crossing the two discriminant axes for the proteins showed that MP, PP and CP were well separated from each other (Figure 1). The first axis separated MP from CP and PP. The amino acids with the highest factor scores on this axis (those identifying MP) were Ile, Met, Gln, Val, Leu and Trp (Table I). The second axis separated PP from MP and CP. The amino acids with the highest factor scores on this axis (those identifying PP) were Lys, Pro, Ser, Gln, Asn and Trp. CP were enriched in amino acids that had negative factor scores on the first axis and negative or slightly positive factor scores on the second axis (Cys, His, Glu and Asp). The reliability of the prediction between MP and non-PP (CP + PP) was 89%, and 84% between PP and non-PP (MP + CP), taking into account the number of false negatives and false positives (Table II).

The factor scores and thresholds obtained were used to assign putative subcellular locations to the 1077 proteins for which this information was not given in SWISS-PROT. This resulted in 44 proteins being attached to the MP group, 813 to the CP group and 150 to the PP group. It was not possible to assign a location to the 70 remaining proteins since their scores on both axes were very high, so that they would have been attached to both the MP and CP groups. An example of data reconstitution is given for protein AraJ (accession number P23910) in Table I. This protein is supposed to be involved in the transport of arabinose polymers, its high score on the first axis (1.627) and its low score on the second axis (−0.450) means that it probably belongs to the MP group.

The distribution of the CDS factor scores in the leading and lagging CDS discrimination analysis showed that the leading and lagging groups, for the four species, were separated (Figure 2). The reliability of the predictions, taking into account the number of false negatives and false positives, was 71% in M. genitalium, 66% in H. influenzae, 76% in E. coli and 80% in B. subtilis (Table III). When the discriminant power of synonymous codons was compared, leading CDS were found to be enriched in codons containing keto bases (G and T), while lagging ones were enriched in codons with amino bases (A and C) (Figure 3). There were few exceptions to this general trend, mainly Asn.
Table I. Factor scores for the amino acids on the two axes of the discriminant analysis on 413 \textit{E.coli} proteins and example of protein factor score computation

<table>
<thead>
<tr>
<th></th>
<th>A_i^1</th>
<th>A_i^2</th>
<th>N_i</th>
<th>N_j</th>
<th>$A_i^1N_j/N_i$</th>
<th>$A_i^2N_j/N_i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arg</td>
<td>0.0340</td>
<td>−0.1593</td>
<td>7747</td>
<td>11</td>
<td>0.000048</td>
<td>−0.000226</td>
</tr>
<tr>
<td>Ala</td>
<td>0.0217</td>
<td>−0.0590</td>
<td>16357</td>
<td>49</td>
<td>0.000065</td>
<td>−0.000177</td>
</tr>
<tr>
<td>Gln</td>
<td>0.2314</td>
<td>0.4897</td>
<td>6462</td>
<td>7</td>
<td>0.000251</td>
<td></td>
</tr>
<tr>
<td>Cys</td>
<td>−0.1180</td>
<td>−0.2125</td>
<td>1399</td>
<td>5</td>
<td>−0.000422</td>
<td>−0.000759</td>
</tr>
<tr>
<td>Leu</td>
<td>0.2204</td>
<td>−0.2785</td>
<td>17445</td>
<td>57</td>
<td>0.000720</td>
<td>−0.000910</td>
</tr>
<tr>
<td>Gly</td>
<td>0.1629</td>
<td>−0.2136</td>
<td>13134</td>
<td>44</td>
<td>0.000546</td>
<td>−0.000722</td>
</tr>
<tr>
<td>His</td>
<td>−0.4639</td>
<td>−0.0874</td>
<td>3206</td>
<td>5</td>
<td>−0.000723</td>
<td>−0.000136</td>
</tr>
<tr>
<td>Phe</td>
<td>0.1551</td>
<td>−0.4360</td>
<td>7608</td>
<td>29</td>
<td>0.000591</td>
<td>−0.001662</td>
</tr>
<tr>
<td>Ser</td>
<td>0.1495</td>
<td>0.5643</td>
<td>9341</td>
<td>28</td>
<td>0.000448</td>
<td>0.001691</td>
</tr>
<tr>
<td>Val</td>
<td>0.2205</td>
<td>−0.0015</td>
<td>12591</td>
<td>28</td>
<td>0.000490</td>
<td>−0.000003</td>
</tr>
<tr>
<td>Glu</td>
<td>−0.7657</td>
<td>−1.4502</td>
<td>8648</td>
<td>7</td>
<td>−0.000620</td>
<td>−0.001174</td>
</tr>
<tr>
<td>Ile</td>
<td>0.4381</td>
<td>−0.8031</td>
<td>10431</td>
<td>28</td>
<td>0.001176</td>
<td>−0.002156</td>
</tr>
<tr>
<td>Thr</td>
<td>0.1193</td>
<td>0.0581</td>
<td>8950</td>
<td>15</td>
<td>0.000200</td>
<td>0.000097</td>
</tr>
<tr>
<td>Lys</td>
<td>−0.1495</td>
<td>1.5349</td>
<td>7422</td>
<td>12</td>
<td>−0.000242</td>
<td>0.002482</td>
</tr>
<tr>
<td>Asp</td>
<td>−0.8567</td>
<td>−0.2267</td>
<td>7972</td>
<td>4</td>
<td>−0.000430</td>
<td>−0.000114</td>
</tr>
<tr>
<td>Met</td>
<td>0.2481</td>
<td>0.0760</td>
<td>5139</td>
<td>22</td>
<td>0.001062</td>
<td>0.000325</td>
</tr>
<tr>
<td>Pro</td>
<td>−0.1939</td>
<td>0.9525</td>
<td>7083</td>
<td>14</td>
<td>−0.000383</td>
<td>0.001833</td>
</tr>
<tr>
<td>Asn</td>
<td>0.1525</td>
<td>0.3277</td>
<td>6253</td>
<td>10</td>
<td>0.000244</td>
<td>0.000524</td>
</tr>
<tr>
<td>Tyr</td>
<td>0.1847</td>
<td>−0.2869</td>
<td>4909</td>
<td>15</td>
<td>0.000564</td>
<td>−0.000877</td>
</tr>
<tr>
<td>Trp</td>
<td>0.2095</td>
<td>0.2137</td>
<td>2782</td>
<td>4</td>
<td>0.000301</td>
<td>0.000307</td>
</tr>
<tr>
<td>Σ</td>
<td></td>
<td></td>
<td>164879</td>
<td>394</td>
<td>0.003887</td>
<td>−0.001076</td>
</tr>
</tbody>
</table>

F^*

Columns A_i^1 and A_i^2 contain the amino acid factor scores on the two discriminant axes, N_i contains the absolute amino acid frequencies in the whole data set, and N_j contains the absolute amino acid frequencies in protein AraI (P23910). The factor score of AraI on the two axes of the analysis is computed using equation (2), with N_i and N_j, respectively, equal to the sum of the N_i and the N_j columns of the table. The threshold value between MP/non-MP is equal to −0.024 and the threshold value between PP/non-PP is equal to 0.617.

Discussion

Discrimination between proteins

The enrichment of MP in Ile, Met, Val, Leu was not surprising, as these proteins are known to be highly hydrophobic (Engelman et al., 1986). The identification of CP by His, Glu and Asp is understandable as these amino acids are charged, and so are avoided in membrane and exported proteins. The relatively high number of Pro, Ser, Gln, Asn and Trp in PP could be, as proposed by Nakashima and Nishikawa (1994), because these amino acids slow the folding of proteins, and slow folding is required for exported proteins. Indeed, peptides can only be transported across the membrane in their unfolded state. More surprising is the large number of Lys in PP, as this amino acid is polar, and so should be avoided in proteins that are transported across the membrane (Engelman et al., 1986).

The excellent discrimination between the groups of proteins on the two axes indicates that CDA can be used to predict the subcellular locations of proteins for which this information is not available. The best method available for discriminating MP from non-MP is probably the one published by Klein et al. (1985). The technique is a DA of protein sequence characteristics (such as maximum local hydrophobicity), and its accuracy is 95%. The resolution of our method is slightly lower (89%), and this small difference is probably due to the fact that we used only the amino acid composition to separate the proteins. Nakai and Kanehisa (1991) have developed an expert system for PP discrimination that uses amino acid composition data and which can identify these proteins with a reliability of 83%. Our analysis gives equivalent results (84%). The advantage of our approach is that discrimination between the three classes is done in a single analysis, while the preceding methods only separate the proteins into two groups.

Discrimination between CDS

CDA discriminated between leading and lagging CDS,
Despite the small difference in codon usage between the two groups (Lobry, 1996). The reason for this difference is not known, but it is probably the result of asymmetrical substitution patterns in the two DNA strands (Lobry, 1995). Asymmetries are generated by transcription-coupled repair in enterobacterial genes (Schaaper et al., 1987; Francino et al., 1996), but the reason why the effect on leading and lagging CDS should be different is still unclear. The salient feature emerging from the present result is that the relative enrichment of keto bases in leading CDS and amino bases in lagging CDS is common to the four bacterial species studied. This suggests that the underlying mechanism is ancient and has been conserved on an evolutionary time scale.

Other possible uses of CDA

The use of CDA is not limited to the examples given here. CDA is a good complement to CA in studies comparing codon usage or amino acid usage between different species. Codon usage in vertebrates is heterogeneous and varies greatly depending on the region of the genome studied (Bernardi et al., 1985). Hence, CA cannot be used to compare codon usage in orthologous genes in these species, as the between-species differences will often be indistinguishable from the within-species differences. However, CDA takes advantage of the a priori knowledge of the species to find the linear combination of codons...
allowing discrimination between genes. Similarly, CDA can be used to compare amino acid usage in orthologous genes of different organisms.

Acknowledgements

We thank Daniel Chessel, University of Lyon, who developed CDA, and one of the anonymous referees for useful comments.

References

Received on May 2, 1996; revised and accepted on July 8, 1996.