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A Multivariate Approach to Integrating
Datasets using made4 and ade4
by Aedín C. Culhane and Jean Thioulouse

The public microarray repositories, ArrayExpress
and the GeneExpression Omnibus (GEO), now con-
tain over 100,000 microarray gene expression profiles
(Table 1). This is a considerable data resource.

However the average number of arrays per
study is only between 30 and 40 (Table 1). Given
that the number of features (genes) on microar-
rays now exceeds 50,000, this presents a consid-
erable dimensionality problem. Low case to fea-
ture ratio is likely to remain an issue, as cost and
availability of biomaterial, such as biopsy tissue,
are often limiting. As a result, meta-analysis or
merging data from multiple studies is attractive.

Table 1. Public Microarray Databasesa

Database Arrays Studies
ArrayExpressb 44,602 1,487
GEOc 87,073 2,353

aStatistics: ArrayExpress (June 2006), GEO (5 July 2006)
bhttp://www.ebi.ac.uk/arrayexpress/
chttp://www.ncbi.nlm.nih.gov/geo/

Unfortunately, matching of variables (gene
probes) from different microarray technologies is
challenging. Numerous microarray platforms have
been developed and a number of studies have re-
ported disappointingly low correlations between
different technologies. Matching of probes by their
DNA sequence reduces cross-platform inconsis-
tency (Carter et al., 2005), and functions to per-
form sequence matching are available in the Bio-
conductor package matchprobes. EnsEMBL align-
ments of DNA probe sequences to the human and
other genomes can be retrieved using the pack-
age biomaRt. However even the performance of
matched probes may vary across platforms. These
differences may be due to real biological effects
where probes on different platforms detect different
splice variants or homologues of a gene.

A different approach is simply to examine genes
or cases with covariant trends across matched
datasets. We have described the application of co-
inertia analysis (CIA) for visualization and analysis
of such trends across microarray datasets (Culhane
et al., 2003). Functions to perform these analyses are
provided in the Bioconductor package made4 (Cul-
hane et al., 2005). made4 is an extension to ade4
(Thioulouse et al., 1997; Chessel et al., 2004), an ex-
tensive R package for multivariate analysis of eco-
logical data.

Our multivariate approach for cross-platform
analysis of microarray data may be easily applied to

heterogeneous datasets. Increasingly, microarray ex-
periments are performed in parallel with proteomics,
metabolomics or other high throughput array tech-
nologies. Typically the identity of peaks or spots
in proteomics or metabolomics data is unknown.
Therefore mapping probes, spots or peaks across
datasets is not possible. In analysis of these data, we
are simply exploring features (peaks or spots) that
have similar trends across datasets and are correlated
with a covariate of interest. CIA is suitable for such
an analysis.

We will describe the application of CIA to cross-
platform visualization of microarray data and other
functions in made4 and ade4 for multivariate analy-
sis of biological datasets.

Co-inertia analysis

CIA is a multivariate analysis method that describes
the relationship between two data tables (Dray et al.,
2003). It can be used on quantitative, qualitative or
distance matrices. Classical methods, like principal
component (PCA) or correspondence analysis (CA),
aim at summarizing a table by searching orthogonal
axes on which the projection of the sampling points
(cases) have the highest possible variance. This char-
acteristic ensures that the associated graphs (factor
maps) best represent the initial data (see Figure 1).

To extract information common to two tables,
canonical analysis (CANCOR, Gittins, 1985) searches
successive pairs of axes (one for each table) with a
maximum correlation. The problem is that this anal-
ysis may lead to axes with high correlation, but low
percentages of explained variance. This means that it
will be difficult to give a biological interpretation to
these axes. To overcome this difficulty, CIA searches
for pairs of axes with maximum covariance (instead
of correlation). This ensures that CIA axes will have
both a high correlation and also good percentages
of explained variance for each table. Computations
are based on the cross table between the variables of
the two tables. The importance of each axis is given
by the percentage of total co-inertia, which is similar
to the percentage of explained variance for canonical
axes.

CIA has been successfully applied to visual-
ization of cross-platform relationships between mi-
croarray datasets (Culhane et al., 2003). CIA is an at-
tractive approach as it can be applied to data where
the number of variables (genes) far exceeds the num-
ber of cases, as seen in microarray data. Given data
with such low sample size, CANCOR cannot be used
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and canonical correspondence analysis (Ter Braak,
1986) is reduced to a plain CA (Dray et al., 2003).

Monte-Carlo tests can be used to check the sig-
nificance of the relationship between the two tables.
The method consists of performing many random
permutation of the cases (arrays), followed by the re-
computation of the total co-inertia. By comparing the
total co-inertia obtained in the normal analysis with
the co-inertias obtained after randomization, one can
estimate the probability of the observed relationship
between the tables.

PCA or CA of microarray data

PCA and CA are well suited to exploratory analysis
of microarray data, and complement popular cluster-
ing approaches. While clustering investigates pair-
wise distances among objects highlighting fine rela-
tionships, PCA and CA examine the variance of the
whole dataset highlighting general trends and gra-
dients (reviewed by Brazma and Culhane, 2005). To
perform a PCA or CA on a microarray dataset using
made4, use the function ord.

To illustrate we apply CA to a microarray gene
expression profiling study of 4 childhood tumors
(NB, BL-NHL, EWS, RMS; Khan et al., 2001). A sub-
set of these expression data (khan$train, 306 genes
x 64 cases), a factor describing the class of each case
(khan$train.classes, length=64) and a data frame
of gene annotation are available in dataset khan in
made4.

library(made4)
data(khan)
dataset = khan$train
fac = khan$train.classes
geneSym = khan$annotation$Symbol

results.coa <- ord(dataset, type="coa")
par(mfrow= c(1,2))
plotarrays(results.coa, classvec=fac)
plotgenes(results.coa, genelabels= geneSym)

 d = 0.5 

●
●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●●

●
●

●

●

●

● ●
●

●●

●

●
●

●

●

●

●●

●
●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

 EWS 

 BL−NHL 

 NB 

 RMS 

Arrays

 d = 0.5 

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

 LYN 

 TNNT2  IGF2 

 AIF1 

 − 
 MYL4  IGF2 

 HCLS1 
 ELF1  HLA−DMA 

 TNNT1 

 CDKN3 
 ISG20  BUB1  MME 

 COL3A1 

 PRKAR2B 
 − 

 FNDC5 

 MYC 

 METAP2 
 GSTM5 

 TNA  CAV1 
 TLE2 

 TUBB5 

 TNFAIP6 

 MYC 

 PTPN13 

 LOXL2 

 FCGRT 
 OLFM1 

 GYG2 

 NFIX  FVT1 

Genes

Figure 1: CA of a 306 gene subset of Khan dataset
(Khan et al., 2001). A) Plot of arrays B) Plot of genes.
The further a gene and case are projected in the same
direction from the origin, the stronger association be-
tween that gene and case (gene is upregulated in that
array sample).

Cross-platform analysis using CIA

To perform CIA, objects in the dataset must be
"matchable". For example, where multiple studies
are performed on the same samples, CIA can detect
co-varying patterns across datasets. If the cases are
matched, there is no constraint to match the variables
(genes) and the number of variables in each dataset
may differ.

In Example 2, we examine a panel of 60 cell lines
from the National Cancer Institute (NCI60) that have
been subjected to gene expression profiling using
Affymetrix (Staunton et al., 2001) and spotted cDNA
(Ross et al., 2000) arrays. We apply cia to subsets of
these 2 datasets which are available in made4.

data(NCI60)
names(NCI60)
[1] "Ross" "Affy" "classes" "Annot"

fac = NCI60$classes[,2]
results.cia = cia(NCI60$Affy, NCI60$Ross)
par(mfrow=c(1,2))
plotarrays(results.cia, clabel=0)
plotarrays(results.cia, clabel=0,

classvec=fac)

In Figure 2, matched cases are joined by a line. If
two cases (arrays) have similar profiles, they will be
projected close together. Therefore, the shorter the
length of connecting line the greater the correlation.
In Figure 2B, one green case is represented by a long
line, indicating a large cross-platform difference be-
tween the two expression profiles for this cell line.
This may suggest a quality issue in one dataset.
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Figure 2: CIA of NCI60 datasets Affy (closed circles)
and Ross (arrows). B). Same as A) but cases are col-
ored by class (cancer cell line phenotype). Further
details and interpretation in Culhane (2003).

CIA using "matched" genes

Equally CIA could be performed on variables
(genes). Visualization of matched genes across plat-
forms is often useful when there is a one:many match
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of gene probes. On older arrays, a gene was gen-
erally only represented by one probe, but on recent
microarrays a gene maybe represented by 5 or more
probes (or probesets). In Example 3, we examine
microarray studies of acute lymphoblastic leukemia
(ALL) using older hu6800 (Golub et al., 1999) or more
recent u95av2 (Chiaretti et al., 2004) Affymetrix ar-
rays. These datasets are available in Bioconductor
packages golubEsets and ALL.

library(affy)
library(ALL)
data(ALL)
ALL.fac <- substring(ALL$BT,1,1)
library(golubEsets)
data(Golub_Train)
golub <- Golub_Train[,1:27] #ALL data
golub.data <- exprs(golub)
#footnote 1
golub.data[] <- as.double(golub.data)
golub.fac <-golub$T.B.cell

We performed a t-test on the Golub data, using
rowttests in the genefilter package, to select genes
which were significantly (P<0.001) associated with T-
cell or B-cell ALL.

library(genefilter)
ttests <- rowttests(golub.data,golub.fac)
nsignf <- sum(ttests$p.val < 0.001)
topGeneInd <- order(ttests$p.val)[1:nsignf]
ttests.signf <-

rownames(golub.data)[topGeneInd]

There were 109 significant gene probes on the
hu6800 arrays, which were matched to genes on the
u95av2 using biomaRt.

library(biomaRt)
mart <- useMart("ensembl", mysql=TRUE)
mart <- useDataset("hsapiens_gene_ensembl",

mart)
pRef <- getBM(attributes="affy_hg_u95av2",

values=ttests.signf,
filters="affy_hugenefl",
mart=mart)

anyNA <- function(x) any(is.na(x))
pRef <- pRef[!apply(pRef, 1, anyNA), ]
dupSet <- function(x, a)

subset(x, a %in% a[duplicated(a)])
pMany <- dupSet(pRef, pRef$affy_hugenefl)

Of the 109 hu6800 probesets, 96 mapped to 133
u95av2 probesets. Therefore 29 hu6800 probesets
mapped to more than 1 u95av2 probesets. These
29:66 "one to many" matches were examined using
cia.

hu6800set <-
exprs(golub[pMany$affy_hugenefl, ])

u95av2set <-
exprs(ALL[pMany$affy_hg_u95av2, ])

cia.out <- cia(t(hu6800set), t(u95av2set))
coordVar1 <- cia.out$coinertia$co
coordVar2 <- cia.out$coinertia$li
par(mfrow=c(2, 2))
plotarrays(cia.out, sub="Genes")
plotarrays(cia.out, clabel=0,

classvec=pMany$affy_hugenefl)
plotarrays(coordVar1, classvec=golub.fac)
plotarrays(coordVar2, classvec=ALL.fac)

In Figure 3 we observe that the probesets selected
using the older hu6800 platform, do appear to dis-
criminate B and T cells expression profiles on u95av2
arrays. However it appears that only a few gene
probes contribute a significant amount of variance
across both datasets.
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Figure 3: CIA of a set of genes in golub and ALL
datasets. Projection of probesets A) with and B) with-
out hu6800 probe labels, and arrays C),D).

One nice feature of this analysis is that one:many
probeset matches are clearly visualised. For exam-
ple, M13560_s_at, X58529_at, X00437_s_at have 2
matches on the hgu95av2 platform. We can see that
only one M13560_s_at u95av2 probeset matches has
a high loading on the B-cell end of axis 1 (horizontal),
indicating that the expression of only one of these
probesets agrees with the older hu6800 array.

1This processing is only required with golubEset and is not nor-
mal processing of ExpressionSet datasets
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Combining microarray data with
gene sequence information

We have also used CIA to integrate microarray data
with counts of motif occurrences in gene promoters,
to discover which promoter motifs are most associ-
ated with the main patterns of gene expression in a
dataset (Jeffery et al., 2007). We have also extended
this approach using between group analysis (Cul-
hane et al., 2002), a supervised method where group-
ings of arrays or tissues of a-priori interest are con-
trasted with the rest. Using between group CIA, we
identify gene motifs (or other gene features) that are
most associated with a gene expression classifier (Jef-
fery et al., 2007).

Using ade4 codon usage may be investigated us-
ing internal correspondence analysis, a variant of
between groups and within groups analyses (Lo-
bry and Chessel, 2003). CIA has also been ap-
plied to study the relationships between amino-acid
physico-chemical properties and protein composi-
tion (Thioulouse and Lobry, 1995). These analyses
maybe facilitated using the seqinr package (Charif
et al., 2005). seqinr is an interface between R and the
ACNUC (Gouy et al., 1985) sequence retrieval sys-
tem for nucleotide and protein sequence databases
such as GenBank, EMBL and SWISS-PROT.

Although we have only described analysis of 2 ta-
bles, many other multivariate analysis methods are
available in ade4, which are easily extended using
the duality diagram (class dudi) (Chessel et al., 2004).
There are several functions for analysis of three-way
or multiple tables (class ktab class, and functions
sepan, statis, pta, mcoa, mfa, foucart). Distance ma-
trices can be integrated in this framework through
principal coordinates analysis (dudi.pco function),
and the kdist class in the case of k distance matrices
measured on the same individuals.

GUIs : ade4TkGUI, Rweb

The made4 package was created to ease the use
of multivariate data analysis of microarray gene-
expression data. Indeed, it has two main advantages:
it is an interface between the ade4 package and Bio-
conductor data objects and classes, and it provides
wrapper functions to simplify the use of multivari-
ate analysis functions implemented in ade4.

Another approach to the simplification is the use
of a graphical user interface (GUI). A new package
(ade4TkGUI) has been developed using the tcltk
package to provide a GUI to ade4. This GUI has two
special features. The first one is a centralized graph-
ical display of ade4 dudi objects). The second one
is a dynamic view of factor maps, allowing explo-
ration of sample and variable sets by way of zoom-
ing, panning, and searching on labels. An Rweb in-
terface to seqinr and ade4 multivariate analysis is

also available (http://pbil.univ-lyon1.fr/Rweb/
Rweb.general.html).

Summary

The Bioconductor package made4 facilitates multi-
variate analysis of microarray data, and builds on
extensive experience of multivariate data analysis in
ecology. Multivariate data analysis methods pro-
vide many useful tools to extract meaningful biolog-
ical information from these large data sets. Some-
times, these methods are overlooked because they
are thought to be complicated and subject to barely
met application hypotheses. This is partly true in the
framework of the Gaussian approximation model of
multivariate analysis. But the geometric model (for
example Le Roux and Rouanet, 2004), and the dual-
ity diagram (Holmes, 2006) lift most of these assump-
tions.
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Using amap and ctc Packages for Huge
Clustering
by Antoine Lucas and Sylvain Jasson

Introduction

Huge clustering is often required in the field of DNA
microarray (DeRisi et al., 1997) analysis. A new use
of clustering results appears with presentation and
exploration software like TreeView (Eisen et al., 1998).

DNA microarray is the most appropriate method
for high throughput gene studies, allowing expres-
sion evaluation of vast gene numbers in differ-
ent cells types or conditions. From a technical
point of view, microarray analysis first needs im-
age processing (for example Imagene (http://www.
biodiscovery.com), BZScan (Lopez et al., 2004) or
ScanAlyze (Eisen et al., 1998)) that gives large tables

of data, followed by statistical processing including
data normalization.

A main goal of microarray analysis is to detect co-
regulated genes presenting similar expression pro-
files, which can be achieved by various classification
techniques. In this area, hierarchical clustering is of
special interest as it allows multi-scale cluster visual-
ization.

Some R extensions provide efficient clustering
tools (mainly: stats and cluster; Struyf et al., 1997).
The packages amap and ctc aim to complete the set
of clustering tools for R with:

• Additional features to standard clustering
functions.

• A novel PCA method, robust to extreme values.
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