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Abstract. ‘The design and objective of a community study imply the selection of the
appropriate ordination technique in terms of species response models and weighting options.
In this paper, we start from the observation that existing two-table ordination techniques
and related measures of niche breadth inevitably weight a sample in proportion to its
abundance. We introduce a new multivariate method, which gives a more even weight to
all sampling units, including those which are species poor or individual poor. We use this
new method of analysis which we call OMI (for Outlying Mean Index) to address the
question of niche separation and niche breadth. The Outlying Mean Index, or species
marginality, measures the distance between the mean habitat conditions used by species
(species centroid), and the mean habitat conditions of the sampling area (origin of the niche
hyperspace), and OMI analysis places species along habitat conditions using a maximization
of their mean OMI. Therefore, the position of the species depends on their niche deviation
from a reference, which represents neither the mean nor the most abundant species, but a
theoretical ubiquitous species that tolerates the most general habitat conditions (i.e., a
hypothetical species uniformly distributed among habitat conditions). We demonstrate that
OMI analysis is well suited for the investigation of multidimensional niche breadths in the
case of strong limiting factors (e.g., meteorological conditions) or strong driving forces
(e.g., longitudinal stream gradient). Furthermore, the analysis helps in finding which eco-
logical factors are most important for community structure and organization and provides

a separation of species based on their niche characteristics.
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INTRODUCTION

The niche concept as defined by Hutchinson (1957)
is considered a cornerstone in ecology (Begon et al.
1996). This concept usually considers the ecological
niche of a species as an n-dimensional hypervolume
within which the populations of a species can persist.
Habitat gradients and functional relationships among
species (Whittaker et al. 1973) define this niche hy-
pervolume. The niche concept led authors to promote
several measurements for niche separation and niche
breadth (Hurlbert 1978). For example, Colwell and Fu-
tuyma (1971) estimated niche breadth by measuring
the uniformity of individual distribution among a set
of resource states (ecological categories). Feinsinger et
al. (1981) quantified niche breadth using a proportional
similarity index. Such index measures the similarity
between the frequency distribution of resources that
are available and used by the individuals of a popu-
lation.

Community studies usually focus on environmental
gradients and refer to niches as differential habitat pref-
erences of species (ter Braak and Verdonschot 1995).
Such studies postulate that pairs of sampling units
(SUs), which are similar in terms of physical and chem-
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ical characteristics, should support similar species
composition. In that context, observational approaches
exploring the relationships between community struc-
ture and environmental gradients received much inter-
est (e.g., Rodriguez and Magnan 1995). In addition,
the ecological application of multivariate analyses in-
creased as well. Ordination techniques are fundamen-
tally well designed to investigate hyperspaces (Austin
1985, Grossman et al. 1991) and species—environment
relationships (Dolédec and Chessel 1994, ter Braak
1994). For example, Green (1971, 1974) applied mul-
tiple discriminant analysis to identify ecological factors
that separated the niches of mollusk species. The author
used the standard deviation of scores on a discriminant
axis as a measure of niche breadth and the extension
of 50% probability ellipses as an index of niche over-
lap. Following this approach, Dueser and Shugart
(1979) used 95% ellipse confidence to demonstrate the
niche breadth of small mammals. The authors indicated
that, for a given species, the average distance of the
observations from the origin of the discriminant space
was a reliable measure of its niche position relative to
the average habitat conditions. Van Horne and Ford
(1982) pointed out that the use of a discriminant space
was not valid since the most abundant species were the
most important to define this discriminant space. Fi-
nally, Carnes and Slade (1982) suggested computing
the standard deviation of canonical scores as niche
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breadth. The authors recommended calculating an in-
dex of niche specialization, i.e., the distance from the
overall mean habitat, using equal weighting of sam-
pling sites.

Among available multivariate techniques, corre-
spondence analysis (CA; Hill 1974), also known as
reciprocal averaging (RA; Hill 1973), is an ordination
technique for investigating the separation of species
niches or the ecological amplitude of species (Chessel
et al. 1982, Thioulouse and Chessel 1992). From this
analysis, ter Braak (1986) further developed a multi-
variate technique explicitly devoted to niche separation
along environmental gradients known as canonical cor-
respondence analysis (CCA). CCA was especially de-
signed to extract the best combination of environmental
variables (synthetic gradient) that maximizes the var-
iance of the weighted average species positions (‘‘niche
centroids”’). Pappas and Stoermer (1997) recently ini-
tiated a measure of multidimensional niche overlap
based on species scores resulting from CCA. This mul-
tivariate direct gradient analysis received a widespread
interest (see a review in Birks et al. 1996) despite its
sensitivity to noisy environmental data (McCune
1997). Chessel et al. (1987), Lebreton et al. (1988),
and ter Braak and Verdonshoot (1995) recognized the
formal equivalence between CCA and discriminant
analysis and emphasized that Green’s analysis was a
pioneering approach over ecological literature on com-
munity ordination.

CCA best suits the investigation of the unimodal
species responses (Fig. 1a) to the environment (Palm-
er 1993). In addition, CCA implies that the importance
of environmental measurements is proportional to the
number of individuals per site. In other words, sites
with more individuals will play a greater role. In con-
trast, redundancy analysis (RDA implemented in
CANOCO:; ter Braak 1987), also known as principal
component analysis with respect to instrumental var-
iables (Sabatier et al. 1989, Lebreton et al. 1991),
assumes linear response to environment. RDA thus
estimates the response curves of species by straight
lines (Fig. 1b). Consequently the selection of RDA or
CCA implies the selection of an either linear or un-
imodal model for the species response to the envi-
ronment. In reality, however, community studies usu-
ally face a mixture of response models (Fig. Ic).
Moreover, in case of limiting factor, the abundance
patterns of species imply that the above traditional
eigenanalyses hardly account for species-poor or in-
dividual-poor samples. As a result, there is a need for
a method that addresses the various responses of the
species to the environment and at the same time gives
a fair vote to all sampling units.

In this paper, we start from the works of Perrin
(1984) on terrestrial mollusks and Hausser (1995) on
mammals. These authors investigated the geographi-
cal distribution of species by identifying which cri-
teria cause a species to select a given habitat among
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(a)

FiG. 1.

Study of species—environment relationships. Ma-
trix Z is the environmental data set. Matrix Y is the faunistic/
floristic data set (species composition). The x-axes of graphs
(a) and (b) represent synthetic gradients that combine several
environmental variables. (a) The response curves of species
j and k are unimodal, thus implying the use of canonical
correspondence analysis (CCA). (b) The response curve of
species j and k are close to a straight line because of a strong
limiting factor at the lower end of the x gradient. This situ-
ation implies the use of redundancy analysis (RDA). (c) The
typical conditions faced in gradient studies, with species hav-
ing unimodal or only a part of this unimodal response curves
(i.e., almost linear responses) included. This situation rep-
resents a typical case for using OMI analysis.

others, i.e., specialization criteria. We especially give
a focus on a specialization criterion called margin-
ality, which measures the distance between the av-
erage habitat conditions used by a species and the
average habitat conditions of the sampling area (Haus-
ser 1995). Here, we shift the emphasis from one spe-
cies to species assemblages and we propose a new
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multivariate technique explicitly based on the eval-
uation of the marginality of species that we call OMI
(for Outlying Mean Index) analysis, or niche analysis
for relating species assemblages to their environment.
This new approach, which attempts to give a more
even weight to all SUs even if they are species poor
or individual poor, rather suits the diversity of the
species responses to the environment. We compare the
usefulness of the method to that of traditional eigen-
analyses using a case of an ecological factor that fa-
vors the abundance of several species (e.g., meteo-
rological conditions), and a case of a strong driving
force for the abundance of several species (e.g., lon-
gitudinal stream gradient).

THE SAMPLING UNIT WEIGHT OPTIONS

Let us consider two tables: an environmental table
Z and a faunistic table Y. The environmental table Z
(n X p) contains the measurements of p variables (as
columns) in a set of n SUs (as rows). The species-
composition table Y (rn X £) contains the abundance of
t species (as columns) in the same SUs (as rows). Table
Y can be analyzed by CA using the following notation:

t n t
Vi = Z Vi Yy = Z Yy Y= 21 ¥,
Jj= i= j=

which represents the row totals, the column totals and
the overall total of the species-composition table re-
spectively.

As a result, in CA, the SU and species weights are
computed respectively as:

fl-.=-y—"—' f.,-=& l=si=snl=sj=st
y.. Y.

Thereby, a traditional option is to weight the average
position of species j by its relative abundance (f.), i.e.,
the accuracy of the position of species j is proportional
to its frequency. Moreover, the SU weighting (f..) in-
volves a greater weight for SU’s having many abundant
species. The study of table Y may require such weight-
ing options in case of unequal sampling effort. Existing
two-table ordination techniques such as CCA routinely
weight SUs in proportion to their abundance vector. In
that case, means and variances of the environmental
variables (table Z) are usually computed using the SU
weighting (f.). Therefore, the selection of this weight-
ing option implies that the importance of an environ-
mental variable in a site appears to be proportional to
the number of individuals collected at this site. As a
result, traditional eigenanalyses using the above
weighting option will scarcely include sites of limiting
values (e.g., limited resource state, toxic pollution)
since these sites have fewer species that include a fewer
proportion of individuals.

MARGINALITY AND TOLERANCE

In the subsequent sections, we consider the analysis
of the environmental table Z (n X p) independently
from that of the faunistic table Y.
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Let the environmental table Z be analyzed by a PCA
on a correlation matrix. Let Z, (n X p) contains the
resulting standardized data (Fig. 2a). The center of
gravity (G in Fig. 2a) of SUs is at the origin of the
axes of this analysis and corresponds to the overall
mean habitat. Let M, represent SU i of table Z, in the
multidimensional space R? (Fig. 2a). The total inertia
of table Z, equals

I = 2 plIMIE, M
with p; being the weight of SU i.

Let the faunistic table Y (rn X f) be transformed into
a species profile table (noted as F in Fig. 2a) that con-
tains the species proportions among SUs

_%
Yo
with y; as the abundance of species j in SU i and y,;

as the column total of species j. The inertia of species
J is represented by the equation

i

L) = 2 full M, @
This inertia represents the total inertia of the table Z,
weighted by the profile of species j (Fig. 2b). Conse-
quently, SUs that do not contain species j do not con-
tribute to the inertia of species j.

Let us consider now an I -normed vector u ([ulff =
1). The operation of projection of the rows of table Z,
onto vector u results in a vector of coordinates Zgu.

Consequently, the average position of species j on
u (or center of gravity of species j) is defined as

T, = f7Zyu T = (fl/ja ey .fi/ja RN fn/j)' 3)

From Eq. 3, the marginality or outlying mean index of
species j [noted m,(j)] along u is calculated by

m(j) = T} = €| Zou} = ZJu|f}. @

This marginality represents the deviation of the average
position of species j from the origin (G). This is, thus,
a measure of the distance between the average habitat
conditions used by species j and the average habitat
conditions of the sampling area.

From Egq. 4, the solution for u that maximizes m,(j) is

VA%
u, = . &)}
T Z5 A,

Vector u;, thus, defines the direction (marginality axis
of species j represented by a thick line in Fig. 2a) for
which the average position of species j (noted G; in
Fig. 2a) is as far as possible from the origin.

The dispersion of SUs that contain species j can be
addressed as well. Let m; be the projection of M, onto
the marginality axis. We denote the tolerance T,,(j) of
species j by
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T.(j)) = 21 fi/j”Gj - mz”lzp (©6)

which represents a measurement of the niche breadth
of species j associated with the environmental variables
of Z,.

In addition, a subspace is defined orthogonally to the
marginality axis. The projection of SUs on the plane
orthogonal to the marginality axis (Fig. 2d) yields a
residual tolerance noted 7,(j). This residual tolerance
represents the variance in the species niche that is not
taken into account by the marginality axis.

Finally, the application of the Pythagorean theorem
with Egs. 2, 4, and 6 allows the following decompo-
sition:

I(j) = m(j) + T.(j) + T.(j). @

As a consequence, the variability of the niche of species
j is decomposed into three components: (1) an index
of marginality, i.e., the average distance of species j
to the uniform distribution; (2) an index of tolerance
or niche breadth; and (3) a residual tolerance, i.e., an
index that helps to determine the reliability of a set of
environmental conditions for the definition of the niche
of species j. This decomposition for one species is cen-
tral in the work of Hausser (1995). We hereunder ex-
pand these findings to the multispecific case.

~

PRINCIPLE OF THE OMI ANALYSIS

Basically, OMI analysis searches for a middle course
among the marginality axes of each individual species
in the assemblage. This eigenanalysis is thus explicitly
designed to take into account the above niche com-
ponents (defined for one species) in the case of a spe-
cies assemblage. Eigenanalyses consist in the gener-
alized singular value decomposition (GSVD) of a sta-
tistical triplet (X, Q, D) which summarizes the structure

NN

Fig. 2. Marginality and tolerance of a species. Matrix
Z, (n samples and p variables) is the environmental data
set. Matrix F (n SUs [sampling units] and ¢ species) is the
species profile table (proportion per column). In (a) and (d)
arrows represent the canonical basis. In (a), (b), and (d) G
is at the center of gravity of the space defined by the rows
of Z,. The origin of axes thus corresponds to the most gen-
eral habitat conditions covered by SUs. (a) General defi-
nition and geometric presentation of the marginality and
tolerance of a species. Gray circles represent the positions
of SUs as linear combinations of environmental variables
(ordination diagram). Square size is proportional to the fre-
quency of species j among SUs where it occurs. G, is the
weighted average position of species j. The thick line rep-
resents the marginality axis. The thin lines stand for the
projection of the rows of Z, onto the marginality axis (e.g.,
m; is the projection of M,). (b) Inertia of species j as the
weighted sum of squared distances to the origin (G). (c)
Definition of the center of gravity of species j in the space
of SUs positioned by environmental variables. (d) Definition
of the residual tolerance of species j using the projection of
the SUs onto a subspace orthogonal to the marginality axis.
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TABLE 1.
eigenanalyses vs. OMI analysis.
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The various inputs for (X, Q, D) statistical triplets, which are used in traditional

Type X Q D
One-table techniques
PCA on correlation Z,t I, (1/n)I,
PCA on covariance Yok I, (1/n)I,
CA D;'PD;'-1,8§ D, D,
Row-weighted PCA Z| I, D,
Two-table techniques
1 1 -
RDA ~YJZ, =-ZZ,
n n I
CCA D/ 'PTZq Z;D,Z,)! D,
OMI analysis D 'P"Z, , D,

Notes: Matrix Z contains raw environmental data, and matrix Y contains raw faunistic data.
In canonical correspondence analysis (CCA) and OMI analysis, the environmental table is
analyzed by a principal component analysis on a correlation matrix (PCA on correlation), and
the faunistic table is analyzed by a correspondence analysis (CA). In redundancy analysis
(RDA), the environmental table is analyzed by a PCA on a correlation matrix, and the faunistic
table by a PCA on a covariance matrix (PCA on covariance). I represents the identity matrix.

T Zg
1Y,

§ _ _
[ = yi = Vilisiza=j=r

2y = 25 — Z/Vvar z; |ici<n1=j=p; ; and var z; are computed using 1/n.

§P = [fij = yij/y--]lsisn,lsjsz’ Dn = Diag[f;'-]ls:sm and Dt = Diag[f-/]lsjsp

| Z, = [ny’- =

9 Z, is analyzed first by a row-weighted PCA.

of matrix X using a metric given by matrix Q and row
weights given by matrix D (see Appendix). In the gen-
eral model of linear ordination methods, the various
types of multivariate analyses, thus, differ by three pa-
rameters: (1) the matrix (noted X in Table 1), the cen-
tering options of which depends on the raw data (e.g.,
Noy-Meir 1973), (2) the metric (noted Q in Table 1),
and (3) the row weights (noted D in Table 1). In the
following, we focus on the row (SUs) weights.

In PCA and RDA, the rows of matrix X are uniformly
weighted, whereas in CA and CCA they are weighted
by their expected abundance (f..). In OMI analysis,
matrix X,

X = D;'PTZ, P = [filicizni=j= (3

which has ¢ species (as rows) and p environmental var-
iables (as columns), contains the centers of gravity of
each species. The diagonal matrix of the species
weights is denoted D, = Diag(f.;, ... .f.,, ... .f.,) and
the metric (I,) is imposed by the analysis of the en-
vironmental table Z (e.g., PCA on a correlation matrix,
see Table 1).

Consequently, we define OMI analysis as the GSVD
of (X, L, D). The total inertia computed via OMI anal-
ysis is represented by

Tr(X™D,XL,) = Z fama(j). C))

This total inertia is, thus, proportional to the average
marginality of species and represents a quantification
of the influence of the environmental variables on the
niche separation of species.

Total inertia is a useful statistic for testing the in-
dependence between two data tables (Kazi-Aoual et al.

1995). Accordingly, we used it to test the statistical
significance of the species marginality. In practice, we
used a Monte Carlo version of the test (Manly 1991),
which considers the equiprobability of the n! permu-
tations of the rows (SUs) of the species profile table
F = PD;!. Therefore, we first compared the observed
marginality of a species (Eq. 4) to the distribution of
the 1000 random permutation values obtained under
the null hypothesis that the species is indifferent to its
environment. We then focused on the total inertia of
the OMI analysis (Eq. 9) and evaluated the statistical
significance of the observed average marginality using
the same approach. If, for example one of the 1000
permutation values was higher than the observed one,
the marginality had an estimated significance of P =
0.001.

Note that all the above equations are given for the
simplest case, i.e., quantitative environmental vari-
ables. However, the approach still holds for other kinds
of environmental variables such as dummy (e.g., Te-
nenhaus and Young 1985), fuzzy coded (e.g., Chevenet
et al. 1994), or a mixture of quantitative and dummy
variables (Hill and Smith 1976).

ECOLOGICAL APPLICATIONS

To illustrate the potential of the OMI analysis we
used two data sets that address the question of niche
separation according to temporal or spatial character-
istics of the habitat.

Temporal niche separation

The first data set investigated the influence of me-
teorological conditions on adult behavior using light
trap catches of caddisflies (Usseglio-Polatera and Auda
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TaBLE 2. Number of individuals and percentage of species (and codes used as labels in the

figures) of caddisflies caught in light traps.

Percentage
Code Species No. individuals of total
CHE Cheumatopsyche lepida (Pictet) 3 0.04
HYC Hydropsyche contubernalis McLachlan 3 0.04
HYM Hydropsyche modesta Navas 183 2.35
HYS Hydropsyche siltalai Dohler 6 0.08
PSY Psychomyia pusilla (Fabricius) 5988 76.99
AGA Agapetus laniger (Pictet) 109 1.40
GLO Glossosoma boltoni Curtis 14 0.18
ATH Athripsodes albifrons (L.) 14 0.18
CEA Ceraclea alboguttata (Hagen) 7 0.09
CED Ceraclea dissimilis (Stephens) 116 1.49
SET Setodes punctatus (Fabricius) 189 2.43
ALL Allotrichia pallicornis (Eaton) 52 0.67
HAN Hydroptila angulata Mosely 191 2.46
HFO Hydroptila forcipata (Eaton) 133 1.71
HSP Hydroptila sparsa (Curtis) 470 6.04
HVE Hydroptila vectis Curtis 9 0.12
STA Stactobiella risi Felber 291 3.74

Note: Each night, light trapping lasted from one hour before sundown to one hour after

daybreak.

1987). In this study, the authors intended to determine
the reliability of daily variations in the species lists
collected by light traps since such variations are gen-
erally attributed to the fluctuations of meteorological
conditions. A total of 17 caddisfly species (see code in
Table 2) were sampled at 49 occasions (nights) in June
and July 1959 and 1960 at a site situated on the Rhone
river (Lyon, France). At the same time, 11 meteoro-
logical variables were recorded (describing the tem-
perature, intensity and direction of wind, pressure, pre-
cipitation, humidity, and cloudiness; see code in Table
3). A full description of these data is available in Us-
seglio-Polatera and Auda (1987: 72). Data consisted of
the number of specimens of each species collected at
each night. We transformed the species abundance into
In(x + 1) to reduce the effect of dominant species. We

performed PCA on the correlation matrix of meteo-
rological variables.

We computed and tested niche parameters (Table 4)
to describe marginality and tolerance and, thus, the
variability of responses of these caddisfly species to
environmental variables. For example, Hydropsyche
modesta (HYM in Table 4) had a low marginality and
a high residual tolerance to meteorological conditions,
whereas Ceraclea alboguttata (CEA in Table 4) was
greatly influenced by meteorological conditions.

Ten out of 17 species showed a significant deviation
of their niche from the origin suggesting a significant
influence of the meteorological conditions for most of
the species. Not surprisingly, the global test on the
average marginality of all species was also significant
(P < 0.001) since no permutation yielded a higher

TABLE 3. Meteorological variables (and codes used as labels in the figures) recorded at each

light trap occasion.

Codes Variables Min. Max.
MAX TEMPf} Maximum temperature (°C) 18.1 33.8
TWI TEMP Twilight temperature (°C) 14.1 30.0
MIN TEMP¥ Minimum temperature (°C) 7.8 20.0
WIND Index of wind intensity and direction (m/s)} -9 +6
PRES Mean atmospheric pressure (kPa) 132 134
PRES DIF§ Difference of atmospheric pressure (kPa) —-8.3 1.3
HUMI Twilight humidity (%) 42 93
NIGHT CLOU Night cloudiness (%) 0 100
NIGHT PRECIP Night precipitation (mm) 0 12.3
MEAN CLOU Mean cloudiness (%) 2 97
TOTAL PRECIP Total precipitation (mm) 0 23.4

Notes: Each night light trapping lasted from one hour before sundown to one hour after
daybreak. Minimum (Min.) and maximum (Max.) values are indicated.

1 For one night of light-trapping.

1 Wind intensity was arbitrarily provided with sign (+) if wind blew from the South. Sign

(=) corresponded to other wind directions.

§ Difference of the atmospheric pressure between two consecutive nights measured at 6 h

GMT.
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TABLE 4. Niche parameters of 17 caddisfly species.

Species Inertia OMI Tol RTol oMI Tol RTol Num
Che 6.43 2.77 1.02 2.64 43.1 15.9 41.0 473 (NS)
Hyc 11.91 4.45 2.39 5.08 37.3 20.0 42.6 248 (Ns)
Hym 10.57 0.09 2.54 7.94 0.9 24.0 75.1 227 (Ns)
Hys 7.62 0.63 0.73 6.26 8.3 9.6 82.1 872 (Ns)
Psy 10.47 0.43 3.92 6.11 4.1 37.5 58.4 0

Aga 7.43 1.29 1.55 4.59 17.4 20.9 61.8 0

Glo 14.36 6.18 4.76 3.42 43.0 33.1 23.8 4

Ath 11.24 1.79 2.76 6.68 16.0 24.6 594 63 (NS)
Cea 18.71 12.24 4.18 2.29 65.4 22.3 12.3 6

Ced 11.79 0.87 3.24 7.67 7.4 27.5 65.1 0

Set 12.61 4.29 3.72 4.60 34.0 29.5 36.5 0

All 6.80 0.72 1.21 4.87 10.6 17.8 71.6 125 (Ns)
Han 10.37 1.21 3.37 5.79 11.6 32.5 55.9 84 (Ns)
Hfo 17.54 6.76 7.34 3.44 38.5 41.9 19.6 9

Hsp 13.98 2.90 5.62 5.45 20.7 40.2 39.0 0

Hve 12.25 4.59 3.52 4.14 37.5 28.7 33.8 14

Sta 9.39 0.59 2.52 6.28 6.3 26.9 66.9 2

Notes: Species are identified by their codes (see Table 2). The inertia, the outlying mean
index (OMI), the tolerance index (Tol), and the residual tolerance index (RTol) were computed
for each species. Values in italics represent the corresponding percentages of variability. The
last column (Num) represents the number of random permutations (out of 1000) that yielded
a higher value than the observed OMI (Ns = not significant at an estimate, P = 0.05).

value than the observed one. This statistical signifi-
cance justified the plot of the species positions on an
ordination diagram. The two first axes of the OMI anal-
ysis accounted for 95% of the marginality (90% for the
first axis). As a consequence, subsequent graphs use
only these two axes.

The construction of the ordination diagrams could
be decomposed into three stages (Fig. 3). We first
computed canonical weights (i.e., sum of square val-
ues equals 1) of the environmental variables (Fig. 3a).
We then positioned the SUs (nights) by their scores
that were linear combinations using the weights of
environmental variables. The position of SUs and the
distribution of species enabled the calculation of a
weighted average (center of gravity) and an amplitude
(Fig. 3b) for each species. As mentioned above, OMI
analysis maximized the sum of the squared distances
of the average positions of species to the origin. Fi-
nally, for each species, we superimposed the distance
of these positions to the origin on the SUs plane (ar-
rows in Fig. 3c). Each species position was propor-
tional to the marginality index of that species (noted
OMI in Table 4).

In this example, the ordination of SUs associated
with the OMI analysis and that resulting from the sep-
arate analysis of environmental variables demonstrated

a high similarity (Fig. 3d). As a conclusion, tempera-
ture (left side of the diagram in Fig. 3a) was the main
factor affecting the abundance of caddisflies trapped
by light (left side of the diagram in Fig. 3c). This factor
did not have the same impact on all species (see OMI
values in Table 4) demonstrating differences in tem-
poral niches due to specific sensitivity to meteorolog-
ical conditions. These differences reflected most prob-
ably specific emergence rhythms and duration of the
adult life stage. However, using OMI analysis we were
able to detect a common pattern among caddisfly spe-
cies responses to meteorological conditions.

We computed RDA and CCA on the same data set.
RDA and CCA extracted 49.3% and 34.8% respectively
of the total faunistic variability. The proportion of var-
iance of the community structure explained by envi-
ronmental variables along the first axis showed a de-
crease from OMI analysis to RDA and a decrease from
RDA to CCA (Table 5). Moreover, we computed ca-
nonical coefficients and correlation coefficients asso-
ciated with the first axis of each analysis. Canonical
coefficients represent environmental variable loadings
of the best linear combinations that explain the com-
munity structure. Correlation coefficients measure the
correlation between the best linear combination of en-
vironmental variables resulting from a two-table tech-

Fic. 3.

—

OMI analysis of caddisfly light-trap catches. The first axis is horizontal; the second axis is vertical. (a) Canonical

weights of environmental variables (see codes in Table 3). (b) Distribution of species on the first factorial plane of an OMI
analysis. Crosses identify the position of SUs using the canonical weights of environmental variables. The size of each circle
is proportional to the proportion of a species (see codes in Table 1) in the SUs where it was captured. Lines link the center
of gravity of a given species profile (weighted average position of a species noted G; in Fig. 2) to each SU having this
species. (¢) Superposition of the weighted average positions of species (arrow ends) and SUs (crosses). The latter positions
are identical to those in (b). (d) Projection of the two first PCA axes of the environmental variables on the first two axes of

the OMI analysis.
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TABLE 5. Canonical coefficients (CC) and correlation (CO) of environmental variables (see
Table 3 for codes) with the first axis of an OMI analysis (OMI), a redundancy analysis (RDA),
and a canonical correspondence analysis (CCA) performed on the light-trap data set.

OMI RDA CCA
Variables CcC CcO CcC CcO CC CcO
MAX TEMP —0.43 -0.91 —0.04 0.75 —0.52 0.63
TWI TEMP —-0.47 —0.95 —0.39 0.77 0.29 0.82
MIN TEMP —-0.43 -0.74 0.71 0.67 1.09 0.84
WIND —-0.42 -0.57 0.79 0.79 0.39 0.52
PRES 0.13 0.32 0.16 -0.30 0.45 0.01
PRES DIF 0.21 0.56 —-0.14 —-0.43 0.14 =0.12
HUMI 0.32 0.61 —0.26 —0.51 0.27 -0.57
NIGHT CLOU 0.09 0.25 —0.06 -0.07 0.22 -0.29
NIGHT PRECIP 0.12 0.30 -0.23 —0.23 —0.19 —0.11
MEAN CLOU 0.21 0.47 —0.20 -0.29 —0.47 —0.45
TOTAL PRECIP 0.12 0.33 0.16 —-0.22 0.12 —0.13
Eigenvalues 1.27 3.90 0.14
Percentage of variance 90.7 74.3 45.5
0.6
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FiG. 4. OMI analysis of stream fish. We use here a one-axis presentation. (a) Canonical weights of environmental variables
(DSOU = distance to the source, DISCH = mean annual discharge, LWATER = lowest monthly discharge occurring every
five years, WIDTH = mean stream width, SLOPE = slope, and ALTI = altitude). (b) Site scores arranged by Rhone tributary
(noted A-J; note that site labels per tributary increased from up- to downstream). (c) Species distribution arranged according
to site scores (grey circles) in which a species occurred. The species order is given by their weighted average position along
site scores. Species distributions are summarized by their means (sizes of black circles are proportional to the total frequencies
of species) and standard deviations (vertical lines around the average corresponding to *2 standard deviations).
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TABLE 6. Occurrence (Occ) and niche parameters of 12 fish species.

Species Occ Inertia OMI Tol RTol Num
Sculpin (Cortus gobio) 6 550 39.0 27.3 33.6 71 (NS)
Older trout (Salmo trutta) 57 5.71 14 424 56.2 2
Y-O-Y+ trout (Salmo trutta) 50 577 4.6 293 66.2 0
Minnow (Phoxinus phoxinus) 41 532 84 474 442 0
Stone loach (Nemacheilus barbatulus) 40 591 13.0 40.8 46.2 0
Blageon (Telestes soufia) 47 499 9.1 456 453 0
Southwestern barbel (Barbus meridionalis) 23 3.71 1.9 13.8 84.3 752 (Ns)
Southwestern nase (Chondrostoma toxostoma) 4 6.38 76.5 11.7 11.7 22
Nase (Chondrostoma nasus) 3 12.60 81.0 12.9 6.2 5
Gudgjeon (Gobio gobio) 16 843 51.1 113 37.6 0
Chub (Leuciscus cephalus) 34 558 28.2 303 41.4 0
Streambleak (Alburnoides bipunctatus) 8 9.92 532 12.0 349 0
Barbel (Barbus barbus) 14 8.34 459 156 38.5 0

Note: The outlying mean index (OMI), the tolerance index (Tol), and the residual tolerance
(RTol) are given as percentages of variability (see Table 4 for further details).

1 Young of the year.

nique and the best linear combination of these variables
resulting from a one-table technique. The consistency
(same sign and similarity of values) between canonical
and correlation coefficients decreased from OMI anal-
ysis, to RDA and CCA (Table 5).

Spatial niche separation

The second data set aimed to investigate the fish
assemblages along ten Mediterranean tributaries of the
Rhoéne River (extracted from Pialot 1985). Twelve fish
species (trout in two age groups) were collected and
coded as present or absent at 64 sites distributed from
upstream to downstream along these tributaries. Six
variables describing the physical habitat along the lon-
gitudinal gradient of streams were simultaneously re-
corded. For each site, these were altitude, slope, yearly
mean discharge (calculated from 15 yr), lowest month-
ly mean discharge at five-year reoccurrence, mean
stream width, and distance to the source. We analyzed
these environmental variables by PCA (after data stan-
dardization).

In this example, niche parameters identified the sig-
nificance of marginality for most fish species (Table
6). This result corresponds to the view that longitu-
dinal gradients are driving forces for stream organ-

isms (Hawkes 1975, Vannote et al. 1980, Statzner and
Borchardt 1994). The most uniformly distributed spe-
cies was the older trout but half the variability of the
position of this species consisted of residual tolerance
(Table 6). The deviation from the uniform distribution
was maximal for nase and Southwestern nase, which
were the most specialized species in this data set. The
two first axes of the OMI analysis represented 97.9%
of the explained variability and we selected the first
axis (92.6%) for graphical presentations. This axis
arranged the variables along the longitudinal gradient
in a classical way (Fig. 4a). High altitude (abbreviated
“Alti”’ in Fig. 4a) and slope defined the upper reaches
in each stream (Fig. 4b). Width and discharge values
increased with the distance downstream. The ordi-
nation of fish species (Fig. 4c) enabled the identifi-
cation of three types of response to the longitudinal
gradient: (1) trout were distributed over the entire lon-
gitudinal gradient; (2) blageon and associated fish spe-
cies (minnow, sculpin, stone loach, and chub) were
rarely found in the steep and high altitude reaches;
and (3) barbel was associated with SWE nase, gud-
geon, and streambleak, found together in downstream
reaches.

We computed RDA and CCA on the same data set.

TABLE 7. Canonical coefficients (CC) and correlation (CO) of environmental variables with
the first axis of an OMI analysis (OMI), an RDA, and a CCA performed on the fish data

set.
OMI RDA CCA

Variables CcC CO CC CO CcC CO
ALTI -0.45 -0.73 0.32 0.83 —0.44 -0.81
DSOU 0.56 0.96 -0.65 -0.95 0.33 0.93
SLOPE -0.39 -0.80 0.18 0.72 -0.18 -0.72
WIDTH 0.23 0.67 0.24 -0.39 -0.28 0.27
DISCH 0.45 0.83 -0.05 -0.74 0.36 0.80
LWATER 0.29 0.59 -0.10 -0.49 -0.01 0.26

Eigenvalues 1.00 0.61 0.27

% of variance 92.6 77.8 71.4

Note: See legend of Fig. 4 for variable codes, and see Table 5 for further details.
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RDA and CCA extracted 38.1% and 33.1% respectively
of the total faunistic variability. The proportion of var-
iance of the community structure explained by envi-
ronmental variables along the first axis showed a de-
crease from OMI analysis, to RDA and CCA (Table
7). We again computed canonical coefficients and cor-
relation coefficients associated to the first axis of each
analysis. The consistency (same sign and similarity of
values) between canonical coefficients and correlation
coefficients decreased from OMI analysis, to RDA and
CCA (Table 7).

DiscussIoN
Selection of an ordination technique

Should we add another sophisticated multivariate
method to the existing ones? This old question was
addressed by Noy-Meir and Whittaker (1977: 93) who
underlined that “‘no single method has emerged as a
solution to all problems of describing and explaining
patterns of compositional variation in natural com-
munities”’. Hence, there is no reason that only one
method should investigate niche ordination with the
same precision along a gradient or close to the thresh-
old of a limiting factor.

The ordination of a faunistic/floristic table as a
method to quantify patterns of covarying species
abundance within species assemblages has three op-
tions: (1) the usual option uses species as variables
and SUs are considered as frequency distributions
among species; (2) species are considered as fre-
quency distributions among SUs, i.e., species are the
object under study; (3) both previous options are si-
multaneously addressed. The selection among these
options requires the appropriate weighting of sites and
species. A critical point is whether the sampling of
the SUs is standardized (i.e., SUs can be related to a
given area or duration) or not. In other words, the
selection of an appropriate ordination technique
should take into account whether the size of a sample
is controlled or not. In the latter case, the effect of
the unequal sampling effort has to be removed by CA
or CCA. In that case, option (3) is implicit and ele-
ments of the matrix must be weighted by their ex-
pected abundance. This weighting option causes an
SU supporting many abundant species to contribute
more. Consequently, the importance of an environ-
mental variable at a site is proportional to the number
of species and the number of individuals at this site.
In contrast, if the total sample abundance reflects real
ecological differences, one would prefer the options
1 or 2. In that case, PCA on species profiles (e.g.,
Austin and Greigsmith 1968, Noy-Meir 1973) and
OMI analysis, which focuses on option 2, should be
used.

Comparison with other methods

One solution to avoid the problem associated with
the SUs weighting option is to use RDA. In that case,
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a straight line estimates the bell-shaped response
curves since RDA assumes a linear relationship be-
tween species and their environment. This analysis may
be suited in the case of the existence of a strong limiting
factor but may be unacceptable in the case of true un-
imodal species responses to the environment: a typical
case for using CCA.

The advantage of OMI analysis in comparison to
these ordination techniques is its good performance in
describing either unimodal response curves or linear
response curves that are linked to a limiting factor. It
is rather difficult to know a priori the response curves
of species for a given habitat gradient since, for ex-
ample, the classical unimodal curve may be shaped due
to interspecific competition. Consequently, in the ab-
sence of any explicit model describing the response
curves of species under study, the niche analysis should
include as few assumptions as possible (Austin 1985).
Moreover, if the ordination method is not based on
explicit response curves of species it should be as ro-
bust as possible to the differences in the underlying
response curve models.

The meaning of OMI analysis

OMI analysis was designed to investigate and sep-
arate species niches according to their outlying mean
index (average position on the marginality axis). It
provides an integrated description of species—envi-
ronment relationships as do other two-table ordination
techniques. The advantage of using marginality (out-
lying mean index) is four-fold: (1) this index is a
simple measure that integrates the niche specialization
of species according to the selected habitat; (2) lo-
cations or resource states are positioned regardless of
the presence of species, i.e., locations or resource
states are weighted independently from their species
composition (see Carnes and Slade 1982); (3) the ref-
erence represents neither the average nor the most
abundant species but a theoretical ubiquitous species
that tolerates the most general habitat conditions; and
(4) the OMI of a species can be tested by random
permutations thus assessing whether the observed
species position in habitat differs significantly from
what would be expected from chance alone. The null
hypothesis thus stipulates that a species does not re-
spond to the set of habitat variables under study. The
significance of the global random permutation test of
the OMI analysis makes it possible to demonstrate
that niche segregation of species is effective along a
given gradient. Finally, the total inertia of the OMI
analysis (see Eq. 9) characterizes the global niche
overlap of species. Therefore, this statistic could be
used to compare the positions of species niches across
various combinations of habitat conditions.

Variance terms are associated with the OMI to com-
plete the position of a species according to niche dif-
ferentiation. Tolerance describes the spatial or temporal
variance of the niche across measured environmental
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conditions or resources. In fact, marginality and tol-
erance of a species are correlated. In our fish example,
we found a significant negative relationship (P < 0.02)
between the marginality and the tolerance of species
if we omitted nase, which was at the extreme of its
distribution and behaved distinctly from other species
(inertia = 12.60; see Table 6). This negative relation-
ship agreed with the prediction of McNaughton and
Wolf (1970) that more common species (low margin-
ality) will have broader niches (high tolerance). We
also tested the link between species richness and the
size of species niches, which should be negatively re-
lated (McNaughton and Wolf 1970). In our fish ex-
ample again, there was a significant negative relation-
ship between the species richness of sites and their
average tolerance value (Fig. 5; P < 0.0001). This
relation can be interpreted in terms of increased com-
petition among species having a broader niche (high
tolerance) that decreases species diversity.

OMI analysis positions SUs in a multidimensional
space as a function of environmental variables. This
space should be close to the set of available resources
for a species assemblage. The distribution of species
along these conditions represents the realized niche,
i.e., what a species really uses. OMI analysis allows a
direct interpretation of ordination axes in terms of niche
separation since the OMI represents the deviation of a
species distribution from the overall mean habitat con-
ditions and the method optimizes the separation of spe-
cies centroids according to the average OMI of the
species assemblage under study. The interpretation of
OMI analysis can also consider niche specialization
since a species close to the origin of the axes, i.e., most
general habitat conditions covered by SUs, corresponds
to the ubiquitous or generalist species. In contrast, spe-
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cialists, which deviate from these general habitat con-
ditions will demonstrate high OMI values. In our light-
trap example, the marginality axis ordered species ac-
cording to temperature, which affects the behavior of
adult caddisflies. Furthermore, the analysis showed that
the effect was not uniform for all species. In our fish
example, species niches were separated along the lon-
gitudinal gradient demonstrating a continuum from low
towards high ecological specialization. We also made
groups of species being “guilds” in the sense of Sim-
berloff and Dayan (1991: 115), i.e., groups of species
“without regard to their taxonomic position, that over-
lap significantly in their niche requirements.” These
results indicate that a possible application of OMI anal-
ysis is the determination of niche shifts resulting from
natural disturbances or from environmental manage-
ment.

SOFTWARE AVAILABILITY

All calculations and graphs were made with ADE-4
(Thioulouse et al. 1995, 1997, Thioulouse and Chev-
enet 1996). Data of the examples that were treated in
this paper are available in the package.
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APPENDIX

The following general procedure brings together various
types of eigenanalyses such as correspondence analysis, mul-
tiple correspondence analysis, fuzzy correspondence analysis,
the various kinds of principal component analyses (noncen-
tered, row centered, column centered, etc.), redundancy anal-
ysis, canonical correspondence analysis, co-inertia analysis,
and OMI analysis.

Let X be a table having n rows and p columns being derived
from a raw data table by any kind of transformation. Let (X,
Q, D) be the resulting statistical triplet or duality diagram
(Escoufier 1987). The (n X n) matrix Q contains the inner
product (in R”) associated with the columns of X. The (p X
p) matrix D contains the inner product (in R") associated with
the rows of X.

The generalized singular value decomposition (GSVD, see
Greenacre 1984:344-346) of (X, Q, D) consists in finding a
Q-normed axis u, (first principal axis) and a D-normed com-
ponent v, (first principal component) so that the inner prod-
ucts,

(XQullvl)D = u/QX"Dv, = v/DXQu, = (XTDVIIUI)Q
and such that the quadratic forms Q(u,) and S(v,),

Q) = [XQu,[} = u] QX"DXQu,
S, = [X™Dv, [ = vV DXQX Dy,

are maximized under the constraints that [[u,|3 = uTQu, =
Vil = viDv, = 1.

The achieved maximum of the above inner product is equal
to the first singular value. The solution vectors u, and v, can
also be obtained as the right-hand eigenvectors of X"DXQ
and XQXD, respectively, and the maxima of Q(u,) and S(v,)
are equal and given by the first eigenvalue of these matrices
(which is the square of the above-mentioned first singular
value). The rows of X can be Q-projected on u, and the
columns of X can be D-projected on v, resulting in the first
scores x, and y, as follows:

x, = XQu, y, = X"Dv,.

If r is the rank of table X, then the second and further principal
axes (u,, us. . ., u,) and the second and further principal com-
ponents (v,,Vs,. . .,V,) maximize the same inner products and
norms but are subjected to extra constraints of orthogonality,
ie., for all s # 1 (ulu)g = (v|v)p = 0.



