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ABSTRACT

Correspondence analysis has frequently been used
for codon usage studies but this method is often
misused. Because amino acid composition exerts
constraints on codon usage, it is common to use
tables containing relative codon frequencies (or
ratios of frequencies) instead of simple codon
counts to get rid of these amino acid biases. The
problem is that some important properties of corres-
pondence analysis, such as rows weighting, are lost
in the process. Moreover, the use of relative
measures sometimes introduces other biases and
often diminishes the quantity of information to ana-
lyse, occasionally resulting in interpretation errors.
For instance, in the case of an organism such as
Borrelia burgdorferi, the use of relative measures
led to the conclusion that there was no translational
selection, while analyses based on codon counts
show that there is a possibility of a selective effect
at that level. In this paper, we expose these prob-
lems and we propose alternative strategies to cor-
respondence analysis for studying codon usage
biases when amino acid composition effects must
be removed.

INTRODUCTION

Since the precursor work of Grantham et al. (1) on preferential
codon usage among different organisms, correspondence
analysis (CA) has often been used to analyse codon usage.
Multivariate statistical methods like CA are particularly well
adapted to the multi-dimensional nature of the data. CA was
(and still is) very popular for analysing codon usage biases in
microbial genomes: it has been applied to study species
like Escherichia coli (2,3), Bacillus subtilis (4±8), Borrelia
burgdorferi (9,10), Chlamydia trachomatis (11), Mycoplasma
genitalium (12), Helicobacter pylori (13) and Pseudomonas
aeruginosa (14). The result most frequently observed when
studying codon preferences in unicellular organisms is that
translational selection is the main driving force and that highly
expressed genes tend to preferentially use codons correspond-
ing to the most abundant tRNAs in the cell (15±18). For
bacteria like B.burgdorferi and C.trachomatis, it seems that

replicational and/or strand-speci®c mutational biases are the
main sources of variation in codon composition (9±11), while
hydropathy of the encoded proteins is one of the major factors
shaping codon usage in Mycobacterium species (19).

CA has also been used in other bioinformatics studies over
the past 15 years. For example, it has been used for predicting
coding regions in prokaryotes and eukaryotes (20), for
studying the evolution of repeated sequences in primates
(21) and in rodents (22), for analysing trends in amino acid
composition in E.coli (23) and for detecting sequencing errors
like frameshifts (24).

CA is designed for use with data tables containing counts
(25), but in most of the papers dealing with codon usage the
tables used contain relative measures. The reason invoked for
using these measures instead of counts is to avoid biases
linked to amino acid composition that may mask the effects
that are directly linked to codon preferences. For example,
integral membrane proteins that are highly enriched in
hydrophobic amino acids will have a codon composition
biased toward their corresponding codons. We show that the
use of such kinds of modi®ed data tables strongly affects the
results produced by CA. We give different examples taken
from the genomes of B.subtilis, E.coli, B.burgdorferi and
M.genitalium. As the desire to remove amino acid effects is
justi®ed in some cases, we propose alternative strategies for
the use of CA to study codon usage in microbial genomes.

MATERIALS AND METHODS

Correspondence analysis

Strictly speaking, the data that should be used with CA are
contingency tables (25). In such tables, rows and columns play
equivalent roles and can be exchanged. By extension of its
properties, CA can be applied to tables containing counts (i.e.
absolute frequencies). A limitation is that the pro®les (rows
and columns sums) of these tables must have a meaning. This
rule is guided by the fact that CA weights rows and columns
using these pro®les, as described below. Let X = [xij] be our
original data table with n rows and p columns. In the case of
codon composition data, the rows will correspond to the genes
and the columns to the 61 sense codons (in the case of an
organism using the standard genetic code). We denote the row
and column sums of X as xi. and x.j, respectively, x..

corresponding to the grand total. The relative contribution or
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weight of row i to the total variation in the data set is then
denoted ri and is calculated as:

ri = xi./x.. 1 < i < n 1

while the relative contribution of column j is denoted as cj and
is calculated as:

cj = x.j/x.. 1 < j < p 2

Similarly, the contribution of each individual element of X
to the total variation in the data set is denoted as fij and is
calculated as:

fij = xij/x.. 3

The above calculations produce two vectors R = [ri] and C =
[cj] of length n and p, respectively, and one matrix F = [fij] of
dimension n 3 p. We use these vectors and this matrix to
determine the values of yij, which are calculated as:

yij = [fij/(ricj)] ± 1 4

These values de®ne the matrix Y = [yij], which is the one
used for CA computation. When n > p (which is the case when
computing CA on codon usage), the principle of the method is
the diagonalisation of a p 3 p matrix A containing c2 distances
and de®ned as:

A = Dp
1/2Y tDnYDp

1/2 5

where Dp is a p 3 p matrix with the elements of vector C along
the diagonal and 0 elsewhere. Similarly, Dn is an n 3 n matrix
with the elements of R on the diagonal and 0 elsewhere.
Diagonalisation of A produce p eigenvalues (at least one of
which will be 0) and eigenvectors. These eigenvectors are
ranked according to their eigenvalues and the eigenvalue for
an eigenvector indicates its importance in the analysis.

The results of a CA are viewed graphically, usually by
plotting the coordinates of all genes along the ®rst eigenvec-
tors. Genes that are strongly associated as measured by their c2

distances will lie in a similar direction from the origin.

Relative frequencies

In a few studies, the authors used relative frequencies to
compute CA (3,7). These frequencies are de®ned as the ratio
between the number of a given codon in a gene over the
number of all the synonymous codons corresponding to the
amino acid encoded. Let zij be the relative frequency of codon
j in gene i. It can be computed as:

zij � xij=
X

j0=Cl�j0� � k

xij0 6

where the notation j¢/Cl(j¢) = k means that the sum is only for
the columns of the table belonging to class k, this class
gathering all the synonymous codons corresponding to the
amino acid encoded by codon j. In the table Z = [zij] containing
relative frequencies, the number of columns will be limited to
59 instead of 61, because there is only one codon (AUG
and UGG, respectively) for methionine and tryptophan in

organisms using the standard genetic code. The relative
frequencies of these codons is equal to 1 for the genes
containing at least one of them and is not de®ned for the genes
containing no codon of that type. The cases of indetermination
that exist when a given amino acid is not present in a gene are
solved by giving a value equal to 1 over the number of
synonymous codons for that amino acid, this for all the
synonymous codons considered. Also, note that the row sum is
the same for all rows and is equal to the number of classes of
synonymous codons: zi. = 18, "i.

Relative synonymous codon usage

In almost all published papers using CA for codon usage
studies, the data table contains relative synonymous codon
usage (RSCU) values. This codon usage measure corresponds
to the ratio between the observed number of a codon over its
expected value under the hypothesis of a random distribution
of all the synonymous codons encoding a given amino acid
(26). With the same formalism as before, let wij be the RSCU
value for codon j in gene i. It can be computed as:

wij � xij=��1=sk�
X

j0=Cl�j0� � k

xij0 � 7

where sk is the number of synonymous codons for class k. As
with relative frequencies (and for the same reasons), a table
containing RSCU values will be limited to 59 columns instead
of 61. In the corresponding data table W = [wij], the row sum is
the same for all rows and is equal to the number of
synonymous codons: wi. = 59, "i.

Codon adaptation index

The codon adaptation index (CAI) is a univariate measure of
synonymous codon usage (27). For a given gene, the value ai

of this index is calculated as:

lnai � �1=xi:�
Xp

j � 1

xijwj 8

where wj is the relative adaptiveness of codon j. This value is
de®ned as the ratio between the frequency of codon j over the
frequency of the major synonymous codon for the same amino
acid, as estimated from examining a set of reference genes.
Usually, this set is made up of highly expressed genes and,
thus, the CAI is an estimator of gene expressivity through
codon usage. For the purpose of this study, we used the
original reference table established for E.coli with 27
putatively highly expressed genes (27).

Sequences

Sequences of the protein genes from the complete genomes
studied in this paper have been extracted from the EMGLib
database (28). To compute the CA on codon composition, we
used only genes longer than 150 nt to minimise the in¯uence
of stochastic variations that may occur in small genes. To
identify the axes discriminating highly expressed genes, we
used ribosomal protein genes plus a set of 24 additional genes
for which a high expression level has been determined
experimentally in E.coli (29) and for which the CAI value was
>0.55 (Table 1). For the species other than E.coli, we used as
markers the orthologs identi®ed by BLAST searches (E value
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< 10±10) and sequence annotations scanning. This solution
was preferred to the use of ribosomal protein genes alone, as
this class of sequences may have a biased amino acid
composition (30). The number of orthologs identi®ed was
equal to 15 in B.subtilis, 14 in M.tuberculosis, 11 in
B.burgdorferi and 8 in M.genitalium.

Computer programs

All computations presented in this paper have been realised
using the CA module from the multivariate statistics package
ADE-4 (31). This package runs on microcomputers under the
MacOS (7.1 or higher) and Windows (95 or higher) operating
systems. It may be downloaded from the PoÃle Bioinformatique
Lyonnais (PBIL) World Wide Web server at http://pbil.
univ-lyon1.fr/ADE-4. A new version will soon be available
under the form of a package for the R statistical computing
environment.

RESULTS

Bacillus subtilis

If we compute a CA on the codon composition of B.subtilis
genes, using codon counts (CA/counts), we can see that the
®rst axis separates genes coding for ribosomal proteins from
the others (Fig. 1). This is a well-established result that has
been shown many times: gene expressivity is the main force
shaping codon usage in a lot of bacterial species, including
B.subtilis (4,5,7). But the second axis separates another group
of genes from the main group. If we compute the gravy score
(a measure of hydrophobicity) (32) of all the proteins encoded
by the genes used in our analysis, we see that the proteins
separated from the others on the second axis have very high

scores and, so, are hydrophobic. This is an example of amino
acid bias, which is superimposed on a codon usage bias. If we
use relative codon frequencies to compute the CA (CA/RF), as
Moszer et al. did (7), this amino acid composition effect is
removed from the analysis (Fig. 1).

On the other hand, the plot obtained by crossing the second
and third axes shows three distinct groups on the CA/RF when
there is nothing comparable with the CA/counts (Fig. 2). This,
we show, is a purely artifactual effect induced by the use of
relative frequencies and linked to a single amino acid.
Cysteine is the second rarest amino acid in B.subtilis, after
tryptophan, and is encoded by two synonymous codons: UGC
and UGU. A large number of B.subtilis proteins do not contain
any cysteine (27%) or only one (21%) residue. For these
genes, UGC/UGU codon counts are, respectively, equal to 0/0
and 1/0 or 0/1 and they are transformed by the relative
frequencies method as 0.5/0.5, 1/0 and 0/1. After CA
computation, genes are arti®cially separated into three classes:
genes containing both UGC and UGU codons or none (the
central class in Fig. 2), genes containing only UGC, and genes
containing only UGU. Unexpectedly, the attempt to remove
amino acid biases has introduced another bias associated with
cysteine abundance.

Mycobacterium tuberculosis H37Rv

On the factor map obtained by crossing the ®rst two axes of a
CA/counts for all M.tuberculosis H37Rv genes we can see that
the ®rst axis clearly separates a small group of genes, while the
second separates highly expressed genes (Fig. 3). If we take a
look at the annotations of the genes having the highest positive
scores on the ®rst axis, we can see that almost all of
them encode proteins belonging to the PE-PGRS family of

Table 1. List of the 25 genes coding for proteins other than ribosomal proteins that have been used as
indicators for high expression in the CAs computed in this study

Name Product CAI Bs Mt Bb Mg

acpP Acyl carrier protein 0.676 + ± + ±
ahpC Alkyl hydroperoxide reductase 0.804 + + ± ±
cspA Cold shock-like protein CspA 0.811 + + ± ±
cspC Cold shock-like protein CspC 0.695 + ± ± ±
cspE Cold shock-like protein CspE 0.586 ± ± ± ±
eno Enolase 0.844 + + + +
fusA Elongation factor G 0.753 + + + +
gapA Glyceraldehyde 3-phosphate dehydrogenase A 0.840 + + + +
gpmA Phosphoglycerate mutase 1 0.590 ± + + ±
hns DNA-binding protein H-ns 0.596 ± ± ± ±
hupA DNA-binding protein Hu-a 0.669 + + ± ±
icdA Isocitrate dehydrogenase [NADP] 0.579 + + ± ±
ilvC Ketol-acid reductoisomerase 0.598 ± + ± ±
lpp Major outer membrane lipoprotein 0.856 ± ± ± ±
metK S-adenosylmethionine synthetase 0.626 + + + +
mopA 60 kDa chaperonin 0.797 + + + +
ompA Outer membrane protein A 0.791 ± ± ± ±
ompC Outer membrane protein C 0.824 ± ± ± ±
ompF Outer membrane protein F 0.667 ± ± ± ±
ppa Inorganic pyrophosphatase 0.664 ± + ± +
ptsH Phosphocarrier protein Hpr 0.642 + ± + ±
tig Trigger factor 0.739 + + + +
tufA Elongation factor Tu 0.822 + + + +
yjgF Protein YjgF 0.590 + ± ± ±

Name, name of the gene in E.coli; Product, protein encoded by the gene; CAI, CAI value in E.coli; Bs, Mt,
Mg, Bb, presence (+) or absence (±) of an ortholog in B.subtilis, M.tuberculosis, M.genitalium and
B.burgdorferi.
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M.tuberculosis. The proteins from this family are known to be
highly enriched in glycine and alanine, these two amino acids
sometimes representing up to 60% of protein content. If we
now take a look at the CA computed with RSCU values (CA/
RSCU), the highly expressed genes are weakly separated from
the others on the ®rst axis of the analysis while proteins
belonging to the PE-PGRS family are spread all over the plot
(Fig. 3). In this case, the use of RSCU values allows us to get
rid of this trivial amino acid effect and the translational
selection effect appears on the ®rst axis of the CA, which may
be considered as an advantage. On the other hand, the
separation of the highly expressed genes from the others is
weaker in the analysis computed on RSCU.

Escherichia coli K12

It has been well known for a long time that the main force
shaping codon composition in E.coli is gene expressivity (33).
These results have been con®rmed by many studies using
multivariate statistics approaches, including CA (2,3,34). The
®rst axis of a CA computed on E.coli codon composition is
thus highly correlated with the inverse of CAI values, either
when using codon counts or RSCU values (Fig. 4). But if we
compare the correlation coef®cients obtained in these two
analyses, we can see that the value is higher for the CA/counts,
indeed, in this case r2 = 0.843 (P < 10±4), while r2 = 0.741
(P < 10±4) for the CA/RSCU. If we get rid of the amino acid

Figure 2. Factor maps obtained by crossing the second and third axes of two correspondence analyses computed on 4052 B.subtilis genes. CA2 3 CA3 is the
plot of the analysis computed on codon counts, while RF2 3 RF3 is the plot of the analysis computed on relative frequencies. Red dots, genes where the rela-
tive frequencies of UGC/UGU codons are equal to 1/0; green triangles, genes where the relative frequencies of UGC/UGU codons are equal to 0/1; blue
crosses, all other genes.

Figure 1. Factor maps obtained by crossing the ®rst and second axes of two correspondence analyses computed on 4052 B.subtilis genes. CA1 3 CA2 is the
plot of the analysis computed on codon counts, while RF1 3 RF2 is the plot of the analysis computed on relative frequencies. Red dots, highly expressed
genes; green triangles, genes encoding proteins having a gravy score >0.3 (i.e. highly hydrophobic proteins); blue crosses, all other genes.
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effect, we remove information from the original data table and
the correlation with gene expressivity measured by CAI is
signi®cantly lowered. This is understandable if we take into
account the fact that amino acid composition is also biased
relative to gene expressivity in E.coli (23).

Borrelia burgdorferi

The main trend in codon usage in B.burgdorferi is linked to
strand asymmetries that have been caused by selective
pressures at the replicational and transcriptional levels (9).
To study that effect, the author used a CA/RSCU. The plots for
CA/counts and CA/RSCU for B.burgdorferi genes are shown
in Figure 5. On the ®rst axis both analyses split the genes into
two groups: those located on the leading strand and those
located on the lagging strand. But, in the case of CA/RSCU,

there is almost no difference between highly expressed genes
and the other genes. This result led two independent groups to
conclude that there was no translational selection in this
organism (9,10), but this af®rmation seems unlikely as a
separation is visible on the second axis of the CA/counts, with
the highly expressed genes (coding for ribosomal and for other
proteins) having highly negative scores on this axis. A t-test
comparing the distribution of scores for highly expressed
genes versus the other genes on the second axis is highly
signi®cant (t = 12.049, P < 10±4) in the case of CA/counts,
while it is not signi®cant in the case of CA/RSCU (t = 1.640,
P = 0.101).

To be sure that the grouping of our set of highly expressed
genes on the second axis of CA/counts is not due to a bias in
protein composition, we computed a CA on the amino acid

Figure 4. Regression plots between the factor scores on the ®rst axes of two correspondence analyses computed on 4254 E.coli (strain K12) genes and the in-
verse of their respective CAI values. 1/CAI 3 CA1 is the plot of the analysis computed on codon counts, while 1/CAI 3 RSCU1 is the plot of the analysis
computed on RSCU values. Red dots, highly expressed genes; blue crosses, all other genes.

Figure 3. Factor maps obtained by crossing the ®rst and second axes of two correspondence analyses computed on 3912 M.tuberculosis (strain H37Rv)
genes. CA1 3 CA2 is the plot of the analysis computed on codon counts, while RSCU1 3 RSCU2 is the plot of the analysis computed on RSCU values. Red
dots, highly expressed genes; green diamonds, genes encoding proteins belonging to the PE-PGRS family; blue crosses, all other genes.
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counts (CA/AA) of the proteins encoded by B.burgdorferi
genes. On the two factor maps obtained by crossing the ®rst
four axes of this analysis, the ribosomal proteins cluster
together while the other proteins encoded by highly expressed
genes are spread all over the cloud (Fig. 6). Moreover, there is
no correlation between any of the ®rst four axes of CA/AA and
the second axis of our CA/counts.

Mycoplasma genitalium

On the factor map obtained by crossing the ®rst two axes of the
CA/counts in M.genitalium, a visual inspection shows that the
highly expressed genes are separated from the others by both
axes (Fig. 7). But, on the CA/RSCU, this trend is almost
invisible. The tests comparing the distributions of the score
between highly expressed genes and the other genes are highly
signi®cant for the ®rst (t = 7.403, P < 10±4) and second

(t = 6.385, P < 10±4) axes of the CA/counts. For the CA/
RSCU, the test for the distributions is also highly signi®cant
(t = 6.318, P < 10±4) on the ®rst axis, but it is not signi®cant (t
= 0.883, P = 0.378) on the second axis. In both analyses the
®rst axis is linked to the GC content of the genes, highly
expressed genes having a tendency to use GC-ending
synonymous codons more frequently, this for almost all
amino acids (Table 2). Indeed, except for glutamine, aspartic
acid, cysteine and phenylalanine, the ratio of GC-ending
synonymous codons is always higher in highly expressed
genes. Note that no effect linked to compositional strand
asymmetry was detected in the two CAs. Lastly, to estimate if
the grouping of highly expressed genes could be linked with
protein composition bias, we computed a CA/AA and found
that the second axis of the CA/counts is signi®cantly
correlated with the ®rst axis of CA/AA (r2 = 0.851, P < 10±4).

Figure 6. Factor maps obtained by crossing the ®rst four axes of a correspondence analysis computed on 821 B.burgdorferi proteins. AA1 3 AA2 is the plot
crossing the ®rst and second axes, while AA3 3 AA4 is the plot crossing the third and fourth axes. Red dots, ribosomal protein genes; orange squares, other
highly expressed genes (see Table 1); blue crosses, all other genes.

Figure 5. Factor maps obtained by crossing the ®rst and second axes of two correspondence analyses computed on 821 B.burgdorferi genes. CA1 3 CA2 is
the plot of the analysis computed on codon counts, while RSCU1 3 RSCU2 is the plot of the analysis computed on RSCU values. Red dots, ribosomal
protein genes; orange squares, other highly expressed genes (see Table 1); blue crosses, all other genes.
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Even if the second axis of CA/counts is related to amino
acid composition, it seems that there is a trend grouping highly
expressed genes on the basis of their GC content. Indeed, the
distribution of the scores on the ®rst axis of CA/RSCU (which
completely removes the amino acid effect) is also signi®cantly
different for this group of genes. Taking into account the fact
that M.genitalium has an AT-rich genome, this enrichment in
GC for the highly expressed genes may be linked to a selective
effect. It seems dif®cult then to completely reject the
possibility of a translation selection effect, as was proposed
in a previously published paper (12).

DISCUSSION

The preceding results demonstrate that the advantages
provided in some cases by the use of relative frequencies or
RSCU values are often counter-balanced by their negative
effects. Indeed, even if relative measures allow us to avoid
some amino acid biases (e.g. as in B.subtilis and
M.tuberculosis), they frequently blur the information, so that
an effect such as translational selection may disappear from
the analysis. In some cases they even introduce other biases
linked to amino acid composition.

Another problem is the fact that data tables containing
relative frequencies or RSCU values are not really suited for
CA, even if it is technically possible to use them. Other
multivariate statistical methods exist that can be applied to
codon usage data, and we shall now discuss these possibilities.
The simplest alternative option would be to perform a
principal component analysis (PCA) on relative frequencies
or on RSCU values. This method has already been applied to
different codon usage measures (18,19,34), but still not to
RSCU values. Another alternative option suited to tables
containing relative frequencies (but not RSCU values) is fuzzy
correspondence analysis (FCA) (35). This method was
especially designed for fuzzy categorical data. With FCA,
variables are represented by modalities, the sum of all
modalities for a given variable being equal to 1. This is

exactly the case of tables with relative frequencies of
synonymous codons (equation 6).

However, even if we use methods that are much more suited
to relative frequencies or RSCU values, this will not remove
the fact that the transformation performed on the original data
(i.e. the absolute frequencies) decreases the amount of
information and introduces new biases. For instance, a PCA
or a FCA computed on B.subtilis relative codon frequencies
still gives the UGC/UGU bias linked to the rarity of cysteine in
the proteins of this organism. A solution would be to remove
these codons from the analyses when studying organisms in
which cysteine is not abundant, but this problem may arise for
other rare amino acids encoded by two codons (e.g. tryptophan
in Mycoplasma species).

Table 2. Percentage of GC-ending synonymous codons
for each amino acid in M.genitalium genes

Amino acid High Others

Arg 30.5 28.0
Leu 23.0 22.2
Ser 24.1 17.8
Thr 30.0 22.1
Pro 21.9 15.1
Ala 15.4 12.3
Gly 27.9 25.5
Val 22.5 17.1
Lys 30.8 25.7
Asn 48.3 38.6
Glna 17.1 18.8
His 52.4 34.8
Glu 24.5 19.7
Aspa 13.9 13.9
Tyr 33.3 25.8
Cysa 20.0 20.0
Phea 12.5 13.5
Trp 50.0 35.2
Ile 29.2 21.8

High, highly expressed genes; Others, all other genes.
aThe GC-ending codons are less abundant in highly
expressed genes than in the other genes.

Figure 7. Factor maps obtained by crossing the ®rst and second axes of two correspondence analyses computed on 466 M.genitalium genes. CA1 3 CA2 is
the plot of the analysis computed on codon counts, while RSCU1 3 RSCU2 is the plot of the analysis computed on RSCU values. Red dots, ribosomal
protein genes; orange squares, other highly expressed genes (see Table 1); blue crosses, all other genes.
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To conclude, we suggest that a good solution to these
problems would be, as in all the analyses presented here, to
compute in parallel CA on counts and on relative frequencies
and then to compare the results. This approach has already
been successfully used in studies devoted to codon usage in
H.pylori (13) and on transposable elements (36). On the other
hand, the variety of multivariate statistical methods available
is much greater than the few that are systematically used for
biological sequence studies. Depending on the aims of the
study, methods more adapted than CA may be used. For
instance, among the methods implemented in the ADE-4
package (31) are: non-centred/decentred PCA or CA, fuzzy
PCA or CA, internal CA, non-symmetric CA, between and
within class PCA, CA or multiple correspondence analysis
(MCA), discriminant analysis on PCA, CA or MCA, tens of
variants of two table coupling methods such as co-inertia
analysis-based methods, canonical correlation analysis,
canonical CA and redundancy analysis, plus at least 10
k-table analysis methods, without taking into account the
various centring and standardisation options.
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