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Spatially constrained multivariate analysis methods (MULTISPATI-PCA) and classical principal component
analysis are applied for the entire country of France to study the main soil characteristics of topsoil and to
assess if their multivariate spatial pattern can provide insight on their extent and origin. The results of the
MULTSPATI-PCA provided evidence of strong spatial structures attributed to different natural processes. The
first axis was interpreted as an axis of global soil richness in clay content. Axis 2 reflected the influence of
some parent materials on the geochemical content of K and Al. Axis 3 showed a very large gradient of relative
content in coarse silt. Axis 4 was driven by gradients of maritime influence. We show that MULTISPATI-PCA
allows better than classical PCA to detect and map large regional trends in the distribution of topsoil
characteristics. The two first axes were expected and the maps obtained by both methods were consistent.
Interestingly, the other gradients were not expected and were better shown by MULTISPATI-PCA than by
classical PCA.
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1. Introduction

Topsoil characteristics in temperate Western Europe mainly
depend on parent material composition, geomorphology, and past
and present climatic conditions. The dominant soil processes are
weathering, leaching, illuviation, and, more locally, podzolisation.
Among the parent materials, loess deposits are widespread in
northern France, where they are locally very thick (Antoine et al.,
1998; Jamagne et al., 1981; Lautridou et al., 1986; Lebret and
Lautridou, 1991). The map of the quaternary superficial formations
of northwest France was updated in 1998 (Antoine et al., 1998), but it
still unclear to what extent the silty aeolian sediments may have
spatially influenced topsoil characteristics. In a recent study, Saby
et al. (2009) showed that the distribution of some trace elements in
French topsoil is strongly dependent on the geographical distribution
of some specific parent materials. We assume that this dependence is
also the case for some major elements. France has about 5500 km of
coastline along the Mediterranean Sea, the Atlantic Ocean, and the
Channel. Although atmospheric deposition in maritime environments
is known to affect terrestrial ecosystems (Farrell, 1995) and soil
(Zhang, 2003), to our present knowledge, no national systematic
inventory has explored to what extent the coastal sea salt spray may
have influenced the topsoil chemistry.
The existence of a systematic sampling grid over the entire
French metropolitan territory (Arrouays et al., 2002; Arrouays et al.,
2003; Jolivet et al., 2006; Saby et al., 2006) offers an opportunity to
tackle these general issues. We study the topsoil characteristics
(particle-size distribution, total major elements, organic C and N, Ca,
C, N, P, K, cation exchange capacity and exchangeable cations, and
pH) to assess if their spatial distribution and correlation can provide
any insight into their extent and origin. There are several statistical
methods available to study the spatial covariation of variables. One is
based on multivariate geostatistics (Webster and Oliver, 2007),
where the joint spatial variation and covariation of two variables is
expressed as a co-variogram and can be modelled with the linear
model of coregionalization (LMCR). This method has been for
example successfully used to determine the correlations between
yield of wheat and soil nutrients (Bourennane et al., 2003; Webster
et al., 1994), in exploratory analysis of trace metal concentrations in
soil (Atteia et al., 1994), and to study the distribution of nematodes
in soil (Webster and Boag, 1992). Unfortunately, it is strongly
dependant on the goodness-of-fit (in least square sense) of the
linear model of co-regionalization. Another approach consists in
performing in a first step multivariate analysis like Principal
Component Analysis (PCA) and to interpret the structures observed
on the first few axes. A second step can be achieved by mapping the
scores in geographical space or by using geostatistical tools (e.g.
(Boruvka et al., 2007; Odlare et al., 2005; Oliver et al., 1997;
Satapathy et al., 2009). However, standard PCA does not directly take
into account spatial relations and was not specifically designed to
identify spatial structures. Therefore, we use here a spatially
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constrained multivariate analysis method (MULTISPATI-PCA, (Dray
et al., 2008), which is a generalisation of Wartenberg's (1985)
Multivariate Spatial Correlation Analysis (MSCA). This technique is a
purely descriptive method, based solely on linear algebra and on
geometrical properties and implies a compromise between the
relationships among many variables (multivariate analysis) and
their spatial structure (autocorrelation).

In this paper, we applied MULTISPATI-PCA to a set of topsoil
characteristics and we compare the results to classical PCA.

2. Material and methods

2.1. Study area

The French National Soil Quality Monitoring Network, “Réseau de
Mesures de la Qualité des Sols” (Jolivet et al., 2006; Saby et al., 2006),
consists of soil property observations on a 16-km regular grid
covering the French metropolitan territory (550,000 km²). This
network was designed to monitor soil evolutions and to identify
diffuse contamination due to either atmospheric deposition of trace
elements on soils or agricultural practices (e.g., fertilisers, sludge
amendments, and inorganic pesticides). The complete inventory
consists of around 2200 sites, but in this study, we use measurements
from the 2117 sites analysed at present.

The sites were selected at the centre of each 16×16 km cell. In the
case of soil being unavailable at the centre of the cell (i.e., urban area,
road, river, etc.), an alternative location was selected as close as
possible to the centre of the cell, within a 1 km radius, to find a natural
(undisturbed or cultivated) soil. However, it was not always possible
to find an alternative location. All land cover types were present in the
dataset, except industrial sites, which were not sampled. At each site,
25 individual core samples were taken from the topsoil (0–30 cm)
layer, using a stratified random sampling design within a 20×20 m
area. Core samples were bulked to obtain a composite sample for each
site. Soil samples were air-dried and sieved to 2 mm before analysis
(AFNOR, 1994). The topsoil was sampled from 0 to 30 cm because it
corresponds to the maximal depths affected by ploughing and is a
conventional thickness often reported in France (e.g., (Arrouays et al.,
2001; Arrouays et al., 2008).

The following soil characteristics were retained: (i) the total
organic carbon content (TOC) measured by dry combustion, (ii) the
particle-size distribution using five classes [(clay (0–2 μm), fine silt
Table 1
Descriptive statistics of the soil properties.

Soil properties (unit) Short
name

Mean Median 10%
percentile

90%
percentil

Clay (g kg−1) Clay 244.11 209.50 106.00 437.90
Fine silt (g kg−1) – 227.15 230.00 103.10 352.00
Coarse silt (g kg−1) coarse.silt 176.30 144.00 60.00 358.00
Fine sand (g kg−1) fine.sand 134.15 115.00 40.00 244.00
Coarse Sand (g kg−1) coarse.sand 218.29 145.00 16.00 521.90
Organic carbon (g kg−1) carbon 25.58 19.50 9.49 48.29
Total nitrogen (g kg−1) tot.N 2.14 1.72 0.85 3.85
total calcium carbonate (g kg−1) tot.calc 54.03 0.97 0.60 218.90
pH water pH water 6.41 6.20 4.60 8.20
Available phosphorus (g kg−1) available.P 0.05 0.03 0.00 0.12
CEC (Cmol+ kg−1) Cec 14.04 10.20 3.81 29.99
Exchangeable Ca (Cmol+ kg−1) exc.Ca 12.41 8.66 0.71 28.69
Exchangeable Mg (Cmol+ kg−1) exc.Mg 1.07 0.70 0.23 1.89
Exchangeable K (Cmol+ kg−1) exc.K 0.38 0.32 0.11 0.69
Exchangeable Na (Cmol+ kg−1) exc.Na 0.12 0.05 0.02 0.11
Exchangeable Al (Cmol+ kg−1) exc.Al 0.61 0.09 0.02 2.10
Total Al (g.100g−1) tot.Al 4.86 4.70 2.25 7.66
Total Ca (g.100g−1) tot.Ca 2.56 0.44 0.12 9.02
Total Fe (g.100g−1) tot.Fe 2.54 2.28 0.94 4.39
Total K (g.100g−1) tot.K 1.61 1.45 0.64 2.85
Total Mg (g.100g−1) tot.Mg 0.54 0.36 0.12 0.96
(2–20 μm), coarse silt (20–50 μm), fine sand (50–200 μm) and coarse
sand (200–2000 μm)] using wet sieving and the pipettemethod (NF X
31–107), (iii) cation exchange capacity and exchangeable cations
(cobaltihexamin method), (iv) total K, Ca, Mg, Fe and Al determined
by ICP-MS after dissolution with hydrofluoric and perchloric acids, (v)
pH in water (1 to 5 soil to water ratio), and (vi) extractable P (Olsen
method).

Analyses were performed by the Soil Analysis Laboratory of INRA
in Arras, France, which is accredited for soil and sludge analysis.

Table 1 shows that the boxcox transformation has removed most
of the skewness of the raw data although log transform performs
worst. This table shows also that the parameters in the dataset
covered a very wide range. The Table 2 shows the linear correlations
between the soil parameters. Most of these correlations were
expected, such as those between particle-size fractions, or those
observed between cation exchange capacity and exchangeable
cations. The correlation between clay and C content globally confirms
the effect of the fine particle fractions on C stabilisation in soil
(Arrouays et al., 2006).

2.2. MULTISPATI-PCA

In this paper we used both classical PCA andMULTISPATI-PCA. The
former is a classical analysis. The latter has been fully described by
Dray et al. (2008). This paper does not give the full detail of the two
procedures that have been already published but we present an
outline below.

2.2.1. General analysis of a statistical triplet
Multivariate analysis methods can be described in terms of duality

diagram and of their associated statistical triplet (Holmes, 2006; Dray
and Dufour, 2007).

Let X be an (n×p) matrix (soil parameters). The p variables (in
columns) have been centered by substracting the overall mean for the
n samples (in rows), and scaled to unit norm by dividing by the
standard deviation.

Let Dn be a scalar product of Rn and let Dp be a scalar product of Rp.
The analysis of the statistical triplet (X,Dp,Dn) is obtained by the
eigenanalysis of matrix S:

S = XΤDnXDp ð1Þ
e
Kurtosis Skewness Kurtosis

log(x)
Skewness
log(x)

t (BoxCox
parameter)

Kurtosis
(boxcox)

Skewness
(boxcox)

0.786 0.957 4.406 −1.325 0.441 0.226 0.031
−0252 −0.028 13.979 −3.051 0.929 1.254 0.029
0.292 0.990 5.866 −1.627 0.406 −0.004 0.015
5.179 1.804 1.472 −0.807 0.296 0.452 0.027
0.961 1.226 −0.018 −0.744 0.255 −0.833 −0.100

17.777 3.163 0.596 0.214 −0.088 0.919 −0.015
11.953 2.644 2.106 −0.318 0.099 1.254 0.029
10.117 3.121 −0.080 1.234 −0.494 −1.116 0.681
−1.283 0.019 −1.098 −0.230 0.673 −1.240 −0.058
56.689 4.323 −0.453 −0.610 0.220 −0.601 −0.072
1.955 1.422 0.076 −0.283 0.122 −0.345 −0.010
1.683 1.350 1.284 −1.175 0.324 −0.565 −0.108

32.909 4.907 1.237 0.024 −0.006 1.238 −0.002
291.788 11.361 1.089 −0.524 0.181 1.132 0.040

1047.680 29.968 10.680 1.792 1.000 9.401 1.551
9.967 2.993 −0.584 0.690 1.000 −0.584 0.690

−0.463 0.129 4.917 −1.753 0.825 −0.387 −0.080
9.877 3.065 −0.175 0.714 −0.197 −0.185 0.045
5.143 1.548 6.261 −1.839 0.476 0.992 0.083
0.574 0.864 3.468 −1.142 0.447 0.053 0.009

104.641 8.227 2.077 −0.480 0.096 2.039 0.059
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whereXΤ is the transpose ofX. This eigenanalysis leads to the diagonal
matrix of eigenvalues Λ and to eigenvectors U. The row scores R are
given by:

R = XDpU ð2Þ

and the variable loadings L, by:

L = UΛ1=2 ð3Þ

2.2.2. The case of simple PCA
IfDn=1/nIn andDp=Ip, the analysis of the statistical triplet (X,Dp,Dn)

is the classical PCA ofX. This leads to the eigenanalysis ofmatrixXΤX and
to usual row scores and variable loadings. The advantage of the general
triplet notation is that it can be used to define many other multivariate
analyses, like for example Principal Coordinate Analysis, Correspondence
Analysis or Multiple Correspondence Analysis.

The ade4 package for the R statistical software (Chessel et al.,
2004) is based on the duality diagram and on the analysis of statistical
triplets. For the analysis of one-table data sets alone, it offers 10
different methods.

2.2.3. The MULTISPATI-PCA analysis
The aim of the MULTISPATI analysis is to take into account the

spatial location of samples in the analysis of the data table. This
information is introduced by the way of a spatial weighting matrix
C=[cij] that indicates the strength of the relationship between units i
and j. This matrix can take many forms, for example a binary
connectivity matrix B (bij=1 if units i and j are neighbours, else
bij=0). Here, This matrix B is transformed into a row-standardized
spatial weight matrixW (weight equal to the inverse of the number of
neighbours) as:

W = cij
.
∑n

j=1cij
h i

ð5Þ

UsingW has several advantages, mainly allowing a decomposition
of Moran's I into the product of a spatial smoothing and the Pearson
correlation between the variable and its spatial lag (Dray et al., 2008).
Another advantage is that, in the case of a correlation matrix PCA of X,
the MULTISPATI-PCA analysis is equivalent to Wartenberg's Multi-
variate Spatial Correlation Analysis (Wartenberg, 1985).

The MULTISPATI-PCA analysis is a fully matched coinertia analysis
(Torre and Chessel, 1994) of the data table X and the «lag vector»WX.
It corresponds to the statistical triplet (XΤDnWX,Dp,Dp) , and after
some transformation, it leads to the eigenanalysis of matrixHwhich is
symmetric:

H = 1=2ð Þ XΤ WΤDn + DnW
� �

XDp

� �
ð6Þ

The row scores of this analysis maximize the scalar product
between a linear combination of the original variables and a linear
combination of the lagged variables. It is therefore a compromise
between the simple PCA of the pedological variables and the maximal
spatial autocorrelation obtained by computing the mean of each
variable over the neighbours of each point («lagged variables»).

The advantage of MULTISPATI-PCA over PCA is that MULTISPATI-
PCA sample scores maximise the spatial autocorrelation between
sites, while conventional PCA scores maximise the inertia (i.e., the
sum of variances). MULTISPATI-PCA scores are, therefore, “smooth”
and show strong spatial structures on the first few axes, while PCA
scores can be rough, smooth, ormixed and can show spatial structures
on any axis (even distant ones). Moreover, the advantage of MULTI-
SPATI-PCA over Wartenberg's classical MSCA is that MULTISPATI-PCA
is not restricted to the case of quantitative normalised variables but
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can be applied to any type of variable and any type of analysis (for
example, binary variables, counts, or qualitative variables and
principal component analysis, correspondence analysis, or multiple
correspondence analysis).

Finally, a Monte Carlo test was used to check the statistical
significance of the observed structures. This test is a multivariate
permutation test against a random distribution of the values of the
topsoil characteristics over the sampling sites. The test does not rely
on statistical distribution hypotheses.

Computations were conducted with the “ade4” (Chessel et al.,
2004) and “spdep” packages (Bivand et al., 2008) for the R statistical
software package (R Development Core Team, 20084). MULTISPATI-
PCA is a purely descriptive method, based solely on linear algebra and
on geometrical properties. The method does not rely on any model
fitting.

2.3. Additive log ratio transformation

Component analysis of particle-size distribution involves problem
in that the components have a constant sum, 100%, with distributions
that are curtailed at the limits of 0 and 100%. Aitchison (1986) drew
attention to the matter and described how to deal with the situation
using the additive log-ratio (adlr).We therefore transform the particle
size data using adlr method before performing the multivariate
analysis.

3. Results

3.1. MULTISPATI-PCA Axes

The Monte-Carlo permutation test of the MULTISPATI-PCA was
highly significant (pb0.005), which showed that the spatial structures
exhibited by the soil properties were indeed very strong and could not
be attributed to random variations. Table 3 gives a comparison of the
results of the 2 PCA in terms of the variance explained. For the
“Classical PCA”, the variances given in the table are equal to the
eigenvalues, and the Moran's index is computed on unit-norm row
scores. For the MULTISPATI-PCA analysis, the variances are the spatial
variance, which is the variance of the normed MULTISPATI-PCA row
scores. The Moran's index is computed on the product of these row
scores with the lag vector (mean over neighbouring points). This
presentation can be used to compare the loss in inertia (spatial
variance vs. total variance) and the gain in spatial information
Table 3
Eigen values and variance of the principal components generated from soil properties anal

MULTISPATI-PCA

Eigen values Spatial variance Percentage Cumulative percentage M

3.1016 7.3838 36.92% 36.92% 0.
2.066 3.2047 16.02% 52.94% 0.
0.8264 1.6511 8.26% 61.20% 0.
0.6177 1.4364 7.18% 68.38% 0.
0.2778 1.0267 5.13% 73.51% 0.
0.2594 1.0414 5.21% 78.72% 0.
0.2045 1.0383 5.19% 83.91% 0.
0.1 0.6708 3.36% 87.27% 0.
0.0827 0.4673 2.33% 89.60% 0.
0.0554 0.4608 2.31% 91.91% 0.
0.0409 0.41 2.05% 93.96% 0.
0.0288 0.2773 1.38% 95.34% 0.
0.0229 0.1922 0.96% 96.30% 0.
0.0151 0.1768 0.89% 97.19% 0.
0.0128 0.155 0.77% 97.96% 0.
0.0097 0.1196 0.60% 98.56% 0.
0.0051 0.0812 0.41% 98.97% 0.
0.0025 0.0589 0.29% 99.26% 0.
0.0014 0.0394 0.20% 99.46% 0.
0.0006 0.1084 0.54% 100.00% 0.
(MULTISPATI-PCA Moran's I vs. Classical PCA Moran's I). For example,
for the first axis, the loss of inertia in the MULTISPATI-PCA is only
(7.597–7.3838)/7.597=3%, while the gain in spatial information is
(0.42–0.396)/0.42=6%. Moreover, the gain of spatial autocorrelation
(Moran's I) is advantageous for axes 2 and 3 (0.644 versus 0.571 and
0.503 versus 0.38 respectively) and negative for axis 4.

Fig. 1 shows the graphical display of the first four axes of the
MULTISPATI-PCA and the classical PCA. Axis 1 for both methods was
mainly driven by particle-size distribution relative to the clay, fine silt,
and coarse sand content. As expected, the scores on the axis 1 were
highly and negatively correlated with the clay content and the cation
exchange capacity and were positively correlated with coarse sand.
We conclude that this axis reflects a global mineral richness (in clay
and cations) of the topsoil. Axis 2 appeared to be driven by the relative
K and Al contents, no matter the particle-size distribution. Axis 3 was
driven by the relative abundance of coarse silt. The Axis 3 scores were
positively correlatedwith coarse silt content and negatively correlated
with coarse sand content. This axis indicated samples in which the
relative proportion of coarse silt in topsoil was large.We also observed
a weak negative correlation between the scores of this axis and
phosphorus. Axis 4 appeared driven by the relative abundance of fine
sand. This axis was also slightly correlated with total K and most of
samples exhibiting the highest exchangeableNa contentswere located
on the negative part of this axis.

3.2. Maps of the scores on MULTISPATI-PCA and classical PCA axes

Figs. 2–5 show the maps of the scores on the first four axes of the
MULTISPATI-PCA and the Classical PCA. As expected, the maps of Axis
1 for the 2methods are quite similar and nearlymatch the distribution
of topsoil textures in France (Fig. 2). Both axes oppose very coarse
sandy materials (e.g. Landes de Gascogne, Sologne, Vosges) to heavy
clayey and clayey topsoils (e.g. Lorraine, Jura Mountain, Charentes).
The maps of the scores on Axis 2 (Fig. 3) show a spatial distribution
linked to specific parent materials, mainly derived from crystalline
rocks. The relative abundance of total K and Al could be related to their
mineral composition. The map of the scores on the axis 2 of the
MULTISPATI-PCA is slightly smoother than the one of the classical PCA
as shown by the Moran's indexes in table 3. The maps of the scores on
Axis 3 (Fig. 4) exhibit large trends in the proportion of coarse silt
relative to particle size fractions. This trend is highly visible in the
northwest part of France, and in the extreme Southwest, where soils
having very high coarse silt content have been described elsewhere
yses for the MULTISPATI-PCA and Classical PCA. Moran's Indexes are also provided.

Classical PCA

oran's I Variance Percentage Cumulative percentage Moran's I

420 7.597 37.99% 37.99% 0.396
645 3.362 16.80% 54.79% 0.572
500 1.792 8.97% 63.76% 0.378
430 1.549 7.74% 71.50% 0.439
271 1.093 5.47% 76.97% 0.311
249 0.919 4.59% 81.56% 0.345
197 0.902 4.51% 86.07% 0.294
149 0.582 2.91% 88.98% 0.267
177 0.489 2.44% 91.42% 0.127
120 0.437 2.19% 93.61% 0.226
100 0.379 1.90% 95.51% 0.176
104 0.214 1.07% 96.58% 0.143
119 0.154 0.77% 97.35% 0.152
085 0.131 0.66% 98.01% 0.126
083 0.103 0.51% 98.52% 0.241
081 0.097 0.49% 99.01% 0.111
062 0.078 0.39% 99.40% 0.231
043 0.051 0.25% 99.65% 0.086
036 0.042 0.22% 99.87% 0.135
006 0.027 0.13% 100.00% 0.099
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Fig. 1. Graphical display of the first four axes of the classical PCA (a) and MULTISPATI-PCA (b). Correlation between variables and principal components is presented for the classical
PCA. Coefficients of variables are presented for the MULTISPATI-PCA.
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(Arrouays et al., 1995; Arrouays et al., 1998). Interestingly, this trend
in the northwest part of France is more visible on the MULTISPATI-
PCA map. The MULTISPATI-PCA map of the scores on Axis 4 (Fig. 5)
clearly shows a coastal belt along the coastlines of the Channel, the
northern part of the Atlantic Ocean, and the Mediterranean Sea. This
belt is quite less visible on the classical PCA map.

4. Discussion

The first two axes were expected and rather easy to interpret. At
the national scale, they confirm the major influence of clay content
and parent material mineralogy on many topsoil characteristics. The
map of the scores on Axis 3 shows that a large part of northwest
France exhibits high relative contents of coarse silt. Some of these high
coarse silt contents are clearly linked to well known typical Aeolian
loess deposits, such as in northern France, Brittany or Normandy
(Antoine et al., 1998; Antoine et al., 2003). However, themap suggests
that the influence of these Aeolian deposits on topsoil may have
influenced a larger territory than what is indicated by the quaternary
superficial formations maps (Antoine et al., 1998). Indeed, such a
diffuse impact could not have been detected using classical geological
and geomorphological observations. We have captured a very large
trend that is likely to continue outside of the French borders. Indeed,
the loess belt continues in Belgium, and it is well known that typical
homogeneous loess occurs along the southeastern coast of England,
overlying many different substrata (Antoine et al., 2003; Catt, 1985).
The map of the scores on Axis 4 clearly shows a marine influence on
soils likely attributable to fine-sized coversands, K and exchangeable



Fig. 2. Maps of the first axis of the MULTISPATI-PCA (a) and classical PCA (b).
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Na. On the MULTISPACI-PCA map, a narrow belt is visible close to
nearly all of the coastlines and is more pronounced close to the
Mediterranean Sea. A noticeable exception is in southwest France,
where the soils of the “Landes de Gascogne” are covered by Spodosols
almost exclusively composed of coarse quartz sand having a very low
cation exchange capacity (Augusto et al., 2006; Jolivet et al., 1997).
Fig. 3. Maps of the second axis of the MUL
These results show, that except for this last region, the marine
influence can affect soils at a distance that may reach as far as 80 km.

The gain in spatial auto correlation usingMULTISPATI-PCA is not as
large as the one presented in the results of Dray et al (2008). Indeed,
soil properties seem much more spatially correlated than other
ecological data. As shown by Dray et al. (2008), MULTISPATI-PCA may
TISPATI-PCA (a) and classical PCA (b).

image of Fig.�3


Fig. 4. Maps of the third axis of the MULTISPATI-PCA (a) and classical PCA (b).
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produce negative eigen values (due to possible negative autocorre-
lation in the data) which is not the case for our dataset (Table 3). Yet,
MULTISPATI-PCA produces perceptible advantage for pedometricians
as shown by the rather easy interpretation of the axis 2 to 4 based on
smoother maps. Axis 4 of the MULTISPATI-PCA which represents the
marine influence on soils close to the coastlines is interesting because
although this axis represents only 8 % of the variance it displays
valuable inputs about soil properties distribution. Finally, MULTI-
SPATI-PCA ensures an optimal spatial result for pedometricians who
Fig. 5. Maps of the fourth axis of the MULT
are interested in mapping the multivariate spatial patterns from their
datasets.

5. Conclusion

Using the soil samples of a 16×16 km grid soil inventory, we
performed an estimation of the distribution of the main topsoil
characteristics over the entire French territory. This study shows that
the spacing of the sampling grid combined with MULTISPATI-PCA
ISPATI-PCA (a) and classical PCA (b).

image of Fig.�4
image of Fig.�5
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allows us to detect andmap large regional trends in the distribution of
topsoil characteristics. Interestingly, the gradients were more visible
and pronounced when using MULTISPACI-PCA rather than classical
PCA. Some of the gradients that we mapped were expected and could
have been drawn without using these techniques. However, the most
interesting findings were the large extent of the coarse silt gradient in
northwest France and the assessment of the marine influence on soils
close to the coastlines.
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