An introduction to *K*-tables Analyses

AB Dufour, ade4 team

UCB Lyon 1

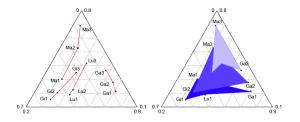
January 2015

AB Dufour, ade4 team (UCB Lyon 1) An introduction to *K*-tables Analyses

Example 1:

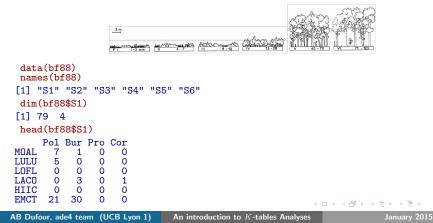
Proportion of people employed in the primary, secondary and tertiary sectors for 4 town councils in the South of France: Gignac (Gi), Ganges (Ga), Matellas (Ma) and Lunel (Lu) during 3 census (1968, 1975, 1982). What is the objective of the study ?

- Studying the evolution of each town council ?
- Studying the evolution of economic typologies ?

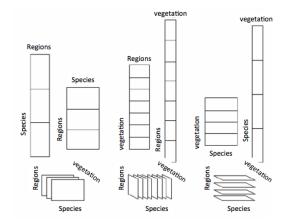


Example 2: Influence of vegetation successions on bird communities composition

The dataset contains the number of birds of 79 species observed in four regions (Burgundy, Provence, Corsica and Poland) along a gradient of six stages of vegetation succession:



Data can be organized in one table. But which one ? and for what study ?

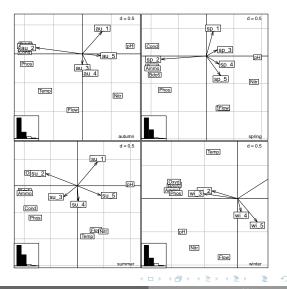


Example 3

Example 3: The Meaudret, environment and seasons

4 seasons 4 PCA

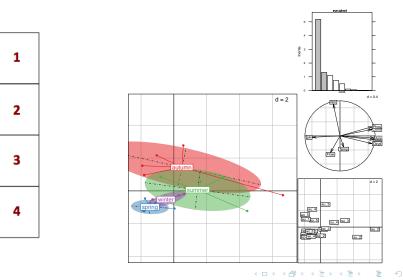
How to compare the factorial maps ?



AB Dufour, ade4 team (UCB Lyon 1)

Example 3

First Analysis: concataining all datasets



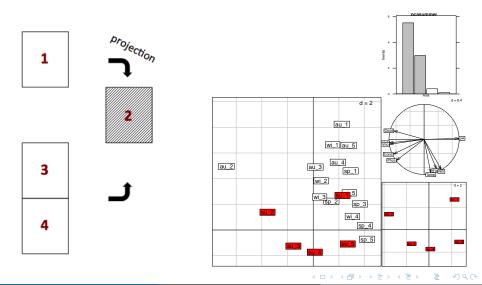
AB Dufour, ade4 team (UCB Lyon 1)

An introduction to K-tables Analyses

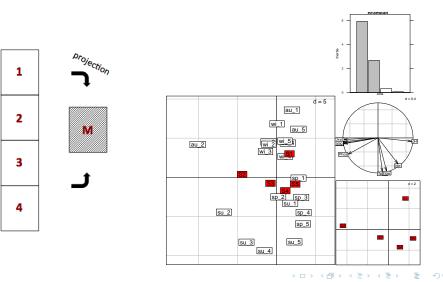
January 2015

Example 3

Second Analysis: one season as reference



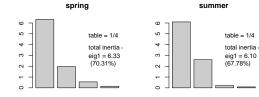
Third Analysis: season average table as reference



AB Dufour, ade4 team (UCB Lyon 1)

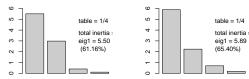
January 2015 8 /

Is this mean table a good reference?



automn

▲ 🗇 🕨 🔸



э

Conclusion

Objective: link the environmental structure and seasons

- Analysing four tables separatly: no common space
- Creating a common space: a reference table
 - one season as reference
 - the average table as reference

We link the individuals in a same variable space. BUT

the question was about the relationships between season tables.

The K-table methods

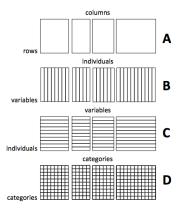
Function name	Analysis name
sepan	K-table separate analyses
pta	Partial triadic analysis
foucart	Foucart analysis
statis	STATIS analysis
mfa	Multiple factor analysis
mcoa	Multiple coinertia analysis
statico	2 K-table analysis
co-statis	2 K-table analysis

æ

<ロト < 同ト < ヨト < ヨト

Preparing a K-table analysis

K tables are stored in objects of type ktab. A ktab is a list of dataframes that share the same row names.



Preparing a *K*-table analysis

The tables must share the same row names and row weights. If the common dimension of the tables is the columns, they must be transposed to have their common dimension as rows.

Element of ktab	Definition
lw	row weights, common to all the tables
CW	column weights
blo	number of columns of each table
TL	index for rows (table and row names)
TC	index for columns (table and columns names)
T4	index for 4 elements of an array
call	function call

Creating a K-table object

Series of tables are stored in object of class ktab which can be created using:

- ktab.list.df: a list of data frames
- ktab.list.dudi: a list of dudi objects
- ktab.data.frame: one dataframe (and number of columns of each table)
- ktab.within: an object created by a withinpca analysis

```
Examples
```

```
A way for creating a ktab object:
```

```
data(meaudret)
pcadat <- withinpca(meaudret$env,meaudret$design$season,scaling="partial",scann=F)
ktadat <- ktab.within(pcadat, colnames = rep(c("S1", "S2", "S3", "S4", "S5"),4))</pre>
```

Another way for creating a ktab object:

```
prep <- split(meaudret$env, meaudret$design$season)
prep <- lapply(prep, function(x) data.frame(t(scalewt(x))))
ktaseason <- ktab.list.df(prep, colnames = rep(c("S1", "S2", "S3", "S4", "S5"),4))</pre>
```

The *K*-table objects

```
names(ktaseason)
 [1] "autumn" "spring" "summer" "winter" "blo"
                                               "lw"
                                                        "CW"
                                                                "TL."
                                                                         "TC"
[10] "T4"
             "call"
ktaseason$spring
            S1
                      S2
                                  S3
                                            S4
                                                       S5
Temp -1.3728129 -0.3922323 -0.39223227 0.5883484
                                                1.5689291
Flow -1.6151562 -0.4251482 -0.01830782 0.8157149
                                                1,2428973
ъΗ
     0.2041241 - 1.8371173
                          0.20412415
                                      1.2247449
                                                0.2041241
Cond 0.0000000 1.9069252 -0.47673129 -0.4767313 -0.9534626
Bdo5 -0.9621078 1.9351487
                         -0.41545565 -0.3061252
                                              -0.2514600
Oxyd -0.6364382 1.9923283 -0.49808208 -0.4980821
                                               -0.3597259
Ammo -0.7376580 1.9837018 -0.45854414 -0.4087024 -0.3787973
Nitr -0.5281643 -1.6155614
                          0.40389035
                                     0.4038903
                                                1.3359450
               1.6189391 -1.06650488
Phos -1.0473231
                                     0.1419449
                                                0.3529441
ktaseason$blo
autumn spring summer winter
           5
                  5
    5
                        5
ktaseason$1w
[1] 1 1 1 1 1 1 1 1 1
ktaseason$cw[1:15]
 ・ロッ ・雪 ・ ・ ヨ ・ ・
                                                                      3
```

The *K*-table objects

ktaseason\$TL[1:18,]

Ktaseasonoito				
	Т	С		
1	autumn	S1		
2	autumn	S2		
3	autumn	S3		
4 5	autumn	S4		
5	autumn	S5		
6	spring	S1		
7	spring	S2		
8	spring			
9	spring	S4		
10	spring	S5		
11	summer	S1		
12	summer	S2		
13	summer	S3		
14	summer	S4		
15	summer	S5		
16	winter			
17	winter			
18	winter			
19	winter			
20	winter	S5		

ktaspason@TC

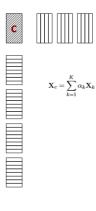
ktaseason\$T4

	т	4
1	autumn	î.
		-
2	autumn	2
3	autumn	3
4	autumn	4
5	spring	1
6	spring	2
7	spring	3
8	spring	4
9	summer	1
10	summer	2
11	summer	3
12	summer	4
13	winter	1
14	winter	2
15	winter	3
16	winter	4

<ロト < 同ト < ヨト < ヨト

э

The K tables



Let $X_1, \ldots, X_k, \ldots, X_K$ be K tables of quantitative variables with the same n rows (samples) and the same p columns (variables).

Let

 $(\mathbf{X}_1, \mathbf{Q}, \mathbf{D}), \ldots, (\mathbf{X}_k, \mathbf{Q}, \mathbf{D}), \ldots, (\mathbf{X}_K, \mathbf{Q}, \mathbf{D})$ be the *K* associated statistical triplets.

The partial triadic analysis is decomposed in three steps.

The RV-coefficient

Let \mathbf{X}_k and \mathbf{X}_ℓ be two tables of quantitative variables with the same n rows (samples) and the same p columns (variables). Let $(\mathbf{X}_k, \mathbf{Q}, \mathbf{D})$ and $(\mathbf{X}_\ell, \mathbf{Q}, \mathbf{D})$ the two statistical triplets. The inner-product between the tables are defined by:

$$Covv(\mathbf{X}_k, \mathbf{X}_\ell) = Trace(\mathbf{X}_k^{\mathsf{T}} \mathbf{D} \mathbf{X}_\ell \mathbf{Q}) = Trace(\mathbf{X}_\ell^{\mathsf{T}} \mathbf{D} \mathbf{X}_k \mathbf{Q})$$

Let note that $Covv(\mathbf{X}_k, \mathbf{X}_k) = Trace(\mathbf{X}_k^{\top} \mathbf{D} \mathbf{X}_k \mathbf{Q}) = Trace(\mathbf{X}_k^{\top} \mathbf{D} \mathbf{X}_k \mathbf{Q})$ is called the vectorial variance $Vav(\mathbf{X}_k)$.

The Vectorial correlation coefficient called RV-coefficient is :

$$RV(\mathbf{X}_k, \mathbf{X}_\ell) = \frac{Covv(\mathbf{X}_k, \mathbf{X}_\ell)}{\sqrt{Vav(\mathbf{X}_k)}\sqrt{Vav(\mathbf{X}_\ell)}}$$

Step 1: the interstructure

For each couple of triplets (X_k, Q, D) and (X_ℓ, Q, D) , we can compute the RV coefficient and put all them in the **RV** matrix :

$$\begin{pmatrix} RV(\mathbf{X}_1, \mathbf{X}_1) & \dots & RV(\mathbf{X}_1, \mathbf{X}_k) & \dots & RV(\mathbf{X}_1, \mathbf{X}_K) \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ RV(\mathbf{X}_k, \mathbf{X}_1) & \dots & RV(\mathbf{X}_k, \mathbf{X}_k) & \dots & RV(\mathbf{X}_k, \mathbf{X}_K) \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ RV(\mathbf{X}_K, \mathbf{X}_1) & \dots & RV(\mathbf{X}_K, \mathbf{X}_k) & \dots & RV(\mathbf{X}_K 1, \mathbf{X}_K) \end{pmatrix}$$

We look for the eigenvalues Λ_{is} and eigenvectors \mathbf{U}_{is} of \mathbf{RV} giving the scores of tables $\mathbf{S} = \mathbf{U}_{is} \Lambda_{is}^{1/2}$ which can be viewed through a correlation circle.

Step 2: the compromise

Let \mathbf{u}_{is} the first eigenvector of the interstructure analysis:

 $\mathbf{u}_{is}^{\mathsf{T}} = (\alpha_1 \ldots \alpha_k \ldots \alpha_K).$

For all k = 1, K, α_k represents the weighting of the \mathbf{X}_k table. And we can therefore built the compromise table :

$$\mathbf{X}_c = \sum_{k=1}^K \alpha_k \mathbf{X}_k$$

The analysis of the compromise is the analysis of the triplet (\mathbf{X}_c , \mathbf{Q} , \mathbf{D}) in the PCA sense under the following constraint $\sum_{k=1}^{K} \alpha_k^2 = 1$

Step 3: the intrastructure

Let Λ and U, the eigenvalues and the eigenvectors of $(\mathbf{X}_c, \mathbf{Q}, \mathbf{D})$.

Projection of the rows of each table \mathbf{X}_k onto the principal axes: $\mathbf{R}_k = \mathbf{X}_k \mathbf{Q} \mathbf{U}$

Projection of the columns of each table \mathbf{X}_k onto the principal components: $\mathbf{C}_k = \mathbf{X}^{\mathsf{T}} \mathbf{D} \mathbf{X}_k \mathbf{Q} \mathbf{U} \Lambda^{-1/2}$