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A.B. Dufour

1 Fisher’s iris dataset

The data were collected by Anderson [1] and used by Fisher [2] to formulate the
linear discriminant analysis (LDA or DA). The dataset gives the measurements
in centimeters of the following variables: 1- sepal length, 2- sepal width, 3- petal
length, and 4- petal width, this for 50 flowers from each of the 3 species of iris
considered. The species considered are Iris setosa, versicolor, and virginica.

data(iris)
names(iris)

[1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width" "Species"

dim(iris)

[1] 150 5

setosa versicolor virginica

1

One can build the histograms by species and by variable:
1http://cs-people.bu.edu/mdassaro/pp3/
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par(mfcol = c(3, 4))
for (k in 1:4) {

j0 <- names(iris)[k]
br0 <- seq(min(iris[, k]), max(iris[, k]), le = 11)
x0 <- seq(min(iris[, k]), max(iris[, k]), le = 50)
for (i in 1:3) {

i0 <- levels(iris$Species)[i]
x <- iris[iris$Species == i0, j0]
hist(x, br = br0, proba = T, col = grey(0.8), main = i0,

xlab = j0)
lines(x0, dnorm(x0, mean(x), sd(x)), col = "red", lwd = 2)

}
}

One can display the bivariate scatterplots.

library(ade4)
par(mar = c(0, 0, 0, 0))
pan1 <- function(x, y, ...) {

xy <- cbind.data.frame(x, y)
s.class(xy, iris$Species, include.ori = F, add.p = T, clab = 1.5,

col = c("blue", "black", "red"), cpoi = 2, csta = 0.5)
}
pairs(iris[, 1:4], panel = pan1)
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One can display the 3-dimensional scatterplots.

library(scatterplot3d)
par(mfrow = c(2, 2))
mar0 = c(2, 3, 2, 3)
scatterplot3d(iris[, 1], iris[, 2], iris[, 3], mar = mar0, color = c("blue",

"black", "red")[iris$Species], pch = 19)
scatterplot3d(iris[, 2], iris[, 3], iris[, 4], mar = mar0, color = c("blue",

"black", "red")[iris$Species], pch = 19)
scatterplot3d(iris[, 3], iris[, 4], iris[, 1], mar = mar0, color = c("blue",

"black", "red")[iris$Species], pch = 19)
scatterplot3d(iris[, 4], iris[, 1], iris[, 2], mar = mar0, color = c("blue",

"black", "red")[iris$Species], pch = 19)
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The ability to discriminate species using this graph approach varies with the
ID of the variables and the number of variables considered. Moreover, we can’t
plot more than 3 variables at the same time.

Looking for a variable or a combination of variables which separate the
groups is discriminating. Two main objectives can be distinguished:
1. a descriptive discrimination to answer the question: Which variables
separate the groups ?
2. a predictive discrimination to solve the following problem: Let’s say
I sample a new individual (e.g., a new flower). Which group does it
belong to ?

These two aims lead to different ways of programming the discriminant
analysis: 1. discrimin from the ade4 package; 2. lda from the MASS
package.

2 The principle

2.1 Linking one variable and a factor

To study a group effect (the factor), one can compute a one-way analysis of
variance. We previously saw (cf Within and Between PCA) that such procedure
allows:

? to answer the null hypothesis: the g population means are equal

? to decompose the total sum of square distances to the general mean into
between and within sums of squares: c = b+ w

Let’s divide the previous formula by n (or n-1). One can say that the total
variance c/n can be divided into:
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- the variance linked to the factor called between variance b/n,
- the variance not linked to the factor called residual variance or within vari-
ance w/n.

1. From a descriptive point of view, one can compute the correlation ratio:
b/c. The correlation ratio varies between 0 and 1. If near 1, the continuous
variable and the groups are linked, i.e. the means differ. If near 0, there
is no link between the continous variable considered and the groups, i.e.
all means are equal.

2. From a predictive point of view, a test (analysis of variance) can be com-
puted based on the weighting ratio b/w.

2.2 Linking a set of p variables and a factor

Let’s call X the data frame containing a set of p variables measured on n indi-
viduals. We saw that principal component analyses seek linear combinations of
variables maximizing the total inertia, i.e. the total variance. The solution is
obtained by the diagonalization of the covariance matrix XT

0 DX0Q where X0 is
the X matrix centred, D and Q the weightings of rows and columns respectively.

Let’s call C the total covariance matrix. C can be expressed as a function
of:
- a covariance matrix of the table containing the means per group, also called
between covariance matrix B
- a covariance matrix of the table containing the distances between the individ-
uals and their group means, also called within covariance matrix W.

The equation of the one-way analysis of variance can be extended to the total
covariance matrix:

C = B + W

A discriminant analysis looks for combinations of variables y maximizing
the between covariance matrix divided by the total covariance matrix
(or divided by the within covariance matrix) under one condition which
depends of the approach.
1. If the approach is descriptive: the between covariance matrix is
divided by the total covariance matrix BC−1 and the constraint is that
the total variance of y equals 1.
2. If the approach is predictive: the between covariance matrix is
divided by the within covariance matrix BW−1 and the constraint is
that the within variance of y equals 1.

The two processes give the same discriminant functions (nearly a constant) and
the eigenvalues are linked by a simple relation.

Let’s call λk an eigenvalue of BC−1 and µk the corresponding eigenvalue of
BW−1.

µk =
λk

1− λk
⇔ λk =

µk
1 + µk

Logiciel R version 2.8.1 (2008-12-22) – course5.rnw – Page 6/16 – Compilé le 2009-04-30
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3 Illustration with the Iris dataset

In the Iris dataset, iris[,1:4] contains the measures on petals and sepals and
iris$Species is the categorical variable with the three species: Iris setosa,
versicolor, and virginica.

3.1 Using discrimin of the ade4 package

This process is the descriptive approach of the linear discriminant analysis (DA).
To compute a DA in the ade4 package, one uses the discrimin function. Be-
fore computing a DA, a classical principal component analysis (dudi.pca) is
performed on the continuous variables to get the table of normed variables, the
weightings of rows and columns. Then, the chosen categorical variable is defined
in the discrimin function.

library(ade4)
pca1 <- dudi.pca(iris[, 1:4], scannf = FALSE)
dis1 <- discrimin(pca1, iris$Species, scannf = FALSE)
names(dis1)

[1] "eig" "nf" "fa" "li" "va" "cp" "gc" "call"

dis1

Discriminant analysis
call: discrimin(dudi = pca1, fac = iris$Species, scannf = FALSE)
class: discrimin
$nf (axis saved) : 2

eigen values: 0.9699 0.222

data.frame nrow ncol content
1 $fa 4 2 loadings / canonical weights
2 $li 150 2 canonical scores
3 $va 4 2 cos(variables, canonical scores)
4 $cp 4 2 cos(components, canonical scores)
5 $gc 3 2 class scores

plot(dis1)
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 RS2 
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 RS4 

 Cos(components,canonical variates) 

 d = 0.5 

 Class scores 

 setosa 

 versicolor 

 virginica 

Six plots are displayed.

1. Canonical weights The first scatterplot (top left) represents the coeffi-
cients of the linear discriminant functions on the two first axes of the DA.
Their total variances equal 1 and their between variances are maximal.
The 4 used variables are the normed columns of the PCA.

2. cos(variates, canonical variates) The second scatterplot (just be-
low the first one) represents the covariances between the 4 variables and
the two first axes of the DA.

3. Eigenvalues is the screeplot of the eigenvalues describing the contribution
of each axis to the inertia.

4. Scores and Classes This plot shows the projections of the individuals
onto the plane defined by the axes of the DA. Groups are displayed by el-
lipses where the centres are the means (between variances) and the ellipses
the within variances.

5. cos(components, canonica variates) shows the projection of the four
axes kept by the normed PCA onto the two axes from the DA.

6. Class scores This plot shows the position of the group means on the two
first axes of the DA.

3.2 Using lda of the MASS package

We are here interested in the predictive approach associated to the linear dis-
criminant analysis (DA). To compute a DA in the MASS package, one uses the
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lda function. There is only one step here (as opposed to the two steps proce-
dure seen previously (dudi.pca/discrimin)) and information on the continuous
variables (in a object matrix) and the categorical variable considered need to be
simultaneously provided.

library(MASS)
dis2 <- lda(as.matrix(iris[, 1:4]), iris$Species)
names(dis2)

[1] "prior" "counts" "means" "scaling" "lev" "svd" "N" "call"

dis2

Call:
lda(as.matrix(iris[, 1:4]), grouping = iris$Species)
Prior probabilities of groups:

setosa versicolor virginica
0.3333333 0.3333333 0.3333333

Group means:
Sepal.Length Sepal.Width Petal.Length Petal.Width

setosa 5.006 3.428 1.462 0.246
versicolor 5.936 2.770 4.260 1.326
virginica 6.588 2.974 5.552 2.026

Coefficients of linear discriminants:
LD1 LD2

Sepal.Length 0.8293776 0.02410215
Sepal.Width 1.5344731 2.16452123
Petal.Length -2.2012117 -0.93192121
Petal.Width -2.8104603 2.83918785

Proportion of trace:
LD1 LD2

0.9912 0.0088

plot(dis2)
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Only one scatter plot is displayed: the individual positions on the two discrim-
inant axes.
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3.3 Comparison between the two functions

We previously said that the linear functions are defined by a nearly constant
value.
discrimin provides a linear combination of the normed variables with the fa
coefficients. The matricial product is provided in w1, and if we have a look at
the first 10 individuals and the last 10 individuals, we get:

w1 <- as.vector(scalewt(iris[, 1:4]) %*% dis1$fa[, 1])
round(w1[1:10], dig = 4)

[1] 1.4135 1.2499 1.3132 1.1946 1.4259 1.3504 1.2646 1.3335 1.1503 1.2875

round(w1[140:150], dig = 4)

[1] -0.9124 -1.1665 -0.8952 -0.9657 -1.1916 -1.2006 -0.9898 -0.9082 -0.8710 -1.0321
[11] -0.8211

lda provides a linear combination of the initial variables with the scaling
coefficients. The matricial product is provided in w2, and if we have a look at
the first 10 individuals and the last 10 individuals, we get:

w2 <- as.vector(as.matrix(iris[, 1:4]) %*% dis2$scaling[, 1])
round(w2[1:10], dig = 4)

[1] 5.9567 5.0236 5.3847 4.7081 6.0272 5.5968 5.1075 5.5002 4.4554 5.2380

round(w2[140:150], dig = 4)

[1] -7.3089 -8.7582 -7.2107 -7.6126 -8.9011 -8.9525 -7.7501 -7.2847 -7.0728 -7.9913
[11] -6.7883

The comparison leads to the following proportional link:

plot(w1, w2, pch = 20)
abline(lm(w2 ~ w1))
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discrimin gives a linear combination of total variance equals to 1,

var(w1) * 149/150

[1] 1
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maximizing the between variance (equal to the first eigenvalue).

summary(lm(w1 ~ iris[, 5]))$r.squared

[1] 0.9698722

dis1$eig

[1] 0.9698722 0.2220266

lda gives a linear combination of within variance equals to 1,

tapply(w2, iris[, 5], var)

setosa versicolor virginica
0.7181898 1.0736485 1.2081617

mean(tapply(w2, iris[, 5], var))

[1] 1

maximizing the ’same’ between variance.

summary(lm(w2 ~ iris[, 5]))$r.squared

[1] 0.9698722

Eigenvalues of both analyses are linked by the relation µk = λk

1−λk

eigval1 <- dis1$eig
eigval1

[1] 0.9698722 0.2220266

eigval2 <- eigval1/(1 - eigval1)
eigval2

[1] 32.1919292 0.2853910

eigval2/sum(eigval2)

[1] 0.991212605 0.008787395

dis2$svd^2/sum(dis2$svd^2)

[1] 0.991212605 0.008787395

4 More information: tests and allocation

4.1 Testing the eigenvalues

Both procedures (discrimin and lda) allow to test the existence of a true dif-
ference between groups, based on randomizations. The null hypothesis is that
each group is a random sample of a multinormal distribution.
If the discriminant value (i.e., the eigenvalue) associated to the discriminant
function is large enough, the null hypothesis is rejected.

In other words, the generalisation of the one-way ANalysis Of VAriance
(ANOVA) is the one-way Multivariate ANalysis Of VAriance (MANOVA). The
comparison of the group means for one variable becomes the comparison of
group means for a vector of variables.

ANOVA MANOVA

µ1 = µ2 = ... = µg


µ1

1

µ2
1
...
µp1

 =


µ1

2

µ2
2
...
µp2

 = ... =


µ1
g

µ2
g
...
µpg
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where µk is the mean of the variable for the k population and µjk is the mean
of the j variable for the k population.

measures <- as.matrix(iris[, 1:4])
resm <- manova(measures ~ iris$Species)

There are several ways to test the significativity of the eigenvalues (all based on
the MANOVA approach):

1. Pillai’s test.

summary(resm, test = "Pillai")

Df Pillai approx F num Df den Df Pr(>F)
iris$Species 2 1.192 53.466 8 290 < 2.2e-16 ***
Residuals 147
---
Signif. codes: 0

The Pillai criteria is the sum of the eigenvalues provided by the dicrimin
function.

sum(eigval1)

[1] 1.191899

2. Wilks’s test.

summary(resm, test = "Wilks")

Df Wilks approx F num Df den Df Pr(>F)
iris$Species 2 0.023 199.145 8 288 < 2.2e-16 ***
Residuals 147
---
Signif. codes: 0

The Wilks criteria is the product of the within variances provided by the
dicrimin function.

prod(1 - eigval1)

[1] 0.02343863

3. Hotelling-Lawley’s test.

summary(resm, test = "Hotelling-Lawley")

Df Hotelling-Lawley approx F num Df den Df Pr(>F)
iris$Species 2 32.48 580.53 8 286 < 2.2e-16 ***
Residuals 147
---
Signif. codes: 0

The Hotelling-Lawley criteria is the sum of the eigenvalues provided by
the lda function.
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sum(eigval2)

[1] 32.47732

4. Roy’s test.

summary(resm, test = "Roy")

Df Roy approx F num Df den Df Pr(>F)
iris$Species 2 32.19 1166.96 4 145 < 2.2e-16 ***
Residuals 147
---
Signif. codes: 0

The Roy criteria is the greater eigenvalue provided by the lda function.

max(eigval2)

[1] 32.19193

If the multinormality is not acceptable (and the challenge is to define what’s
”acceptable” or not), one can compute a non parametric version of Pillai’s test.

plot(randtest.discrimin(dis1))
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4.2 Individual allocations

The lda functions allows to answer the following question: knowing the mea-
sures of a new individual, can we predict the group it belongs to ?

To understand the process, one can take an example using the Iris data.
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? We extract by randomization 50 individual iris from the dataset, create
a table containing these individuals tabref and a factor containing the
name of the species they belong to espref.

echa <- sample(1:150, 50)
tabref <- iris[echa, 1:4]
espref <- iris[echa, 5]

? We create a table tabsup with the 100 other iris and a factor containing
the names of the species they belong to espsup.

tabsup <- iris[-echa, 1:4]
espsup <- iris[-echa, 5]

? We compute a linear discriminant analysis using the 50 references (using
tabref espref).

lda0 <- lda(tabref, espref)
lda0

Call:
lda(tabref, espref)
Prior probabilities of groups:

setosa versicolor virginica
0.40 0.26 0.34

Group means:
Sepal.Length Sepal.Width Petal.Length Petal.Width

setosa 5.010000 3.380000 1.470000 0.255000
versicolor 5.969231 2.846154 4.323077 1.369231
virginica 6.670588 2.988235 5.700000 2.029412

Coefficients of linear discriminants:
LD1 LD2

Sepal.Length 0.1124365 0.0746533
Sepal.Width 2.3258368 2.6838519
Petal.Length -1.7955507 -0.3309531
Petal.Width -3.5351688 1.4259364

Proportion of trace:
LD1 LD2

0.9968 0.0032

? We predict the allocations of the 100 other iris and provide a contingency
table dealing with the known species information and the allocations.

espestim <- predict(lda0, tabsup)$class
table(espestim, espsup)

espsup
espestim setosa versicolor virginica

setosa 30 0 0
versicolor 0 36 2
virginica 0 1 31

We can predict the allocation, analyse the predictions (very good with this
dataset) but there is no specific test to calculate an error of misclassification.
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5 Your turn!

The data were proposed by Manly [3].
The skulls dataframe has 150 rows (egyptian skulls) and 4 columns (anthro-
pometric measures). The four variables are the maximum breadth (V1), the
basibregmatic height (V2), the basialveolar length (V3) and the nasal height
(V4). All measurements are expressed in millimeters.

The measurements are made on 5 groups (30 skulls per group). The groups are
defined as follows :
1 - the early predynastic period (circa 4000 BC)
2 - the late predynastic period (circa 3300 BC)
3 - the 12th and 13th dynasties (circa 1850 BC)
4 - the Ptolemiac period (circa 200 BC)
5 - the Roman period (circa 150 BC).
The group vector is obtained using the gl function (look at the help to better
understand this useful function) and the levels function to associate a name
to each modality.

fac <- gl(5, 30)
levels(fac) <- c("-4000", "-3300", "-1850", "-200", "+150")

6 Conclusion

The linear discriminant analysis is well-known and well-described especially due
to the old statistical debate between exploratory and confirmatory methods.
Its use depends on the situation, data and objectives. Always remember that
statistical solutions are defined by ecological questions - meaningless results are
often linked to badly formulated questions.

provides several methods to deal with the discriminant analysis such as dis-
crimin associated to the exploratory point of view and lda to the confirmatory
point of view.

method discrimin lda

linear combination of variables fa LD
variance of the linear combination total variance equals 1 within variance equals 1
maximized criteria BC−1 BW−1
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