sco.distri {ade4} | R Documentation |
represents the mean- standard deviation of a set of weight distributions on a numeric score.
sco.distri(score, df, y.rank = TRUE, csize = 1, labels = names(df), clabel = 1, xlim = NULL, grid = TRUE, cgrid = 0.75, include.origin = TRUE, origin = 0, sub = NULL, csub = 1)
score |
a numeric vector |
df |
a data frame with only positive or null values |
y.rank |
a logical value indicating whether the means should be classified in ascending order |
csize |
an integer indicating the size segment |
labels |
a vector of strings of characters for the labels of the variables |
clabel |
if not NULL, a character size for the labels, used with |
xlim |
the ranges to be encompassed by the x axis, if NULL they are computed |
grid |
a logical value indicating whether the scale vertical lines should be drawn |
cgrid |
a character size, parameter used with |
include.origin |
a logical value indicating whether the point "origin" should be belonged to the graph space |
origin |
the fixed point in the graph space, for example c(0,0) the origin axes |
sub |
a string of characters to be inserted as legend |
csub |
a character size for the legend, used with |
returns an invisible data.frame with means and variances
Daniel Chessel
if(!adegraphicsLoaded()) { w <- seq(-1, 1, le = 200) distri <- data.frame(lapply(1:50, function(x) sample((200:1)) * ((w >= (- x / 50)) & (w <= x / 50)))) names(distri) <- paste("w", 1:50, sep = "") par(mfrow = c(1, 2)) sco.distri(w, distri, csi = 1.5) sco.distri(w, distri, y.rank = FALSE, csi = 1.5) par(mfrow = c(1, 1)) data(rpjdl) coa2 <- dudi.coa(rpjdl$fau, FALSE) sco.distri(coa2$li[, 1], rpjdl$fau, lab = rpjdl$frlab, clab = 0.8) data(doubs) par(mfrow = c(2, 2)) poi.coa <- dudi.coa(doubs$fish, scann = FALSE) sco.distri(poi.coa$l1[, 1], doubs$fish) poi.nsc <- dudi.nsc(doubs$fish, scann = FALSE) sco.distri(poi.nsc$l1[, 1], doubs$fish) s.label(poi.coa$l1) s.label(poi.nsc$l1) data(rpjdl) fau.coa <- dudi.coa(rpjdl$fau, scann = FALSE) sco.distri(fau.coa$l1[,1], rpjdl$fau) fau.nsc <- dudi.nsc(rpjdl$fau, scann = FALSE) sco.distri(fau.nsc$l1[,1], rpjdl$fau) s.label(fau.coa$l1) s.label(fau.nsc$l1) par(mfrow = c(1, 1)) }