
REPORTS

IN

INFORMATICS

ISSN 0333-3590

Approaches to the automatic discovery of

patterns in biosequences

Alvis Br�azma, Inge Jonassen,

Ingvar Eidhammer, David Gilbert

REPORT NO 113 December 1995

Department of Informatics

UNIVERSITY OF BERGEN

Bergen, Norway

Approaches to the automatic discovery of patterns in

biosequences.

Alvis Br�azma

Department of Computer Science, University of Helsinki, Finland

Inge Jonassen, Ingvar Eidhammer

Department of Informatics, University of Bergen, Norway

David Gilbert

Department of Computer Science, City University, London, England

Abstract

This paper is a survey of approaches and algorithms used for the automatic discovery of

patterns in biosequences. Patterns with the expressive power in the class of regular languages

are considered, and a classi�cation of pattern languages in this class is developed, covering

those patterns which are the most frequently used in molecular bioinformatics. A formulation

is given of the problem of the automatic discovery of such patterns from a set of sequences,

and an analysis presented of the ways in which an assessment can be made of the signi�cance

and usefulness of the discovered patterns. It is shown that this problem is related to problems

studied in the �eld of machine learning. The largest part of this paper comprises a review of

a number of existing methods developed to solve this problem and how these relate to each

other, focusing on the algorithms underlying the approaches. A comparison is given of the

algorithms, and examples are given of patterns that have been discovered using the di�erent

methods.

Keywords: automatic discovery, bioinformatics, biosequences, machine learning, pat-

terns.

Introduction

Biological macromolecules, DNA's, RNA's, and proteins, are chains of relatively small organic

molecules. The di�erent types of these organic molecules are few { there are 4 di�erent bases

for DNA's and RNA's and 20 di�erent amino-acids for proteins. A macromolecule can be coded

as a string over an alphabet of size 4 (for DNA/RNA), or 20 (for proteins) starting from one

end of the chain and moving towards the other. The strings for DNA/RNA molecules are called

nucleotide sequences, and each element in such a sequence is called a base. Similarly, the strings

for protein molecules are called protein sequences, and each element in such a sequence is an

amino-acid (residue). Collectively nucleotide and protein sequences, are called bio-sequences, or

simply sequences.

1

..TCCAATGGCTTATTT...

..AGGTTACCGAATAAA...

..|||||||||||||||...

..UCCAAUGGCUUAUU...

..SNGLF...

transcription translation

replication

RNA

DNA

PROTEIN

Figure 1: The central dogma of molecular biology illustrated. The DNA-molecules contain genes. Each

gene encodes a macromolecule, either a protein or an RNA-molecule. When a gene codes for a protein,

it is �rst used for generating a single stranded RNA-molecule (called a messenger RNA { mRNA), which

contains the codes for producing the protein. The process of producing a protein using the information

in a mRNA molecule, is called translation. A triple of consecutive bases in the mRNA, code for one

amino-acid, and consecutive triples code for amino-acids that will be consecutive in the resulting protein.

The �gure shows an example of the process of making one protein.

The genome of a living organism can be given as a set of nucleotide sequences, which will

contain amongst other things the organism's genes. Figure 1 shows the relationship between

DNA and proteins in living cells. Protein and RNA molecules fold up into three-dimensional

structures which are determined by the sequences. The three-dimensional structure determines

the function of the macromolecule. (For an introduction to molecular biology, see [ABL+94], for

more information on protein structures; see [BT91])

Recently it has become relatively cheap and easy to determine nucleotide and protein sequences,

and a considerable number of sequences has been amassed, with a total length of several hun-

dreds of millions of characters. There is a large number of di�erent databases containing sequence

data. For instance, the EMBL nucleotide sequence database (release 44.0, November 1995) con-

tains more than 180,000 nucleotide sequences, and the total number of bases in this release is

nearly 200 millions; the number is estimated to double every 18 months. The SWISS-PROT

protein sequence database [BB92] (release 32.0) contains more than 49,000 entries, with more

than 17 million amino-acids in total. There are also databases of three dimensional structure

of the proteins, but they are much smaller. For instance, the PDB (Protein Data Bank) con-

tains descriptions of three-dimensional structures of biological macromolecules (DNA, RNA, and

proteins); release 95.11 (December 1995) contains about 4,000 entries.

At present the main bottle-neck to progress in molecular biology is the analysis of data, and

not the acquisition of sequence data. The aim of this analysis is the extraction of all kind of

biological \meaning" of these sequences, for example the evolutionary history of the respective

macromolecules, and their three-dimensional structure and function. Unfortunately no general

solution to this problem is currently known. One particularly important problem is that of de-

termining the three dimensional structure of proteins, and since performing this experimentally

is very work-intensive and expensive, a key problem is to try to predict the structure from its

sequence. No general and accurate method is known for solving this problem.

2

One way of analysing the sequences, is to group them in families, each family being a set of

sequences believed to be biologically (i.e. evolutionarily, structurally or functionally) related,

and for each family to try to �nd common features that can be expressed purely in terms of the

sequences. We refer to descriptions of such common \syntactic" features as patterns.

Di�erent kinds of patterns can be used for characterising sequences. We focus on deterministic

patterns, i.e. patterns for which it is always possible to determine purely from the sequence if

it has this property or not. We say that a sequence matches the pattern, if it has this property.

For instance, a pattern may be a substring, and a sequence match this substring pattern, if it

contains the substring.

If a common pattern is discovered in a set of biologically related sequences it is possible that the

presence of this particular pattern is important for the biological function of the corresponding

macromolecule. For example, it may be essential for the tree-dimensional structure of the

molecule. Also if we detect the presence of an earlier discovered pattern in a new sequence, we

can infer that the new sequence belongs to the same family, even if we do not know its biological

properties yet. In this way patterns may be used for the classi�cation of bio-sequences and for

predicting their properties. A pattern is said to be diagnostic for the family if it matches all the

known sequences in the family, and no other known sequences. And a pattern is said to be a

motif for a speci�c family if it matches every sequence in the family, and such a pattern is said

to be conserved in the family.

Many of the known protein families have been collected in the PROSITE database [Bai92].

For most of the families in PROSITE, a diagnostic pattern is given; for some families, the

pattern given is not perfectly diagnostic | it may fail to match some sequences in the family,

and/or it may match some known sequences outside the family. For example, accession number

PS00028 in PROSITE gives the zinc �nger c2h2 family containing 236 proteins in SWISS-PROT.

The pattern C-x(2,4)-C-x(3)-[LIVMFYWC]-x(8)-H-x(3,5)-H given, matches all 236 known member

sequences, and also 20 other sequences in SWISS-PROT.

Currently PROSITE patterns are extracted semi-manually. Apart from the fact that this is a

tedious process, in this way, there is no guarantee that all the possible patterns are explored

and that the \best" patterns are found. Methods for the automatic discovery of patterns may

provide better (more diagnostic) patterns [JCH95], and such methods also make it possible to

test many more hypotheses on the family relationships of sequences. Moreover, the problem of

automatically discovering patterns goes beyond just discovering patterns for PROSITE database.

E�cient methods for solving this problem can provide molecular biologists with very valuable

tools and may help in understanding the biological properties of the macromolecules. A number

of such methods have already been developed and it seems that the �eld would bene�t from

some systematisation.

The problem of the automatic extraction or discovery of patterns common to a set of sequences

is in essence that of extracting general rules from particular instances. In this context the

pattern is the general rule and sequences are the instances of the rule. Given a set of positive

examples (sequences in some family), and possibly a set of negative examples (sequences not in

this family), the problem is to extract a general rule from these examples. Thus the pattern

discovery algorithm is in essence a machine learning algorithm, and the set of examples (both

positive and negative) is the training set .

3

In this survey we develop a common framework underlying most of the existing approaches

to automatic pattern discovery that we are aware of. We partly formalise the problem, and

link it to related problems studied in the �eld of machine learning. We present a classi�cation

of the patterns that the existing methods are able to discover, and we discuss possible and

reported methods for the ranking of discovered patterns, and ways to assess their relevance

to biological \reality". The main part of the survey is a description of existing algorithms

for pattern discovery. We try to do this in a systematic way, and to show how the di�erent

approaches are related.

In Appendix A we present some basic information about the speci�c existing algorithms, and in

Appendix B we give, for some of the existing methods, examples of the results of computational

experiments, and samples of the patterns which have been discovered. These experimental data

are taken from the papers describing each of the methods. We conclude with a discussion of

the possibility of establishing some benchmarks in the area of pattern discovery of biosequences.

We regard this survey as a step towards the systemisation of the area, as well as an attempt to

present this problem to the wider community, including the machine and algorithmic learning

community and the computer science community in general.

2. De�nition and discussion of the problem.

Here we discuss in general terms the problem of learning from biosequences. First we describe

two di�erent, but related problems of learning family descriptions. Next we go on to discuss

di�erent possible solution spaces, i.e. di�erent classes of family descriptions, focusing on consen-

sus patterns. We discuss how to evaluate and rank a set of discovered patterns, and �nally we

discuss whether family descriptions based on consensus patterns have enough expressive power

to allow description of the crucial biological features de�ning the families.

2.1 The two problems

We describe two di�erent, but related problems. The �rst is how to �nd a classi�er function for a

family of biosequences. This is a function which takes a sequence as argument, returning TRUE

for members of the family, and FALSE for non-members. Both positive examples (members of

the family) and negative examples (sequences not in the family) are given as a training set. In

the second problem only positive examples (family members) are given, and the goal is to extract

a description of features conserved in (i.e., characterising) the family. This is to be encapsulated

into what we will call a conservation function. Both problems involve �nding functions having

speci�c properties which we de�ne and discuss below. In machine learning terminology the

problem corresponds to \learning from positive and negative examples", and \learning from

only positive examples". Di�erent algorithms that have been constructed for solving each of

these problems are described in section 3.

4

2.1.1 Classi�cation problem

Suppose F+ is a family of related sequences. The biologist may want to �nd a function f , which

can be used to decide for a new sequence, whether or not it belongs to F+. Unfortunately not

all family members will be known. The biologist will have a set of sequences S+ believed to be

members of the family, and a set of sequences S
�
believed not to be members of the family.

Assuming that all sequences in S+ are correct and from F+, and that no sequences in S
�
are

from F+ (clean data), the problem can be stated:

C1: Suppose there exist two disjoint sets of sequences F+ and F
�
(F+\F� = ;). Given two sets

S+ � F+; S� � F
�
, �nd compact classi�er functions of sequences such that they return

TRUE for all sequences in S+, FALSE for all sequences in S
�
, and have high likelihood of

returning TRUE for the sequences in F+, and high likelihood of returning FALSE for the

sequences in F
�
.

By compact we mean having a short description. What is meant by a `short description' and

what is meant by `high likelihood' is not de�ned precisely here, we will discuss the ways of

de�ning these notions later.

As stated, C1 in fact consists of two parts:

C1a: �nd compact \explanations" of known sequences, and

C1b: try to predict the properties of sequences not yet known.

Note that this resembles very closely one of the classic interpretations of machine learning

(inductive inference), where a theory is viewed as a compact description of past observations

together with predictions of future ones [Sol64]. Normally the sets F+ and F
�
together will de�ne

the \total sequence set" U = F+ [F
�
, for example the set of all sequences in SWISS-PROT

[BB92]. In this case we will de�ne the complement F of a set F (F � U) to be U � F .

The solution to problem C1 depends on two things. The �rst is to �nd a good class (for the

particular problem) of classi�cation functions, we call this class the target class, solution space,

or hypothesis space. The second is to design an e�cient algorithm which, given S+ and S
�
,

searches the solution space and tries to �nd functions returning TRUE for sequences in S+ and

FALSE for sequences in S
�
. In this case solving the \prediction" part would depend on the

choice of target class. If we chose too general target class, for instance including the regular

expression [s2S+s, it could lead to over�tting the training set. Such over-�ttings should be

rejected by using a less general class of target functions.

A more subtle way for solving this problem is additionally to de�ne a ranking of the solution

space evaluating how good each function is in respect to the training set, and to develop an

algorithm returning those classi�er functions that rate high enough according to the ranking.

For the classi�cation problem the ranking of the solution space is likely to work well, if it rates

the simpler (i.e., having shorter description) functions higher. This is a well known principle in

machine learning { called the Occam's Razor principle (see [Hut94]).

5

In general we cannot assume perfect (clean) input. The data comes from biological experiments,

and may contain errors, the sequences themselves may contain errors [KLP92], and sequences

may have been wrongly included in the set of positive or negative examples. Ideally, algorithms

should allow for some noise in the input (training set).

When allowing for noisy data, the problem becomes:

N1: Suppose there exist two disjoint sets of sequences F+ and F
�
(F+ \ F

�
= ;). Given

sets S+ � F+; S� � F
�
, �nd compact classi�er functions of sequences such that they

return TRUE for most sequences in S+, FALSE for most sequences in S
�
, and have high

likelihood of returning TRUE for the sequences in F+, and high likelihood of returning

FALSE for the sequences in F
�
.

The modi�cation of \for all" to \for most" requires the learning algorithm to �nd classi�cation

functions when the training set contains errors. This complicates the situation, since now we

cannot choose the functions only among ones returning correct TRUE/FALSE for the entire

training set. We need to �nd a balance between how well the classi�er function �ts the training

set (i.e., how well it explains the past observations), and how high is its ranking according

to some ranking of the solution space (e.g., how short a description it has { Occam's Razor

principle). This problem is often solved by assuming a certain level of noise (say, 30%), and

then, among the functions correctly classifying at least this portion of the training set, the

ones with the highest ranking is chosen. An alternative to this could be using of the Minimum

Description Length (MDL) principle [LV95].

2.1.2 Conservation problem

Sometimes it is interesting to �nd features common to a family of sequences, even if they are not

unique to the family. In this case we do not want to construct a classi�er function, but rather

a function showing what is conserved in the family. This can give valuable information about

sequence patterns being conserved between the family members.

Let us call such a function a conservation function, and let us say that a function is conserved in

a set of sequences S if it returns TRUE for all sequences in S. Also, we say that a conservation

function is interesting if it has a low probability of returning TRUE for random sequences, one

function being more interesting than another if it has a lower probability of matching random

sequences1.

C2: Suppose there exists a set of sequences F+. Given a subset S+ � F+, �nd interesting con-

servation functions of sequences being conserved in S+, such that they have high likelihood

of returning TRUE for the sequences in F+.

How do we decide which is the best of several a conservation functions? What we want is

in some sense the least general, or most speci�c, function returning TRUE on F+, which is

1For random sequences we assume some distribution, for example assuming that the symbols in the sequences

are independent and identically distributed (i.i.d.), i.e., pa = 1

j�j
. Alternatively the frequencies of the symbols (in

the training set, or in a database of nucleotide/protein sequences) can be used to de�ne the symbol probabilities,

i.e., pa = fa.

6

characterising at least certain aspects of this family. Unfortunately the entire F+ is not known,

and if we over-�t S+, this may lead to a trivial hypothesis, for instance [s2S+s. This can be

avoided by de�ning a su�ciently narrow solution space. An alternative, more sophisticated way,

would be to de�ne a ranking of the solution space simultaneously reecting how simple and how

interesting the functions are, and design algorithms �nding the best functions according to this

ranking. Such a ranking may be based on the MDL principle.

Allowing for noisy data, we need to �nd functions not necessarily conserved in the complete

set S+. Maybe some sequences have been included in S+, that do not belong to the family, or

maybe some of the sequences contain errors. Allowing for some errors (noise), we still want to

be able to �nd the functions conserved in the family. This means that we need to �nd functions

conserved in subsets of S+.

More formally:

N2: Suppose there exist a set of sequences F+. Given a subset S+ � F+, �nd interesting

conservation functions of sequences being conserved in most of S+, such that they have

high likelihood of returning TRUE for the sequences in F+.

Allowing for noisy data, it becomes even more di�cult to decide between di�erent functions.

Di�erent functions may work for di�erent subsets of S+. And they may have di�erent proba-

bilities of returning TRUE random sequences. The algorithm should be able to report a set of

\good" solutions, leaving to the domain expert (biologist) to interpret the results.

2.1.3 The two problems are related

The classi�er and the conservation problem are closely related. Let an instance of the classi�er

problem C1 be given as (S+; S�), and let the function f be a solution with high �tness. Is f

a solution to the instance (S+) of the conservation problem C2? If F+ [F
�
= U , i.e., if F

�
is

the set of sequences in the total set which are not in the family, then f will be a conservation

function for the family F+. The function f will be conserved in the set S+, and it will have

a high likelihood of returning TRUE for sequences in F+, because it is a classi�er function for

(F+; F�). Because F
�
= U � F+, and because f has a low likelihood of returning TRUE for

sequences in F
�
, f will be interesting (in the sense de�ned above). If the set F

�
6= U �F+, the

solution function f need not be interesting. That is, it can have a high likelihood of returning

FALSE for sequences in F
�
, and still not have a low probability of returning TRUE for random

sequences. Normally the set F
�
will be the set of all sequences not in the family F+.

On the other hand, let f be a conservation function for the family F+ found by using only the

positive in examples S+. Will f be a classi�er function for F+ and hence have a high likelihood

of returning FALSE for non-members? If f is interesting, f will have a low probability of

returning TRUE for random sequences. And if the set of non-member sequences is random,

then f will be a classi�er function for F+. There may be sequences outside F+ that are very

similar to sequences in F+. If one wishes for classi�er functions returning FALSE for these, an

algorithm for the classi�er problem should be used, and negative examples similar to members

in F+ should be included in S
�
.

7

As an analogy, imagine that we are making algorithms for learning classi�er and conservation

functions for physical (macro-) structures. We may want the algorithm to �nd a classi�er

function for `chairs'. The positive examples will be a set of descriptions of chairs (as diverse as

possible), and the negative examples should include descriptions of random structures and of

structures similar to chairs, like stools and tables. The resulting classi�er function would also be

a good conservation function for chairs. On the other hand, a conservation function found from

only positive examples of chairs, might not be able to discriminate between chairs and stools or

tables, even if it returns FALSE for most non-chair structures. If F
�
does not contain a random

set of physical structures, e.g., if F
�
contains only stools, then the resulting classi�er functions

may not be conservation functions.

The same is true for the domain of bio-sequences. If one wants a classi�er function for alpha-

globins, beta-globins should be included as negative examples. A conservation function for

alpha-globins might not be good at discriminating between alpha- and beta-globins.

This means that the set of conservation functions for a family F+ is a superset of the set

of classi�er functions for F+ (vs some set F
�
) when F

�
contains a \random" subset. When

this is the case, all possible classi�er functions are conservation functions, while there may be

conservation functions that are not classi�er functions. This is not surprising since it is natural

that using both positive and negative examples, can make learning \sharper" than just from

positive examples.

2.2 Solution spaces.

Here we discuss di�erent ways of de�ning the functions.

2.2.1 DNA vs protein

So far we have discussed conservation/classi�er functions for bio-sequences in general. There

are di�erences between nucleotide (DNA/RNA) and protein sequences that should be taken into

account:

� Protein sequences are sequences over a 20-letter alphabet

�p = fD,E,K,R,H,Q,S,T,I,L,V,F,W,Y,C,M,A,G,Pg: (1)

� Nucleotide sequences (DNA/RNA) are sequences over 4-letter alphabets

�DNA = fa,t,g,cg; (2)

and

�RNA = fa,u,g,cg: (3)

The set of amino acids �p may be grouped (possibly overlapping groups) in di�erent ways

according to their physio-chemical properties, e.g., AACC hierarchical groups from [SS90] (K1 =

8

fD,Eg, K2 = fK,R,Hg, K3 = fN,Qg, K4 = fS,Tg, K5 = fI,L,Vg, K6 = fF,W,Yg, K7 = fC,Mg,

K8 = fA,Gg, K9 = fD,E,K,R,H,Q,S,Tg, K10 = fI,L,V,F,W,Y,C,Mg, and K11 = �p). The

Venn-diagram given in [Tay86] speci�es a number of overlapping groups of amino-acids, each

group containing the amino-acids having a certain physio-chemical property in common (for

instance, there are groups of tiny, small, hydrophobic, and polar amino-acids). Also, matrices

have been de�ned giving statistics for each pair (a; b) of amino acids, how often a and b are found

in equivalent positions in proteins at a certain evolutionary distance (the evolutionary distance

is a measure of how far back in history the proteins have a common ancestor). These matrices

are called substitution matrices, and the most frequently used are probably the PAM [Day78],

and the Blosum [HH92] matrices. (A range of other matrices have also been de�ned, e.g. based

on similarity of physio-chemical properties between the amino-acids.) The nucleotides may be

divided into two groups; pyrimidines (c and t) and purines (a and g), and scoring matrices

may also be de�ned in this way. However, scoring matrices and groupings seem to play a more

important role in analysis of protein sequences.

Both protein sequences and nucleotide sequences can be translated into smaller (some times

called abstract) alphabets. Such a translation is called an indexing, and is obtained by making a

partition2 of the basic alphabet �, and translating symbols in the same partition into the same

symbol in the reduced alphabet. For example, amino acids are either hydrophobic, neutral, or

hydrophilic, and can be mapped onto a three-symbol alphabet �hydro = f+; 0;�g. Similarly

nucleotide sequences can be translated into a purine-pyrimidine alphabet �n
red

= fR;Y g.

2.2.2 Hierarchy of solution spaces

Douglas Brutlag gave a keynote address with the title \Where is the information in biological

sequences", at the third international conference on Intelligent Systems for Molecular Biology

(ISMB-95) in Cambridge, UK. Among other things, he discussed di�erent ways of modelling

families using functions corresponding to what we have called classi�er and conservation func-

tions. He made a classi�cation of di�erent functions ranging from statistical to deterministic

functions:

Deterministic Consensus patterns

| Alignments

| Blocks or Weight Matrices

| Templates or Profiles

V Bayesian Networks

Statistical HMMs

The distinction between Hidden Markov Models (HMMs), Bayesian Networks, Templates and

pro�les are not strict. The exact ordering between these depends on the detailed de�nitions

of the models and the pro�les used. Each of these models has application �elds for which is

better suited. More on the statistical functions can be found in [KBM+94, BCHM94] (on Hidden

Markov Models), [GME87, BB94] (pro�les), and [CWC92] (alignments). In this review we focus

on the deterministic end, consensus patterns in the class of regular languages.

2A partition of a set A is a set B of disjoint subsets of A such that the union of the sets in B is A.

9

2.2.4 Consensus patterns

Let us de�ne a class of what we call generalised regular patterns (GRP), which e�ectively includes

all the classes of patterns we will consider in this paper. The speci�c pattern class of each

particular algorithm will be obtained taking a particular subclass of GRP, and we will introduce

a classi�cation of patterns for this purpose.

Let � = fa1; : : : ; amg be basic alphabet. When protein sequences are analysed, � = �p, and

when nucleotide sequences are analysed, � = �DNA, or � = �RNA. If an indexing is applied, �

may be for example �hydro or �n
red
.

Let K1; : : : ;Kn be subsets of �, such that each contain at least two elements (jKij � 2). Let

� = fb1; : : : ; bng be another alphabet disjoint with �, and let us de�ne a function L1(bi) = Ki.

For convenience, let us assume, that L1(ai) = faig, for ai 2 �. In practice K1; : : : ;Kn are

classes of amino-acids or nucleic acids, and b1; : : : ; bn are the characters denoting these classes.

For instance, the AACC classes can be used. In practise, the character denoting a class Ki =

fai1 ; : : : ; ailg is usually denoted by [ai1 : : : ail]. For instance, in our representation of AACC

hierarchy, b1 denoting K1 = fD,Eg, would be denoted by [DE]. This does not apply, however, to

the character bi standing for the whole �, which is usually denoted by x (or sometimes by �),

e�ectively meaning the wildcard (or don't-care) character. Here we will use x for the wildcard.

Let X be a set of all objects of the type x(p; q), where p and q are nonnegative integers, such

that p � q (i.e., X = fx(p; q)jp 2 N; q 2 N; 0 � p � qg). Let

L1(x(p; q)) = f� 2 ��jp � j�j � qg;

i.e., x(p; q) e�ectively means wildcard of a exible length from p to q.

If � = c1 : : : cr is a string over an alphabet � [� [X, then de�ne L1(�) = L1(c1) : : : L1(cr);

where L1(a)L1(b) = f��j� 2 L1(a); � 2 L1(b)g. A GRP is a string of the type

��1 � �2 � : : : � �k�;

or of one of the types �1 � �2 � : : : � �k�; or ��1 � �2 � : : : � �k; or �1 � �2 � : : : � �k; where �1 : : : �k
are strings over an alphabet � [� [X. We de�ne the language

L(��1��2�: : :��k�) = f1�12�23 : : : k�kk+1j�i 2 L1(�i); i = 1; : : : ; k; j 2 ��; j = 1; : : : ; k+1g:

Note that � actually means x(0;1), i.e., a wildcard of arbitrary length. We will introduce a

classi�cation scheme based on this de�nition along two dimensions.

Along the �rst dimension we will distinguish between patterns of the types:

1. �1,

2. ��1� (or �1�, or ��1)

3. ��1 � �2 � : : : � �k� (or �1 � �2 � : : : � �k�, or ��1 � �2 : : : � �k, or �1 � �2 : : : � �k).

10

where �i 2 � [� [X (i = 1; : : : ; k).

Along the second dimension we distinguish between case when �i (from 1-3) are restricted to

the alphabets:

A: �i 2 ��,

B: �i 2 (� [fxg)�,

C: �i 2 (� [�)�,

D: �i 2 (� [X)�,

E: �i 2 (� [� [X)�

Note that these alphabets de�ne a partial ordering of A to E. A is contained in B, C, D, and E,

B is contained in D and E, C is contained in E, and D is contained in E. This means that, for

instance all patterns in 2B are also in 2D and 2E.

For example, 1A is the set of strings over �, 2A is the set of substring patterns (i.e., a presence

of a certain subword in a string), 3A means extended regular patterns [Shi83]. 2B are substring

patterns with wildcards [SAC90, NG94]. 2E are the patterns of the type used in PROSITE

database [Bai92]. Formally, this de�nition does not cover all the cases permitted in the de-

scription of PROSITE patterns3. Nevertheless, it covers the PROSITE type patterns used most

frequently in practice. 1E is e�ectively the set of PROSITE patterns attached to both the start

and the end of the sequence.

In PROSITE notation the leading and closing � symbols are not used. So ��� is written simply

as �, and PROSITE notation allows for attaching the pattern to the beginning or the end of

a sequence by using leading < or closing > symbol, thus � becomes < � >. In PROSITE the

individual symbols from the pattern alphabet are separated by dash symbols �. For instance,

the PROSITE pattern C-x(2,4)-C-x(3)-[LIVMFYWC]-x(8)-Hmatches any sequence containing

a substring starting with C, followed by between 2 and 4 arbitrary symbols, followed by C, and

3 arbitrary symbols, followed by one of L, I, V, M, F, Y, W, or C, followed by 8 arbitrary

symbols, followed by H.

Now let us see how classi�cation (conservation) functions can be de�ned by using these patterns.

The simplest way to de�ne such a function is

f(�) =

(
TRUE if � 2 L(P)

FALSE otherwise;

where P is a pattern.

An extension of this approach is to allow for approximate matching between the pattern and the

string. A measure of the distance between two strings can be used (e.g. edit distance [Ste94]).

3The syntax de�ned for PROSITE patterns allows for description of a exible number of non-wildcard symbols,

for instance [DE](2,3). We have not found any PROSITE patterns using this kind of construction.

11

^

weighted operations |

|

edit distance |

|

Hamming distance |

|

exact matching |

-------------------------------------->

simple patterns complex patterns

Figure 2: The diagram below illustrates two di�erent axis measuring the modelling power of classi�er

functions based on patterns. The �rst axis represents the expressional power of the pattern language

itself, and the second axis represents the way a string is matched against the pattern.

If dist(�1; �2) is the distance between two strings �1, and �2, then the distance between a string

and a pattern can be de�ned as

Dist(P; �) = min
�0
2L(P)

dist(�0; �):

Now the de�nition of classi�er/conservation function f can be generalised to include approximate

matching:

f(�) =

(
TRUE if Dist(P; �) � const

FALSE otherwise;

for some given constant const.

The distance measure used can allow for only substitution operations (corresponding to match-

ing with k mismatches), or for both substitutions and insertions/deletions (corresponding to

matching with k di�erences). The operations can be weighted, and instead of the number of

operations applied, one can limit the total weight of the operations.

Exact/approximate matching.

There are at least two di�erent approaches to describing the variation allowed in biosequences;

using a simple pattern language (for example, class 2A, substring patterns) and approximate

matching, or a pattern language with more expressive power (for example class 2E) and exact

matching. The two approaches can be combined; approximate matching may be necessary even

if the pattern language is strong enough to describe the allowed variation. See �gure 2.

Patterns can be used for de�ning classi�cation/conservation functions also in a more complicated

way than just exact (a) or approximate (b) membership to a language. We are aware of two

more ways reported in the literature:

c membership of a union of pattern languages (i.e. f(�) = TRUE, if � 2 L(P1) [: : : [L(Pn)

where P1; : : : ; Pn are patterns of some class.)

12

d by using decision trees over patterns (for de�nition of a decision tree see [AMS+93]).

2.3 Ranking discovered patterns

As noted above, it is important to have some \good" ranking of the solution space, in respect

to the training set, so that the best (one or few) patterns may be presented to the user. We

will call a measure used for ranking the patterns a �tness measure. Below we discuss how such

measures can be de�ned.

Formally a �tness measure can be de�ned as a function

F (p; T)!R

which takes two arguments and returns a real. The �rst argument is a pattern from a particular

pattern class C. The second argument is a training set (i.e., a set of sequences in the conservation

function case, and a two sets of sequences in the classi�cation case). The real returned by the

function shows how good the pattern is in respect to the training set. The reals can be normalised

to [0; 1].

The �tness function has two aspects. The �rst is how well the pattern �ts the training set. In the

case of clean data (i.e., for problems C1 and C2), this aspect is easy and is essentially a \black

and white" situation. If the pattern is good for the training set (i.e., if the pattern matches all

sequences in S+, and for the classi�er problem; no sequences in S�), then F (p; T) = 1, otherwise

F (p; T) = 0. In the case of noisy data it is not so easy, since we should not reject the patterns

making some \mistakes" on training set. A simple way to deal with the problem, which is used

in most of the existing discovery algorithms, is to assume a certain upper bound on the level of

noise, say 30%, and to reject all the functions which are not good for more than this percentage

of the training set.

An alternative way is to de�ne the �tness of a pattern as the number of positive examples

matching the pattern (exactly or approximately). For instance, if the patterns are subwords

(i.e., of the type 2A) of length 3 in the alphabet �DNA, then all for each word aaa, aac,

aag, : : : ; ttt, we can count in how many positive examples it is present. This number can be

regarded as the �tness. If negative examples are given, the �tness should also depend on the

number of negative examples matched.

If the wildcard character (x) or characters denoting groups of characters from the basic alphabet,

are allowed in the patterns, the �tness of a pattern P should be de�ned in a more complicated

way. Therefore, a more subtle rating of the functions is done by using the second aspect of the

�tness function, which should rate patterns \as such". In the case of classi�cation functions

this is usually done by using some kind of Occam's Razor, which basically means rating simpler

patterns higher. (Simplicity can be de�ned as some approximation to Kolmogorov complexity,

basically meaning the length of the shortest possible description of the object [Hut94].) In case of

conservation functions, on the other hand, it is common to choose a su�ciently narrow solution

space (avoiding over-�tting the training set), and to rate higher more speci�c patterns, which

basically leads to rating longer patterns higher.

In this way, the �tness functions can be computed as in two steps, the �rst being to assess how

13

well it �ts the training set, and the second, how good the pattern is as such. Some way of

partially merging these steps (for the conservation problem) is considering the size (i.e., area)

of the \block" covered by the pattern in the training set. Another, more subtle way to balance

these two aspects, which is not yet fully explored in context of bio-pattern discovery would be

using MDL principle [LV95, BUV95].

Some reported �tness functions.

Next we discuss in some more detail, how some authors have de�ned �tness functions. Let us

start with the conservation case. An example of a �tness function based on the pattern itself,

is the function used in [JCH95]. They de�ne a measure of information contents of the identi�ed

pattern. Basically the measure increases with increasing pattern length, more speci�c pattern

positions contributing more. Others have used the information contents of the block4 de�ned by

the segments in the training set matching a pattern, as a ranking function [LAB+93, Sta89b].

In all of these papers a pattern has to match some minimum number of the positive examples,

and the number of sequences matching a pattern are not be taken into consideration when the

patterns are to be ranked.

If the discovered patterns match more or less arbitrary subsets of the examples, more sophis-

ticated �tness measures should be de�ned. Suppose p1; : : : ; pn are patterns such that each pi
matches a subset Si of the training set S+. Methods for calculating the probability that a

pattern (of di�erent types) matches a random sequence (assuming some distribution) have been

reported (e.g.,[WAG84, Sta89a, NG94, SD95]). We hypothesise that the sequences are indepen-

dent (i.e., unrelated), and that sequence positions (symbols in the sequences) are independent

(call this the null model). Then, for a pattern pi, the pattern probability is the probability that

pi matches at least jSij out of jS+j sequences purely by chance (under the null model). This

pattern probability can be used to rank the patterns, patterns having lower probability should

be ranked higher. Note that this measure contain elements of both aspects (the pattern as such,

and the training set).

When the patterns are being chosen from a big set P of patterns, we can de�ne the signi�cance

of a pattern p as the probability of (under the null model) �nding at least one pattern in the

set P having pattern probability less than (or equal to) that of p [WAG84, NG94]. In other

words, the signi�cance value v for p is the probability of �nding a pattern as improbable as

p in P , and is lower when a bigger set of patterns is used. Note that the signi�cance of a

pattern p will be a function of the pattern itself, the training set, and the set P of patterns from

which p was chosen. The same pattern p discovered to match a subset of the sequences in S+,

will get di�erent signi�cance values when di�erent sets of patterns (all containing p) are used.

Speci�cally, if p is chosen from a set P of patterns, it will get a lower (better) signi�cance value

than if p was discovered when a bigger class P 0 is explored. Note that both signi�cance values

and pattern probabilities are real values (in R) between 0 and 1, a lower value meaning that

the pattern is more \surprising", and hence should be ranked higher.

These measures were de�ned for the conservation problem, but can also be applied to solutions

of the classi�er problem, when the two problems are related (see section 2.1.3). Alternatively,

the diagnostic power of a pattern can be quanti�ed. Assume that the the total set U = F+[F� is

4A block is de�ned as a local ungapped alignment, i.e. it is a set of segments of identical length \put on top

of each other" giving an alignment.

14

de�ned. Let (S+; S�) be an instance of the classi�cation problem, and let p1; : : : ; pn be patterns

produced by a pattern discovery program for this problem instance. For each pattern pi we can

count the number of false positives and false negatives. A false positive is a sequence in F
�

(F
�
= F+) matching Pi (i.e. s 2 F

�
and f(s) =TRUE, where f is the classi�cation function),

and a false negative is a sequence in F+ not matching Pi (i.e., s 2 F+, and f(s) =FALSE). If a

pattern has no false positives or negatives, it is diagnostic for the family. The following is from

[LWS+93]. The sensitivity of a pattern can be de�ned as

Sn(Pi) =
jF+j

jF+j+ fn
(4)

where F+ is the set of known sequences in the family, and where jF j is the cardinality of the set

F , and fn is the number of false negatives. Similarly, the speci�city of a pattern can be de�ned

as

Sp(Pi) =
jF

�
j

jF
�
j+ fp

(5)

where fp is the number of false positives, and where F
�
is the set of known sequences not in

te family. Recall that F
�
= F+ = U � F+. A pattern gets maximum sensitivity score (1.0)

if it matches all family sequences, and it gets maximum selectivity score (1.0) if it matches no

sequences outside the family. The discovered patterns may be ranked according to sensitivity,

speci�city, or some combination. One possible combined measure is the correlation coe�cient

between two sets; 1) the set of sequences in F+, and 2) the set of sequences in the total set U

that matches the pattern Pi. The correlation coe�cient is

C =
jF+j � jF�j � fp � fnp

(jF+j+ fp) � (fp+ jF
�
j) � (jF

�
j+ fn) � (fn+ jF+j)

; (6)

which is 1:0 when there are no false positives or negatives, and decreases towards zero as the

number of false positives and negatives grow. Note that the measures (4)-(6) depend on the size

of F+ and the set of sequences matching the pattern, and also on the number of sequences in

F
�
.

2.4 Search algorithms and guarantees

The speci�cation of the problems C1, C2, N1, and N2 were rather informal, leaving unde�ned

a number of notions including `high likelihood' and `most sequences'. Therefore, these speci�-

cations cannot be considered as precise speci�cations for pattern discovery algorithms. On the

one hand it may not be compulsory to give a precise speci�cation for this problem, since the

ultimate test of these algorithms will in any case be, whether the results produced are interesting

for biologists and helpful for solving some problems in biology. Still, it is helpful to understand

better what might be a more formal speci�cation for pattern discovery algorithms.

One of the requirements in the problems C1, C2, N1, and N2 is to predict \future". It

is di�cult to use this requirement in a formal speci�cation directly, therefore in reality more

modest requirement is used as a speci�cation for pattern discovery algorithms.

The algorithm is designed for a speci�c pattern class C and uses a speci�c �tness function F .

The input of the algorithm is the training set T , and the algorithm is required, given the training

15

set T , to produce a set of patterns P from the class C such that the �tness value F (p; T), for

p 2 P is \relatively" high. If the algorithm can be proven to produce the speci�ed portion of

the patterns with the highest �tness value F (p; T) among all the patterns in C (i.e., either the

one �ttest pattern, or a given number or percentage of the �ttest patterns, or all the patterns

with the �tness higher than a given constant), then it is said to be guaranteed to �nd the best

pattern (or best patterns).

The success in the prediction of the future mostly relies on choosing an appropriate pattern class

C and a good �tness function F . In reality, this means, that we need to chose a pattern class,

and a �tness function, in some sense reecting the biological signi�cance.

How well do the patterns predict the future?

If the family is big enough, a random subset of the family (and a subset of the set of sequences

outside the family) can be used as a training set. The resulting patterns can be tested against

the rest of the sequences, evaluating for example the sensitivity, or speci�city, of the patterns.

If a function performs well on the sequences not in the training set, then it is more likely to

perform well on new sequences. This is a standard evaluation method used in experimental

machine learning. For most families known at present, the number of known sequences is too

small for performing experiments like this. As more sequences become known, this approach

can be applied more widely.

Biological signi�cance

An expert user (biologist with knowledge about the family) may be able to assess how likely a

classi�er function is to provide correct classi�cation for unknown family members. Hence it is

an advantage if the algorithm produce several alternative classi�er functions to be presented to

the user.

When new methods for pattern discovery are presented, the authors often apply it to well known

families to show that it is able to recover already known conserved patterns. This also gives us a

way to decide between di�erent �tness functions; a �tness function should give the highest value

to patterns that are already known to be of biological signi�cance. Biological and statistical

signi�cance are not always the same. The ultimate test of a pattern is to check experimentally

whether it corresponds to some region conserved in the family for structural and/or functional

reasons. Biologists knowing the family well, may be able to decide between patterns which are

likely to be of biological importance.

2.5 Do the solution spaces give su�cient expressive power?

Suppose there exists some function g : �� ! fTRUE, FALSEg (i.e., a classi�cation function

for sequences from some subset of ��). Furthermore, suppose that this function is \computed"

(in some sense) by a biological system. For instance, the function may be the classi�cation of

all primary structures of protein molecules in transmembrane proteins and non-transmembrane

proteins. Such a classi�cation is usually \performed" by a biological system (living cell) correctly,

although the TRUE/FALSE value may not be de�ned for all sequences. Suppose, we are given

sets S+ and S
�
of examples of sequences (i.e., strings from ��) such that for g(s) =TRUE for

all s 2 S+, and g(s) =FALSE for s 2 S
�
(this assumes clean data, but our considerations can

16

be easily generalised for the noisy case).

Now, our aim is to �nd some class F of computable functions, and some function f 2 F , such

that f approximates g in a way that f and g returns the same value for as many sequences s

as possible. Note that in general we cannot hope to �nd the function g directly, since it may

not be computable on a digital computer. Thus, in fact, our problem consists of two steps,

�rst to �nd a good class of functions F and second, to �nd a good approximation function

f 2 F . To �nd a good class of approximation functions is very important since there is always

a trade-o� between what classes of functions can be learned e�ciently, and what classes are

expressive enough to allow description of the crucial biological features of sequences. If we take

too general a target class (e.g., the class of all context sensitive grammars), then the task of

learning may be hopeless. On the other hand, if we take too simple target class, it may not be

expressive enough for expressing the interesting properties, i.e. approximate g. Di�erent classes

F may be appropriate for di�erent problems, i.e., for di�erent kinds of function g. We want to

chose F as \sharp" as possible for the particular problem. After a class F has been chosen, it

is also important to �nd a good ranking of the functions in this class, reecting the biological

signi�cance of di�erent functions from this class.

Note that after we have chosen the class F , the problem of �nding the function f approximating

g from the given sets of positive and negative examples S+ and S
�
can be regarded as the

PAC-learning (Probably Approximately Correct) problem in machine learning. A good survey

regarding PAC-learning of regular pattern languages and the applications to molecular bio-

informatics is given in [SA95].

Let us focus on the problem of �nding classi�er/conservation functions for protein families.

The proteins in a family share some common structure and/or function. As the function and

structure of the proteins are determined by the sequences, the sequences of the proteins in

a family may share some features, the kind depending on the speci�c protein family. There

are many examples in the PROSITE database [Bai92] of families having diagnostic consensus

patterns. Typically the proteins in such a family share a function or structure, that depends

critically on the sequences having speci�c amino acids in certain positions. For example, the

zinc �nger proteins all have cysteine or histidine amino acids in certain positions. In these cases

generalised regular patterns may be su�cient.

In many other families there are no completely conserved positions, meaning that features con-

served between the sequences are more subtle. For example, helix-turn-helix (HTH) domains are

formed by sequences with great variability. The pattern of conservation is very subtle. There

does probably not exist any consensus pattern diagnostic for the HTH family. For such families,

it may be possible to �nd statistical functions (e.g. pro�les or HMMs) describing or classifying

the family. Recently use has begun to be made of pro�les to classify PROSITE families [BB94],

implying that patterns in the class of regular languages may not be su�cient to classify these

families.

In some families, the correlations between sequence elements play an important role in deter-

mining the structure and function of the macromolecules. For example, in ribosomal RNA there

are patterns of secondary structure involving the single stranded nucleotide chain folding up and

forming Watson-Crick base pairs with itself. Correlations probably also play a role in proteins

[KB94]. To make adequate classi�er functions for this kind of families, we may need to use

17

models describing the correlations. This takes us beyond the class of regular languages, and

also beyond what is describable using HMMs, pro�les. Models describing correlations have been

made using stochastic context free grammars and covariance models [SBU+93, ED94]. Pat-

terns of correlations exist (e.g. pseudo-knots in RNA secondary structures) that give crossing

dependencies taking us beyond what can be described using context-free grammars.

3. Algorithms

In this section we describe the main ideas behind the algorithms used for solving the problems

formulated in previous sections, i.e., for automatically �nding conservation or classi�cation func-

tions for a set of sequences. We will not review each algorithm and each paper separately, instead,

we will try to give a common thread winding trough all (or the majority) of the algorithms.

On the highest level we can divide the basic ideas in two groups. The �rst, which we call

bottom-up (BU) approaches, is based on enumerating the candidate patterns. For this, we

should:

� de�ne the pattern space (i.e., the solution space C),

� enumerate all (or at least many of) the patterns in the solution space,

� calculate the �tness of each pattern in respect to the given examples,

� report the �ttest patterns.

For instance, if the patterns are subwords (i.e., of the type A2) of length 3 in the alphabet

fa, c, g, tg, then all the words aaa, aac, aag, : : : ; ttt can be enumerated and for each

of them it can be counted in how many examples it is present. This number can be regarded

as the �tness of the pattern. The algorithm should either report patterns above some �tness

threshold, or a given number of the �ttest patterns.

The second class of approaches, which we call top-down (TD) approaches comprise algorithms

trying to �nd patterns by comparing the strings and looking for local similarities. For instance,

if two sequences

AWCDEFGHIJKLM (7)

and

NEFGOPQAWRJKLS (8)

are given, then by comparing them it can be noticed, that they share three continuous substrings:

AW, EFG, and JKL. If we wish to arrange these substrings so that a common regular pattern of the

type A3 appears, then only two of them can be used at a time. Either we can have: *AW*JKL*,

or *EFG*JKL*. The second one may be preferable, since it is longer, and therefore more speci�c

and less likely to appear by chance if the frequencies of occurrence of all the characters are

assumed to be equal. If a third sequence:

TAWUVOPHIJKLYZ (9)

18

is also given, then there remain only two substrings common to all three sequences, namely AW

and JKL, leading to the regular pattern: *AW*JKL*.

As we will see later, it is also possible to combine the two approaches in a single algorithm.

The advantage of the BU approaches is that in this way it is possible to guarantee to �nd the

best patterns up to some limited size, in general regardless of the total length of the examples.

The reason for this is that it is usually possible to organise the algorithm so that it is linear-time

in the total length of the examples. On the other hand the size of the search-space is exponential

in the length of the patterns, implying that the algorithms are as a rule exponential in the size

of the patterns. Consequently usually only patterns of limited size can be found by pure BU

algorithms.

It may be possible to discover patterns of almost arbitrary size by the use of TD algorithms. At

the same time the weakness of these algorithms is that in this way it is impossible in general

to guarantee that some pattern has not been missed. The reason for this is that the algorith-

mic problems related to �nding local similarities for n sequences is NP-complete. Therefore,

precise TD algorithms are usually exponential-time in the length of examples, meaning that

some heuristics has to be used. In general TD algorithms tend to work well if the sequences are

su�ciently similar.

In the following subsections we will describe in more detail the basic ideas of BU, TD and

combined approaches to pattern discovery. We will present the basic information about each

algorithm separately in Appendix A. Some sample patterns discovered by some of the algorithms

are presented in Appendix B. Subsections 3.1 and 3.2 are organised so that we start with consid-

ering algorithms for conservation problem, and end by considering algorithms for classi�cation

problem. In subsection 3.3 we also start with conservation problem, continue with classi�cation

problem, and then consider some related algorithms and applications.

3.1. Bottom-up approaches

The most straightforward implementation of the BU approach is the explicit enumeration of

all the patterns from the pattern space one by one, as in the example at the beginning of this

section. In the simplest case when the patterns are simple subwords (case A2) this approach has

been �rst applied to pattern discovery in biosequences in the early 1980's [QWK82, WAG84]. In

order to calculate �tness in this case it is reasonable to count not only the number of examples

containing the pattern precisely, but also, optionally with some decreasing weight, the number of

examples approximately5 containing the pattern. An e�cient way to deal with this is to de�ne

for each pattern a set of neighbours, i.e. substrings which are similar to the given substring,

and count in how many examples each substring together with its neighbours is present. The

best pattern is picked out from the \neighbourhoods" having a su�ciently high level of �tness.

A similar approach has been used by Staden [Sta89b]. For ranking the patterns, Waterman

et al. [WAG84] estimates the statistical signi�cance of the discovered patterns, while Staden

[Sta89b] calculates a measure of information content of the block consisting of the segments

5in the sense of some distance measure

19

which approximately match6.

This straight-forward approach can be easily extended for more complicated patterns. Smith

et al. [SAC90] has used this approach for discovering patterns consisting of basic alphabet

characters and wildcards. The algorithm enumerates all the patterns consisting of three non-

wildcard characters and up to 24 wildcards between each of them, i.e. the patterns of the

type a1 d1 a2 d2 a3, where a1, a2, and a3 are characters from the basic alphabet, and d1 and

d2 the number of wildcards in between them. Since the method is applied to proteins, the

basic alphabet is of size 20. In this case, the patterns allow for a lot of variation, and it is

both su�cient and reasonable to count only the numbers of examples which contain the pattern

exactly. The user provides the minimum number of examples that should contain the pattern

for it to be considered as `�t'. Apart from this, a heuristic estimate for determining the relative

�tness of each of these patterns is introduced and only some of these patterns (those with high

scores) are reported in the end. [SAC90] also uses elements of the TD approach to extend the

patterns found by enumeration (see section 3.3).

An obvious problem in this straight-forward enumeration is that of e�ciency. The size of the

search space for patterns of length l grows as O(j�jl). The number of patterns can be reduced if

we put some restrictions on pattern class. For instance, in Smith's et al. method [SAC90] there

are 20 � 10 � 20 � 10 � 20 = 800000 candidate patterns of the type a1d1a2d2a3 to check if the

distance range is 10 (i.e., 0 � d1 < 10 and 0 � d2 < 10). However for more general pattern classes

this number becomes unpractical. Therefore some method for pruning the solution space, either

by a provably accurate method, or by using heuristics, should be found if we want to increase

the size and complexity of the patterns.

3.1.1. Heuristics for BU approaches

One simple heuristic for limiting the search space is based on an assumption that the patterns

which are present approximately (within some distance) in many examples are likely to be

present in an exact form in at least some. This is not strictly true because the most �t pattern

may be a kind of average, for example Steiner's sequence7, itself not present in a single example.

However, if su�cient examples are given this is not very likely. Therefore only those substrings

which are present at least in one example need to be enumerated. This reduces the search space

drastically, since for a set of strings with total length N , there are only O(N2) substrings. If

the length of the substrings is bounded by l, then there is only O(lN) number of substrings to

consider (instead of O(j�jl)). After �nding the most frequent substrings we can cluster the most

similar ones, and generalise them to �nd more complicated patterns from their alignments (this

is a TD element, see 3.3). This approach has been used by Saqi and Sternberg [SS94], where

also a kind of statistical signi�cance has been used for sorting out the interesting patterns.

If the number of examples is large enough this heuristic can be taken even further. We can

select a random subset of examples, and if the number of examples in both the total set and the

6In fact the �rst two of these approaches assume that the sequences are approximately prealigned and apply

the described algorithm within a �xed window over the approximately aligned sequences.
7By Steiner's sequence of for the set sequences A1; : : : ; Ak, we understand a sequence B minimisingP
k

i=1
distance(Ai; B). Note that B may not be any from A1; : : : ; An.

20

subset is large enough, it is statistically likely that any substring which occurs approximately in

a su�cient number of examples should occur more than some number of times in the random

subset in an exact form. This number can be estimated by using random sampling theory.

Therefore, we can enumerate only these substrings that are present in the subset more than a

certain number of times. Moreover, the strings in the subset can be represented as a generalised

su�x-tree (GST) [Hui92], and then the potential candidates for the pattern, can be selected in

linear time. GSTs are a generalisation of the notion of su�x-trees [McC76, Ukk92]. Thus the

algorithm becomes linear time in the length of the examples and the patterns. This approach

has been used by Wang et al. [WMS+94]. It can also be used for �nding more complex patterns,

from the classes A3 or D2, but then the method looses some of its e�ciency because su�x-trees

are not that well suited for these kind of patterns.

Note that GSTs provide an extremely e�cient algorithm for �nding the longest substrings

common to at least k out of n given sequences. First of all, a GST can be constructed in

linear time in the total length of sequences. After the GST is constructed, the query to �nd

the longest substring common to at least k strings can be executed also in linear time, thus

the whole problem can be solved in linear time (see [Hui92] for details). However we note that

the construction of GST in linear time is technically very complicated and in practice often

simpler and theoretically less e�cient algorithms are used for constructing GSTs. Moreover,

currently no very e�cient algorithms using GSTs for approximate substring �nding are known.

Nevertheless it is worth noting that in case of substring patterns and exact occurrence, GST

gives the most e�cient pattern discovery algorithm.

3.1.2. Tree representation of the solution space

A rigorous approach for pruning the search space, which can be applied in the case of more

general patterns and is still guaranteed to �nd all patterns from the solution space, is based

on the observation, that if a subpatterns of a certain larger pattern is not present in the given

number of sequences, then, the larger pattern itself, cannot be present in this (or a larger)

number of sequences. This can be easily seen, if we consider the space of all the patterns

represented as a tree. For instance, if we are looking for simple patterns (i.e., of the type A2) in

alphabet fa,c,g,tg, then a part of the pattern space can be represented as a tree in Figure 3.

This tree can be traversed in either a breadth-�rst or a depth-�rst manner. Both of these ways

have been explored by Sagot et al. [SVS95b]. The breadth-�rst approach may seem more time

economic since the the length of the patterns can be extended not only by one character in

each step but by factor of two. For instance, for a pattern actg to be present in a su�cient

number of examples, both patterns ac, and tg should have been found earlier, if the search is

done in the breadth-�rst manner. Unfortunately this approach can be realistically applied only

for very short patterns, because the number of the patterns to be remembered in this way grows

exponentially. Therefore for practical purposes the depth-�rst search is used.

A very e�cient implementation of this idea applied to substring patterns is the so called Karp-

Miller-Rosenberg (KMR) [KMR72] which can be adapted to �nd all substrings present in at

least k out of the given n sequences in time proportional to N logN , where N is the total

length of the sequences. Note that by using generalised su�x-trees [Hui92] this can be done in

21

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�

�

�

�

�

�

�

�

��

T

T

T

T

T

T

T

T

TT

�

�

�

�

�

�

��

A

A

A

A

A

A

AA

c

c

c

c

c

c

c

c

cc

�

�

�

�

�

�

��

�

�

�

�

�

�

��

C

C

C

C

C

C

CC

S

S

S

S

S

S

SS

�

�

�

�

�
�

C

C

C

C

C
C

�

�

�

�

�
�

B

B

B

B

B
B

J

J

J

J

J
J

B

B

B

B

B
B

J

J

J

J

J
J

@

@

@

@

@
@

Z

Z

Z

Z

Z

Z

ZZ

�

�

�

�

�

�

��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��

�

�

�

�

�
�

�

�

�

�

�
�

�

�

�

�

�

�

��

(((((((((((

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

�� EE

EE

EE

EE

EE

EE

SS

SS

SS

SS

SS

SS

SS

LL

LL

LL

LL

��

��

��

��

��

tg

tga tgc tgg tgt

tgca tgcc tgcg tgct

tgcca tgccc tgccg tgcct

Figure 3: Pruning of the search tree. If, for instance, we have found, that a substrings tga is not present
in su�ciently many sequences, then there is no need to look for any of tgaa, tgac, tgag, tgat. If,

on the other hand, the substring tgc has been found in su�ciently many sequences, then one can hope,

that at least some of the substrings tgca, tgcc, tgcg, tgct, may also be present in these sequences.

22

linear-time.

The idea is extended by Sagot et al. [SVS95b] to �nding the approximate presence of patterns,

who also considers the application of this approach to more complicated patterns of the type

2C containing symbols denoting groups of symbols of the basic alphabet. Unfortunately the

e�ciency of the algorithm decreases if any of the groups is large (containing many basic symbols),

because extension of these patterns is often possible. Therefore [SVS95b] does not allow wildcard

characters.

On the other hand it can be seen that dealing with the wildcard characters should be quite easy.

The fact that, for instance, we know that the pattern tgc is present in a su�cient number of

examples enables us not only to �nd patterns tgca, : : :, tgct, but also tgcxa; : : : ; tgcxt; tgcxxa;

: : : ; tgcxxt; tgcxxxa; : : : ; : : : . This observation has been used by Neuwald and Green [NG94]

where a new, so called block data structure has been introduced, and applied in a very e�cient

way to �nd the set of substrings matching each pattern, speeding up the depth-�rst search.

They de�ne the signi�cance of a pattern, which is e�ectively a function of the pattern itself and

the number of matching substrings8. This measure is used to heuristically prune the search tree.

In patterns containing some minimum number of symbols from the basic alphabet (�p), they

allow for ambiguous pattern positions consisting of two symbols from �p, which means that this

algorithm can discover patterns in class 2C. They also use a TD approach to analyse the set of

substrings matching a discovered pattern (see section 3.3).

Jonassen et al. [JCH95] describes an algorithm where the use of a depth-�rst search strategy

combined with the block data structure is pushed even further. This algorithm is able to discover

patterns having both ambiguous positions (groups of amino acids) and exible spacings (gaps),

giving patterns in the class 2E. The user de�nes restrictions on the kind of patterns that can

be discovered, e�ectively de�ning a subclass of 2E. The algorithm sets out to �nd all patterns

in this subclass matching at least some minimum number Nmin of the positive examples. The

search tree is pruned so that extensions of patterns matching less than Nmin sequences, are not

analysed. A �tness measure for patterns is de�ned, and the algorithm is guaranteed to �nd

the highest scoring patterns within the subclass of 2E that match at least Nmin of the positive

examples.

A modi�cation of the algorithm in Jonassen et al [JCH95], is proposed by Jonassen and Eid-

hammer [JE95]. Here a pattern graph is de�ned. A path in this graph corresponds to a set

of patterns, and a depth-�rst search strategy is used to search for the paths corresponding to

conserved patterns, matching at least Nmin of the positive examples, with the highest �tness.

The pattern graph may optionally be derived from an existing multiple sequence alignment, for

instance of a subset of the sequences in S1, so that only patterns consistent with the alignment

are considered. This gives a smaller search space, and can be considered as a TD-element.

Branch-and-bound and heuristics are introduced to make the pruning of the search tree more

e�cient, speeding the search signi�cantly especially for sets of quite similar sequences. In both

[JCH95, JE95] a TD element is used to specialise patterns discovered in the depth-�rst search.

Experiments clearly show that using the tree representation of the pattern space combined

with pruning and the use of e�cient data structures substantially increases e�ciency of the

8And, to be precise, the class of patterns explored, see section 2.3

23

algorithms; longer patterns can be discovered this way than by the straight-forward search.

Nevertheless the algorithms are still worst-case exponential in the length of the patterns, and

no nontrivial speed-up over the straight-forward algorithms has been proved theoretically.

3.1.3. More complicated solution spaces

The BU approaches can also be used for �nding more complex conservation or classi�cation

functions based on unions of regular patterns or decision-trees over regular patterns. This has

been studied in [AMS+93, AKM+92, ASO94]. There the authors prove that the classes of

these concepts can be learned from examples in polynomial time in sense of inductive inference

or PAC-learning (see [SA95]). Unfortunately, the order of the polynomials is too high and

therefore various heuristics have to be used in practical applications. This is not surprising,

since the search space in case of these more complicated functions is much larger.

In [ASO94] a method for learning the union of a bounded number of regular patterns from

only positive examples is developed and implemented, and interesting experimental results are

presented. Arikawa [AMS+93, AKM+92] considers learning from both positive and negative

examples, i.e. the classi�cation problem. In [AMS+93] the method for learning decision trees

�rst introduced by Quinlan [Qui86] is used. In [AKM+92] the authors have developed algorithm

for learning so called elementary formal systems. In practice only a special case of elementary

formal systems is used, which in fact is the union of a bounded number of regular patterns. How

the indexing of the basic alphabet can be performed automatically so that the classi�cation of

the examples in positive and negative remains correct is also studied in [AMS+93]. The problem

is proved to be NP-complete, and a heuristic for its approximation is given.

3.2. Top-down approaches

By TD approaches we mean algorithms based on �nding local similarities by comparing the

sequences. Two quite obvious ways how this can be done are looking for su�ciently long

common (or similar) substrings or subsequences, or by trying to align the given sequences

to minimise the mismatches. By a subsequence of two sequences a1 : : : an, and b1 : : : bm we

mean c1 : : : ck, such that there exists i1 < : : : < ik and j1 < : : : < jk for which c1 : : : ck =

ai1 : : : aik = bj1 : : : bjk . A common subsequence of more than two strings can be similarly de�ned.

Note the distinction between common subsequence and common substring which we de�ne as

d1 : : : dk = ai : : : ai+k�1 = bj : : : bj+k�1, i.e., a continuous common substring. We say that the

subsequence is the longest common subsequence (LCS) if k is the maximal possible for any

common subsequence of the involved sequences. For instance EFGJKL is LCS of the sequences

(7) and (8) on page 18. If we align the strings (7) and (8) to maximise the number of aligned

identical characters, the alignments can be featured as in Figure 4. From these alignments the

pattern *EFG*JKL* can be easily extracted. The problems of �nding the LCS and the optimal

alignment are closely related, particularly if all mismatches of symbols (including alignment with

a gap) are \penalised" equally. In general not all matches or mismatches of symbols should be

scored equally. Gaps are usually scored as a gap opening penalty plus a gap extension penalty for

each extension. The mismatches between di�erent characters are penalised according to some

24

AWCDEFGHI JKLM

----|||------|||-

NEFGOPQAWRJKLS

Figure 4: Possible alignments of strings AWCDEFHIJKLM and NEFGOPQAWRJKLS.

scoring matrix (e.g., PAM or BLOSUM). Both problems are also closely related to the problem

of �nding a distance between the strings.

It is nontrivial to de�ne what is the optimal alignment for the simultaneous alignment of more

than two sequences. We will not go into any details, since the problem of multiple alignment is

a wide area itself (see for example [CWC92]), and, although closely related to pattern discovery,

it is not exactly the same problem. Given a good alignment between strings, the underlying

pattern can be extracted. On the other hand, if a pattern common to a set of strings is found,

it can be used as a kind of \anchor" point for aligning these strings.

Whether we use the simple scoring scheme or a more complicated one, we are faced with the

same problem. It becomes infeasible to calculate either the LCS or the optimal alignment as the

number of sequences grows. In the case of two sequences an optimal alignment, according to

the scoring scheme used, can be found e�ciently by using dynamic programming [SK83, Ste94,

CLR90]. However, as the time complexity of multiple alignment using dynamic programming is

O(ln) for n sequences of average length l, this solution quickly becomes infeasible as the number

of sequences grow. Pruning techniques exist making it possible to optimally align 6-8 sequences

[LAK89]. It has been shown that the problem of �nding LCS for n sequences is NP-complete

[GJ79] (as is that of multiple sequence alignment [WJ94]), and therefore a rigorous solution is

unrealistic for more than a very small number of sequences and the use of some kind of heuristics

in TD approaches is inevitable.

Most of the known heuristics are based on using a pairwise sequence comparison. The �rst

TD algorithms which we are aware of to �nd a regular pattern (type 3A) common to a set of

strings were developed by the machine learning community, and do not have a direct relations

to bio-computing [Shi83, Nix83]. These algorithms are based on �nding the LCS for pairs of

sequences. The algorithm begins by �nding the LCS of the two shortest sequences, and in

the following steps takes the current shortest sequence and �nds its LCS with the result of

the previous steps. Although this algorithm is not guaranteed to �nd the LCS of the set of

sequences, Shinohara [Shi83] and Nix [Nix83] prove that in some rigorously de�ned machine

learning model (the inductive inference model) the method will produce the \right" pattern in

polynomial-time in the total length of examples.

3.2.1. Best pair comparison based algorithms

An algorithm for �nding patterns in biosequences based on pairwise comparing is given in Smith

et al. [SS90]. This approach uses the fact that not only pairs of sequences can be aligned by

25

P4

/\

/ \

/ \

P3 \

/\ \

/ \ \

/ \ \

P1 P2 \

/\ /\ \

/ \ / \ \

X_1 X_2 X_3 X_4 X_5

Figure 5: Example dendrogram for sequences X1; X2; X3; X4; X5. Pairs X1, X2, and X3, X4 are the

most similar among themselves, but the sequenceX5 is the most di�erent from any of the other sequences.

The algorithm aligns X1 to X2, obtaining P1, X3 to X4, obtaining P2, then P1 to P2 obtaining P3, and

�nally, P3 to X5 obtaining P4. Patterns P1, P2, P3, and P4 match sequences which are below each of

them, thus P4 is the pattern matching all sequences.

dynamic programming algorithms, but also that sequences can be aligned to regular patterns,

as well as patterns to patterns. The algorithm exploits the fact that the characters of the

basic alphabet (i.e., �p) can be organised in partially ordered hierarchical groups. Although

the AACC hierarchy, is used in the algorithm, in principle the method can be applied for any

hierarchy, including the at hierarchy, i.e., when there is only one group containing all basic

alphabet characters.

An estimated phylogenic tree (the so called dendrogram) is built featuring the estimated relative

distances among the sequences. For instance, a possible dendrogram of sequencesX1;X2;X3; X4;

X5 where pairs X1, X2, and X3, X4 are the sequences most similar among themselves, but the

sequence X5 is the most di�erent from any of the other, is given in Figure 5. The pairs (sequence,

sequence), or in later stages (sequence, pattern) or (pattern, pattern) are aligned at each node

of the dendrogram starting from bottom-up, and a common pattern is obtained from each pair.

The result of aligning two characters is the character denoting the smallest possible group in

the hierarchy containing both characters which may already denote a group of basic characters.

The scoring is positive, but decreases with groups higher up in the hierarchy. In the AACC

hierarchy, a match to a basic character is scored +3, at the next levels +2 and +1, and a match

to a wildcard is scored 0. Gaps are penalised by the formula w = w0 + we � k, where w0 is the

gap opening penalty, we is the gap extension penalty, and k is the gap length. If while aligning

a pattern to a pattern, two gaps are aligned, only gap extension (if needed) are penalised, but

not the gap opening.

The algorithm generates for a given dendrogram the most speci�c pattern for each node common

to the sequences below that node. The pattern is common to the whole set of the given strings

in the root. Each step (i.e., pairwise alignment) is guaranteed to give an optimal (i.e. the

most speci�c) pattern common to the two sequences/patterns aligned, but this does not give

any guarantee about the optimality of patterns higher up in the dendrogram with respect to

all given sequences. An interesting property of this approach is that besides the pattern which

26

/\

/\

/\

/\

...

\

basic sequence

Figure 6: A dendrogram where one sequence is chosen as a basic sequence and all other sequences are

aligned against it

is common to all sequences, we also obtain patterns common to subsets of related sequences,

therefore the algorithm can be also used for classi�cation.

A di�erent heuristic is developed by Roytberg [Roy92]. One sequence is selected as the basic

sequence, and all the other sequences (the so called serial sequences) are aligned against it. This

approach would correspond to a dendrogram of the type given in Figure 6. The substrings in the

basic sequence are found that have approximate matches in all, or in a speci�ed percentage, of

the serial sequences. The algorithm additionally ensures, that the respective substrings from the

serial sequences are similar to each other9. The respective substrings from the basic sequence

that have similar substrings in a su�cient number of mutually similar sequences are called

fundamental. Finally the algorithm �nds the fundamental substrings which are maximal in the

sense, that they cannot be extended. A disadvantage of this method is that it is sensitive to the

selection of the basic sequence.

3.2.2. All pair comparison heuristics

A heuristic based on �nding pairwise similarities between all pairs of sequences is described by

Schuler [SAL91]. The algorithm begins by comparing all pairs of input sequences. It locates

for each pair the local similarities (i.e. substrings) which score high enough, thus obtaining 2-

blocks10. Next it attempts to extend such 2-blocks to three sequences. For this it checks all pairs

of 2-blocks having one sequence in common, and 3-blocks are extracted from those with similar

enough parts in all three sequences. Then the same idea is applied to 3-blocks to extend the

4-blocks and so on. Theoretically there may be exponentially many blocks to try, but in practise

if the threshold for similarity scores has been taken high enough the number of hypothesis is

manageable. A very similar approach is also described by Brodsky et al. [BVK+92].

A heuristic using representation of pairwise alignments by so called dot-matrices is described in

[VA91]. Given a pair of sequences b1 : : : bl and c1 : : : cm, a dot matrix A = [ai;j] is a matrix of

9Note that the similarities are not necessarily transitive, i.e. the fact that some substring A from the basic

sequence is similar to a substring B in a serial sequence Xb and to a substring C in a serial sequence Xc, does

not necessarily mean that B is similar to C.
10By an n-block we mean an array of n substrings of approximately matching symbols.

27

A 1 N

W 1 E

C F

D G

E 1 O 1

F 1 P 1

G 1 Q

H A 1

I W 1

J 1 R

K 1 J 1

L 1 K 1

M L 1

N E F G O P Q A W R J K L S S

T A W U V O P H I J K L Y Z

Figure 7: Dot-matrices of strings (7)-(8) and (8)-(9) (0 elements are left blank in the example)

size l�m with elements ai;j de�ned as follows: ai;j = 1 if and only if bi = cj , otherwise ai;j = 0.

For instance, the dot matrices 7-8 and 8-9 for the sequences (7), (8), and (9) on page 18 are

given in Figure 7. More general dot matrices using real values instead of boolean representing

the similarity scores between the positions, can also been de�ned.

A Boolean multiplication of such matrices is performed in the same way as normal matrix mul-

tiplication, except that instead of summation, the Boolean summation is used (i.e. 0+0=0,

0+1=1, 1+0=1, and 1+1=1). For instance, the result of Boolean multiplication for the ma-

trices in Figure 7 is given in Figure 8. Note that the resulting matrix is di�erent from 1-3 in

that only substrings present in all three sequences, namely AW and JKL have 1 in the respective

positions. In general, if sequences X1; : : : ;Xn are given, there exist n(n � 1)=2 dot matrices

M1;1;M1;2; : : : Mn;1;M2;2;M2;3; : : : ; : : : ;Mn;n. The matrix resulting from the Boolean multipli-

cationM�

k;m
=Mk;l�Ml;m shows which sequences are similar to all three sequences Xk, Xl, and

Xm. By �xing k and m, and taking all possible l's (not equal to k or m) we can �nd substrings

common to all strings. it is also possible to �nd all substrings common to Xk and Xl and at

least a given number of other sequences by similar algebraic matrix manipulations. Vingron et

al. [VA91] describe a heuristic based on such matrix manipulations for �nding \signi�cant" (i.e.

with relatively high �tness) substrings common to a majority of the sequences.

3.2.3. Algorithms for classi�cation problem

TD algorithms can also be used in the case when both positive and negative examples are

given (i.e. for the classi�cation problem). An interesting approach is described by Kudo et

al. [KKASI92]. On one hand, the problem in [KKASI92] is simpler since it is assumed that

28

A 1

W 1

C

D

E

F

G

H

I

J 1

K 1

L 1

M

T A W U V O P H I J K L Y Z

Figure 8: Resulting dot-matrix from Boolean multiplication (7)-(8) � (8)-(9)

the positive examples are given correctly pre-aligned. The approach is primarily designed for

�nding patterns at gene splice-site 5-th end, and since all such sites have a �xed position of

100% conserved GT, the examples can be aligned by aligning GT. On the other hand, the target

language in [KKASI92] is relatively powerful: a union of subwords, either with wildcards (i.e.

B1c), or in the more general case containing arbitrary combinations of basic characters (i.e.

C1c).

The algorithm �nds the least general set of patterns that cover all the positive examples, and

does not contain any negative examples. In principle this could be achieved by a simple BU

exhaustive search, but it would not be practical. Kudo et al. [KKASI92] proposes an algorithm

for more e�cient search. It uses iterative steps, each step of the iteration introducing wildcard

characters to unify some positive examples, but so that none of the negative examples is matched.

More precisely, it attempts to unify by the introduction of wildcards in non-matching positions

�rstly pairs of positive examples, then triples from sequences contained in the successful pairs,

then quadruples from successful triples, etc, while such uni�cation is possible without including

any negative examples. Note that this algorithm is guaranteed to �nd the smallest set of

patterns compatible with all positive examples, and excluding negative examples. In some sense

this approach can also be rated as BU, although the candidate patterns for search has been

generated directly from examples.

The problem of �nding patterns from positive and negative examples has also recently been stud-

ied by Tateishi et al. [TM95, TMM95]. They use a somewhat di�erent de�nition of the classi�ca-

tion problem. The positive and negative examples are provided in pairs (pos1; neg1); (pos2; neg2);

: : : ; (posn; negn), and the aim is to �nd a classi�cation function able to distinguish between posi
and negi for each i, but not necessarily between posi and negj for i 6= j. They show that

the problem of �nding a pattern maximising correctly classi�ed pairs is still NP-complete. A

greedy algorithm for approximating the solution for a simple pattern class 1C from prealigned

examples having the same length is given. Some heuristics for more complicated patterns are

29

also proposed.

Finally we note that in some sense the work of Saqi and Sternberg [SS94] can also be regarded

as a TD approach, since they take the hypothesis directly from the examples. Nevertheless

this approach is based on the direct enumeration of the candidate patterns, and therefore we

rate it as BU. The last examples show that the distinction between BU and TD approaches is

not always very exact. Moreover, as the next subsection will show, very explicit BU and TD

approaches can be combined into a single algorithm.

3.3. Combined approaches and some related works

The most obvious way to combine BU and TD is to use TD for re�ning (expanding or combining)

the patterns found by BU search. This can be done in two ways. The �rst way is to

� use BU approach for spotting some candidate patterns,

� mark the position of the candidate patterns in the sequences,

� align the sequences so that the positions of candidate pattern are aligned together (thus

the candidate patterns become a kind of \anchors"),

� �nally extend the pattern to the left and to the right from these \anchor" points while the

�tness of the emerging pattern is increasing.

This method is used in [SAC90, JCH95]; the latter expands only to the right because of the

asymmetric nature of the block data structures.

The second way of re�ning found by the BU approach is by grouping the similar patterns to-

gether, aligning them, and trying to generalise from them. For instance, if substrings : : : aacaa : : :

and : : : aagaa : : : are found to be frequently occurring in examples, then a common pattern

aa[c,g]aa can be obtained from them (where [c,g] stands for a c or g). This kind of re�nement

is used in [NG94, SS94]. After having combined patterns, Neuwald and Green [NG94] calcu-

late an initial pro�le11 from the (ungapped) alignment de�ned by the substrings matching a

combined pattern. This pro�le is iteratively re�ned by realigning the sequences to the pro�le,

throwing away non-signi�cant matches, and recalculating the pro�le.

A modi�cation of the �rst combined approach is used by Landraud et al. [LAC89]. In this

algorithm �rst of all a variation of KMR is used to �nd all substrings present in at least k

out of the given n substrings. In the next step the substring having \the best" approximate

similarities, in some precisely de�ned sense, in the remaining n�k sequences, is picked out from

the substrings found in the �rst step. The strings are aligned so that the respective substrings

are aligned together in all the sequences. After that, the second step is repeated separately

for the parts of the sequences that are to the left and to the right of the substrings used in

the previous stage. This is repeated while possible, i.e. a divide-and-conquer strategy is used.

11The simplest form of a pro�le is a position dependent scoring matrix, giving one score to each amino acid

for each position in a segment to match the pro�le. Additionally, a pro�le may contain position-dependent

gap-penalties.

30

Note that the algorithm is \greedy" and is likely to produce good results if the sequences are

su�ciently similar.

Another explicit way of combining BU and TD approaches is described by Ogiwara et al.

[OUSK92]. There the basic idea is to use BU approach to �nd relatively short candidate

substrings, to transform the original sequences to di�erent data structures consisting of these

substrings, joined by `gaps', and �nally to align the obtained data structures and to extract the

common patterns. Let us consider this approach in some more detail.

The algorithm is for the classi�cation problem, ie. it uses both positive and negative examples.

All words of the given length are enumerated in a BU manner and a count is taken of in how

many positive examples and how many negative examples each is present. In practice tetra-,

penta-, and hexapeptide patterns (i.e. substrings of length 4 to 6) are counted. Only those

strings which are present in at least f percent of positive examples, and in none of the negative

examples are retained; in practice two cases: f = 1 and f = 0:7 are considered.

Next the positions of these words and their nearest neighbours are marked in the positive

examples. In this case \nearest neighbour" means having no more than one di�erence. Thus the

examples are transformed to new structures of the type: p1;j g1;j p2;j g2;j : : : pn;j, where pi;j are

the frequent substrings, and gi;j are integers equal to the distance between the starting positions

of i-th and i+ 1-th substrings in the j-th example. The transformed examples are the data for

the second stage, which is that of multiple alignment. Multiple alignment is performed trough

pairwise alignments and dynamic programming. In this way the consensus patterns of the type

p1�x(min1;max1)� p2� x(min2;max2)� : : :� pn, where pi are subwords, and x(mini;maxi)

speci�es the minimal and maximal distances (spacers) between the subwords.

Note that in principle this method could also be used the same way for the conservation problem,

i.e. if only positive examples are given. However the negative examples allow to use shorter

substrings pi;j as a starting point for the alignment.

In Heniko� et al. [HH91] a combined BU and TD algorithm is developed for �nding frequent

blocks in protein databases. The �rst stage is simply using the algorithm of [SAC90], thus

�nding patterns and the respective blocks in a BU manner, and then extending them (see the

beginning of this subsection). The positions of the patterns are marked on the initial examples.

Next the \best" set of patterns which occur in the same order without overlapping in a critical

number of examples is found. Such ordering is called a path. To �nd the best path �rstly a

graph is constructed, where nodes represent patterns, and an arc extends from node b1 to b2 if

pattern b1 precedes pattern b2 and does not overlap in at least the critical number of sequences.

After this all paths are searched and some \scores" are calculated (for details of the scoring

scheme see [HH91]).

Wu et al. [WB95] use the TD approach to extract patterns from (assumingly) correctly prealigned

examples, in combination with a BU heuristic search for correctly grouping the examples in

subclasses, and excluding the noise. In some sense this may be seen as an attempt to deal with

the noise without a priori assumptions about its level.

31

4. Conclusions

The aim of this survey has been to establish some systematisation of the area of pattern discovery

in biosequences. In order to achieve this we have given a partially formalised speci�cation of

the problem of the automatic discovery of `good' patterns from a set of sequences, and we

have partially formalised the problem of ranking the patterns in respect to the sequences. A

classi�cation of pattern languages has been introduced, and we have given a systematic overview

of the currently known algorithmic ideas used in algorithms for pattern discovery in biosequences.

We have described most of the algorithms that we are aware of for biosequence pattern discovery

whose expressive power lies inside the regular languages. We have not dealt with algorithms

for probabilistic patterns (e.g. Gibbs samplers) nor those for patterns outside the regular lan-

guages. Moreover, this survey should not be regarded as comprehensive even for regular language

patterns.

While dealing with these problems we have noticed that di�erent authors implement very dif-

ferent computational experiments to test their algorithms and to convince the reader of the

usefulness or superiority of their algorithms. The number and lengths of the sequences used,

the types of sequence families and the ways in which the results are presented are very di�erent,

although the algorithms are frequently intended to solve the same problem.

We believe that it would be bene�cial for the �eld that an attempt is made to establish some

systematisation about which experiments could be used for testing the algorithms. This would be

useful for comparing the algorithms and choosing the best algorithm for a particular problem. It

may also be useful to adopt some standard manner of how to present those experimental results

about new sequence families which have not yet explored by earlier methods. The standard

could include a standard pattern language, for example the PROSITE pattern language, and

some statistics, for example the number and lengths of the sequences in the family, and for

each pattern the number of matching sequences inside and outside the family. This would

mean the establishment of some benchmarks or even some, possibly informal, `theory of correct

experiment' for the area.

Acknowledgements

Alvis Br�azma has been supported by the Finnish Centre for International Mobility (CIMO), the

Latvian Council of Sciences (Grant Number 93.593), the Royal Society and the Human Capital

and Mobility programme of the European Union. Inge Jonassen is paid by a grant from the

Norwegian Research Council.

32

Appendix A: Algorithms and software

Key

Algorithms

Pattern Pattern type (see section 2.2.4)

G Guaranteed [Y/N]

+/- Uses positive and/or negative example training sets

Domain DNA/protein/Not Applicable

Software

Name Name of the software

Src/Ex Source or executable

Platform Runs on what platform

Obtain Obtain from: a/ftp=anonymous ftp; A=authors;

n/a=not available

33

Authors Algorithms Software

Pattern G +/- Domain Name Src/Ex Platform Obtain

[Nix83] 3A N + N/A none

[Shi83] 3A,

exact

Y + N/A none

[WAG84] 2A,

approx

Y + protein,

DNA

none

[LAC89] 3A,

approx

N + protein,

DNA

none

[Sta89b] 2A,

fuzzy

Y + DNA unknown Fortran77 Vax VMS n/a

[SS90] 2E, exact N + protein none

[SAC90] 2E, ex-

act, be-

fore TD

element

Y + protein MOTIF Turbo-C IBMPC n/a

[VA91] 3A [FIL-

LOG/SUM];

3A,

approx

[FIL-

MAXAV]

N +

align

protein unkown A

[KKASI92] 1C exact Y +/- DNA none

[OUSK92] 3A,

exact

Y/N +/- protein none

[Roy92] 2A,

approx

N + protein,

DNA

MuSCo IBMPC,

IBM/370

n/a

avail

[AMS+93] 3A, deci-

sion

trees

N +/- protein none

[NG94] 2C N + protein ASSET Src SPARC2 a/ftp

[SS94] 2C N + protein none

[WMS+94] 3A,

approx

N + protein DISCOVER,

CLASSIFY

Ex DOS, DEC

Ultra,

SunSPARC

A

[JCH95] 2E Y/N + protein Pratt Src (C) dec-alpha,

sparc10

a/ftp

[JE95] 2E N + protein Pratt2 Src (C) n/a

[SVS95b] 2C Y + protein none

[SVS95a] 2A,

approx.

Y + protein,

DNA

none

[TSLM+95] 3A, deci-

sion

trees and

unions

N +/- protein BONSAI n/a

[WB95] 1C N + protein SEQCLASS x, Common

Lisp

Sun

SPARC

n/a

34

Appendix B: Selected examples of patterns discovered by some

of the reported algorithms

Note: We base our notation on that of Prosite, augmented with some additional symbols.

1. Staden [Sta89b]

Examples: 88 E.coli promoter sequences, varying in length from 47 to 64, having a total length

of 5238 characters.

The patterns found most frequently to be approximately present in the sequences are:

t-t-t-t-t-t

t-t-a-t-a-a

t-t-g-a-c-a

t-c-t-t-g-a

t-a-t-a-a-t

a-c-t-t-t-a

a-a-a-a-a-a

a-g-t-a-t-a

2. Smith and Smith [SS90]

Examples: 128 sequences of length between 141 and 147 from hemoglobin delta epsilon gamma

beta major-chain chains.

Pattern:

l-l-x(2)-a-x(3)-b-x(2)-c-x(5)-G-x-l-x-a-x-l-c-c-a-a-c-P-W-l-l-R-b-

F-x(2)-F-G-x-c-x-l-x(3)-a-x(2)-l-x(2)-a-x(3)-G-x-i-a-x(3)-c-x(3)-c-

x-l-c-l-x-a-x(3)-c-x(2)-L-S-l-x-H-x(3)-c-x(2)-l-x(2)-l-F-l-x-c-G-

x(2)-c-a-x(2)-c-x(7)-F-x(4)-l-x(2)-c-l-i-c-x(3)-a-x(2)-p-L-x(3)-Y

Examples: 12 sequences from Trypsinogen/Venom serine proteases.

Pattern:

l-l-l-h-x-a-a-G-G-x(2)-C-x(2)-l-x(2)-P-b-x(3)-c-x(4)-i-x(0,1)-F-C-

G-x-k-L-I-x(3)-W-V-a-k-A-p-H-C-x-l-x(2)-c-l-a-i-L-G-l-x(6)-l-x(2)-

E-x-c-x(6)-c-x(2)-P-l-x-l-x(3)-c-l-l-x(0,1)-T-I-c-L-I-i-L-x(4)-l-x-

l-a-x(2)-a-x-L-P-l-x(5)-G-l-x(3)-a-x-G-W-G-x(3)-l-g-x(5)-l-x(2)-l-C-

x-l-x(2)-a-c-x-l-x(2)-C-l-x(2)-Y-x-G-x(0,1)-a-x(2)-l-x-c-C-x-G-c-c-

l-G-G-x-D-k-C-x-G-D-S-G-G-P-a-a-x-l-G-x-c-Q-G-a-a-S-W-G-x(2,3)-C-A-

x(4)-P-p-c-x(2)-I-V-c-l-b-a-x-W-I-l-l-x-a-A

The lower case letters denote classes from the AACC hierarchy as follows: a=[ILV], b=[FWY],

c=[ILVFWYCM], h=[DE], i=[HKR], j=[NQ], k=[ST], l=[DEHKRNQSTBZ], p=[AG].

35

3. Smith et al. [SAC90]

Examples: 15 sequences from DNA integrases.

Pattern:

x(15)-H-x-L-R-H-x(2)-A-x(6)-G-x(6)-Q-x(2)-L-G-H-x(2)-I-x(2)-T-x(2)-Y-x(5)

4. Kudo et al. [KKASI92]

Positive examples: 496 pre-aligned DNA segments of length 9 from around the 50 splice site

(three in the exon and six in the intron).

Negative examples: 1123 DNA segments of length 9 (all containing gt in position 4-5).

Some of the best patterns discovered are (in class 1B):

<x-a-g-g-t-a-a-x-x>

<a-a-g-g-t-x-a-g-x>

<c-x-x-g-t-a-a-g-x>

and (in class 1C)

<x-[agc]-[agc]-g-t-a-a-g-x>

<[agc]-x-[agc]-g-t-a-a-g-x>

<x-[agc]-x-g-t-a-a-g-[tgc]>

5. Ogiwara et al. [OUSK92]

Examples: sequences from cytochrome b5 family

A partially conserved pattern found:

H-P-G-G-E-E-V-L

Examples: sequences from a family of L-lactate dehydrogenase

A partially conserved pattern found:

P-V-D-[IV]-L-x(47)-G-[EQ]-H-G-D

Examples: sequences in a family of glyceraldehyde-3-phosphate dehydrogenases

A completely conserved pattern found:

G-F-G-R-I(0,1)-G-R-x(129,134)-S-N-A-S-C-T-T-N-[CS]-L-A-P-

x(14)-[LM]-M-T-T-V-H-x(30,31)-T-G-A-A-[KR]-A-[VT]-x(92,95)-

[SA]-W-Y-D-N-E

6. Saqi and Sternberg [SS94]

Examples: a set of heat shock proteins

Some of the patterns found:

36

x-G-G-G-T-F-D-[ILV]-[ST]-[ILV]

x-[ILV]-[FWY]-D-L-G-G-G-T-F-D-[ILV]

D-[LF]-G-G-G-T-F-D

Examples: a set of toxin proteins

Some of the patterns found:

x(2)-C-C-x(4)-C-x

D-R-C-C-x(2)-H-D-x-C

7. Neuwald and Green [NG94]

Examples: a set of 56 sequences with an average length 471 from acyltransferases

Some of the patterns found:

V-x-P-x(2)-[RQ]-x(4)-G-x(2)-L-[LM]

N-x(2)-A-x(3)-Y-x(3)-G-F

8. Wang et al. [WMS+94]

Examples: 47 sequences of length 190-780 in a group of cyclic proteins

Some of the patterns found:

L-Q-L

I-A-S-K-Y-E-E

D-T-A-G-Q-E-*-L-V-G-N-K

9. Sagot et al [SVS95a]

Examples: 80 proteins belonging to the elongation family

46 patterns found

10. Shoudai et al. [TSLM+95]

Examples: 3796 signal peptides indexed to three-letter alphabet �hydro of maximum length 32.

Classi�ed in three groups of sizes 2205, 640, and 603, by patterns:

2-*-2-*-0-2-*-1-*-0-2

1-0-*-0-*-0-*-2-1-*-0

2-2-2-*-1-2-*-1-2

11. Jonassen et al. [JCH95]

Examples: 241 protein sequences from the zinc �nger c2h2 family, average length 393

Pattern:

C-x(2,4)-C-x(3)-[ILVFYC]-x(8)-H-x(3,5)-H

37

Examples: 164 protein sequences from the snake toxin family, average length 64

Pattern:

G-C-x(1,3)-C-P-x(8,10)-C-C-x(2)-[EPDN]

Examples: 27 protein sequences containing PHD �nger, average length 874

Pattern:

C-x(2,4)-C-[YCEPGSDNQR]-x-[VMFWHTAPGSN]-x-H-x(2)-C-[ILVMFYHTCA)-x(11)-

[YWCEPGSDNQ]-x(2)-[IFHCAPGSDN]

References

[ABL+94] D. Alberts, D. Bray, J. Lewis, M. Ra�, K. Roberts, and J. D. Watson. Molecular

biology of the cell. Garland Publishing Inc, New York, 3 edition, 1994.

[AKM+92] S. Arikawa, S. Kuhara, S. Miyano, A. Shinohara, and T. Shinohara. A learning

algorithm for elementary formal systems and its experiments on identi�cation of

transmembrane domains. In Proc. 25th Hawaii Int. Conf. on System Sci., pages

675{684, 1992.

[AMS+93] S. Arikawa, S. Miyano, A. Shinohara, S. Kuhara, Y. Mukouchi, and T. Shinohara.

A machine discovery from amino acid sequences by decision trees over regular pat-

terns. New Generation Computing, pages 361{375, 1993.

[ASO94] H. Arimura, T. Shinohara, and S. Otsuki. Finding minimal generalizations for

unions of pattern languages and its application to inductive inference from positive

data. In Proc. of the 11th STACS, Lecture Notes in Comp. Sci., 755, pages 649{660.

Springer, 1994.

[Bai92] A. Bairoch. Prosite: a dictionary of sites and patterns in proteins. Nucleic Acids

Research, 20:2013{2018, 1992.

[BB92] A. Bairoch and P. Boeckmann. The swiss-prot protein sequence data bank. Nucleic

Acids Research, 20:2019{2022, 1992.

[BB94] P. Bucher and A. Bairoch. A generalized pro�le syntax for biomolecular sequence

motifs and its function in automatic sequence interpretation. In Proc. of Second

International Conference on Intelligent Systems for Molecular Biology, pages 53{61,

1994.

[BCHM94] P. Baldi, Y. Chauvin, T. Hunkapiller, and M. M. McClure. Hidden markov models

of biological primary sequence information. Proc. Natl. Acad. Sci USA, 91:1059{

1063, Feb 1994.

[BT91] C. Branden and J. Tooze. Introduction to protein structure. Garland Publishing

Inc, New York, 1991.

38

[BUV95] A. Brazma, E. Ukkonen, and J. Vilo. Finding a good collection of patterns covering

a set of sequences. Technical Report C-1995-60, University of Helsinki, Department

of Computer Science, University of Helsinki, Finland, December 1995.

[BVK+92] L. I. Brodsky, A. V. Vassilyev, Y. L. Kalaydzidis, Y. S. Osipov, R. L. Tatuzov, and

S. I. Feranchuk. Genebee: the program package for biopolymer structure analysis.

In S. Gindikin, editor, Mathematical methods of analysis of biopolymer sequences,

DIMACS series in discrete mathematics and theoretical computer science, volume

8. American Mathematical Society, 1992.

[CLR90] T. H. Cormen, C. E. Leicerson, and R. L. Rivest. Introduction to Algorithms. MIT

Press, 1990.

[CWC92] S. C. Chan, A. K. C. Wong, and D. K. Y. Chiu. A survey of multiple sequence

comparison methods. Bulletin of Mathematical Biology, 54(4):563{598, 1992.

[Day78] M. O. Dayho�. Atlas of protein sequence and structure, volume 5. National Biomed-

ical Research Foundation, 1978.

[ED94] S. R. Eddy and R. Durbin. Rna sequence analysis using covariance models. Nucleic

Acids Research, 22:2079{2088, 1994.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman, New York, NY, 1979.

[GME87] M. Gribskov, M. McLachlan, and D. Eisenberg. Pro�le analysis: detection of dis-

tantly related proteins. Proc. Natl. Acad. Sci. U.S.A, 84:4355{4358, 1987.

[HH91] S. Heniko� and J. G. Heniko�. Automated assembly of protein blocks for database

searching. Nucleic Acids Research, 19(23):6565{6572, 1991.

[HH92] S. Heniko� and J. G. Heniko�. Amino acid substitution matrices from protein

blocks. Proc. Natl. Acad. Sci. USA, 89:100915{100919, 1992.

[Hui92] L. C. K. Hui. Color set size problem with application to string matching. In Proc.

of Combinatorial Pattern Matching, pages 230{243. Springer-Verlag, 1992.

[Hut94] A. Hutchinson. Algorithmic learning. Clarendon Press, 1994.

[JCH95] I. Jonassen, J. F. Collins, and D. G. Higgins. Finding exible patterns in unaligned

protein sequences. Protein Science, 4(8):1587{1595, 1995.

[JE95] I. Jonassen and I. Eidhammer. Discovering patterns conserved in sets of related

protein sequences. In Proceedings of Norwegian Informatics Conference, pages 95{

112, Norway, 1995. Tapir.

[KB94] T. M. Klinger and D. L. Brutlag. Discovering structural correlations in alpha-

helices. Protein Science, 3:1847{1857, 1994.

[KBM+94] A. Krogh, M. Brown, I. S. Mian, K. Sjoelander, and D. Haussler. Hidden markov

model in computational biology. applications to protein modelling. Journal of

Molecular Biology, 235:1501{1531, 1994.

39

[KKASI92] M. Kudo, S. Kitamura-Abe, M. Shimbo, and Y. Iida. Analysis of context of 50-

splice site sequences in mammalian mrna precursors by subclass method. CABIOS,

8(4):367{376, 1992.

[KLP92] T. Kristensen, R. S. Lopez, and H. Prydz. An estimate of the sequencing error

frequency in the dna sequence databases. DNA Seq., 2:343{346, 1992.

[KMR72] R. M. Karp, R. E. Miller, and A. L. Rosenberg. Rapid identi�cation of repeated pat-

terns in strings, trees and arrays. In 4th ACM Symposium on Theory of Computing,

pages 125{136, 1972.

[LAB+93] C. E. Lawrence, S. F. Altschul, M. S. Boguski, J. S. Liu, A. F. Neuwald, and J. C.

Wootton. Detecting aubtle sequence signals: A gibbs sampling strategy for multiple

alignment. Science, 262:208{214, Oct 1993.

[LAC89] A. M. Landraud, J-F. Avril, and P. Chretienne. An algorithm for �nding a common

structure shared by a family of strings. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 11(8):890{895, Aug 1989.

[LAK89] D. J. Lipman, S. F. Altschul, and J. D. Kececioglu. A tool for multiple sequence

alignment. Proc. Natl. Acad. Sci. USA, 86:4412{4415, 1989.

[LV95] M. Li and P. Vitanyi. Computational machine learning in theory and praxis. Techni-

cal Report NC-TR-95-052, Royal Holloway, University of London, UK, Department

of Computer Science, Egham, Surrey TW20 0EX, England, September 1995. (To

appear in Lecture Notes in Computer Science 1000).

[LWS+93] R. Lathrop, T. Webster, R. Smith, P. Winston, and T. Smith. Integrating ai

with sequence analysis. In L. Hunter, editor, Arti�cial Intelligence and Molecular

Biology, pages 211{258. AAAI Press/The MIT Press, 1993.

[McC76] E. M. McCreight. A space{economical su�x tree construction algorithm. Journal

of the ACM, 23:262{272, 1976.

[NG94] A. F. Neuwald and P. Green. Detecting patterns in protein sequences. Journal of

Molecular Biology, 239:689{712, 1994.

[Nix83] R. P. Nix. Editing by Example. PhD thesis, Yale University, Xerox Palo Alto

Research Center, California, USA, August 1983.

[OUSK92] A. Ogiwara, I. Uchiyama, Y. Seto, and M. Kanehisa. Construction of a dictionary of

sequence motifs that characterize groups of related proteins. Protein Engineering,

5(6):479{488, 1992.

[Qui86] J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81{106, 1986.

[QWK82] C. Queen, M. N. Wegman, and L. J. Korn. Improvements to a program for dna

analysis: a procedure to �nd homologies among many sequences. Nucleic Acids

Research, 10:449{456, 1982.

40

[Roy92] M. A. Roytberg. A search for common patterns in many sequences. CABIOS,

8(1):57{64, 1992.

[SA95] T. Shinohara and S. Arikawa. Pattern inference. In K. P. Jantke and S. Lange,

editors, Algorithmic learning for knowledge-based systems, GOSLER �nal report,

pages 259{291. Springer-Verlag, 1995.

[SAC90] H. O. Smith, T. M. Annau, and S. Chandrasegaran. Finding sequence motifs in

groups of functionally related proteins. In Proc. Natl. Acad. Sci. USA, pages 826{

830, Jan 1990.

[SAL91] G. D. Schuler, S. F. Altschul, and D. J. Lipman. A workbench for multiple alignment

construction and analysis. PROTEINS: Structure, Function, and Genetics, 9:180{

190, 1991.

[SBU+93] Y. Sakakibara, M. Brown, R. C. Underwood, I. S. Mian, and D. Haussler. Stochas-

tic context-free grammars for modeling rna. Technical Report UCSC-CRL-93-16,

University of California Santa Cruz, 1993.

[SD95] R. F. Sewell and R. Durbin. Method for calculation of probability of matching a

bounded regular expression in a random data string. Journal of Computational

Biology, 2:25{31, 1995.

[Shi83] T. Shinohara. Polynomial time inference of extended regular pattern languages.

LNCS, 147:115{127, 1983.

[SK83] D. Sanko� and J. B. Kruskal. Time warps: string edits, and macromolecules: the

theory and practice of sequence comparison. Addison-Wesley, 1983.

[Sol64] R. J. Solomono�. A formal theory of inductive inference, part 1 and part 2. Infor-

mation and Control, 7:1{22 and 224{254, 1964.

[SS90] R. F. Smith and T. F. Smith. Automatic generation of primary sequence patterns

from sets of related protein sequences. In Proc. Natl. Acad. Sci. USA, pages 118{

122, Jan 1990.

[SS94] M. A. S. Saqi and M. J. E. Sternberg. Identi�cation of sequence motifs from a set

of proteins with related function. Protein Engineering, 7(2):165{171, 1994.

[Sta89a] R. Staden. Methods for calculating the probabilities of �nding patterns in sequences.

CABIOS, 5:89{96, 1989.

[Sta89b] R. Staden. Methods for discovering novel motifs in nucleic acid sequences. CABIOS,

5(4):293{298, 1989.

[Ste94] G. A. Stephen. String searching algorithms. World Scienti�c, 1994.

[SVS95a] M-F. Sagot, A. Viari, and H. Soldano. A distance-based block searching algorithm.

In C. Rawlings et al, editor, Proc. of Third International Conference on Intelligent

Systems for Molecular Biology, pages 322{331, Menlo Park, California, July 1995.

AAAI Press.

41

[SVS95b] M-F. Sagot, A. Viari, and H. Soldano. Multiple sequence comparison: a peptide

matching approach. In Z. Galil and E. Ukkonen, editors, Proc. of 6th Annual Sym-

posium, CPM (Lecture Notes in Computer Science 937), pages 366{385. Springer,

July 1995.

[Tay86] W. R. Taylor. Identi�cation of protein sequence homology by consensus template

alignment. Journal of Molecular Biology, 188:233{258, 1986.

[TM95] E. Tateishi and S. Miyano. A greedy strategy for �nding motifs from positive

and negative examples. Technical Report RIFIS-TR-CS-118, Research Institute of

Fundamental Information Science, Kyushu University, Japan, Aug 1995.

[TMM95] E. Tateishi, O. Maruyama, and S. Miyano. Extracting best consensus motifs from

positive and negative examples. Technical Report RIFIS-TR-CS-115, Research

Institute of Fundamental Information Science, Kyushu University, Japan, Aug 1995.

[TSLM+95] M T. Shoudai, M. Lappe, S. Miyano, A. Shinohara, T. Okazaki, S. Arikava,

T. Uchida, S. Shimozono, T. Shinohara, and S. Kuhara. Bonsai garden: parallel

knowledge discovery system for amino acid sequences. In C. Rawlings et al, edi-

tor, Proc. of Third International Conference on Intelligent Systems for Molecualar

Biology, pages 359{366, Melono Park, California, Jouly 1995. AAAI Press.

[Ukk92] E. Ukkonen. Constructing su�x trees on{line in linear time. Information Processing

92, 1:484{492, 1992.

[VA91] M. Vingron and P. Argos. Motif recognition and alignment for many sequences by

comparison of dot{matrices. Journal of Molecular Biology, 218:33{43, 1991.

[WAG84] M. S. Waterman, R. Arratia, and D. J. Galas. Pattern recognition in several se-

quences: Consensus and alignment. Bulletin of Mathematical Biology, 46(4):515{

527, 1984.

[WB95] T. D. Wu and D. L. Brutlang. Identi�cation of protein motifs using conserved amino

acid properties and partitioning techniques. In C. Rawlings et al, editor, Proc. of

Third International Conference on Intelligent Systems for Molecular Biology, pages

402{410, Melno Park, California, July 1995. AAAI Press.

[WJ94] L. Wang and T. Jiang. One the complexity of multiple sequence alignment. Journal

of Computational Biology, 1(4):337{348, 1994.

[WMS+94] J. T. L. Wang, T. G. Marr, D. Shasha, B. A. Shapiro, and G-W. Chirn. Discovering

active motifs in sets of related protein sequences and using them for classi�cation.

Nucleic Acids Research, 22(14):2769{2775, 1994.

42

