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Multiple alignments for structural, functional or phylogenetic analyses of homologous sequences 


L. DURET and S. ABDEDDAIM


1. Introduction





Understanding the structure, function and evolution of genes is one of the main goals of genome sequencing projects. Classically, gene function has been investigated experimentally through the analysis of mutant phenotypes. More recently, comparative analysis of homologous sequences has proved to be a very efficient approach to study gene function (this approach has been coined 'comparative genomics' or 'phylogenomics'). Indeed, evolution of living organisms may be considered as an ongoing large-scale mutagenesis experiment. For more than three billion years, genomes have continuously undergone mutations (substitutions, insertion, deletions, recombination, etc.). Deleterious mutations are generally rapidly eliminated by natural selection, while mutations that have no phenotypic effect (neutral mutations) may, by random genetic drift, eventually become fixed in the population. Globally, advantageous mutations are very rare, and hence residues that are poorly conserved during evolution generally correspond to regions that are weakly constrained by selection (1). Thus, studying mutation patterns through the analysis of homologous sequences is useful not only to study evolutionary relationships between sequences, but also to identify structural or functional constraints on sequences (DNA, RNA, or protein). 





	The alignment of homologous sequences consists in trying to put in correspondence residues (nucleotides or amino-acids) that derive from a common ancestral residue, by introducing gaps (which represent insertions or deletions) into sequences. Thus, an alignment is a hypothetical model of mutations (substitutions, insertions, and deletions) that occurred during sequence evolution. The best alignment will be the one that represents the most likely evolutionary scenario. Generally, this best alignment cannot be unambiguously established. Firstly, because of the computational complexity of this problem, alignment algorithms that are usable in practice cannot guarantee to find the best solution (see 4.1). Secondly, even with an ideal algorithm, finding the best alignment would not be guaranteed because current knowledge on the probability of occurrence of the different types of mutation is still limited (see 2.3). However, as far as homologous sequences are not too divergent, fast approximate algorithms provide reliable alignments. In practice, such alignments are commonly used in molecular or evolutionary biology. Typical examples of usage of multiple alignments are indicated in Table 1.





The general procedure to compute a multiple alignment of homologous sequences consists in three steps:





(a)	Search for homologues in sequence databases


(b)	Compute alignments


(c)	Check and edit alignments








	In this chapter, we will focus essentially on steps (b) and (c). In a first part we will define some general concepts underlying multiple alignment methodology. We will then describe and compare different methods that have been developed to align sequences. As far as possible, we will indicate WWW sites where these tools are proposed, so that they may be used from any computer with an appropriate WWW browser software and INTERNET connection. The list of WWW sites that we provide here is also available at the following address: 


	http://pbil.univ-lyon1.fr/alignment.html





Some problems related to multiple alignment will not be treated in this chapter (e.g. contig assembling, profile searches, etc.). We will only describe methods intended to align homologous sequences and notably we will not treat the problem of finding common motifs in a set of unrelated sequences. Note that there is no absolute frontier between motif search and multiple alignments: when homologous sequences have diverged too much there may remain only few short conserved fragments, separated by regions of variable length. Motif-based methods have been developed to identify and align such conserved fragments within highly divergent sequences. In part 4.4 we will mention some of these methods. However, for a more exhaustive review on this topic, see the chapter by Henikoff in this volume.





2. Basic concepts for multiple sequence alignments





2.1 Homology: definition and demonstration





Two sequences are said to be homologous if they derive from a common ancestor. Generally, homology is inferred by sequence similarity. It should be stressed however that similarity does not necessarily reflect homology: similarity between short sequence fragments may result from evolutionary convergence (2), or may simply occur by chance. Moreover many sequences contain relatively long fragments of very biased nucleotide or amino acid composition (e.g. CA-repeats in DNA, proline-rich domains in proteins) (3). Generally, similarities between such 'low complexity regions' do not reflect evolutionary relationship. However, in absence of such compositional bias, similarity over an extended region almost certainly implies homology. Statistical tests can be used to evaluate the likelihood that an observed similarity occurred purely by chance and thus accept or reject the hypothesis of homology (4). Such tests are now generally provided by similarity search programs. 


Multiple alignments may be useful to demonstrate homology: a weak similarity which would be considered as non-significant in a pairwise sequence comparison may prove to be highly significant if the same residues are conserved in other distantly related sequences. It should be emphasized that if sequences have diverged too much, homology may not be recognizable on the basis of sequence similarity. 





2.2 Global or local alignments





In the above paragraph, we implicitly considered sequences that are homologous over their entire length. However, in many cases, homology is restricted to a limited region of sequences. Indeed, many proteins consist of a combination of discrete modules that have been shuffled during evolution. It is clear that many protein-coding genes result of recombination between different fragments of other genes. This modular evolution has played a major role in protein evolution and has been particularly facilitated in eukaryotes thanks to the presence of introns within genes (5). 





Multiple copies of a given module may be repeated within a sequence, and a set of modules may occur at different relative positions in different genes. In such cases, it is not possible to align sequences over their whole length (global alignment) and it is thus necessary to perform alignments only on homologous modules (local alignment) (Fig. 1). 





Fig. 1 





2.3 Substitution matrices, weighting of gaps





As indicated earlier, searching for the best alignment consists in searching the one that represents the most likely evolutionary scenario. Thus, the probability of occurrence of the different mutational events during evolution must be taken into consideration when computing a multiple alignment. In alignments, three types of mutations are considered: substitutions, insertions or deletions (the two latter events are often indistinguishable, and are commonly referred as 'indels'). 





2.3.1 Substitutions





The probability of substitution of one amino acid by another depends on the structure of the genetic code (i.e. on the number of mutations necessary to pass from one codon to the other) and also on the phenotypic effect of that mutation. Substitutions of one amino acid by another with similar biochemical properties generally do not greatly affect the structure and hence the function of the protein. Thus, during evolution, such conservative substitutions are relatively frequent compared to other substitutions. It is important to note that the probability of substitution of one amino acid by another depends on the evolutionary distance between sequences. At short evolutionary distances, probabilities of substitution mainly reflect the structure of the genetic code, whereas at larger distances, probabilities of substitution depend essentially on biochemical similarities between amino acids. Various methods have been proposed to build series of matrices that give estimates of probabilities of all possible substitutions for different evolutionary distances (6-8). The most commonly used are the PAM and BLOSUM substitution matrices. PAM matrices suitable for increasing evolutionary distances are indicated by increasing indices (e.g. PAM80, PAM120, and PAM250). The opposite convention has been used for the BLOSUM series (e.g. BLOSUM80 for short evolutionary distances, BLOSUM45 for large evolutionary distances). Generally, alignment programs allow users to choose which substitution matrix to use. In the CLUSTAL W program (9) (see 4.2) substitution matrices are automatically selected and varied at different alignment stages according to the divergence of the sequences to be aligned. 


	Probabilities of substitutions vary also along sequences according to the local environment of amino-acids in the folded protein. Thus, several environment-specific substitution matrices have been developed (e.g. for a-helix, or b-sheet) (10). However, to our knowledge, these matrices are rarely used for multiple alignments.


At the DNA level, probabilities of substitution vary according to the bases. Notably, transitions (substitutions between two purines - A, G - or two pyrimidines - C, T) are generally more frequent than transversions (substitutions between a purine and a pyrimidine). Thus, multiple alignment programs generally propose a parameter to weight more heavily transversions than transitions. Probabilities of nucleotide substitution also depend on neighboring bases (e.g., in vertebrates, C in CG dinucleotide is hypermutable) (11, 12). However, currently available alignment programs do not use such data.





2.3.2 Insertions, deletions





	Probabilities of occurrence of indels depend on their length. Thus, when computing an alignment, penalties (p) associated to gaps are often estimated using a linear model such as:


	p = a + b x L


where L is the length of the gap, a the gap opening penalty and b the gap extension penalty. However, analyses of alignment of homologous sequences have shown, both for protein and nucleic sequences, that this model underestimates the probability of long indels (7, 13, 14). Indeed, more realistic indel penalties can be estimated with models of the following form:


	p = a + b x log(L)


However, because of computational complexity, such models have not been implemented in commonly used alignment programs. Fortunately, other approaches have been proposed to align sequences with large indels (see 4.3).


	Probabilities of occurrence of indels in proteins also depend on the degree of divergence between sequences (7, 13). Thus, as for amino-acids substitution matrices, indel penalty parameters should be varied according to the divergence of the sequences to be aligned. Probabilities of occurrence of indels also depend on the nature of sequences: protein, structural RNA, non-coding DNA (in which transposable elements may be inserted), etc. Moreover, probabilities of indel may vary along sequences. In proteins notably, indels are more frequent within external loops than in the core of the structure. Thus, knowledge on the structure of proteins can be used to weight indels. For example, the CLUSTAL W program uses residue specific indel penalty and locally reduced indel penalty to encourage new gaps in potential loop regions rather than in regular secondary structure. Moreover, in cases where secondary structure information is available, indel-penalty masks can be used to guide the alignment. 


	


It is important to note that in most programs, default parameters for gap penalty have been set for typical globular proteins but may not be optimal for other sequences.








3. Searching for homologues in sequence databases





The first step in the analysis of a family of homologous sequences consists in searching for all available members of that family. Published sequences are stored in databases: GenBank (15) or EMBL (16) for nucleic sequences and SWISSPROT-TREMBL (17) or PIR (18) for protein sequences. Retrieval systems such as Entrez (19), SRS (20) or ACNUC (21) have been developed to query those databases and extract sequences according to the annotations associated to sequences (keywords, taxon, authors, etc.) (see Table 2). However, it is not possible to rely on these annotations to identify in those databases all homologous sequences belonging to a given family. Presently, the most efficient way to identify those homologues consists in taking one member of the family and comparing it to the entire database with a similarity search software such as FASTA (22) or BLAST (23, 24). To guarantee a more exhaustive search, one may repeat this procedure with several distantly related homologues identified in the first step (for a comprehensive review on sequence similarity search, see ref. 25). 


The sensitivity of sequence similarity search may be improved by weighting sites according to their degree of conservation. Thus, once several homologous sequences have been identified, it is possible to use methods such as profile searches (see the chapter by Henikoff in this volume) or PSI-BLAST (24) that rely on a multiple alignment to identify more distantly related members of the family. A list of similarity search WWW servers is presented Table 3. 








4. Multiple alignment methods


Once homologous sequences have been identified, which program should be preferentially used to align them? Several multiple alignment methods (algorithms) have been developed, but none of them is ideal. Thus, it is important to have an idea of what these algorithms try to solve, to make an informed choice of the most appropriate method(s) for a particular problem. The multiple alignment problem is algorithmically hard: methods that guarantee to find the best alignment (for a given measure of alignment score and for a given set of substitution matrix and gap penalty parameters) require so much time and space (memory) that they cannot be used in practice with, say, more than 10 to 15 sequences of length 100. Thus, other algorithms have been developed using heuristics to gain speed and limit space requirements. Although these heuristics do not guarantee to find the optimal alignment, they are very useful in practice and often give results very close to the exact solution. 


In the following we will focus on four families of multiple alignment algorithms:


(a) 	algorithms that guarantee to find the optimal alignment for a given scoring scheme; these algorithms can be used only for a limited number of short sequences,


(b) 	heuristic algorithms that are based on a progressive pairwise alignment approach,


(c) 	heuristic algorithms that build a global alignment based on local alignments,


(d) 	heuristic algorithms that build local multiple alignments.


It should be noted that this list is not exhaustive. Other multiple alignment techniques such as Hidden Markov Model techniques (26) or genetic algorithms (27) can also be used. For a review of multiple alignment algorithms see ref. 28.


Many of the programs reviewed here can be used directly through the WWW (see Table 4) or downloaded through INTERNET to be installed on a local computer (see Table 5). 





4.1 Optimal methods for global multiple alignments


In this section, we will mention several methods that are said to be optimal, because they guarantee to find the 'best' multiple alignment among all possible solutions for a given scoring scheme. It should be stressed however that the term 'optimal' is taken here in its mathematical meaning. Whether a mathematically optimal alignment corresponds or not to the correct alignment (i.e. the alignment that represent the most likely evolutionary scenario) depends on the choice of parameters (weighting of substitutions and of indels, see 2.3) and on the way the multiple alignment is scored. 


4.1.1 Scoring schemes for multiple alignments





In principle, the score of a multiple alignment should reflect its likelihood (according to a given evolutionary model). There are different possibilities to measure the score (or cost) of a multiple alignment. In the following we consider that a sequence is an ordered set of letters taken from an alphabet S. An alignment of n sequences S1,..., Sn can be defined as a matrix a(S1,...,Sn) = A, where each entry Aij is either a letter of S or a null letter (gap, denoted by -), and such that each row i of A from which null letters are removed is the sequence Si.


In the simplest model, the cost of an alignment of n sequences is defined as the sum of the cost of its columns. However, this model is not realistic because each column of the alignment is considered independently of its context (i.e. a gap of length L is considered as corresponding to L independent indels). 


In more realistic models, a gap is interpreted as one single mutational event (a deletion or an insertion of L residues) and associated to a cost that depends on its length (see 2.3.2). With such models, pairwise alignment costs are defined as the sum of substitution costs and gap cost. However, the definition of the multiple alignment cost is more complex. A first possible solution, known as Sum of Pairs (SP) alignment cost (29), consists in calculating multiple alignment cost from pairwise alignment costs. A multiple alignment a(S1,...,Sn) contains n(n-1)/2 pairwise alignments a(Si.,Sj) where 1£ i < j £ n. Each projection a(Si.,Sj) is the pairwise alignment built from a(S1,...,Sn) by removing all the rows except the rows i and j, and then by removing all the columns that contains two null letters. The SP multiple alignment cost is defined as the sum of all its projections costs (29).


Simple SP alignment cost may however be inappropriate when some groups of sequences are over or under-represented in a family. This drawback may be corrected by introducing a proper weighting system (30, 31). Another solution consists in using a cost function based on an evolutionary tree. The tree leaves are the sequences we want to align, and the internal nodes are their hypothetical ancestral sequences. For a given tree, the cost of an alignment a(S1,...,Sn) is the sum of all its projections a(Si.,Sj) on adjacent sequences Si and Sj in the tree (32).





4.1.2 Algorithmic complexity of optimal multiple alignment methods





The optimal alignment is the one with the maximal score (or the minimal cost). Needleman and Wunsh (33) proposed an efficient algorithm, based on dynamic programming, to compute this minimal cost for pairwise alignments. This dynamic programming approach can be easily generalized to more than two sequences. However, computing the minimal alignment cost of n sequences of lengths l requires o(2n ln) time and o(ln) space (i.e. time proportional to 2n ln and space proportional to ln) and the complexity is even higher if gap cost are not linear (see 2.3.2). Such an algorithm cannot be used in practice for more than three sequences. For example, to align ten sequences of length 100, on a computer that needs 10-9 s. to compute of each column, it will take approximately three million years (210 10010 10-9 @ 1014 s.) to achieve the work if we suppose that the computer has approximately ten billions Giga-bytes of memory...





Carrillo and Lipman (29) proposed a branch and bound algorithm to compute a minimal SP cost alignment. This algorithm uses an upper bound of the alignment SP cost to limit the space and time used by dynamic programming. This approach is implemented in the program MSA (34). A new version of MSA with substantial improvements in time and space usage is available (35). Despite these improvements, MSA cannot be used for more than, say, 10-15 sequences of length 100.





As said previously, cost function based on an evolutionary tree are in principle better than SP alignment cost to measure the likelihood of an alignment. However, the alignment problem under an evolutionary tree is even harder than the SP alignment problem, as the algorithm has to find the alignment, the tree, and the ancestral sequences such as the alignment cost is minimal. The problem remains hard even if the tree is given (36). 





4.2 Progressive global alignment


Progressive alignment is the most commonly used method to align biological sequences. This heuristic approach is very rapid, requires low memory space and has good performances on relatively well-conserved homologous sequences (37, 38). 





4.2.1 Description of progressive alignment methods





Progressive alignment consists in building a multiple alignment using pairwise alignment approaches in three steps:


(a) 	Compute the alignment scores (or distances) between all pairs of sequences.


(b) 	Build a guide tree that reflects the similarities between sequences, using the pairwise alignment distances.


(c)	Align the sequences following the guide tree. At each node the algorithm aligns the two sequences or alignments that are associated to its two son nodes. The process is repeated beginning from the tree leaves (the sequences) and ending with the tree root.


Depending on the algorithms, steps (b) and (c) are done separately, or merged in one step where the tree topology is deduced from the progressive alignment process.


 Figure 2


Figure 2 shows an example of a progressive alignment process, S1 is first aligned with S2 following the given tree, S3 is then aligned with S4, then the two alignments a(S1,S2) and a(S3,S4) are aligned together and finally S5 is aligned with a(S1,S2,S3,S4) . Notice that even if a(S1,S2) and a(S3,S4) are optimal alignments computed by dynamic programming, the progressive alignment approach does not guarantee that a(S1,S2,S3,S4) is optimal for a multiple alignment cost function (SP cost or the tree cost for example).


A great number of tools that use a progressive alignment approach have been proposed, they differ by the methods used in at least one of the three steps.





In the first step (a) the pairwise alignment cost can be computed by dynamic programming, or by heuristic algorithms. The multiple alignment program CLUSTAL W (9) for example allows using either dynamic programming or heuristic method. Dynamic programming gives more accurate scores but is slower than heuristic methods.





Different algorithms can be used to build a tree (step b) given a distance matrix between sequences. Following Feng and Doolittle (37), early versions of CLUSTAL (39) used the UPGMA algorithm (40). However, UPGMA is notorious for giving incorrect branching orders when rates of substitution vary in different lineages. Therefore, CLUSTAL W (9) now uses the Neighbor-Joining (41) algorithm to build the guide tree. 





The main problem in the third step (c) consists in aligning two alignments. The simplest method for this problem reduces each alignment to a consensus sequence, and uses a pairwise alignment algorithm to do the work. In the consensus sequence, each column of the alignment is represented by its most frequent letter. Consensus alignment was used in the first version of CLUSTAL. In most used programs, each alignment is considered as a profile. In a profile, a column is reduced to a distribution giving the frequency of each letter. Two profiles are aligned as two sequences by dynamic programming without major modification of the algorithm. The alignment of two profiles of length l takes o(a2l2), where a is the alphabet size. CLUSTAL W uses profile alignment with position-specific gap penalties (see 2.3.2). 





4.2.2 Problems with progressive alignment methods





An important problem with this progressive alignment approach stems from the 'greedy' nature of the algorithm: any mistakes that appear during early alignments cannot be corrected later as new sequence information is added. For example, suppose that we have to align three sequences (x, y, z) and let consider a short fragment of these sequences for which the optimal alignment is:





	x ACTTA


	y A-GTA


	z ACGTA





Suppose that the guide tree based on pairwise comparison of entire sequences indicate to align first (x, y) and then ((x, y), z). At the first step, there are three possible alignments of x and y giving exactly the same score:





	x ACTTA	x ACTTA	x ACTTA


	y A-GTA	y AGT-A	y AG-TA





At the following steps, the gap that has been introduced cannot be changed. Thus adding sequence z may give the following alignments:





	x ACTTA	x ACTTA	x ACTTA


	y A-GTA	y AGT-A	y AG-TA


	z ACGTA	z ACGTA	z ACGTA





Only the first of these alignments is optimal. As, at the first step, only one of the three possibilities will be arbitrarily selected, there is only one chance in three to obtain this correct alignment.


To avoid that problem, iterative optimization strategies such as RIW or DNR (42) have been proposed. These methods are reported to perform better than CLUSTAL W (42). However, although these methods are much faster than optimal algorithms, they are still to slow for large dataset.


	Another limitation of the progressive approach described above is that it requires computing pairwise distances between all sequences to calculate the guide tree. One may sometimes have to align set of homologous sequences that include some non-overlapping fragments (e.g. partial protein sequences). When sequences are non-overlapping they are obviously completely unrelated and thus the guide tree generated may be totally false. Hence, the alignment produced in this case can be unpredictable. 


 4.3 Block-based global alignment


The sequences to compare may share conserved blocks, separated by non-conserved regions containing large indels. In such cases, the result of optimal or progressive global alignment methods will depend greatly on the choice of gap penalty parameters. An alternative to these approaches consists in searching for conserved blocks that will be used as anchors in order to align the sequences. Blocks are alignments of fragments (segments) of sequences (local alignments). Most methods consider gap-free blocks. Depending on the programs used, the blocks allowed can be exact, i.e. composed of identical segments, or not, uniform, i.e. found in every sequence, or not. The selected set of blocks must be consistent, i.e. the blocks can occur together in a same multiple global alignment (Fig. 3). Once blocks have been computed, it is possible to use a classical approach to align regions between blocks (e.g., ref. 43).





Fig. 3 





	The first known multiple block alignment program (44) used a sorting algorithm in order to compute uniform exact blocks. Faster algorithms based on suffix tree (45), or equivalent data structure, can also be used to compute exact blocks. However, homologous regions are rarely exactly conserved. ASSEMBLE (46) performs a dot matrix analysis on all pairs of sequences and then compares these dot matrices to find uniform blocks that are not necessarily exact. In practice, it often happens that some blocks are not present in all sequences. Thus, a further improvement has consisted in developing methods that allow blocks that are not necessarily uniform. DIALIGN (47, 48) is based on the computing of gap-free blocks between pairs of segments (diagonals). 


A set of uniform blocks is consistent when each pair of blocks is ordered (they do not cross each other). Using this observation, selecting an optimal consistent set of blocks can be reduced to a classic optimal-path algorithm in a graph (44). The optimal-path algorithm requires o(M2) time for M blocks. Faster algorithms (sub-quadratic) have been proposed in order to compute an optimal consistent uniform set of blocks (49, 50). However, finding an optimal consistent set of non-uniform blocks is an intractable problem (51). Indeed, the consistency of non-uniform blocks cannot be reduced to a binary relation between them. A set of three non-uniform blocks, such that all its three pairs of blocks are consistent, is not necessarily consistent. To compute a ‘good’ consistent set of diagonals, DIALIGN uses a heuristic algorithm in which diagonals are incorporated by decreasing score order into a consistent set of diagonals. Diagonals not consistent with the set of selected diagonals are rejected. In order to check if a new diagonal is consistent or not with the set of selected diagonals DIALIGN maintain a data structure in o(kL2) time, for k sequences of total length L. This makes it slower than progressive alignment programs. This computation time can however be reduced to o(k2L+L2) (52) and even, thanks to recent developments, to o(L2) (Abdeddaïm S., in preparation). Thus, faster versions of block-based alignment methods should be available in a near future.





4.4 Motif-based local multiple alignments





The sequences to compare may share similar regions, without necessarily being globally related. These homologous modules may occur in different relative positions and may be duplicated in different sequences. In such cases it is not possible to compute a global alignment, but one may look for ‘good’ local alignments of segments taken in the sequences. Calculating local alignments consists in finding approximate repeated patterns in a set of sequences. Dynamic programming was adapted in order to find the maximal diagonal score for pairwise comparison (53). For more than two sequences the problem is hard and heuristics are needed as for the global multiple alignment problem.


PRALIGN (54) computes consensus words for a given word length. For each possible word w of length k one may define the neighborhood of w as the set of k length words that score with w is higher than a given score value. The score of w is then the sum of all the scores with his neighbors that occur in the given sequences. PRALIGN tries to compute the best score words (consensus words) of fixed length. The main problem with this program is its space requirement: for a fixed length k the space used is proportional to 20k (for proteins). This space requirement could be much reduced using automatons as it is done in BLAST.


MACAW method (55) combines pairwise comparisons in order to compute multiple local alignments. In a first step MACAW marks, for each pair of sequences, all the diagonals with significant score. The diagonals are then merged into local alignments. MACAW is generally considered too much time consuming for a local alignment method, as it needs o(L2 ) time for the first step (L is the sum of sequences length). 


Most recent local alignment programs are based on statistical methods. Statistical methods use heuristics that are efficient in time computation in order to solve optimization problems. GIBBS (56) uses iterative Gibbs sampling in order to find blocks. The computation time of this approach grows linearly with the number of input sequences. GIBBS is available in the programs MACAW and Block Maker (57). The tool MEME (58) uses an expectation-maximization (EM) algorithm (59, 60) to locate repeated patterns.





4.5 Comparison of different methods


When sequences are close together (say more that 50% pairwise identity for proteins, 70% for DNA) and are homologous over their entire length, all global alignment methods give correct results. Moreover, in such cases, any reasonable set of parameter (substitution matrix, and usually, gap opening and gap extension penalties) will give similar alignments. However, when at least two sequences in a given family share less identity, or if homologous regions are interrupted by large gaps of different sizes, the result of alignment may vary considerably according to programs and parameters used.


	Several comparative analyses of multiple alignment programs have been published (42, 48, 61, 62). These comparisons are based on the ability to detect motif patterns on several protein families or based on reference alignments derived from three-dimensional protein structures. Comparative analysis can also be based on the effect of the multiple alignment programs on phylogeny. Such a study was done on 18s rDNA from 43 protozoan taxa (63). These comparisons must be taken only as indications. Indeed, the parameter values (substitution matrices, gap penalty, etc.) used in these comparisons may not be optimal for other sequence families (61). In addition these parameters are not really comparable, even if the programs use the same strategies. For example an open gap score of 5 has not the same signification in CLUSTAL W (9) or in MULTAL (38), as the value 5 is modified into the programs (multiplied by constants for example). For these reasons and because no known method guarantee to find the correct alignment, it is still necessary to combine different methods from different families of algorithm and human expertise to obtain satisfactory alignments. 





Fig. 4 





Figure 4 summarizes indications to guide users in their choice according to the sequences they have to align. For the alignment of two sequences, one should use an optimal pairwise alignment method (for example LALIGN or SIM (64), see Table 6). For more than two sequences, one generally has to use heuristic approaches. As a first step, the user should try to compute the multiple alignment with a progressive alignment program. These programs are rapid, do not demand large memory capacity and may thus be run on large dataset even on micro- computers. Among programs using this approach, we recommend CLUSTAL W (or its graphical interface version: CLUSTAL X) (65, 66) that includes useful functionalities such as automatic selection of amino-acids substitution matrix during alignment and lower weighting of gaps in potential protein loops. If this first alignment shows that all sequences are related to each other over their entire lengths, it is unlikely that any other method would give a better result (Fig. 4a).


	However, if there are some highly divergent sequences, large gaps, or poorly conserved regions it is recommended to compare the results of different methods and/or set of parameters. Figure 4b represents homologous sequences sharing conserved blocks separated by non-conserved regions of varying size. This situation, which is frequently observed in practice (in genomic DNA sequences and in many protein families), is particularly error prone for progressive alignment methods, notably because the linear weighting of gaps tend to over-penalize long indels. Block-based global methods (e.g. DIALIGN, ITERALIGN) (47, 48, 67) are not sensitive to these long gaps and are particularly appropriate for such cases. Moreover, one drawback of progressive methods (but also of optimal global alignment methods) is that an alignment is produced even if sequences are not related, possibly of random origin. DIALIGN and ITERALIGN on the contrary do not attempt to generate a global alignment if sequences are only locally related. Another interesting feature of these programs is that they indicate the significance of the alignment: in DIALIGN for example, regions that are not considered to be aligned (e.g. a non-conserved region between two aligned blocks) are printed as lower-case letters whereas aligned residues are in upper-case. 


	Global methods (optimal, progressive or block-based) are appropriate only if all conserved blocks are consistent (see Fig. 3). If, as presented in Fig. 4c, some domains are duplicated, or ordered differently along sequences it is necessary to use a local multiple alignment method to align all related domains. The WWW version of the MEME tool (see Table 4) provides a graphical representation of the motifs found in sequences which proves to be very helpful to analyze the domain organization of proteins.





4.6 Particular case: aligning protein-coding DNA sequences





It is sometime necessary to align protein-coding DNA sequences rather than proteins, notably for the design of primers to identify related genes by PCR or for molecular phylogenies relying on the measure of substitution rates at synonymous (Ks) or non-synonymous (Ka) sites of codons. Due to the degeneracy of the genetic code, it is generally more difficult to align coding DNA sequences than their protein translation. Moreover, some ambiguities in DNA alignments may be solved when considering the protein translation. For example, the two DNA alignments below have exactly the same similarity score:





      L   F               L   F   


	CTT TTC             CTT TTC 


     CTC ---             --- CTC 


      L   -               -   L   


 (a)             			       (b)








However, the second alignment can be rejected unambiguously taking into account the protein translation. Thus, the procedure commonly used to align protein-coding DNA sequences is the following:





• Extract coding DNA sequences and the corresponding protein translation


• Align protein sequences


• Back-translate the protein alignment into a nucleic alignment





The program PROTAL2DNA (C. Letondal, unpublished) has been written for that purpose, and is available at the Pasteur WWW server:


http://bioweb.pasteur.fr/seqanal/interfaces/protal2dna.html





Note that the WWW-QUERY server (see Table 2) may be used to extract both coding DNA sequences and their corresponding protein translation (taking into account species- or organelles-specific genetic codes).





5. Visualizing and editing multiple alignments


Results of multiple alignment programs are generally saved simply as text file. There is presently no standard format for multiple alignments. However, the MSF output format (Fig. 5) is proposed by most of popular alignment programs and is recognized by many of the software that require alignments as an input (e.g. molecular phylogeny, profile searches, etc.). The MASE format presents the advantage of allowing the inclusion of annotations, regarding the whole alignment or specific to each sequence (Fig. 6). Textual representation of multiple alignment is however poorly informative. Therefore, graphical interfaces have been developed to manipulate and edit multiple alignments. Generally, these interfaces allow users to color or shade residues (amino-acids or nucleotides) according to various criteria such as physico-chemical properties, degree of conservation within the alignment, hydrophobicity or secondary structure. The use of colors is very helpful to interpret a multiple alignment. It gives a much more comprehensive view of the information embedded in a multiple alignment than a simple textual representation. Besides, these interfaces propose several interesting facilities detailed below. A list of such graphical interfaces is given in Table 7.
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5.1 Manual expertise to check or refine alignments





Whatever the quality of the software, it is necessary to examine the alignment to check that there is no obvious error. Alignments of sequences with large length differences, or with duplicated domains are particularly error prone, even if sequences are not very divergent. A good control consists in verifying that local similarities detected by pairwise sequence comparisons are retrieved in the multiple alignment. For such purpose, one may use the results of similarity searches (BLAST, FASTA, etc.), or run pairwise local alignment software (see Table 6) or do a dot-plot representation. Pairwise alignments can be computed directly from JALVIEW. SEAVIEW (68) includes a dot-plot utility that can be used to drive semi-automatically the alignment. CINEMA (69) allows user to run a BLAST search or a dot-plot on selected sequences.


In some cases, it may be necessary to refine part of the alignment. Experienced users are often able to recognize residues that have been misaligned. In some cases, external information (e.g. known interactions, structure, etc.) may also reveal alignment errors. SEAVIEW and CLUSTALX allow users to run CLUSTALW on a specified region and/or a specified set of sequences, without changing the rest of the alignment. 


Alignment editors (except CLUSTALX) also allow users to manually add or remove gaps in the alignment. In some interfaces (e.g. JALVIEW or SEAVIEW), it is possible to define groups to edit simultaneously a set of sequences. In absence of objective criteria, manual alignment editing should however be used with caution.





5.2- Annotating alignments, extracting sub-alignments





The SEAVIEW software allows users to annotate alignments (e.g. to indicate the location of relevant features such as enzyme active sites, RNA splicing signals, etc). Insertions or deletions in the alignment are automatically passed on the location of annotations. This software also allows to define groups of sequences and blocks in the alignment and thus to extract subalignments. This feature is particularly useful when building phylogenetic trees to exclude unreliable parts of alignments (i.e. regions for which homology is ambiguous). It is also useful to select particular domains for profile searches (see the chapter by Henikoff in this volume). Definitions of groups and blocks can be saved along with the alignment in MASE format (Fig. 6).





5.3 Comparison of alignment editors





Each of the editors presented in Table 7 has some specific useful features, some of which have been mentioned above. Programs written in JAVA (JALVIEW, CINEMA) present two advantages. First, they can be used from any computer and run directly from a WWW browser (although, depending on the network load, the time necessary to download the JAVA applet through the INTERNET sometimes limits considerably their usefulness). Secondly, thanks to the network communication facilities provided by JAVA, these programs allow users to directly access to information stored in sequence databases available on the INTERNET. CLUSTALX is a graphical interface to the CLUSTALW program and not simply an alignment viewer. However, it does not allow manual editing of alignments. MPSA is dedicated to protein secondary structure prediction. SEAVIEW is particularly suited for phylogenetic analyses and can notably be used in combination with the PHYLOWIN graphical interface dedicated to molecular phylogeny (68). 











5.4 Alignment shading software, pretty printing, logos, etc.





To publish the results of such analyses, it is generally useful to prepare a high quality color figure of the multiple alignment. Some of the above editors (e.g. JALVIEW, CINEMA) can be used to save or print colored alignments in a format suitable for publication. Other programs, some of which are available on the WWW, have been developed specifically for that purpose (see Table 8). The program LOGO (70) is intended to give a visual representation of a consensus sequence, along with possible variants.








6. Databases of multiple alignments





Databases of precompiled multiple alignments have been developed, essentially for protein sequences (71-79) but also for rRNA (80-82) and some other nucleic-acid sequences (see Table 9). The approach used to cluster together homologous protein sequences varies according to databases. Some intend to classify together proteins homologous over their entire length (protein families), whereas other focus on the classification of protein domains (see Table 9). For example, the HOVERGEN database compiles multiple alignments and phylogenetic trees for all families of vertebrate protein-coding genes along with the corresponding GenBank annotations (79). This database provides all the data necessary to decipher the orthology/paralogy relationships among vertebrate multigenic families and is thus particularly useful for phylogenetic studies or for comparative analysis of vertebrate genes. However, this approach is limited to relatively well-conserved sequences alignable over their entire length. Conversely, databases of protein domains may achieve to cluster very distantly related sequences and are useful to analyze the structure, function and evolution of modular proteins. For some complex families, it may be useful to consult specialized databases such as those available for immunoglobulins or HOX proteins (for a complete list, see the WWW page maintained by Amos Bairoch: http://www.expasy.ch/alinks.html).














7. Summary


In this chapter, we describe methods commonly used to align homologous sequences. Searching for the best alignment consists in searching the one that represents the most likely evolutionary scenario (substitution, insertion, and deletion). Different alignment algorithms have been developed, but none of them is ideal. Because of time and memory requirements, algorithms that guarantee to find the best alignment for a given evolutionary model can be used in practice only with a very limited number of short sequences. Therefore, non-optimal algorithms based on heuristics have been proposed to gain speed and limit memory requirements. We discuss the choice between these different methods (progressive global alignment, block-based global alignment, motif-based local multiple alignment) according to the nature of the sequences to align. We also describe graphical tools that have been developed to visualize and edit multiple alignments. Finally, we mention several databases that compile multiple alignments of protein or nucleotidic homologous sequences. All INTERNET addresses where the tools and resources described here are available are listed in the following WWW page:		http://pbil.univ-lyon1.fr/alignment.html
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Table 1. Examples of usage of multiple alignments


• Identification of functionally important sites.


Multiple alignments allow the identification of highly conserved residues are likely to correspond to essential sites for the structure or function of the sequence and may thus be useful to design mutagenesis experiments.





• Demonstration of homology between sequences (see 2.1).





• Molecular phylogeny.


Molecular phylogenetic trees rely on multiple alignments (protein or DNA) to infer mutation events from which it is possible to retrace evolutionary relationships between sequences. Such trees are useful to reconstruct the history of species or multigenic families, and notably to identify gene duplication events to distinguish orthologues from paralogues. It is important to note that unreliable parts of alignments should not be used to build phylogenetic trees since they do not reflect the real pattern of mutations that occurred during evolution and may lead to artifactual results.





• Search for weak but significant similarities in sequence databases. 


The sensitivity of sequence similarity search may be improved by weighting sites according to their degree of conservation. Thus, multiple alignments of homologous sequences are used by methods such as profile searches (see the chapter by Henikoff in this volume) or PSI-BLAST (24) to identify distantly related members of a family.





• Structure prediction. 


The use of multiple alignments increases significantly the efficiency of protein secondary structure prediction. Moreover, the identification of covariant sites (or compensatory mutations) in alignments (protein or RNA) is a strong argument to suggest that these sites interact in the molecule in vivo. Finally, alignments are commonly used for homology modeling, i.e. for the structure prediction of sequences by comparison with homologues of known structure 





• Function prediction.


The three-dimensional (3D) structure of homologous proteins or RNA is often much more conserved than their primary sequence. Similar shape usually implies similar function. Thus, if a new gene is found to be homologous to an already characterized gene it is possible to infer the likely function of the new gene from the known one. Such inferences should however be used with great caution.





• Design of primers for PCR (polymerase chain reaction) identification of related genes.

















Table 2. WWW sites for text-based searches in sequence databases 


Entrez at NCBI	http://www.ncbi.nlm.nih.gov/Entrez/


SRS at EBI	http://srs.ebi.ac.uk/


WWW-QUERY at PBIL	http://pbil.univ-lyon1.fr/


ExPASy	http://www.expasy.ch/sprot/


DBGET at GenomeNet	http://www.genome.ad.jp/























Table 3. WWW sites for sequence similarity searches in databases


BLAST at NCBIa 	http://www.ncbi.nlm.nih.gov/BLAST/


WU-BLAST at EMBLb	http://dove.embl-heidelberg.de/Blast2e/ 


FASTA at EBI	http://www2.ebi.ac.uk/fasta3/


Smith-Waterman search at EBI	http://www2.ebi.ac.uk/bic_sw/


BCM search launcher	http://gc.bcm.tmc.edu:8088/search-launcher.html


BLAST at PBILc      	http://pbil.univ-lyon1.fr/BLAST/blast.html


a Possibility to select BLAST output results by taxa. 


b Performs multiple alignment on homologous sequences detected by BLAST


c Possibility to select BLAST output results by taxa or keyword. 
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Table 4. WWW Sites for multiple alignments


• Optimal global multiple alignment


MSA at IBC	http://www.ibc.wustl.edu/ibc/msa.html


• Progressive global multiple alignment


ClustalW at EBIa 	http://www2.ebi.ac.uk/clustalw/ 


ClustalW, Multalin at PBILb	http://pbil.univ-lyon1.fr/ 


MAP, ClustalW at BCM	http://kiwi.imgen.bcm.tmc.edu:8088/search-launcher/launcher.html


Multalin at INRAb	http://www.toulouse.inra.fr/multalin.html 


ClustalW at Pasteurc	http://bioweb.pasteur.fr/seqanal/alignment/intro-uk.html 


ClustalW at DDBJ	http://www.ddbj.nig.ac.jp/searches-e.html


MAP	http://genome.cs.mtu.edu/map.html


• Block-based global multiple alignment 


DCA at BiBiServ	http://bibiserv.techfak.uni-bielefeld.de/dca/


DIALIGN2 at BiBiServ	http://bibiserv.TechFak.Uni-Bielefeld.DE/dialign/


DCA at Pasteurc	http://bioweb.pasteur.fr/seqanal/alignment/intro-uk.html 


DIALIGN2 at Pasteurc	http://bioweb.pasteur.fr/seqanal/alignment/intro-uk.html 


ITERALIGN at Stanford 	http://giotto.stanford.edu/~luciano/iteralign.html 


• Motif-based local multiple alignment


MEME at SDSC	http://www.sdsc.edu/MEME/


MEME at Pasteur	http://bioweb.pasteur.fr/seqanal/motif/meme/


MATCH-BOX	http://www.fundp.ac.be/sciences/biologie/bms/matchbox_submit.html


BLOCK Maker at FHCRC	http://www.blocks.fhcrc.org/blockmkr/make_blocks.html


PIMA at BCM	http://kiwi.imgen.bcm.tmc.edu:8088/search-launcher/launcher.html


PIMA II at BMERC	http://bmerc-www.bu.edu/protein-seq/pimaII-new.html


a Possibility to display and edit alignment with the JALVIEW JAVA applet 


b Colored alignments 


c In combination with many WWW tools for molecular phylogeny
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Table 5. Software for multiple alignments


ClustalW (UMPV) a	ftp://ftp-igbmc.u-strasbg.fr/pub/ClustalW/


ClustalX (UMPV) a	ftp://ftp-igbmc.u-strasbg.fr/pub/ClustalX/


(ClustalW + graphical interface)


Multalin	http://www.toulouse.inra.fr/multalin.html


MSA (U) a	http://www.ibc.wustl.edu/ibc/msa.html


DIALIGN (U) a	http://www.gsf.de/biodv/dialign.html


DCA (U) a	http://bibiserv.techfak.uni-bielefeld.de/dca/


RIW/DNR (U) a	ftp://ftp.genome.ad.jp/pub/genome/saitama-cc/


MACAW (MP) a 		ftp://ftp.bio.indiana.edu/molbio/align/macaw/


a Availability: U=UNIX , M=Macintosh, P=PC, V=VMS

















Table 6. WWW Sites for pairwise alignments


LFASTA at PBIL a 	http://pbil.univ-lyon1.fr/lfasta.html


SIM at ExPASy a 	http://www.expasy.ch/sprot/sim-prot.html


BLAST two sequences at NCBI	http://www.ncbi.nlm.nih.gov/gorf/bl2.html


LALIGN at CRBM	http://www2.igh.cnrs.fr/bin/lalign-guess.cgi


SIM, GAP, NAP, LAP	http://genome.cs.mtu.edu/align/align.html


a Possibility to visualize pairwise alignments with LALNVIEW (83)
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Table 7. Multiple alignment viewers and editors


Jalview (J) ab	http://www2.ebi.ac.uk/~michele/jalview/contents.html


CINEMA 2.1 (J) ac	http://www.biochem.ucl.ac.uk/bsm/dbbrowser/CINEMA2.1/


SEAVIEW (U) a	http://pbil.univ-lyon1.fr/software/seaview.html


MPSA (UM) a	http://www.ibcp.fr/mpsa/


Se-Al (M) a	http://evolve.zps.ox.ac.uk/Se-Al/Se-Al.html


ClustalX (UMPV) a	ftp://ftp-igbmc.u-strasbg.fr/pub/ClustalX/


(ClustalW + graphical interface)


DCSE (U)a                      	http://indigo2.uia.ac.be:80/~peter/dcse/


a Availability: U=UNIX , M=Macintosh, P=PC, V=VMS J=JAVA applet


b links to sequence databases


 c possibility to download alignments from the PRINTS database














Table 8. Pretty printing, shading, logos, etc.


BOXSHADE	http://ulrec3.unil.ch/software/BOX_form.html 


WebLogo	http://www.bio.cam.ac.uk/cgi-bin/seqlogo/logo.cgi


Mview	http://mathbio.nimr.mrc.ac.uk/nbrown/mview/


AMAS                    	http://barton.ebi.ac.uk/servers/amas_server.html
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Table 9. Databases of multiple alignments


• Protein families.


PIRALN	http://www-nbrf.georgetown.edu/nbrf/getaln.html


HOVERGEN	http://pbil.univ-lyon1.fr/databases/hovergen.html 


PROTOMAP	http://www.protomap.cs.huji.ac.il/ 


Megaclass	http://www.ibc.wustl.edu/megaclass/ 





• Protein domains.


ProDom	http://protein.toulouse.inra.fr/prodom.html


PRINTS	http://www.biochem.ucl.ac.uk/bsm/dbbrowser/PRINTS/PRINTS.html


DOMO	http://www.infobiogen.fr/~gracy/domo/


PFAM	http://genome.wustl.edu/Pfam/


BLOCKS	http://blocks.fhcrc.org/





• RNA/DNA.


Ribosomal Database Project	http://www.cme.msu.edu/RDP/


The rRNA WWW server	http://rrna.uia.ac.be/


ACUTS a                  	http://pbil.univ-lyon1.fr/acuts/ACUTS.html


a Ancient Conserved UnTranslated Sequences
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