Detecting non-Coding RNA in Genomic Sequences

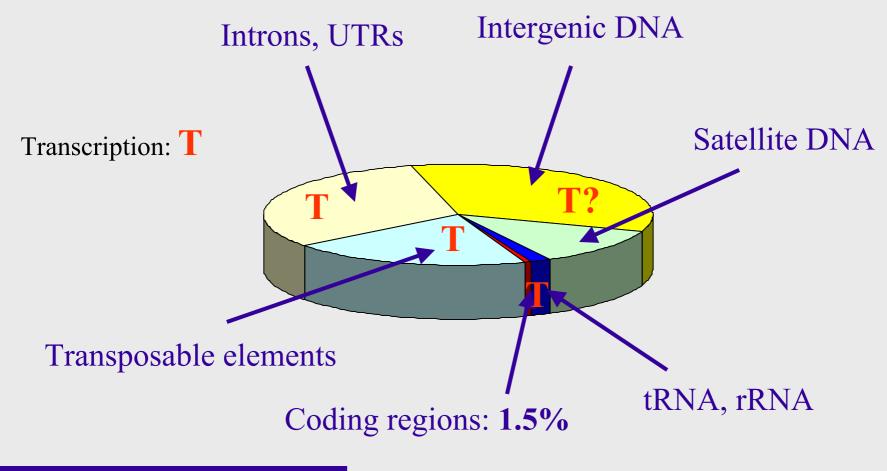
- I. Overview of ncRNAs
- II. What's specific about RNA detection ?
- III. Looking for known RNAs
- IV. Looking for unknown RNAs

Daniel Gautheret INSERM ERM 206 & Université de la Méditerranée

Non-coding or non-messenger RNA

rRNA &

RNAse P:


catalytic!

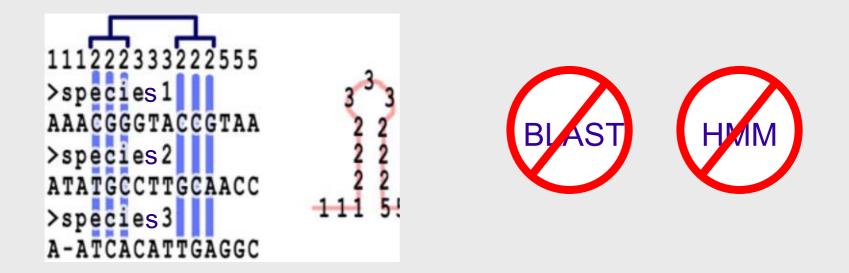
★ All organisms

- rRNA 5S/5.8S 15S/18S 23S/28S (5-300 copies)
- RNAse P/MRP (1 copy)
- tRNA (20 diff., 50-1000 copies)
- ★ Eukaryotes and Archaes
 - snoRNAs (H/ACA and C/D: 10-100 different)
- ★ Eukaryotes
 - miRNAs (100-200 diff.)
 - XIST, H19, IPW (vertebrates)
 - snRNAs (U1, U2, U4, U5, U6)
- ★ Procaryotes
 - rprA, csrB, oxyS,...
 - tmRNA

Vertebrate Genomes: > 50% transcribed!

Vertebrate gene: 30kb (coding: 1,5kb)

How many other ncRNAs ?


★ Rnomics*

- Extract total RNA
- Isolate small RNAs (> mRNA size)
- Tag & Reverse transcribe
- Clone & Sequence
- ★ Success
 - 80 ncRNAs identified in mouse
 - Lots of new snoRNAs
- ★ Limitations
 - Access to nuclear RNAs
 - Tissue/time specific expression may be frequent

Bioinformatics

- ★ Not sensitive to « rare » expression
- Highly succesful in identifying protein-coding genes
- ★ Many complete genomes available
- ★ Large computational toolbox
 - Statistics
 - Thermodynamics
 - Phylogeny

What's Special About ncRNA Detection?

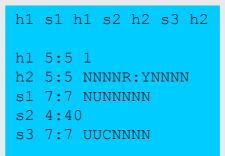
★ No ORF

- ★ No Markov model / sequence statistics
- ★ ncRNA is defined both by primary and secondary structure
- Substitution matrices » for nucleic acids are terrible compared to aminoacids counterparts

III. Looking for known ncRNAs

How can you detect ncRNA genes from known families?

Custom RNA search programs

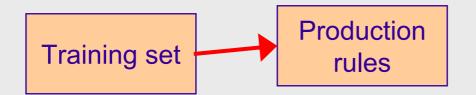

Based on a variety of algorithms: seek regular expressions or base pairs, weight matrices, SCFGs, etc.

tRNA

- trnascan (Fichant & Burks 91)
- trnascan-SE (Eddy 94)
- C/D Box snoRNAs (Lowe & Eddy 99)
 - One type of snoRNA
- miRNA
 - Not an automated procedure

Descriptor-based programs

- RnaMot / Rnamotif (Gautheret 91, Macke '02)
- Palingol (Viari 96)
- Patscan (Overbeek '00)
- PatSearch (Pesole '01)

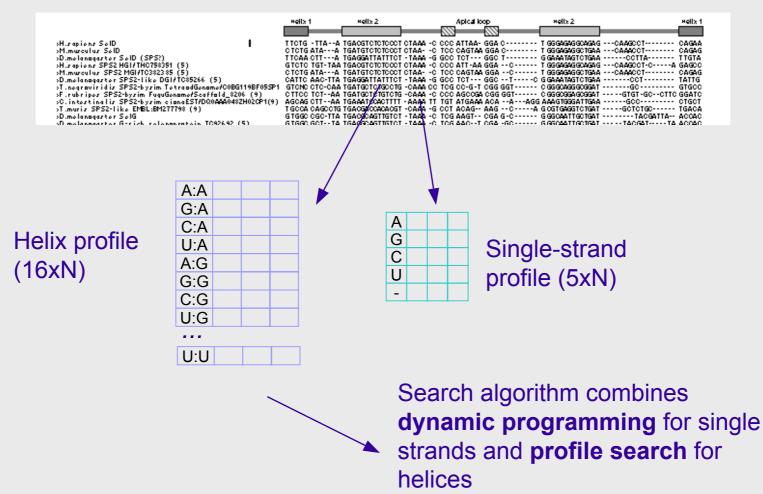

RnaMot descriptor for anticodon+TYC domain of tRNA

Descriptor-based programs

PROS	CONS				
Draft descriptors can be quickly sketched and tested	Requires a good prior knowledge of secondary structure and sequence constraints				
No alignment is required ,	Requires basic computer skills to				
although it is very helpful to	translate biological constraints				
have one	into the descriptor language				
Biologists decide what features	Biologists have the responsibility				
are important or not (see also	of correctly weighting each				
CONS!)	important feature				

Probabilistic ncRNA search programs

Stochastic Context Free Grammars (first adaptation of CFG to RNA: Searls 94; SCFG: Eddy & Durbin 94)


describe how to generate any structure in the training set

- **\star** Time cost = O(N⁴) for sequence of length N
- Not « practical » for large alignments or genome-wide searches
- ★ Pseudoknots not allowed

ERPIN: Profile-based search

Gautheret & Lambert, JMB, 2001, 313, p. 1005.

Training set

Profile-based search

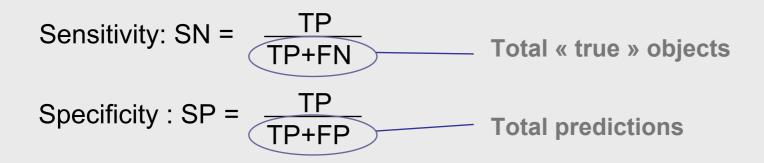
PROS	CONS				
All constraints in the training set are efficiently exploited, resulting in highly specific detections	Alignment and secondary structure constraints must be accurate				
After alignments and secondary structures are created, no further programming is needed	Helices of variable length need to be reduced to their shortest consensus				
Scoring system is defined automatically	Program will not depart from initial alignment in terms of motif size				
<i>E</i> -values are provided for each hit	Users still have to decide on search order and masked elements				

Running a successful ncRNA search

Example: the Signal Recognition Particle (SRP) RNA

- ★ 172 sequences available
- ★ All 3 kingdoms
- ★ Signature: 50-nt domain IV

Organize ncRNA information

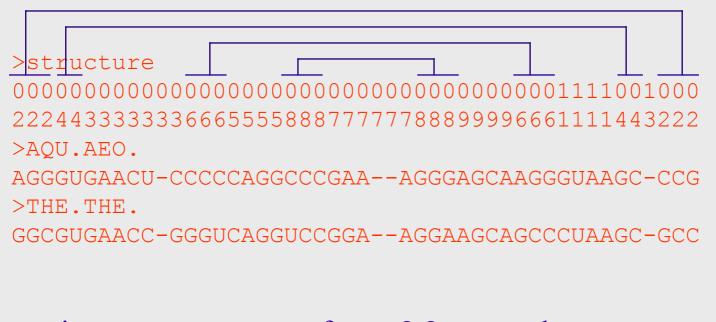

- ★Alignment is a must
- ★ Should be structure-based
- ★ ClustalW OK only as a first attempt
- *****RNAalifold (Vienna package) can identify covarying basepairs

		((((((((((()))))))))))
		000	0 0	0 0 0 0 0 0 0	000	0000	000	000000	000	0000	000	1111	0 0	1	000
		222	44	3333333	666	5555	888	777777	8 8 B	9999	666	1111	44	З	222
	Escherichia coli	UCU	Gυ	UUACC-A	GGU	CAGG	UСС	G G A A	GGA	${\tt A} \; {\tt G} \; {\tt C} \; {\tt A}$	GCC	AA-G	GС	-	AGA
~	Thermus thermophilus	GGC	Gυ	GAACC-G	GGU	CAGG	UCC	GGAA	GGA	$A \mathrel{G} \mathrel{C} A$	GCC	CUAA	GС	-	GCC
201	Clostridium perfringens	CCU	Gυ	GAACC - U	CGU	CAGG	UCC	GGAA	GGA	AGCA	GCG	AUAA	GC	-	AGU
Bacteria	Bacillus subtilis	uuc	ΑU	GAACC - A	UGU	CAGG	UCC	GGAA	GGA	AGCA	GCA	UUAA	GU	-	GAA
Bc	Chlorobium tepidum	UGC	сс	A - A C C - A	UGU	CAGG	UCC	GGAA	GGA	AGCA	GCA	U-CC	GG	U	AAU
	Rickettsia prowazekii	CUU	GC	UUAGU-U	GGU	CAGG	UCU	GAAA	AGA	$\mathbb{A} \ \mathbb{G} \ \mathbb{C} \ \mathbb{A}$	GCC	A G - G	GU	-	AAG
					:			:			:				
ea	Archaeoglobus fulgidus	CGG	GG	GGAAC-G	GCC	CAGG	CCC	GGAA	GGG	AGCA	GGC	U A - A	сс	-	CCG
rche	Pyrococcus abyssi	GCC	CC	AAACC-C	CGC	AAGG	ccc	GGA A	GGG	AGCA	GCG	GU-A	GG	_	GGC
An		CCG	cc	GAACC-C	CGU	CAGG	ccc	GGA A	GGG	AGCA	GCG	GU-A	GG	_	CGG
4	Thermococcus celer		~ ~	unnee e		C A C C			000	AGEA		A			
				:				:			:				
	Arabidopsis thaliana	GGA	GG	GUAAU-G	CGU	GAGG	CUG	GCUUCA	$C \land G$	$A \ G \ C \ A$	GCG	ACUA	сп	-	UCC
	Oryza sativa	GGC	AG	GCACA-G	CGU	GAGG	CUG	GCUUCA	C A G	$A \ G \ \subset \ A$	GCG	AUCA	сп	-	GCC
es	Triticum aestivum	GGC	AG	GCACA - G	сси	GAGG	CUG	GCUUCA	CAG	AGCA	GCG	$\mathbf{A} \subset \mathbf{A} \mathbf{A}$	си	-	GCC
- Q	Homo sapiens	GGG	Gυ	GAACC-G	GCC	CAGG	UCG	GAAA	CGG	AGCA	GGU	CAAA	A C	-	UCC
a	Drosophila melanogaster	GGG	ΑU	GAACC-G	GGC	CAGG	GGU	GAAA	ACC	AGCA	GCC	AAGA	GU	-	UCC
Eukaryotes	Caenorhabditis elegans	GUC	Gυ	GGAUG	gυu	CAGG	ACC	GAAA	GGU	AGCA	GAC	ΑΑΑΑ	GС	-	GAC
\sim	Lycopersicon esculentum	GGG	GС	GGACC-G	CAU	GAGG	сυg	GCUUCA	CAG	AGCA	GUG	AA-C	GС	-	UCC
	Leptomonas collosoma	UAG	ΑG	GAACU-G	GGU	CAGG	ссд	GCAA	CGG	${\tt A} \; {\tt G} \subset {\tt A}$	GCC	C A	СС	-	UCG

Secondary Structure annotation

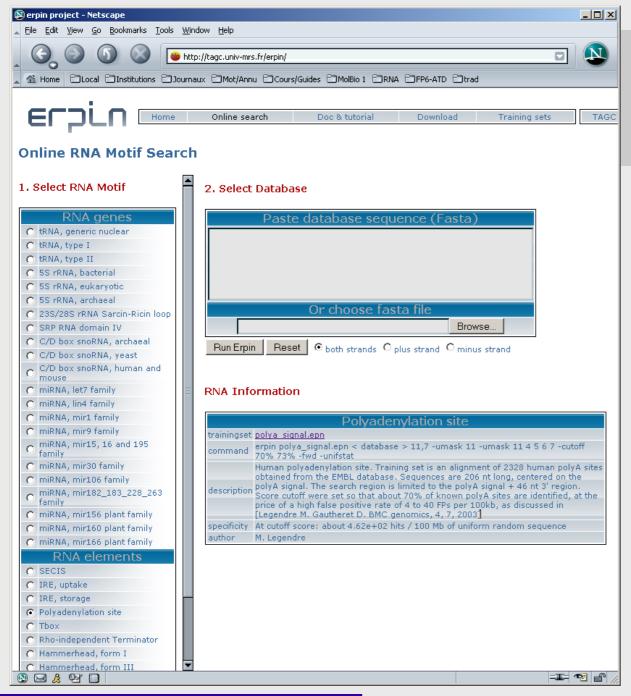
Will help identify sequence/ structure constraints: helix sizes, conserved bases, etc.

Want to publish your finds? Prepare Control Procedures


TP and **FN**: easy to obtain, using training set (*leave-one out*)

FP: harder! How do you know a hit is false?

Hint: express SP as: **FP / Mb in a random sequence**


Make it large enough and of same composition (mono & dint) as search database (e.g. with the *shuffle* program)

Using the ERPIN program

erpin srp.epn sequence.fasta -8,8 -nomask erpin srp.epn sequence.fasta -2,2 -nomask erpin srp.epn sequence.fasta -2,2 -umask 5 9 -nomask

🛃 gautheret@obelis	x.tagc.luminy: /obelix/gautheret/Erpin/training/SRP		
	lix SRP]\$ erpin srp.epn rnd.fasta -8,8 -nomask	-	
Training set:	"srp.epn":		ERPIN results
Database:	172 sequences of length 48 "rnd.fasta"		
Dacabase.	991 nucleotides to be processed in 1 sequence		
	ATGC ratios: 0.261 0.219 0.262 0.258		
Cutoff:	5.32		
E-value at cur	cent cutoff for 991b double strand data: 6.74e+00		
> Seq1 size: 10			Secret based on profile
	61 (6.20 A.99e+00		- Score: based on profile
ACG.GGAA.TGG			values
	531 5.97 5.42e+00		Values
GGG.GAA-CA.CCA			
	996 5.51 6.34e+00		_ <u> </u>
ATT.GGAC.AAT > Seq1 size: 10			- E-value: How many
GTA.GGTA.TAC			hits expected at this
	361 8.33 2.00e+00		cooro or highor?
ACC.GTTA.GGG			score or higher?
RC 3 439	448 12.77 7.24e-02		
CTC.GAAA.GAG			
	772 6.67 4.18e+00		
TTT.GCAA.GGA			↓
at lev	vel 1		
1982 bases prod			No need for random
cutoff: 5.32			
3 config. per s	site		sequence tests!
7 hits			
7 independent 1	nits		
[gautheret@obe.			
[gautheret@obe.			
		-	

The ERPIN Server

http://tagc.univ-mrs.fr/erpin/

All searches parameterized to scan a bacterial genome in less than 5 minutes

	e <mark>ct - Netscape</mark> Jiew <u>Go Bookmarks T</u> ools <u>Wi</u> ndow <u>H</u> elp			
	http://tagc.univ	-mrs.fr/erpin/		
🟦 Home	🗄 Local 🗂 Institutions 🗂 Journaux 🗂 Mot,	Annu Cours/Guides MolBio 1 CRNA CFP6-ATD	🗂 trad	
	_ •			
EL		search Doc & tutorial Downlo	ad Training sets TAGC C	ontacts
>gb U3	9685 U39685			
strand-	pos = 58835967	score = 82.90	E = 5.63e-19	
draw	SAVE GGGAGCG. TA. CTCA. AGTGGTT-A	. AGAG. G. ACACC. CTGCTAA. GGTGT. TA. GAT. CGT	F-CTACG.GTGC.GTGGG.TTCGAAT.CCCAC.CGCTTCC	
>gb U3	9701 U39701			
strand+	pos = 66876774	score = 74.96	E = 4.19e-17	
draw	Save GGAGACT.TA.CCCA.AGCGGCTGA	. AGGG. T. TCGGT. CTTGAAA. ACCGA. GA. GGT. GCTT	TATAAGC.ACGC.GAGGG.TTCGAAT.CCCTC.AGTCTCC	
>gb U3	9708 U39708			
strand-	pos = 20232104	score = 83.38	E = 4.28e-19	
draw	SAVE GCCCAAG. TG. GCGG. AATGGTA-G	ACGC. A. TGGGA. TTTAAGA. TCCCA. C GCCAGT.	AAT.GGT.G-T.GCCGG.TTCAAGT.CCGGC.TTTGGGC	
strand-	pos = 23092391	score = 85.36	E = 1.34e-19	
draw	SAVE GGACAGG, TA, GCGA, AGTGGCTAA	ACGC. T. TCTGA. CTGTAGA. TCAGA. C ACCTT	FAT. GGT. TTC. GGGAG. TTCGAAT. CTCTC. CCTGTCC	
	9713 U39713			
strand+	pos = 10131099	score = 71.59	State (22%) - Netsca File Edit View Go Bookmarks Tools Window Help	pe
draw	SAVE GGATACT. TA. CCCA. AGTGGCTGA			/coi-bin/draw.pl
strand+	pos = 11051189	score = 83.60	Home Diccal Dinstitutions Diournaux Mot/Annu Dicc	
draw	SAVE GGAGATT.TA.CCCA.AGTGGCTGA			urs/GuidesMolBio 1JRNA
>abIU3	9713 U39713			
strand-	pos = 42834363	score = 88.45		
draw	SAVE GCACTCG.TG.GCGG.AATGGTA-G	. ACGC. G. CTAGA. CTTAGGA. TCTAG. T TTCATC		
>abIU3	9716 U39716		$T = A_{70}$	
strand+	pos = 1010410181	score = 51.91		
draw	SAVE CCTGGAG.TG.GCGG.AATGGTA-G	. ACGC. G. GTGGA. CTCAAAA. CCCAC. T AGGA	<u> </u>	
>abIU3	9716 U39716			
strand-	pos = 75037586	score = 84.08	Α C _Α C _Α C ₋ C ₋ C ₋ C ₋	ç-ç
draw	SAVE GTCGGAG.TG.GTGG.AATGGTA-G	ACAC.G.CAAGC.TTGAGGT.GCTTG.TGGT.CGT		ĠĠ
	F		- <u>}</u> +	
			$e^{40}e^{-A}e^{-T} = e^{-A}$	
statistics	:			
			t _{e-r} ć čçç	
info	value		G-T-G	
ratios	ATGC ratios: 0.346 0.339 0.158 0.1 cutoff: 8.89	07	ÂŤ	
evel1	1 config. per site 33 hits		20 ^{.Ť} .Ċ. G ^{.G}	
hits	7		- ~	
9 🖂 🙏 🤇	Or Done	I	>gb U39706 U39706	

IV. De novo ncRNA finding

How can we detect ncRNA genes when no prior sequence/structure data is available?

Exciting times for comparative genomics

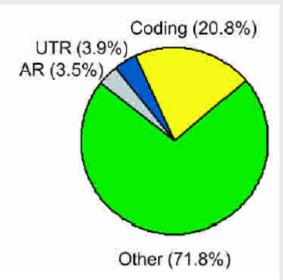
Numerous potentially functional but non-genic conserved sequences on human chromosome 21

Emmanouil T. Dermitzakis*, Alexandre Reymond*, Robert I Nathalie Scamuffa*, Catherine Ucla*, Samuel Deutsch*, Brian J. Stevenson†‡, Volker Flegel†‡, Philipp Bucher†§, C. Victor Jongeneel†‡ & Stylianos E. Antonarakis* Research Update TRENDS in Genetics Vol.17 No.7 July 2001

373

Selective constraint in intergenic regions of human and mouse genomes

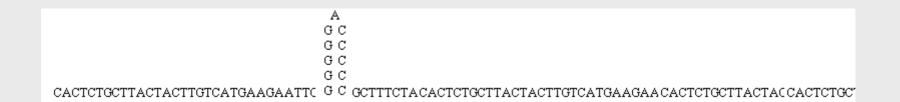
Svetlana A. Shabalina, Aleksey Yu.Ogurtsov, Vasily A. Kondrashov and Alexey S. Kondrashov

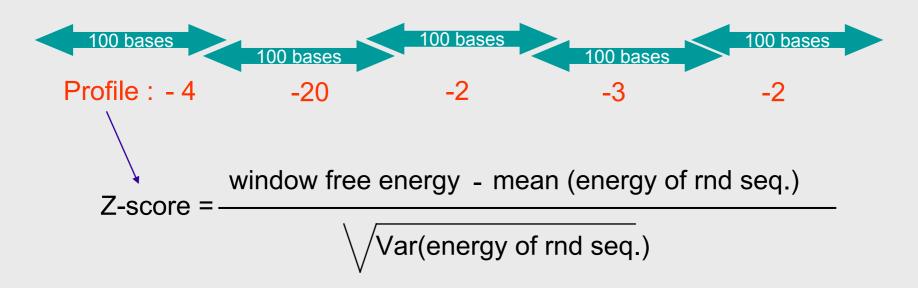

★ 5-6% of mamalian genome under selection vs 1.5% coding

- ★ 3 times as much as in nematodes!
- ★ « Intergenic regions might hold the key to the complexity of mammals »

Functional assignment of conserved regions

- ★ Coding exons
- Regulatory non coding exons and introns
- Promoters
 ncRNA
 Ancestral repeats
 Others (matrix attachment, etc.)

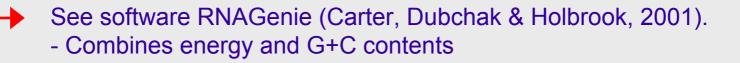

Fraction of conserved sequences in.. (AR=ancestral repeats)



Margulies et al, 2003

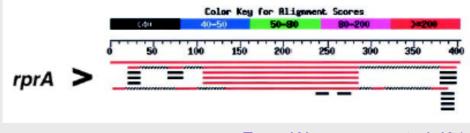
Detect this!

Thermodynamic Profiling (Le et al. 88)


New software by Hofacker et al: (RNALfold)

The problem with thermodynamics

- ★OK for strong local structures (some success in viral genomes)
- ★ However: true ncRNA (tRNA, rRNA) do not display higher folding energy than random sequences of same composition (di-nt: Rivas & Eddy 2000)



- ★ G+C content alone is a better ncRNA predictor than free energy
- In high A+T background (thermophilic archaebacteria), ncRNA stand out clearly.
- ★ Combining (G+C)% and CpG% provides the best discriminant (Schattner '02).
- Does not work in genomes with « normal » G+C contents, except as a complement to other methods (thermodynamics, etc.)

Comparative Genomics + experiments

Bacteria: microarray + Northern in different growth conditions

From Wassarman et al. '01 Seq: Escherichia, Salmonella, Klebsiella

Wassarman *et. al.* '01: <u>60 ncRNA predicted</u>, 23 confirmed ★ Argaman et al. '01: 24 predicted, 14 confirmed

Q-RNA (Rivas & Eddy 2001)

Analysis of Blast alignment (SCFG based)

•Model for protein coding gene

 G
 Q
 K
 V
 L

 G
 G
 T
 C
 G
 T
 T
 T

 G
 G
 T
 C
 A
 A
 G
 T
 A
 C
 T
 T


 G
 G
 T
 C
 A
 A
 G
 T
 A
 C
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T</

P(GGT-GGA)*P(CAG-CAG)*...

Synonymous mutations

Model for ncRNA

(also include loop probabilities obtained from training set of real ncRNA)

P(T-T)*P(T-T)*P(GC-GC)*P(TA-AT)*...

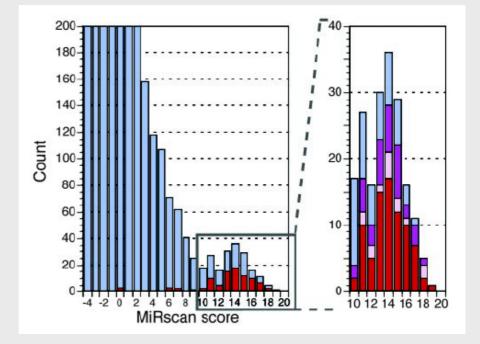
Compensatory mutations

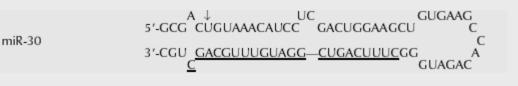
★ Limited range for similarity (65%-85%)

- Too dissimilar: incorrect Blast alignments
- Too similar: no covariation

Problem: Human/mouse/rat ncRNAs not in this range!

★ *E.coli* vs *Salmonella typhy*: analysis of ~5000 Blast hits

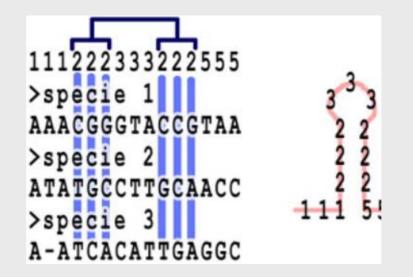

- 115 true ncRNAs
- 33 with Blastn alignments in the 65%-85% range
- 33 detected as ncRNA
- 440 other candidates (half of them known elements: terminators, palindromic repetitive elements, etc.)


Comparative Genomics & miRNA

Lim et al. Science 2003

★ Criteria:

- Loose conservation human/mouse/fugu
- Fall outside of protein coding gene
- Predicted to form stem-loop
 > 15000 hits
- Score based on resemblance to 21mer miRNA
- 107 potential new miRNAs


The right species for ncRNA detection?

Human/mouse ncRNA: ~98-100% id
18S fugu/xenopus/human: 95% id! Still too close
Obvious interest for older animals

🛃 gautheret@obelix.tagc.luminy: /obelix/gautheret/Actigenics						
File Edit Options Buffers Tools Help	_ _					
>chr1.trna67-AspGTC (184163445-184163374) Asp (GTC) 72 bp Sc: 72.92 Length = 72						
Plus Strand HSPs:						
Score = 360 (60.1 bits), Expect = 1.5e-13, P = 1.5e-13 Identities = 72/72 (100%), Positives = 72/72 (100%), Strand = Plus / Plus						
Query: 1 TCCTCGTTAGTATAGTGGTGAGTATCCCCGCCTGTCACGCGGGAGACCGGGGTTCGATTC 60 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII						
Query: 61 CCCGACGGGGGG 72 Sbjet: 61 CCCGACGGGGAG 72						
WARNING: HSPs involving 56 database sequences were not reported due to the limiting value of parameter $B = 1$.						
1-:F1 toto2 (Text Fill)L323 6%	·					
Human/mouse Asp tRNAs						

Multiple species is the key

 Multiple alignments will enable covariation detection
 Covariation + GC-content + energy will provide enough evidence for ncRNA status

