

# Large-scale comparative genomics/proteomics, examples from Ensembl

**Abel Ureta-Vidal** 

EMBL-EBI Hinxton, Cambridge, UK



#### **Overview**

#### Evaluating genes and transcripts

- Ensembl gene set
- Comparison with manual curation
- Comparative proteomics
  - Orthologues prediction
  - Protein clustering into families
- Comparative genomics
  - Genome-wide DNA alignments
  - Conserved syntemy blocks
  - Multi-species view



### **Our** aim





# **Ensembl gene set**

- Place all available species-specific proteins to make transcripts
- Place similar proteins to make transcripts
  - Use mRNA data to add UTRs
- Build genes using cDNA evidence
- Combine annotations to make genes
   with alternative transcripts



# Gene build is massively protein based

•DNA-DNA alignments don't give us translatable genes

•Essential to align at the protein level allowing for frameshifts and splice sites

Genewise (Ewan Birney)

- Protein genomic alignment
- Has splice site model
- Penalizes stop codons
- Allows for frameshifts



# **Automatic Gene Annotation**





# **Genes from known proteins**

Human protein sequences SwissProt/TrEMBL/RefSeq





# Add UTRs using mapped mRNAs





# **Full Human Build**

- NCBI 33 build
- Ensembl genes: 24,261
  Ensembl transcripts: 32,997
  Ensembl exons: 226,669
- Input: 48,176 proteins; 86,918 cDNAs
- Transcripts made from:
  - Human proteins with (without) UTRs 68% (19%)
  - Non-human proteins with (without) UTRs 2% (9%)
  - cDNA alignment only

0.8%



# **Comparison to manual annotation**

#### Genes Sensitivity ~90% of manual genes are in e! Specificity

~75% of e! genes are in the manual sets

#### Exon bps Sensitivity

~70% of manual bps are in e! exons (90% of coding bps) Specificity ~80% of e! bps are in manual exons

#### Alternative transcripts per gene

manual 3 e! 1.3

Figures are for the gene build on NCBI 33 (human) and manual annotation for chromosomes 6, 14 & 20



#### Manual curation (human, mouse, zebrafish)

- Manual annotation of finished clones/chromosomes
- Vega database (vega.sanger.ac.uk) at Sanger
  - Uses ensembl schema database and web display
- Currently has human 6, 13, 20, 22 from Sanger and 14 from Genoscope, 7 from University of Washington
- Other groups will also contribute to Vega
- Displayed in Ensembl when available



## Vega genes



#### **GeneView**



#### **ExonView**







# **Evidence tracks in ContigView**











Green : whole genome assembly due in the next 2 years



#### **Overview**

- Evaluating genes and transcripts
  - Ensembl gene set
  - Comparison with manual curation
- Comparative proteomics
  - Orthologues prediction
  - Protein clustering into families
- Comparative genomics
  - Genome-wide DNA alignments
  - Conserved syntemy blocks
  - Multi-species view



### **Orthologues prediction**

- Find orthologous genes by comparing the protein sets of two species (only the longest peptide considered).
- blastp+sw all versus all (on a paired species basis)
- Best Reciprocal Hit as putative orthologues (named "BRH")





### **RHS, Orphans and Others**

Based on BRH genomic coordinates in both species compared and gene order conservation, we identify additional orthologues or RHS for Reciprocal Hit supported by Synteny.









### For each orthologous gene pair

- We store
  - %identity, %positivity, %coverage, alignment, type (BRH, RHS), dN, dS
- Using the compara perl API (soon from the web site)
  - Protein or cDNA alignment
  - 4D, 2D sites can also be easily retrieved
- On going developments
  - Build clusters of orthologues
  - Multiple alignments and phylogenies
  - Consider all isoforms for each gene
  - Include information on orphans and non-BRH/non-RHS pairs as well as provide the full blastp results



#### **Protein clustering into families**

- Cluster proteins from different organisms that may share the same function
- Obtain some for 'novel' genes/proteins
- Locate family members over the whole genome
- Identify possible orthologues and paralogues in other species



#### **Dataset used and comparisons**

- Half a million proteins clustered:
  - All Ensembl proteins from all species in Ensembl
    - 233,000 predicted proteins
  - All metazoan (animal) proteins in SWISSPROT/SPTrEMBL
    - 40,000 SWISSPROT
    - 230,000 SPTREMBL
- Blastp all versus all, then clustering with MCL



## **Clustering with MCL**

- MCL for Markov CLustering algorithm, based on flow simulation in graphs (http://micans.org/mcl/)
- Keeps into the same graph/cluster only very well interconnected nodes/protein



- Allows rapid and accurate detection of protein families on large-scale.
- Automatic description and clustalw multiple alignment applied on each cluster



### **Automatic description and scoring**



with scote 0



### For each cluster

- We store
  - Description and score
  - Multiple alignment
- Future extensions
  - Improving descriptions
  - Multiple alignment assessment
    - t-coffee
    - Protein domain information consistency
  - Build phylogeny on each cluster
    - Using the multiple alignment
    - Using dS values (mainly inside mammals)
    - Identify intra/inter-species orthologue/paralogues

Sanger Institute



ENSANGP00000011033

pp-CT30937 CG32018-PF CG32018-PC

Date : 2003-03-18 13:39:00

ENSANGP00000011691

EnsEMBL Drosophila melanogaster peptides

CG32018-PE

Help Desk / Suggestions

Link to FamilyView

e!

Home 🕨 Human

**Ensembl Protein Report** 

Ensembl Peptide ID

Prediction Method

Similarity Matches

GO

InterPro

Protein Family

Ensembl Gene

Description

Find Peptide

Protein

Human ProteinView

ZYX (HUGO)

ENSP00000324422

This protein is a pro

View transcript inf

ZYXIN (ZYXIN 2).

Genes were annota

from a human/verteh

prediction or from Ge are further combined

This Ensembl entr Affymx Microarray

Affymx Microarra

EMBL:

HIIGO:

MIM-Protein ID:

LocusLink:

RefSeq: SWISSPROT: SpTrEMBL: The following GO GO:0004872 [rece

GO:0005489

GO:0005887

GO:0006118

GO:0007155

GO:0007165

GO:0007267

IPR000345 Cytochr

IPR000694 Proline-IPR001781 Zn-bindi

ENSF00000006

Profile

Drosite

This cluster contai

elec

inte

elec

cell

sigr

cell

Chr.

3

3

7

7

e!

Find Family

ENSP00000324422



# Addition of protein domain information

- Introduction of protein domain
  - Help for internal data QC by checking consistancy between orthologues, protein clusters and domains information.
  - Provide this kind of cross-check data to the user



### **Overview**

- Evaluating genes and transcripts
  - Ensembl gene set
  - Comparison with manual curation
- Comparative proteomics
  - Orthologues prediction
  - Protein clustering into families
- Comparative genomics
  - Genome-wide DNA alignments
  - Conserved synteny blocks
  - Multi-species view



# Aligning genomes, why?

- How genomes of the species considered have been rearranged since their divergence by speciation.
- Define syntenic regions, long regions of DNA sequences were order and orientation of functional elements are highly conserved
- Finding conserved non coding regions
  - Good guides to find and test putative regulatory regions
- What is missing in one species, present only in another?
- Differences between closely related species (human/chimpanzee, human/macaque), may help understanding the speciation mechanisms



### **Basic concepts (1)**





### **Basic concepts (2)**

#### Functional sequences (coding exons, regulatory regions) are generally highly conserved

**Conserved sequences can be functionnaly important** 

Comparing DNA sequences from different species can help to find biological functions



## Using a local aligner

- Local alignment
  - Find all highly similar regions over 2 sequences
    - Find the orthologous as well as all the paralogous sequences
  - Separated by segments without alignment
  - Can handle rearranged sequences
  - Need post- filtering to limit too much overlapping alignments



### Local alignment







## Aligning large genomic sequences

- Independent from protein/gene predictions
- Issues
  - Heavy process
  - Computes run only by few dedicated groups
  - Scalability (more and more species available)
  - Time constraint
- As the « true » alignment is not known, then difficult to measure the alignment accuracy and apply the right method



# Trying to avoid the all *versus* all comparison

Phusion shotgun assembler-gapped
 BLASTN combinaison

(Jim Mullikin and Zemin Ning, Sanger Institute)



### **Phusion - gapped BLASTN**



gapped BLASTN



### **Phusion - gapped BLASTN**

- Fast but speed comes at a cost
- Only 22% of human genome coverage
- Good enough for generating orthologous links between the 2 species aligned, so that can be used either
  - in the web site for moving from one species to another
  - calculate synteny regions

Not good enough for serious genome-wide post-analysis
 because not comprehensive enough



### All vs all approach, key features of BLASTZ (collaboration with UCSC)

Can handle large sequences

Used 2-weighted spaced seeding strategy
1110100110010101111 (12of19)

- Makes distinction between repeat and non-repeat sequences (soft masking)
- Dynamic masking
- Try aligning inside repeats
- One iterative step with lower threshold to expand alignments



#### How Blastz was used

- 10Mb Human fragments (3000)
- 30Mb Mouse fragments (100)
- Lineage-specific repeats removed
- 48 hours on 1024 CPUs
- Generates 9Gb of ouput
- When filtered for Best hit on Human genome, it is reduced to 2.5Gb



#### Blastz human genome coverage

- 40% of the human genome is covered by an alignment of mouse sequences
- By rescoring the alignment over a "tight" matrix that is very stringent and look for high conservation (>70% identity), the coverage goes down to 6%



# **Genome alignment summary**

- "cons" track
  - blastz from UCSC : human/mouse, human/rat, mouse/rat, human/chimpanzee, human/chicken
  - phusion-blastn : elegans/briggsae
- "high cons" track

Obtained by rescoring the raw alignments over a "tight" matrix

- "trans BLAT " track
  - translated BLAT : human/fugu, human/zebrafish, human/chicken, drosophila/anopheles, drosophila/honey bee, anopheles/honey bee, elegans/briggsae



# **DNA/DNA matches web display**





### **Defining large syntenic regions**

- genome alignments are refined into large syntenic regions.
- Alignments are clustered together when the relative distance between them is less than 100kb and order and orientation are consistent.
- Any clusters less than 100kb are discarded.



#### Synteny web display



- 347 syntenic regions
- Coverage
  - 87.5% human
  - 92.4% mouse
- Size range
  - human
  - [104.4Kb 57.3Mb]
  - mouse
  - [100.2Kb 51.4Mb]



Refresh

Mb

П

39.10 Mb

IL13 RAT

IL4\_RAT

**WARAN** 

090062

Window

11-111111

11~111111

53.30 Mb

. 53.20 Mb

NM\_022246

NM\_022246

2 Mb

Help 🔻

ENSP

#### **Multi-species display**



\_

53.60 Mb



53.50 Mb

53.40 Mb



#### Integrated multigenome browser





# **Code and data fully accessible**

#### Website

www.ensembl.org

#### MySQL server

mysql -h ensembldb.ensembl.org -u anonymous

#### CVS repository

See documentation section and tutorial at www.ensembl.org

#### Mailing list and user support

ensembl-dev@ebi.ac.uk HelpDesk



#### Ewan Birney (EBI), Tim Hubbard (Sanger)

#### Pipeline/Genebuild

Val Curwen Steve Searle Vivek Iyer Laura Clarke Simon Potter Dan Andrews **Zebrafish** Kerstin Jekosch Mario Caccamo **Anopheles** Martin Hammond

**Data Mining** Arek Kasprzyk

Damien Keefe Damien Smedley Darin London Craig Melsopp

*PhD students* Laurence Ettwiller

Ben Paten Michael Hoffman

#### Core API and schema

Arne Stabenau Graham Cameron Glenn Proctor Ian Longden

*Exonerate* Guy Slater

**SNPs** Yuan Chen Hekki Lehvaslaiho

*Helpdesk* Xose Fernandez-Suarez Michael Schuster

**Vega** James Gilbert Stephen Keenan

*Past members* Michele Clamp, James Cuff, Emmanuel Mongin

#### Comparative

Abel Ureta-Vidal Cara Woodwark Jessica Severin

#### Systems

Tim Cutts Guy Coates

#### Web team

Jim Stalker James Smith Brian Gibbins Will Spooner

**DAS** Tony Cox Andreas Kahari

UCSC Jim Kent



# Who, where, what?





#### URLs

#### **Genome browser and visualization tools**

http://www.ensembl.org http://genome.ucsc.edu http://www.dcode.org/ http://gsd.lbl.gov/vista/index.shtml http://hanuman.math.berkeley.edu/cgi-bin/kbrowser2

#### BLASTZ/MultiPipMaker/Multiz/TBA

http://www.bx.psu.edu/

#### LAGAN/MLAGAN

http://lagan.stanford.edu/lagan\_web/index.shtml

#### AVID/MAVID

http://gsd.lbl.gov/vista/mvista/download.shtml http://baboon.math.berkeley.edu/mavid/

<u>Other URLs</u> can be found in a review now a slightly out of date as the field is evolving so fast. Ureta-Vidal A et al. "Comparative genomics: genome-wide analysis in metazoan eukaryotes" 2003 Nature Reviews Genetics 4, 251-262.



#### **References (1)**

#### **BLASTZ**

Schwartz S at al "Human-mouse alignments with BLASTZ" GR 2003, 13,103-107.

used in

Waterston, RH et al. "Initial sequencing and comparative analysis of the mouse genome" Nature 2002, 420, 520-562.

Kent, WJ et al. "Evolution's cauldron: duplication, deletion, and rearrangement in the mouse and human genomes" PNAS 2003, 100, 11484-11489.

#### <u>MultiPipMaker</u>

Schwartz S et al. "MultiPipMaker and supporting tools: alignments and analysis of multiple genomic DNA sequences" NAR 2003, 31, 3518-3524.

used in

Thomas JW et al. "Comparative analyses of multi-species sequences from targeted genomic regions" Nature 2003, 424, 788-793.

Margulies EH et al. "Identification and characterization of multi-species conserved sequences" GR 2003, 13, 2507-2518.

#### Multiz/TBA

Blanchette M et al. "Aligning multiple genomic sequences with the Threaded Blockset Aligner" GR 2004, 14, 708-715.

used in

Rat Genome Sequencing Project Consortium "Genome sequence of the Brown Norway rat yields insights" into mammalian evolution. Nature 2004, 428, 493-521.



#### **References (2)**

#### LAGAN/MLAGAN

Brudno M et al. "LAGAN and Multi-LAGAN: efficient tools for large-scale multiple alignment of genomic DNA" GR 2003, 13, 721-731.

Brudno M. et al. "Glocal alignment: finding rearrangment during alignment" Bioinformatics 2003, 19, S1, i54-i62.

Brudno M. et al. "Automated whole-genome multiple alignment of rat, mouse, and human" GR 2004, 14, 685-692.

#### AVID/MAVID

Bray N et al. "AVID: a global alignment program" GR 2003, 13, 97-102.

Couronne O et al. "Strategies and tools for whole-genome alignments" GR 2003, 13, 73-80.

Bray N et al. "MAVID multiple alignment server" NAR 2003, 31, 3525-3526.

Bray N et al. "MAVID: constrained ancestral alignment of multiple sequences" GR 2004, 14, 693-699. Chakrabarti K et al. "Visualization of multiple genome annotations and alignments with the K-browser" GR 2004, 14, 716-720.

#### **OTHERS**

Delcher AL et al. "Alignment of whole genomes" NAR 1999, 27, 2369-2376.

Delcher AL et al. "Fast algorithms for large-scale genome alignment and comparison" NAR 2002, 30, 2478-2483.

Kent WJ "BLAT - the BLAST-like alignment tool" GR 2002, 12, 656-664.

Ning Z et al. "SSAHA: a fast search method for large DNA databases" GR 2001, 11, 1725-1729.

Ma, B et al. "PatternHunter: faster and more sensitive homology search" Bioinformatics 2002, 18,440-445.

Kent WJ et al. "Conservation, regulation, synteny, and introns in a large-scale C. briggsae-C. elegans genomic alignment" GR 2000, 10, 1115-25.