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Searching for regulatory elements in human noncoding 
sequences 
Laurent Duret* and Philipp Buchert 

Important progress has been made in the past two years in 
the identification of Pol II promoters. For most other regulatory 
elements, however, current biological knowledge is still 
insufficient to allow the development of prediction tools. 
The phylogenetic-footprinting strategy, which is based on 
the comparative analysis of homologous sequences, is a 
very efficient approach to identify new unknown regulatory 
elements. The recent organization of large-scale sequencing 
projects for some model vertebrate organisms will be 
extremely valuable for the prediction of regulatory elements 
in the human genome. 
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Abbreviations 
bp base pair 
HCR highly conserved region 
HMM hidden Markov model 
kb kilobases 
LCR locus control region 
MAR matrix attachment region 
Mb megabase 
Myr million year 
nt nucleotide 
Pol polymerase 
SAR scaffold attached region 
TE transcriptional element 
UTR untranslated region 

Introduction 
Large-scale genome sequencing projects currently de- 
termine hundreds of megabases (Mb) each year. Thus, 
one of the major challenges that biologists now have to 
take up is to extract relevant information from this huge 
amount of sequence data: to detect the genes embedded 
in these sequences and to try to decipher their function. 
The  identification of regulatory elements required for the 
correct expression of genes is an essential step in the 
understanding of their function. This task is particularly 
arduous in the case of the large eukaryotic genomes, such 
as ours, that are replete with noncoding sequences, most 
of which are probably functionless. How can one identify a 
regulatory element overwhelmed in nonfunctional DNA? 
Obviously, the amount of experimental work that would 

be required to systematically analyze these noncoding 
sequences exceeds the ability of researchers. Hence, there 
is an urgent need for computational tools that identify 
potential regulatory elements with which researchers could 
focus their experiments. Furthermore, such tools may also 
be of practical interest by improving methods of gene 
recognition. 

Two major classes of regulator5' regions can be dist- 
inguished. The  first class includes elements that are 
recognized at the DNA level: promoters; enhancers; locus 
control regions (LCRs); and matrix attachment regions/ 
scaffold attached regions (MAR/SARs). The  second class 
includes elements that arc involved in post-transcriptional 
processes, and that are recognized at the RNA level: 
cis-acting elements responsible for the regulation of 
processing, transport, translation and stability of mRNAs. 

Whereas many efforts have been made for locating 
protein-coding regions within genomic sequences (for 
a review, see [1]), or for predicting the structure and 
function of proteins (e.g. see Jones, pp 377-387, this issue), 
relatively few tools have been developed for the prediction 
of regulatory elements. Two main types of approaches can 
be distinguished. The  first one includes methods that rely 
on biological knowledge to set up rules or strategies to 
predict regulatory elements. The  most advanced field of 
such 'knowledge-based methods'  is the prediction of RNA 
polymerase (PoD II promoters. Recent advances in this 
domain are described in the first part of our review. The  
second type of approach relies on the comparative analysis 
of homologous sequences. Although such approaches are 
not new, they are now gaining importance thanks to the 
recent set-up of sequencing projects for several genomes 
of vertebrate model organisms. The  second part of our 
review summarizes the theoretical background for this 
comparative approach and illustrates with recent examples 
its efficiency, both for the study of some particular genes 
and for large-scale genome sequence analysis. 

Knowledge-based methods: prediction of 
vertebrate Pol II promoter sequences as a 
paradigm 
RNA polymerase II promoters are arrays of regulator3" ele- 
ments (transcriptional elements [TEs]) that are relatively 
short sequence motifs (5-25 bp in length) and that are 
recognized by regulatory proteins (transcription factors). 
Current knowledge of these promoters relies on extensive 
experimental work: over 4000 transcriptional elements 
have been described, corresponding to binding sites of 
hundreds of transcription factors [2°]. Databases such as 
TRANSFAC [2 °] or T F D  [3] have been developed to 
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compile information relative to these TEs,  their binding 
factors and their consensus sequences (n.b. T F D  has not 
been updated since September 1993). This information 
allows the establishment of rules or strategies that can be 
used for promoter prediction. 

Prediction of gene regulatory signals 
Most transcription regulatory elements are highly degener- 
ate sequence motifs that are recognized by DNA-binding 
proteins. The  computational problem of defining such 
signals can be logically subdivided into three parts: first, 
the problem of mathematically representing a degenerate 
sequence motif; second, the problem of deriving a 
specific motif description from the available sequence and 
functional information; and third, the problem of searching 
for signal occurrences in new sequences once the signal is 
defined. 

Until recently, most experimental biologists and many 
computational biologists have been using IUPAC code 
based consensus sequences as a means of describing 
a transcription factor binding site or a physiologically 
defined control signal. However, such descriptors have 
an important limitation: they cannot distinguish between 
mismatches of varying degrees of severity. More realistic 
representations of regulatory signals may be obtained by 
using weight matrices. The  recently introduced hidden 
Markov models (HMMs; for a review, see [4"]) add 
an additional level of flexibility by allowing variable 
spacing between conserved b locks - - a  feature that may be 
essential for accurately describing the binding preferences 
of large multimeric transcription regulatory complexes. 

Of  course, a nearly infinite number of possible consensus 
sequences or weight matrices exist. Knowledge-based 
approaches to derive signal descriptions attempt to find 
the best one with regard to given sequence and functional 
data. Biological function may be related to sequences 
in two ways: first, via a physiological process that has 
been mapped to a specific site within a sequence; 
and second, via a biological or biochemical activity 
associated with a DNA fragment or a sequence region 
delimited by mutagenesis. In the first case, the goal of 
computational analysis is to identify sequence motifs that 
occur at characteristic distances from the physiological 
site. In the second case, one searches for a common 
motif within the functionally defined set of sequence 
regions. The  standard technique for searching motifs 
that are positionally correlated with a site proceeds by 
analyzing the sequence contents in a sliding window along 
an ungapped sequence alignment (e.g. [5]). The  most 
commonly used weight-matrix descriptions of the major 
constitutive elements of eukaryotic promoters have been 
derived by a heuristic variation of this general method 
using weight matrices instead of consensus sequences. 
More recently, neural networks [6] and HMMs [7 °] have 
been applied to promoter sequences aligned by the 
transcription start sites. 

The  classical methods to find a common motif in a set 
of functionally related sequences proceed via a multiple 
segment alignment. The  goal is to arrange the sequences 
in such a way that DNA bases interacting with the 
same molecular components of the transacting factor 
ate superimposed. Note that this definition of a correct 
alignment differs from the one used in evolutionary 
studies. The  segment-alignment problem is very difficult 
to solve if the sequences share only weak similarities, 
and the development of corresponding algorithms has 
therefore been a major research focus in the comparative 
analysis of DNA regulatory elements. The  introduction of 
Expectation-Maximization algorithms and Gibbs-sampling 
techniques have been important steps forward [8]. Recent 
attempts to improve segment alignments have focused 
on the recognition of motifs in noisy input data [9,10°], 
and on the simultaneous recognition of multiple motifs 
in biochemically heterogeneous sequence sets [11"]. 
Although important progress has undoubtedly been made 
in this field recently, it deserves mentioning that an 
elegant but largely forgotten heuristic algorithm devised 
by Queen et al. [12] will in many instances produce 
alignments equivalent or even superior to those obtained 
by current standard methods. 

Once a signal is defined, in the form of a consensus 
sequence or a weight matrix, the search for signal 
occurrences is relatively straightforward. The  current state 
of the art software tools that search for transcription 
factor binding sites using libraries of weight matrices are 
Matlnspector [13 °] and MATRIX SEARCH [14°], which 
is now included in SIGNAL SCAN [15°]. Although these 
programs make the best use of current knowledge, it 
must be recognized that the accuracy of the prediction 
is a function of the quality of the weight matrices in 
the reference collections. Unfortunately, many of these 
matrices have been derived from small sequence sets, and 
thus cannot be expected to make reliable predictions. 

New promoter prediction methods 
Even if good progress has recently been made in the 
identification of putative TEs,  such predictions are not 
sufficient to correctly recognize promoters. Because of the 
short and degenerate nature of TEs,  many of the putative 
elements that are identified in any sequence scan are 
in fact biologically irrelevant. For example, when using 
position weight matrices of the TATA box or the MEF2 
binding site, one finds, on average, one false positive every 
120-130 bp [16,17]. Indeed, a promoter is characterized by 
an appropriate arrangement of TEs  that allows specific 
interactions between the transcription factors that bind 
to them. During the past two years, four programs 
have been published that improve both the sensitivity 
and the specificity of promoter predictions by taking 
into account this complexity: the GRAIL-associated 
promoter prediction program [18"]; FunSiteP [19"']; 
P R O M O T E R  SCAN [20"]; and PromFind [21"]. The 
GRAIL-associated promoter prediction program is in- 
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tended to recognize TATA box containing promoters; it 
combines statistical matrix scores and distance constraints 
for the TATA box, GC box, CAAT box, and cap sites 
using a neural network. An original feature of this system 
is the usage of protein coding region predictions provided 
by GRAIL to eliminate false promoter candidates. This 
program correctly predicts 66% of TATA box containing 
promoters, with one false positive every 23kb [18"]. The  
interest of this program is limited, however, because many 
Pol II promoters do not contain the TATA box I20"]. 
Promoter predictions of FunSiteP and P R OMOTER 
SCAN rely on the uneven distribution of TEs  in 
promoter and nonpromoter sequences: regions of DNA 
that contain a higher density of putative TEs relative 
to nonpromoter sequences are more likely to be true 
promoter regions. P R O M O T E R  SCAN uses the ratio of 
occurrence frequencies of a particular signal in promoter 
and nonpromoter regions as the primary input to the 
prediction algorithm, whereas FunSiteP takes an element's 
positional distribution relative to the transcription initi- 
ation site into account. Both methods correctly predict 
60-70% of Pol II promoters, with about one false positive 
every 10kb [19"',20"]. A possible drawback of these 
methods is that they rely upon extensive databases of 
known TEs.  Hence, they may be unable to identify 
new promoter classes containing TEs  that have not been 
yet characterized. PromFind also relies on the uneven 
distribution of TEs, but, instead of focusing on putative 
TEs, it analyzes the frequency of all possible hexamers in 
promoter and nonpromotcr training sets. The  specificity 
and sensitivity of PromFind and P R O M O T E R  SCAN 
have been compared: both methods correctly predict 
50-60% of vertebrate Pol II promoters, with about one 
false positive every 19kb [21"]. 

Composite control elements 
Despite significant improvements during the past two 
years, the success rate of promoter prediction programs 
is still relatively weak: 30-40% of true promoters are 
missed, and about 45-60% of predicted promoters are false 
positives. Future improvements will require better models 
of transcription-control regions that take into account not 
only the density but also the correct combination and 
spatial organization of TEs, and their position relative 
to other gene features. Kel et  al. [22"] have compiled 
a database of composite elements (COMPEL) affecting 
gene transcription in vertebrates. On the basis of this 
information resource, an algorithm has been developed 
to locate potential composite elements in functionally 
uncbaracterized DNA sequences [23"']. Quandt e ta / .  [24"] 
developed a software package called Genomelnspector to 
detect potentially synergistic signals in genomes. Their 
system is able to assess distance correlations between 
many types of experimentally determined or predicted 
sequence features, for example, TEs, open reading frames, 
repeated elements, etc. The  underlying assumption is 
that positionally correlated sequence elements are more 
probably associated with biological function than in- 

dividual elements. Such a combination of biological 
knowledge with computer sequence analysis will allow the 
description of more accurate models of regulatory regions, 
as illustrated by recent examples on lentivirus LTRs [25] 
or muscle-specific promoters [26"]. 

Comparat ive  sequence  analysis: a powerful  
approach for the identi f icat ion of  new 
u n k n o w n  regulatory e lements  
For most of the regulatory elements mentioned in the in- 
troduction, current biological knowledge is still insufficient 
to allow the development of prediction methods such as 
those described above for Pol II promoters. Moreover, it 
is probable that many regulatory elements are still totally 
unknown and remain to be discovered. In our opinion, 
the most promising approach for the identification of new 
unknown regulatory elements lies in the phylogenetic 
comparison of homologous sequences. This approach is 
not new, but it has recently gained considerable interest 
thanks to the start of projects intended to sequence large 
regions of some model vertebrate genomes [27,28"-30"°]. 

Phylogenetic footprinting 
The pattern of mutations that have occurred during 
evolution is an excellent indicator of functional constraints. 
Genomes continually undergo mutations, but the outcome 
of each mutation depends on its phenotypic effect. 
Mutations that are deleterious are generally eliminated by 
natural selection, whereas mutations that have no pheno- 
typic effect (neutral mutations) or that are only slightly 
deleterious can be randomly fixed in the population 
(genetic drift). The consequence of this is that mutations 
accumulate much faster at nonfunctional DNA bases than 
at functionally constrained base positions. Hence, if one 
detects a sequence that has remained highly conserved 
during evolution, then it probably means that this 
sequence is functional (but the reverse proposal is not true: 
a sequence can bc functional albeit nonconserved). Tagle 
et al. [31] proposed the term 'phylogenetic footprinting' 
to describe the phylogenetic comparisons that reveal 
evolutionary conserved functional elements in homologous 
genes. The  efficiency of phylogenctic footprinting is 
illustrated in Figure 1, which shows the comparison of 
human and carp [~-actin genes. This comparison shows that 
after >900 million years (Myrs) of divergence (450Myrs 
in each lineage), four discrete elements in noncoding 
regions still remain highly conserved. Indeed, these 
four conserved noncoding regions correspond to essential 
regulatory, elements that are involved in transcription and 
post-transcriptional processes (Fig. 1). Thus, the simple 
comparison of homologous sequences can reveal essential 
functional elements. 

One should note, however, that regulatory elements that 
have been acquired very. recently in evolution may not 
be detectable by phylogenetic footprinting. Moreover, 
the conserved feature does not necessarily reside in the 
primary sequence itself. In some cases, it is the spatial 
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Phylogenetic comparison of human and carp (Cyprinus carpio) ~-actin genes. Sequences (accession numbers M24113 and M102?7, 
respectively) have been compared using the LFASTA local similarity search program [44]. Regions of sequence similarity between the two genes 
are represented along with some sequence features (exons, introns, regulatory elements). As expected for a gene coding for a highty constrained 
protein, protein-coding regions are highly conserved. More surprising, after > 900 Myrs of divergence (450 Myrs in each lineage), four discrete 
elements have remained highly conserved in noncoding regions. Indeed, these conserved noncoding regions have been shown to correspond to 
important regulatory elements: promoter elements in the 5"-flank [45]; an enhancer in the first intron [45]; a transcription attenuator in the 3'-end 
of the gene [46]; and 3'UTR elements involved in ~-actin mRNA subcellular localization (mRNA zipcode) [4?]. 

structure or a particular compositional property of the 
DNA or RNA that may be subject to selective pressure. 

Choice of species for phylogenetic footprinting 
The choice of species to be compared is essential for 
the efficiency of phylogenetic footprinting. If species 
are too closely related, distinguishing highly constrained 
regulatory elements from nonfunctional regions is im- 
possible because there will not have been enough 
evolutionary time for the accumulation of mutations at 
neutral base positions. But if species are too distantly 
related, then detecting conserved regulatory elements may 
be impossible, either because they will have diverged too 
much to preserve any significant similarity or because the 
regulation processes are different in the two lineages. 

Since the rate of accumulation of substitutions at neutral 
base positions has been estimated to be around 0.5% every 
Myrs [32], the sequence similarity between species that 
diverged 300 Myrs ago in DNA regions that ate not subject 
to selective pressure should be about 30% (after correction 
for multiple substitutions), which is approximately the 
same as between two unrelated sequences. Any significant 
sequence conservation between species that diverged 300 
Myrs ago should, therefore, indicate a strong selective 
pressure, and hence an important functional element. 
Many regulatory elements, however, have not been 
conserved for such a long time. The solution to detecting 
more recent regulatory elements consists in comparing 
more than two orthologous sequences. Species should be 
selected so that the cumulative length of branches of 
the phylogenetic tree uniting them to their last common 
ancestor represent > 200 Myrs [33°']. The best picture can 
be obtained by comparing several species covering a wide 

range of evolutionary distances. This allows one to focus 
first on the most conserved elements that probably reflect 
essential regulatory processes shared by all species, and to 
progressively identify less conserved elements that may be 
involved in lineage-specific regulations. 

Recent applications of phylogenetic footprinting 
Since their original publication describing the phylogenetic- 
footprinting approach [31], Goodman's group has been 
using this method to identify elements involved in the 
developmental regulation of the mammalian 13-globin 
cluster. After aligning orthologous sequences from several 
mammalian species, they search for sequence motifs with 
100% conservation over at least six contiguous bps. These 
phylogenetic footprints are then analyzed by gel mobility 
shift essays to test whether they bind proteins. The 
efficiency of this approach has been first demonstrated 
on the 7-globin gene: of the 13 phylogenctic footprints 
identified, 12 (92%) correspond to binding sites of nuclear 
proteins, whereas only two out of nine nonconserved 
regions bind proteins [34]. Ultimately, 35 phylogenetic 
footprints have been detected in y and e genes, and their 
binding proteins have been identified [33"°]. Other recent 
results of the phylogenetic-footprinting approach include 
the identification of promoter or enhancer elements in 
COX5B from primates [35], in Hoxb-1 [36 "°] and Hoxb-4 
[37 °° ] from vertebrates, and in IL-2Ralpha [38] from 
mammals. 

Differential phylogenetic footprinting and motif-based 
phylogenetic footprinting 
Two variants of the phylogenetic-footprinting method 
have been published. The first one, called "differential 
phylogenetic footprinting', relies on a search for sequence 
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differences. This approach may be used to identify 
regulatory elements responsible for the establishment of 
novel expression patterns in specific lineages (see [33°°1, 
and references therein). The  analysis is carried out by 
aligning orthologous sequences and searching for sequence 
differences. Probes spanning the sequence differences are 
then tested by gel mobility shift to detect differences in 
the pattern of proteins binding to them. This strategy 
was used to identify elements responsible for the specific 
expression pattern of y-globin in primates (y-globin is 
expressed in fetus in simian primates, whereas it is 
expressed in embryo in other mammals) [33°']. 

The  second variant, called 'motif-based phylogenetic 
footprinting', has been developed to detect conserved 
binding sites that show sequence variation (see [33"°], and 
references therein). Rather than focusing solely on primary 
sequence conservation, this method searches for putative 
TEs  that occur at orthologous positions, allowing the 
detection of functionally conserved binding sites despite 
sequence differences. 

Large-scale phylogenetic footprinting 
While the examples described above focus on a few 
genes, the phylogenetic-footprinting approach can also be 
used for large-scale genome sequencing projects. In a first 
attempt, Duret et al. [39] have systematically analyzed 
noncoding sequences available in databases, in order to 
search for evolutionary conserved regulatory elements in 
vertebrate genes. More recently, we have extended this 
systematic comparative analysis to 145 Mb of noncoding 
sequences from different metazoan taxa (essentially ver- 
tebrates, insects and nematodes; L Duret, unpublished 
data). These large-scale phylogenetic footprinting analyses 
revealed hundreds of long noncoding elements that have 
remained highly conserved for 310-540Myrs. 

Three important results came out of these analyses. First, 
phylogenetic footprints are more frequent than could have 
been expected: at least 36% oforthologous genes between 
mammals and birds contain such highly conserved regions 
(HCRs) in their noncoding sequences after 310Myrs of 
evolution (Table 1). However, the frequency of HCRs 
decreases as evolutionary distances increase: HCRs are two 
times more frequent between mammals and birds than 
between mammals and bony fishes (Table 1). The  oldest 
HCR that has been observed predates the divergence 
between chordates and echinoderms (about 540 Myrs) and 
corresponds to the histones' 3'-processing signal. Despite a 
large amount of sequence data, we have not detected any 
significant conservation between vertebrates and insects or 
nematodes (L Duret, unpublished data). Thus, Drosophila 
and Caenorhabditis elegans are not suitable for finding 
phylogenetic footprints in the human genome. 

Second, HCRs are almost two times more frequent in 
3"-noncoding regions than in 5'-noncoding regions, and 
three times more frequent than in introns (Table 1). 
This observation is surprising because one would have 
expected a stronger selective pressure on 5'-regions of 
genes, as these are known to contain elements involved 
in regulation of transcription. Indeed, the analysis showed 
that most of these 3"HeRs are probably involved in 
post-transcriptional processes that are now recognized to 
be essential for regulating the expression of many genes 
[40]. Some of the detected H e R s  correspond to already 
identified regulatory, elements, but most of them are totally 
unknown. 

Finally, the most surprising result is size of these HCRS: 
these conserved elements (at least 70% identity between 
species that diverged >300Myrs ago) cover on average 
more than 400 nt (50-20 000 nt). None of the regulatory 
processes known to date can explain such a conservation 

Table 1 

Frequency of occurrence of evolutionary conserved elements in noncoding regions of other vertebrate genes*. 

Gene region 

3'-noncoding regions 
Number of orthologous genes ,+ 284 
Frequency of genes containing conserved elements # 35.9o/o (102) 

5"-noncoding regions 
Number of orthologous genes ~+ 96 
Frequency of genes containing conserved elements # 19.8O/o (19) 

Introns 
Number of orthologous genes,+ 63 
Frequency of genes containing conserved elements # 11 .lO/o (7) 

Mammals / Birds 
300 Myrsf 

Mammals / Amphibians Mammals / Bony fishes 
350 Myrsf 450 Myrst 

191 72 
26.7% (51) 16.7% (12) 

51 25 
3.9% (2) 16.0% (4) 

8 12 
o% (0) 8.3o/o (1) 

*To estimate the fraction of genes that contain evolutionary conserved elements, we searched for phylogenetic footprints within all orthologous 
genes between mammals and other vertebrate classes (selected from the HOVERGEN database [48]). tApproximate divergence time. ,+We have 
included only orthologous genes, for which at least 200 nt of noncoding region is available. #The minimal threshold to report conserved elements 
is 70% identity over 50 bp (L Duret, unpublished data). 
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over such a length. Most of regulatory elements that have 
been identified to date correspond to binding sites of 
regulatory proteins, and their sizes range from 5-25 nt. Do 
these long HCRs correspond to multiple adjacent binding 
sites? Or are they involved in more complex structure 
(e.g. at the RNA level)? The  precise mechanisms in which 
these long HCRs are involved remain to be determined. 

Conclusion 
Methods of predicting Pol II promoters have been 
significantly improved during the past few years. Even if 
there is still room for improvements, one can note that, 
for the first time, the error rate of these methods is low 
enough such that the programs are of practical interest. 
Can the methodology developed for Pol II promoter 
prediction be transposed to other regulatory elements? 
Indeed, this approach is limited to regulatory elements 
that are relatively well characterized. The construction of 
rules for the prediction of translation start sites [41] or 
polyadenylation sites [18 °] has been possible from the 
analysis of numerous experimentally defined examples. 
For most of the regulatory elements mentioned in the 
introduction, however, current biological knowledge is still 
insufficient to allow the development of any rule-based 
prediction method. 

As illustrated in this review, the phylogenetic-footprinting 
approach is very efficient for identifying new regulatory 
elements, even those of totally unknown type, and even 
those that occur where one would have not expected 
to find them. This comparative approach considerably 
increases the amount of information that can be extracted 
from any genomic sequence. Thus, the sequencing of 
genomes of model vertebrates should be extremely 
valuable to the understanding of our own genome. 

Keep and coworkers [27,28°•,29 ' ' ]  have been promoting 
this 'comparative genomics' strategy by sequencing large 
genomic regions (20-100kb) of orthologous loci in man 
and mouse. One of the interests of the mouse is that, 
as a mammal, it represents a model quite similar to 
humans in term of gene-expression patterns. 80Myrs of 
divergence, however, may not be enough evolutionary 
time for the stringent detection of conserved regulatory 
elements: some large genomic regions evolve faster than 
others [28•',29"], and whether sequence conservation 
reflects selective pressure (i.e. functional constraints) or 
low mutability (e.g. lower sensibility to mutagens for some 
chromatin domains or better efficiency of DNA repair or 
proofreading) is not always clear. 

The  Japanese pufferfish (Fugu rubripes) is a good model 
vertebrate for comparative genomics because its genome 
is small (about 7.5 times smaller than the human 
g e n o m e - - = 4 0 0  Mb versus = 3000 Mb), and yet it contains 
roughly the same set of genes as other vertebrates 
[30"]. Moreover, the evolutionary distance that separates 

mammals and bony fishes (450 Myrs) guarantees that only 
essential functional elements have remained conserved. 
Indeed, phylogenetic-footprinting analyses of Hox genes 
have demonstrated the usefulness of pufferfish for the 
identification of regulatory elements [36•',37"']. Many reg- 
ulatory elements, however, have not remained conserved 
for such a long time: only 16% of orthologous genes 
between mammals and bony fishes contain conserved 
elements in their noncoding regions (Table 1). 

In our opinion, the chicken genome represents the 
best compromise for phylogenetic footprinting: it has 
enough evolutionary distance (300Myrs) but still many 
conserved elements (Table 1). In addition, it has a 
relatively small genome (1200 Mb) [42], and it has been 
suggested that 30-50% of its genes are concentrated in 
minichromosomes in which the gene density ( - I  gene 
every 10kb) approaches that seen in pufferfish [43]. 
Hence, sequencing of chicken minichromosomes could be 
of relatively low cost and yet could provide very valuable 
data for the identification of conserved regulatory elements 
in the human genome. 
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