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Mammalian chromosomes are characterized by large-scale variations of DNA base composition (the so-
called isochores). In contradiction with previous studies, Lercher et al. (Hum. Mol. Genet., 12, 2411, 2003)
recently reported a strong correlation between gene expression breadth and GC-content, suggesting that
there might be a selective pressure favoring the concentration of housekeeping genes in GC-rich isochores.
We reassessed this issue by examining in human and mouse the correlation between gene expression and
GC-content, using different measures of gene expression (EST, SAGE and microarray) and different
measures of GC-content. We show that correlations between GC-content and expression are very weak,
and may vary according to the method used to measure expression. Such weak correlations have a very
low predictive value. The strong correlations reported by Lercher et al. (2003) are because of the fact that
they measured variables over neighboring genes windows. We show here that using gene windows artifi-
cially enhances the correlation. The assertion that the expression of a given gene depends on the GC-content

of the region where it is located is therefore not supported by the data.

INTRODUCTION

The analysis of mammalian chromosome sequences revealed
complex genomic landscapes: some regions of the genome
are very gene-rich, whereas some other large regions are
devoid of genes (1). These variations in gene density are linked
to large-scale variations in DNA base composition (the so-
called isochores): gene density and introns length vary
5-20-fold between GC-poor and GC-rich isochores (1-3).
This isochore organization is also correlated with many
other important genomic features: replication timing (4),
recombination (5), methylation pattern (6) and distribution
of transposable elements (1,7).

The question of the functional significance of these peculiar
chromosomal landscapes is, however, still highly debated: do
they reflect an adaptation or are they simply a by-product
of neutral evolutionary processes (§—11)? In other words, it
is not yet known whether this isochore organization has any
significant impact on the phenotype.

To address this important issue, several recent studies in
human and mouse have analyzed the relationship between the
GC-content of isochores and the expression patterns of the

genes they contain. Surprisingly, these studies gave conflicting
results (Table 1). Several papers reported very weak corre-
lations, either negative (12—14) or positive (15—17), between
the GC-content and gene expression. In contrast, Lercher
et al. (19) found strong positive correlations, suggesting that
there might be some selective advantage to concentrate house-
keeping genes on transcriptionally competent, GC-rich, chro-
mosomal domains.

The discrepancy among the studies conducted on the
relation between GC-content and expression might be due to
the methods used to measure expression (EST, SAGE or
DNA microarray), the expression parameter considered
(expression level or tissue breadth of expression), differences
in the measure of GC-content (in introns, third codon positions
or intergenic regions) or differences in the tissues and gene
data sets analyzed. Moreover, these studies differ in the way
correlations were computed: in Lercher et al. (19), correlations
were assessed after averaging all variables over 15 neighbor-
ing genes, whereas in other studies, correlations were com-
puted using individual genes.

To try to understand the discrepancy between the different
studies, we compared on a same gene data set the correlations
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Table 1. Review of the correlations between GC-content and expression published in the literature

Species Measure of GC-content Expression Data set Correlation References
Method Parameter No. genes No. tissues Sign R? (%) P-value
Human Coding region EST Breadth 2399 19 - 1.7 <107 (12)
Third codon positions Breadth 1396 22 - 0.8 0.0008 (13)
Third codon positions Log(peak) 1396 22 - 0.4 0.03
Genomic (20 kb) SAGE Breadth 11549 14 + 2.8 <107 21
Genomic (20 kb) Log(peak) 8170 14 + 3.4 <107°
Intergenic (1-10 kb) Mean 6430 22 + 0.4 <107* (16)
Third codon positions Microarray Log(mean) 6078 32 + 4.0 <107° (15)
Coding region Log(mean) 6078 32 + 4.0 <107°
5-UTR Log(mean) 6078 32 + 2.9 <107°
3'-UTR Log(mean) 6078 32 + 32 <107°
Intron Log(mean) 6078 32 + 6.3 <107°
Intergenic (1-10 kb) Log(mean) 6078 32 + 5.8 <107°
Intron® SAGE Mean(breadth) 542 19 + 24.0 <107° (19)
Intron* Mean(log(peak)) 542 19 + 5.0 <107
Intron Mean(breadth) 8 classes” 19 + 89.0 <107°
Intron Mean(log(peak)) 8 classes® 19 + 83.0 <107°
Genomic® Median/window 510 windows®  NA + NA <1072 17)
Mouse Third codon positions Microarray Log(mean) 7708 45 + 1.2 <107° (15)
Coding region Log(mean) 7708 45 + 1.0 <107°
5'-UTR Log(mean) 7708 45 + 0.6 <10°
3’-UTR Log(mean) 7708 45 + 0.8 <107°

There is a large variability in the values and in the signs of the correlations. The different analyses were based on different measures of GC-content,
different methods to detect gene expression (SAGE, EST and microarray) and different parameters of expression (breadth, number of tissues where
genes are expressed; mean, average level of expression for expressed genes; peak, maximum level of expression). The sign and R>-value (%) of cor-
relations are given. No. genes, number of genes in the data set. No. tissues, number of tissues in the expression data.

“Mean intronic GC-content over windows of 15 genes.

®Correlation assessed after splitting the data set into eight classes of GC-content.

“Windows of 49 transcription units.

between GC-content and gene expression obtained with diffe-
rent experimental methods, different estimators of GC-content
and different scales of measure (gene by gene or by genomic
regions). These analyses were performed both in human and in
mouse.

We show that in both species, whatever the method used to
measure expression or base composition, the correlations
between gene expression and GC-content are very weak. We
also show that the analyses performed on sets of neighboring
genes are not appropriate, as they lead to overestimation of the
real relationship between gene expression and GC-content.
Given the weakness of the correlations and the noisiness of
present gene expression data, one should be extremely cau-
tious when trying to interpret the biological significance of
the relationship between gene expression and GC-content.

RESULTS

We analyzed 6242 human genes for which patterns of
expression in 11 different tissues could be estimated using
three independent experimental methods (EST, SAGE and
DNA microarray). We considered different expression para-
meters: expression breadth (the number of tissues where
expression is detected), mean expression level (the average
level of expression for expressed genes in the 11 tissues)
and peak expression (the maximum level of expression in
the 11 tissues). We measured the GC-content in introns
(GCi) and at the third position of codons (GC3).

To assess for possible biases in the sampling of genes or
tissues for which we had expression data from the three
methods (EST, SAGE and DNA microarray), we also
measured correlations on sets of genes for which we had (i)
SAGE data but no microarray data (6523 genes), (ii) EST
data only (19 988 genes), and on sets of tissues for which
we had (i) microarray data but no SAGE data (14 tissues),
(i) EST data only (18 tissues). These analyses did not
reveal any significant difference with the common data set
(data not shown). Hence, we will mainly present results
obtained with the set of 6242 human genes and 11 tissues
for which we had expression data from the three methods.

We also assessed the correlation between GC-content and
gene expression in the mouse genome, using the three
measures of expression (EST, SAGE and DNA microarray).
As very few tissues were available for SAGE data, it was
not possible to build a common gene data set for the three
methods. We therefore studied three data sets corresponding
to genes for which we had EST data (26 749 genes, 45
tissues), SAGE data (6906 genes, 11 tissues) and DNA micro-
array data (5297 genes, 45 tissues).

Correlations measured on individual genes

Table 2 gives the correlations computed on individual genes
between GC-content and different measures of expression.
All these correlations are in agreement with previous results
(Table 1). For each method (EST, SAGE and microarray),
the different parameters of expression (breadth, peak or
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Table 2. Correlation between GC-content and expression, for different measures of genes expression and for different estimators of base composition in human

and mouse
Species Measure of Expression Data set Correlation
GC-content Method Parameter No. genes No. tissues Sign R* (%) P-value
Human GCi SAGE Breadth 5977 11 + 1.60 <107'¢
Peak + 0.07 NS
Mean + 0.02 NS
EST Breadth 5977 11 + 0.02 NS
Peak — 0.08 NS
Mean - 0.07 NS
Microarray Breadth 5977 11 + 4.10 <10°'¢
Peak + 0.81 10712
Mean + 1.80 <107'¢
GC3 SAGE Breadth 6246 11 + 0.03 NS
Peak + 0.10 NS
Mean + 0.02 NS
EST Breadth 6246 11 - 0.26 <107'®
Peak - 0.02 NS
Mean — 0.04 NS
Microarray Breadth 6246 11 + 3.06 <107'®
Peak + 2.13 <107'¢
Mean + 2.20 <107'¢
Mouse GCi SAGE Breadth 6355 11 + 1.13 10"
Peak + 0.12 NS
Mean + 0.23 1074
EST Breadth 24127 45 + 0.91 <107'¢
Peak + 0.01 NS
Mean + 0.00 NS
Microarray Breadth 4832 45 + 1.28 1071
Peak + 0.09 NS
Mean + 0.62 NS
GC3 SAGE Breadth 6906 11 + 0.19 1074
Peak + 0.32 107°
Mean + 0.55 10710
EST Breadth 26749 45 + 0.05 107
Peak + 0.01 NS
Mean + 0.03 NS
Microarray Breadth 5297 45 + 0.54 10°%
Peak + 0.03 NS
Mean + 0.41 107°

The human sample consists of genes and tissues for which expression data are available for SAGE, EST and microarray. The three mouse data sets
correspond, respectively, to the genes and tissues available for EST, SAGE and microarray data. GCi, GC-content in introns; GC3, GC-content at third
codon positions. Expression parameters: breadth, number of tissues where genes are expressed; mean, average level of expression for expressed genes;
peak, maximum level of expression. The sign and R*-value of correlations are given, No. genes, number of genes in the data set, No. tissues, number of
tissues in the expression data. NS = P-value non-significant after Bonferroni correction.

mean) gave similar results: when correlations are significant,
they always are in the same direction. Correlations are gene-
rally stronger with the breadth than with the peak or mean
expression levels. In human, EST data indicate a weak
negative correlation between expression breadth and GC3
(R = 0.3%), but no significant correlation with GCi; on the
contrary, SAGE and microarray data revealed a weak positive
correlation between expression breadth and GC-content
(R*=1.6—-4.1%), and correlations are stronger with GCi
than with GC3. In mouse, the three measures of expression
are positively correlated with GC-content, but again corre-
lations are very weak (R?>=0.9-1.3% for expression
breadth versus GCi). Thus, with the exception of human
ESTs, all the measures of expression indicate a weak positive
correlation between expression breadth and gene GC-content.

How does one explain the contradictory results obtained in
human with ESTs. Is it simply due to an artifact in EST data?

It is clear that gene expression data are noisy. The measures of
expression breadth obtained by the three methods are only
weakly correlated (SAGE/microarray R> = 25%, SAGE/EST
R? = 27%, EST/microarray R* = 16% on the common data
set of 6246 human genes in 11 tissues). It is not possible to
determine which one of the three measures of expression is
the most reliable. In principle, quantitative estimation of
expression obtained with SAGE or DNA microarrays should
be more reliable than those obtained with EST data. Indeed,
the first goal of EST projects was to identify new genes (and
not to measure expression), and hence EST data often derive
from cDNA libraries that have been normalized, to decrease
the number of cDNA clones deriving from abundant transcripts.
EST data are therefore expected to underestimate the level of
expression of highly expressed genes. Conversely, this process
of normalization allows the detection of rare transcripts, and
hence should improve the measure of tissue distribution
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breadth (i.e. the number of tissues where genes are expressed).
Hence, although ESTs are clearly not appropriate to measure
expression level, there is a priori no reason why this method
should be less reliable than SAGE or microarray to measure
the breadth of expression.

To assess the sensitivity of the three methods, we selected in
RefSeq (18) 1493 human genes, supported by experimental
evidence (i.e. for which a manually curated mRNA was avail-
able) and that are complete in their 3’ end (i.e. with a polyA
tail and a canonic polyadenylation signal <50 bp of the 3’
end). The proportion of RefSeq mRNAs that are not detected
to be transcribed in any of the 11 studied tissues is higher for
microarray than for SAGE and EST (30, 7 and 7%, respect-
ively), which suggests that microarray is less sensitive than
both the other methods.

To assess the consistency of the different methods, we com-
pared in human and mouse orthologous genes, the measures of
expression breadth obtained by EST and microarray (NB: this
analysis could not be performed for SAGE because there are
presently too few tissues for which data are available in
both human and mouse). EST-based estimates of expression
breadth are highly correlated between orthologs (R = 50%
on a data set of 10 950 orthologous genes and 17 tissues in
common between human and mouse). Surprisingly, micro-
array estimates are less correlated (R* = 11% on 2485 ortho-
logous genes and 18 tissues). The restriction of the data sets
to the 2485 genes and the 11 tissues in common between
microarray and EST gives similar results. This suggests that
for the measure of expression breadth, microarray data
might be more noisy than ESTs. It is therefore not clear
whether the negative correlation between GC3 and expression
breadth that we observed with ESTs in human is due to an arti-
fact of the EST approach or the fact that for some genes,
expression breadth might be better estimated by ESTs than
by other methods.

Whatever the answer to this question, it is important to
stress that in reality the discrepancy between the measures
(EST versus SAGE or microarray) is not strong, as all
methods agree on the fact that correlations are very small
(R* = 0.02—4.1%). Thus, the only safe conclusion that can
be drawn from these analyses is that the GC-content of
genes is a very poor predictor of their expression breadth.

Correlation measured on sets of genes grouped
according to their GC-content

To analyze the relationship between GC-content and
expression, Lercher et al. (19) classified genes according to
their GC-content, into eight categories of 5% width. For
each category, they computed the average GC-content and
the average expression breadth (SAGE). With these averages,
they observed a strikingly strong linear correlation between
GC-content and expression breadth (R? = 89%). As shown
in Figure 1, microarray data give similar results: after
having grouped genes into GC-content categories, one can
observe a strong positive correlation (R* = 85%) between
the average GC-content and the average expression breadth.

The grouping of genes into GC-content categories is a
useful way to visualize the trend of the relationship between
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Figure 1. Relationship between intron GC-content and expression breadth in
human. Expression breadth was measured with microarray data. Genes were
grouped into 20 equal-sized categories according to their intronic GC-
content. For each category, the distribution of expression breadth is rep-
resented by a box plot: the lower and higher sides of the boxes represent,
respectively, the 25 and 75% quantile. The median of expression for each
class is drawn in thin lines and the mean in thick lines. The inter-category cor-
relation between GC-content and expression (mean, thick lines) is high.
However, there is a huge intra-category variance (see the boxes size).

GC-content and expression. However, we would like to
stress that this approach cannot be used to quantify this
relationship: when computed on individual genes, the corre-
lation coefficient represents the percentage of the total vari-
ance that is explained by the variable. But after the
grouping, the correlation coefficient represents the percentage
of the inter-category variance that is explained by the variable.

To illustrate this effect, we performed a simulation: we con-
sidered two variables (X and Y) linearly correlated, with a
correlation coefficient of 5% (i.e. X explains 5% of the varia-
bility of V). We randomly generated a sample of 5000 points,
according to this linear model. We then grouped the points
into categories according to the value of X, computed the
average of X and Y for each category and then computed the
correlation between these averages. As can be seen in
Table 3, the correlation coefficient increases steadily as the
size of groups increases. Thus, the grouping of points is mis-
leading because it suggests that there is a strong relationship,
whereas in reality it is impossible to predict the value of
Y knowing the value of X of a given point.

Correlation measured on groups of neighbor genes

Lercher et al. (19) also analyzed the relationship between regional
variations of GC-content and expression breadth. For this
purpose, they assessed these correlations after averaging all vari-
ables over 15 neighboring genes (whatever the physical distance
between these genes). They found a strong positive correlation
(R* = 24%) that raised steadily up to 50% when increasing the
size of windows from 15 to 100 neighboring genes (19). Thus,
by analyzing regional variations of GC-content and gene
expression, they were able to detect this strong correlation that
is hardly visible when analyzing individual genes.



Table 3. Simulations to assess the impact of grouping data on the measure of
correlation coefficient between two linearly correlated variables

No. points per category No. categories in data set R* (%)
1 5000 5
5 1000 21
10 500 35
15 333 43
20 250 53
50 100 72
100 50 83
500 10 95
1000 5 97

Two linearly correlated variables (X and Y, with a correlation coefficient
of 5%) were randomly generated (N = 5000 genes). Then, points were
grouped into categories according to the value of X, and correlations
were computed between X and Y, averaged within each category. Corre-
lation coefficients are indicated for different levels of grouping (i.e.
number of points per category).

How does one explain that the correlation between
expression breadth and GC-content is much stronger when
measured on sets of neighboring genes than on individual
genes. Two hypothesis can be proposed. The first possible
explanation comes from the fact that genes are not randomly
distributed along mammalian genomes: it has been shown
recently that tissue-specific and broadly expressed genes
tend to cluster in different regions (17,20,21). These regional
variations of gene expression are correlated with GC-content
and gene density (17) (i.e. with isochores). However, these
regional variations of gene expression are partly independent
of the isochore structure: the clustering of housekeeping
genes is significantly stronger in the human genome than in
randomized genomes of identical isochore structure (21).
Thus, it is possible that by analyzing groups of neighbor
genes, some effects due to regional variations of gene
expression were better captured by Lercher et al. (19). A
second possible explanation comes from the fact that, in
mammals, neighbor genes tend to have similar GC-contents
(because of the isochore structure of mammalian genomes).
Thus, measuring average GC-content and expression breadth
in sets of neighboring genes may have the same consequence
as the grouping of genes with similar GC-content: the group-
ing of genes with similar GC-content results in a decrease of
the variance in expression, and hence to an increase in the
existing correlation (as mentioned previously).

To distinguish between these hypotheses, we first assessed
the correlations between GC-content and expression breadth
after averaging both variables over neighboring genes (19).
As shown in Table 4, the correlations increase steadily with
window size (i.e. the number of genes per window), up to
R? = 52% for SAGE data and R* = 72% for microarray data
for a window of 100 genes (which represents in average
a genomic fragment of 50 Mb). We then re-assessed the corre-
lations after having permutated genes in the genome, keeping
the isochore structure unchanged. More precisely, we classi-
fied the genes according to their intronic GC-content into 20
categories of equal size, and permutated genes within each
of these categories. Correlations between mean expression
breadth per window and mean GC-content per window were
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then computed. As shown in Table 3, after permutations, we
still observed strong correlation between GC-content and
expression breadth measured over ‘neighboring’ genes: up to
R? =29% for SAGE data and R*> = 58% for microarray data
for a window of 100 genes. These results indicate that the
strong correlations reported by Lercher et al. (19) between
average regional expression breadth and GC-content, are
mainly a consequence of the fact that neighbor genes have
similar GC-content.

DISCUSSION

In agreement with previous reports (Table 1), we observed that
both in mouse and in human, the different measures of gene
expression generally show a positive correlation between the
GC-content of genes and their breadth of expression.
However, these correlations are very weak: in the entire
human data set, the percentage of the variance of gene
expression breadth explained by the correlation with GC3 or
GCi (R*-values) are, respectively, 0.09 and 1.21% for SAGE
data (12 205 genes, 18 tissues) and 1.72 and 3.33% for micro-
array data (6197 genes, 25 tissues). The relationship between
GCi and expression breadth is hardly visible (Table 2). In
mouse, the correlations are even weaker (Table 2).

In contradiction with these results, Lercher et al. (19)
reported strong correlations between expression breadth and
GC-content, which led them to predict that ‘when genes are
inserted into a non-native chromosomal environment together
with their promoter regions, their expression pattern should
depend on local GC-content’, and to conclude that there is
probably a selective pressure favoring the concentration of
housekeeping genes in GC-rich regions. The discrepancy
with our results is because of the fact that Lercher et al.
(19) computed their correlations not on individual genes but
on groups of genes. We would like to stress that this grouping
of genes is strongly misleading because it suggests that there
exists a strong relationship between the expression breadth
of genes and their GC-content, whereas in reality the relation-
ship is very weak. Indeed, the correct interpretation of the
strong correlations obtained with groups of genes is that if
the average GC-content of a large set of genes is known,
then it is possible to predict the average expression breadth.
However, in contradiction with the conclusion of Lercher
et al. (19), it is impossible to predict the expression of any par-
ticular individual gene in this set.

This work illustrates the problem of over-interpretation of
statistical tests that is becoming recurrent in genomics.
Thanks to the very large amount of data presently available,
it is possible to detect extremely weak correlations that are
significantly different from zero. However, what is the real
usefulness of correlations that have such low predictive
values? Correlation is not causality, and such weak corre-
lations may reflect indirect relationships with some unknown
variables. Moreover, as illustrated by the conflicting results
obtained with human ESTs, they are very sensitive to possible
methodological artifacts. In conclusion, although these corre-
lations are statistically significant, it is difficult to assess
their real biological significance.



426 Human Molecular Genetics, 2005, Vol. 14, No. 3

Table 4. Correlation between intron GC-content and gene expression breadth, computed on windows of neighboring genes: impact of window size

Window Real data R*% (P-value) Permutated genome R*%Y
No. genes® Size® (Mb) No. windows® SAGE Microarray SAGE Microarray
1 NA 5977 1% (1071 4% (10716 NA NA
5 2.0 (1.1) 1185 10 % (107'%) 20 % (107'%) 4 13
10 44 (3.2) 586 18 % (10716) 32 % (10719 7 21
15 6.9 (5.4) 387 23 % (107'9) 39 % (1071%) 9 28
20 9.3 (7.8) 290 27 % (107'6) 47 % (107'6) 11 31
50 24.0 (23.5) 108 44 % (107'6) 62 % (1071%) 22 49
100 49.6 (47.3) 48 52 % (1077) 72 % (10714 29 58

“Number of genes per window.
Mean (median) of window size in Mb.

°Number of windows in the data set. R* (%) and P-values of correlations reassessed after averaging variables (expression breadth and intronic

GC-content) on neighboring gene windows.

9Data set obtained after randomly permuting genes of similar intron GC-content. R* (%) and P-values of correlations reassessed after averaging
variables (expression breadth and intronic GC-content) on the new ‘neighboring’ gene windows.

MATERIALS AND METHODS
Gene selection

We selected all human and mouse manually curated mRNAs
from the RefSeq database (18), for which the expression
could be computed from SAGE, EST and microarray data.
We mapped them on the human genome [Ensembl, release
16.33, August 2003 (22)] or mouse genome (Ensembl,
release 18.30, November 2003) using Ensembl links
between CDS and RefSeq mRNAs. CDS for which total
intron length was >1000 bp were retained to compute intronic
GC-content. Orthologous gene pairs were found using the
Hovergen database (23).

SAGE data

We performed the association between RefSeq mRNAs and
SAGE data by determining the tags corresponding to each
mRNAs. In total, 1% of the mRNA sequences lack the site
NiaTIl (190 mRNAs out of 19 025 for human mRNAs), and
were removed from the data set. The tag (10 pb upstream of
the most 3’ Nlalll site) was extracted from the other
sequences. In some cases, one tag may match to more than
one Refseq mRNA. We looked at the genomic location of
these mRNAs to determine whether they correspond to
alternative transcripts of a same gene or to different genes.
In the latter case, genes were removed from the data set. We
finally retained 13 435 human and 8951 mouse Refseq
mRNAs that are non-redundant and unambiguously located
on the human genome.

SAGE experiment results, called ‘libraries’, were obtained
on the SAGE Genie website [ftp://cgap.ncbi.nih.gov/SAGE/
Download (24)] for human data and on Gene Expression
Omnibus site [http://www.ncbi.nlm.nih.gov/pub/geo/ (25)]
for mouse data. Each of them contains a list of tags that cor-
responds to a sample of the transcriptome in a given tissue
at a given developmental time. We retained 141 libraries for
the human data set (41 for mouse) containing more than
20 000 tags and not corresponding to tumoral tissues. The
libraries were then grouped into 19 tissues types (11 for

mouse). After adding all counts for libraries representing the
same tissue type, we converted absolute tag counts to relative
tag counts (c.p.m., count per million).

EST

We selected from GenBank (release 133, December 2002)
4906 743 ESTs from human tissues and 3 660463 ESTs
from mouse tissues. ¢cDNA libraries from cell culture,
tumors, pooled organs or unidentified tissues were excluded.
To limit stochastic variations in expression measures, we
only retained cDNA libraries that had been sampled with at
least 10 000 ESTs. We retained 44 non-tumoral tissues for
human and mouse data sets. CDS were then compared with
the EST data set by using MEGABLAST (26). MEGABLAST
alignments showing at least 95% identity over 100 nucleotides
or more were counted as a sequence match. This criterion was
chosen to be low enough to allow the detection of most ESTs
despite sequencing error, but stringent enough to distinguish in
most cases different members of highly conserved gene
families. Normalization of the absolute tag count was done
as for SAGE data.

Microarray

Oligonucleotide microarray data were extracted from the Gene
Expression Atlas [http://expression.gnf.org (27)] that contains
25 human non-tumoral tissues and 45 mouse non-tumoral
tissues. The sample replicates corresponding to the same tissue
were averaged. The signals of probes corresponding to the
same gene were averaged. In total, 7735 different human
mRNAs and 5297 mouse mRNAs are represented into the
resulting data set. As recommended by the authors (27),
genes whose expression level exceeded 200 arbitrary units
were noted as expressed.

Final data sets

For human data sets, 11 tissues are common to the three
methods (blood, brain, heart, kidney, liver, lung, ovary,



pancreas, placenta, prostate and uterus) and expression could
be evaluated for 6246 RefSeq mRNAs. For each of these
genes, we calculated expression breadth (number of tissues
with positive expression), expression mean (average level of
expression for expressed genes) and peak rate (maximum
level of expression), using each of the three methods.

For mouse data sets, very few tissues common to the three
methods were available, and we maintained one separate data
set for each method. Expression could be evaluated for
26 749 mRNAs and 45 tissues with EST data, 6906 mRNAs
and 11 tissues with SAGE data and 5297 mRNAs and 45
tissues with microarray data. The statistical analyses were
done using R (28).
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