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Classical studies in Metabolic Control Theory have shown that metabolic fluxes usually exhibit little sensitivity to
changes in individual enzyme activity, yet remain sensitive to global changes of all enzymes in a pathway.
Therefore, little selective pressure is expected on the dosage or expression of individual metabolic genes, yet entire
pathways should still be constrained. However, a direct estimate of this selective pressure had not been evaluated.
Whole-genome duplications (WGDs) offer a good opportunity to address this question by analyzing the fates of
metabolic genes during the massive gene losses that follow. Here, we take advantage of the successive rounds of
WGD that occurred in the Paramecium lineage. We show that metabolic genes exhibit different gene retention
patterns than nonmetabolic genes. Contrary to what was expected for individual genes, metabolic genes appeared
more retained than other genes after the recent WGD, which was best explained by selection for gene expression
operating on entire pathways. Metabolic genes also tend to be less retained when present at high copy number
before WGD, contrary to other genes that show a positive correlation between gene retention and preduplication
copy number. This is rationalized on the basis of the classical concave relationship relating metabolic fluxes with

enzyme expression.

Introduction

What are the selective forces shaping metabolic activ-
ities in an organism? On the evolutionary timescale, en-
zyme activities may change as a result of changes of
catalytic efficiency, gene expression, or protein stability.
Maximal attainable enzyme expression may change as a
result of changes in promoter strength, mRNA stability,
translation efficiency, or gene dosage through localized am-
plification, gene duplication, or changes in ploidy (see for
instance Kondrashov and Kondrashov 2006 for a review).
The resulting changes in enzyme activities will be con-
strained by the sustainability of metabolic fluxes, that is,
by the possibility to reach steady-state fluxes and concen-
trations compatible with physiological requirements. Clas-
sical studies in Metabolic Control Theory (MCT) have
shown that metabolic fluxes are not directly proportional
to activities of individual enzymes. Instead, fluxes typically
show a hyperbolic dependency with respect to enzyme con-
centrations (see for instance Small and Kacser 1993; Fiévet
et al. 2006). Moreover, most enzymes tend to have a rela-
tively low individual control on the fluxes they support.
This has been rationalized in the framework of MCT be-
cause the sum of the control coefficients of all enzymes
upon a flux always sums up to 1, which is one of the clas-
sical summation theorems of MCT (see Fell 1997 for an
introduction). Because the control of flux is usually distrib-
uted among several enzymatic steps, each enzyme tends to
have little control over the flux it carries in a large cellular
metabolic network. As a consequence, metabolic fluxes
are in general insensitive to gene dosage of individual en-
zymatic steps, which explains why metabolic mutations
are typically recessive with respect to their wild-type al-
leles (Kacser and Burns 1981). For similar reasons, one
would expect little selective pressure for maintaining
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individual duplicated enzyme genes. However, the situation
should be different for entire duplicated pathways because
fluxes are sensitive to a global change of all enzymes in a
pathway.

Up to now, very few data have been available to an-
alyze the selective forces acting on enzyme gene dosage.
Here, we reinvestigate this question taking advantage of
the large-scale changes in gene dosage that can be moni-
tored following whole-genome duplications (WGDs) in
the lineage of Paramecium tetraurelia. Indeed the massive
gene losses that follow WGDs represent an extreme case
that can be exploited to study the sensitivity of metabolism
to gene dosage. The P. tetraurelia genome is particularly
well suited for this analysis because three successive rounds
of WGD can be clearly deduced from its genome structure,
with only limited genome rearrangements (Aury et al.
2006). These three rounds of WGD will be referred to as
“old” “intermediary” and “recent.” Paralogous genes that
are related by a WGD event are called “ohnologues,” in
honor of the pioneering ideas of Susumu Ohno on the role
of WGDs in genome evolution (Ohno 1970; Wolfe 2001).
We also name “ohnologon” a maximal set of mutually oh-
nologous genes. An ohnologon may thus contain any
number from one to eight genes as we consider three
WGD events in the history of the P. tetraurelia genome.
The time elapsed between the old and the intermediary
WGDs, as well as between the intermediary and the recent
WGDs, was long enough that most gene pairs (respec-
tively 92% and 76%) eventually returned to a single gene.
On the other hand, the last WGD must be relatively young
because only 49% of the resulting duplicated genes were
lost. Therefore, we are witnessing an active phase of mas-
sive pseudogenization, which is confirmed by the direct
observation of numerous recent pseudogenes. It thus be-
comes possible to evaluate selective pressure on gene dos-
age by direct measurements of the rates of gene loss.
Contrary to the above expectation, Aury et al. (2006)
found that metabolic genes tend to be more retained than
other genes after the recent WGD. We present here a de-
tailed analysis of this retention pattern and interpret it in
the broad framework of MCT.
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Methods
PRIAM-Based Inference of P. tetraurelia Metabolic
Network

The complete annotated sequence of the P. tetraurelia
macronuclear genome was downloaded from http://parame-
cium.cgm.cnrs-gif.fr./download/gff/ (Arnaiz et al. 2007) and
integrated into alocal ACNUC database (Gouy etal. 1985) to
extractsequences of all encoded proteins. We used PRIAM to
assign Enzyme Commission (EC) numbers to annotated
genes (Claudel-Renard et al. 2003). PRIAM uses position-
specific scoring matrices (“profiles”) to detect specific en-
zyme modules with Reverse Position Specific BLAST
(RPS-BLAST) (Marchler-Baueretal. 2002). Weretained only
matches for which the E-value was below 10~ and for which
more than 70% of the profile span was aligned. EC numbers
were assigned on the basis of lowest E-values (93% of the se-
lected matches had an E-value below 10~ 10). Inasecond step,
we used the Kyoto Encyclopedia of Genes and Genomes
(KEGG) (Kanehisa et al. 2008) to select metabolic enzymes
from the EC data set, which was achieved by filtering for “Me-
tabolism” as the first CLASS field of KEGG orthology. This
resulted in excluding nonmetabolic enzymes such as protein
kinases that are typically encoded by large gene families. Af-
ter this filtering, enzymes encoded by more than 30 genes
were also excluded in order to avoid distorting the analysis
by a few very atypical enzymes. This resulted in the exclusion
of 280 genes corresponding to only three distinct EC codes:
2.5.1.18 (glutathione transferase, 33 genes); 3.6.3.14 (H " -trans-
porting two-sector ATPase, 38 genes); 3.1.4.12 (sphingomye-
lin phosphodiesterase, 209 genes). The complete listing of
1,144 metabolic genes and assigned EC numbers is provided
in the Supplementary Material online.

Ohnologous Gene Sets

We used ohnology relationships published previously
(supplementary tables 17—19 from Aury et al. 2006). In
some cases, the annotation of metabolic genes appeared to
be inconsistent among sets of ohnologues: some genes were
assigned an EC number, whereas some of their ohnologues
were not. Inspection of these cases showed that these ohno-
logues that are not annotated as metabolic correspond mainly
to truncated genes either because of annotation artefacts or
because of pseudogenization. Indeed about 1,500 of the
40,000 genes annotated in the Paramecium genome are trun-
cated and probably correspond to pseudogenes (Aury et al.
2006). It is not possible by sequence analysis alone to deter-
mine whether these truncated genes are functional or pseu-
dogenes. However, the fact that they are still recognizable
asohnologuesindicates thatif they are pseudogenes, the pseu-
dogenization event must be recent. Hence, these genes have
been retained as functional duplicates at least up to a recent
past. Such truncated ohnologues were therefore assigned
the same EC number as their annotated ohnologues and were
not counted as gene losses.

Correction for Gene Expression Levels

Expression data were obtained from single channel
microarrays in several growth conditions. Microarrays were

Table 1

Gene Loss Frequencies after WGD

WGD Event Metabolic Genes Nonmetabolic P Value

Recent 42% 49% <0.001

After correction for gene 42% 40% NS®
expression levels

Intermediary 77% 76% NS

Old 91% 92% NS

Gene loss frequencies are expressed as the frequencies of ohnologous gene
pairs that returned to a single gene after WGD. Significance was assessed with the
x* test (NS: not significant at the 5% level). “Significance after correction for gene
expression was calculated on the basis of 1,000 random sets of nonmetabolic
ohnologons with the same distribution of expression levels (see Methods).

designed by Nimblegen, with six 50-mer probes per gene.
Signals from the 45 arrays were simultaneously normalized
using the normalizeBetweenArrays function from the
Limma package (Smyth and Speed 2003). The expression
of each gene in each condition was taken as the median of
the six individual 50-mer signals. We calculated a global
expression level of each gene as the log,-transformed me-
dian value across all 45 arrays.

Correction for gene expression levels aimed at obtaining
two subsets with an identical distribution of expression from
two sets of ohnologons. Expression levels of ohnologons were
taken as that of a randomly chosen gene within each ohnolo-
gon, rounded at the first decimal. For each bin of expression
level (from 0.0 to 16.0, with a 0.1 interval), we randomly
picked an equal number of ohnologons from both data sets.
P values were obtained on the basis of 1,000 randomizations.

Results
Retention of Metabolic Genes Following WGD is Best
Explained by Selection for Gene Expression

Metabolic genes were identified in the P. tetraurelia
genome in two steps. The first step consisted in mapping
genes to EC numbers using EC-specific profiles from
PRIAM (Claudel-Renard et al. 2003). The second step se-
lected all enzymes involved in metabolism, excluding en-
zymes acting on macromolecules on the basis of the KEGG
orthology classification (Kanehisa et al. 2008). This re-
sulted in 1,144 predicted metabolic genes, corresponding
to 346 distinct EC numbers including 305 enzymes in-
volved in central metabolism (see Supplementary Material
online for a complete listing). In order to study the selective
pressure acting on the dosage of these metabolic genes, we
exploited the relationships between ohnologues, that is,
paralogous genes that are related by a WGD event.

In a previous work, Aury et al. (2006) were able to
precisely match ohnologous genes deriving from three
rounds of WGD, taking advantage of the low rearrangement
frequency of the P. tetraurelia genome. This makes it pos-
sible to dissect gene retention for various gene classes fol-
lowing WGD. Moreover, the last WGD of the P. tetraurelia
genome is sufficiently recent that it becomes possible to
capture dynamic features of gene retention. The P. tetraurelia
genome is thus particularly well suited for the analysis of
selective forces acting on gene dosage.

We compared frequencies of gene loss for metabolic
versus nonmetabolic genes after WGD (table 1). We found
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Fic. 1.—Expression of metabolic genes in Paramecium tetraurelia.
The density distributions of expression levels are shown for the 38,498
nonmetabolic genes (dashed line) and the 1,144 metabolic genes (solid
line). The mean expression level is significantly higher for metabolic
genes (11.8 vs. 10.1; P value < 1076, Welch two sample ¢ test).

that metabolic genes were more retained than other genes
following the recent WGD, in agreement with previous ob-
servations (Aury et al. 2006). This selective pressure on
gene copy number suggests selection for metabolic gene
expression, because the concentration of an enzyme should
be proportional to relative gene copy number after WGD.
Only on a longer timescale are compensatory mechanisms
expected to arise that may compensate for a decrease in rel-
ative gene copy number. Indeed there is a positive correla-
tion between gene retention and gene expression, as noted
previously both on the yeast genome duplication (Seoighe
and Wolfe 1999) and on P. tetraurelia (Aury et al. 2006).
We therefore compared expression patterns of metabolic
genes with that of other genes, on the basis of microarray
data obtained in different growth conditions (see Methods)
and found that metabolic genes are significantly more ex-
pressed than other genes (fig. 1). In order to compare met-
abolic genes with nonmetabolic genes with similar
expression levels, we extracted random subsets of nonme-
tabolic genes with the same distribution of expression levels
(see Methods). We found that metabolic and nonmetabolic
genes were retained at a similar level after the recent WGD
when correcting for similar expression (table 1). Therefore,
the overretention of metabolic genes can be explained pri-
marily by a selective pressure on gene expression.

Distribution of the Number of Ohnologous Genes after
Three Rounds of WGD

In order to better characterize metabolic ohnologons,
we compared the size distribution of metabolic and nonme-
tabolic ohnologons. Indeed the present state of an ohnolo-
gon is the result of a succession of duplications and gene
losses over the three rounds of WGD, which is more infor-
mative than gene retention after a single WGD (fig. 2).

The distribution of the number of metabolic genes
per ohnologon was narrower than that of nonmetabolic
genes, with an excess of ohnologons with two or three
genes (fig. 3). Conversely, there was a deficit of metabolic
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Fi1G. 2.—Schematic evolution of an ohnologon. The evolution of an
ohnologon is inferred by parsimony analysis from the contemporary
ohnologon. Full black and gray circles refer to present and past ohnologues,
respectively. In this example, gene loss frequencies are 33% and 50% for
the recent and intermediary WGD, respectively (calculated as in table 1).

singletons and of large ohnologons with four metabolic
genes or more. This deficit was even more pronounced
when correcting for similar expression levels, showing that
metabolic genes behave indeed differently from other genes
with respect to gene dosage. Metabolic singletons were
slightly underrepresented after correction for expression
levels, which suggests a stronger selective pressure for met-
abolic gene expression than for nonmetabolic genes at low
gene dosage.

Relationship between Gene Retention and Gene Copy
Number before WGD

Generally, genes that were retained after a WGD tend
to be also retained preferentially after the WGD that fol-
lows. For instance, gene loss frequency decreased from
54% to 42% when comparing duplicated genes that were
present at single copy or multiple ohnologous copies,
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Fi6. 3.—Distribution of gene numbers in ohnologons. The histogram
reports the distribution of gene numbers for metabolic genes and non-
metabolic genes with dark gray and black bars, respectively. Correction for
gene expression was obtained by drawing 1,000 random sets of non-
metabolic genes with the same distribution of expression as metabolic genes
(light gray; error bars indicate standard deviations).
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FiG. 4—Relationship between gene loss frequency and number of genes before WGD. Gene loss frequencies were calculated as in table 1
and compared, depending on the number of ohnologous genes before WGD. Full line: metabolic genes. Long dashes: nonmetabolic genes. Significance
of differential gene loss depending on gene copy number was assessed with a 3> test. When correcting for expression levels of nonmetabolic
genes (short dashes), significance was assessed on the basis of the fraction of randomized sets that contradicted the main trend. **, P value < 1073; *,

P value = 6.6 x 1072

respectively before the recent WGD (fig. 4a). Similarly,
gene loss frequency decreased from 78% to 63% when
comparing genes that had been retained as single copy ver-
sus two copies before the intermediary WGD (fig. 4b).
Therefore, there is a positive correlation between gene re-
tention propensity at successive WGDs, which can be un-
derstood as resulting from a continuous selective pressure
on gene expression, hence on gene dosage, consistently
exerted both before and after the WGD event.

The retention pattern appeared quite different for met-
abolic genes, which did not show any positive correlation
between retention and copy number before WGD. Their av-
erage loss rate even increased from 76% to 88% when com-
paring genes that had been retained as single copy versus
two copies before the intermediary WGD (fig. 4b). This dif-
ference in retention patterns was not related to differences
in gene expression. Indeed nonmetabolic genes drawn ran-
domly with the same distribution of gene expression still
exhibited a positive correlation between gene retention
and copy number (fig. 4a). Moreover, metabolic genes were
more retained than nonmetabolic genes with similar expres-
sion levels when there was only one gene per ohnologon
before the recent WGD (40% vs. 47% gene loss, P value =
9 x 1073 , fig. 4a). Therefore, there is a preferential loss of
metabolic genes at high gene copy number, which makes
their retention pattern atypical.

Discussion

According to classical MCT, metabolic fluxes are usu-
ally quite insensitive to changes in expression of an individ-
ual enzyme in the large metabolic network encountered in
the cellular context. This inherent robustness of metabolic
networks explains why most metabolic mutations are re-
cessive (Kacser and Burns 1981). By analogy, the theory
predicts that duplicated metabolic genes are generally dis-
pensable, which would make their loss neutral and result
in rapid gene decay. A priori, one may expect two exceptions
to that rule. First, the retention of duplicated metabolic genes
may be favored by natural selection when one or both copies
evolved toward different functions (by neo or subfunction-
alization) (Force et al. 1999). Although some cases of func-
tional divergence have been described, the fact that most

duplicated genes are massively lost following WGDs sug-
gests that the vast majority of ohnologous genes perform re-
dundant functions during this phase of genome reduction.
Therefore, neofunctionalization or subfunctionalization con-
cerns primarily the minority (8%) of ohnologous genes that
are retained over long evolutionary time frames and only
marginally the more recent ohnologues that we study here.
Thus, we can conclude that the dynamics of gene loss on the
short term (i.e., after the recent or intermediary WGD) is
mainly governed by dosage constraints, not by functional di-
vergence. Second, some metabolic genes may be retained as
duplicates because they encode enzymes with particularly
high flux control coefficients (between 0.5 and 1). An exam-
ple of this type concerns the hexose transporter that exerts
high control over glycolysis in a number of organisms
(e.g., Pritchard and Kell 2002). For these enzymes with ex-
ceptionally high control on flux, high gene dosage can be
interpreted directly as resulting from a selection for high flux.
However, such high flux control coefficients are the excep-
tion, not the rule (see for instance Chapter 6 of Fell 1997).
Therefore, high flux coefficients cannot explain the global
observation that metabolic genes have been preferentially re-
tained following the recent WGD in the Paramecium lineage
(Aury et al. 2006).

Selective Pressure for Metabolic Gene Expression

The preferential retention of metabolic genes suggests
a selective pressure for metabolic gene expression. Indeed
gene dosage directly influences the global expression level
of a protein, so that highly expressed genes tend to be re-
tained preferentially after WGD (Seoighe and Wolfe 1999).
Metabolic genes were expressed at a higher level than non-
metabolic genes (fig. 1), and they were retained at a similar
level as other genes after correction for this higher gene ex-
pression (table 1). Therefore, we attribute the higher reten-
tion of metabolic genes to selection for gene expression,
which seems at odds with the reasoning above, based on
MCT, concluding that duplicated metabolic genes should
be generally dispensable because of a lack of control on
flux. Note however that this reasoning considered the effect
of the loss of a single duplicated metabolic gene, which



differs from the situation experienced after WGD in which
a large number of duplicated genes are gradually lost.

Consider for instance a linear metabolic pathway with
n distinct steps. After WGD, each of the n enzymes is ex-
pressed from two ohnologous genes, one of which may be
lost randomly. Let p be the number of steps for which one of
the two ohnologues has been lost, numbered from 1 to p
without loss of generality. Following Small and Kacser
(1993) (their eq. 24), the change in flux J in the pathway
is well approximated by the following relationship:

J 1
Jo 1+Z‘?=IQ’,O

where J, is the metabolic flux achieved immediately after
WGD and C‘i’0 are flux control coefficients relating the
steady-state flux J and the reaction rates v; around the initial
flux Jo: CJ0= J‘—Ug—f The metabolic flux will decrease grad-
ually as a hyperbolic function of the group control coeffi-
cient Zf’zl C{“ for each additional loss of an ohnologue.
Ultimately, the flux will be divided by 2 if all ohnologues
are lost because of the summation theorem:

(1)

n

Sch-1 2)

i=1

Such a 2-fold decrease in flux will have a very strong impact
on fitness when it concerns catabolism or central metabo-
lism (Dykhuizen and Dean 1990), and indeed 88% of the
metabolic genes considered here concern central metabo-
lism. Therefore, although the loss of individual ohnologues
is expected to be generally neutral, the eventual loss of all
ohnologous duplications in a metabolic pathway will be
strongly counterselected in the absence of compensating
changes in relative gene expression. This explains the
global pattern of high retention of metabolic genes after
the recent WGD, which is related to their expression levels.
Potentially, two types of compensating changes could re-
lieve the selective pressure on enzyme gene dosage. The
first type concerns changes in promoter activities so that
individual genes are more expressed. The second type of
compensating change results from the decrease of the ge-
nome size. Indeed even in the absence of changes in pro-
moter activity, relative gene expression will change in
proportion to the relative gene dosage //L, where [ is the
dosage of the gene of interest and L is the total number
of genes in the genome. As a result, the flux normalized
per total protein amount, hence per cellular unit volume,
will scale as J/L and increase upon the gradual decrease
of genome size. Ultimately, the normalized flux will return
to its original preduplication level when all gene duplica-
tions have been lost.

Retention of Ohnologous Genes across Successive
WGDs

Metabolic genes behave differently from other genes
for one aspect: their retention across successive WGDs. In-
deed, nonmetabolic genes were retained preferentially when
they had been retained from the previous WGD, which man-
ifests a continuous selection on gene expression. Metabolic
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Fitness w

xo Gene dosage or expression x

FiG. 5.—General relationship between fitness and gene dosage or
expression. The model posits a concave hyperbolic relationship between
fitness w and gene dosage or expression x for metabolic genes (full line),
versus a general affine relationship for other genes (dashed line). The
selective pressure on gene dosage is the same for both models at
a particular value x; of total ohnologue expression such that Ow/0x is
equal under both models. Selection on metabolic genes is lower than on
other genes above this value (shaded area). The converse holds true below
Xo- This model explains why retention of metabolic genes is inversely
related to gene dosage.

genes did not show this trend or showed even the inverse
trend after the intermediary WGD (fig. 4). We propose that
this difference reflects a different relationship between fitness
and gene dosage (fig. 5).

Consider the same linear pathway as above, immediately
after the recent WGD: Each of the n enzymes is expressed
from 2k ohnologous genes, depending on the number k of
genes in the ohnologon before WGD (k = 1,...,4). As above,
we can approximate the flux J remaining after retaining only
Ip genes out of the 2kp genes initially involved in p reactions
(Small and Kacser 1993):

I 1
- a—
Joo 14370 O EH

3)

This concave hyperbolic relationship between metabolic
flux J and gene dosage / implies that the initial losses of
flux are small upon loss of metabolic ohnologues:
J /Jo>1/2k will apply, provided 37 , C/’<1. Only if all
n metabolic ohnologons are reduced from 2k to / genes will
the flux scale in proportion to gene dosage with J /Jo=1/2k.
We translate these relationships into relative fitness w under
a simple model in which the normalized flux contributes
linearly to fitness above a basal fitness w, that remains when
the pathway is disrupted:
J Ly

w=wy + (1 W())JO I 4)
where L is the current number of genes in the genome and L
the total number of genes immediately after WGD. Because
most metabolic pathways are essential, wy = 0 so that fitness
scales linearly with flux (Dykhuizen and Dean 1990):

LAl 1Ly

e P 5
YEL T 2%k L )
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Therefore, metabolic ohnologons are intrinsically robust to
initial gene losses particularly when £ is high. Our analysis
shows that this is not the case for nonmetabolic genes, be-
cause they are globally more retained when k£ > 2. There-
fore, the general relationship between fitness and gene
dosage must be different. The simplest model is to consider
an affine relationship between relative fitness w and gene
dosage I:

w=wy + (1 — wo)=—— (6)

which entails a constant fitness penalty {[1 — wo]/
2k}{Lo/L} for each loss of an ohnologue. This model ex-
plains the lower retention of metabolic genes compared with
nonmetabolic genes with similar expression levels when £ is
high and the converse when & is low. Indeed we may plot
fitness as a function of total ohnologue expression under both
models (fig. 5). Here “total ohnologue expression” refers to
the cumulated expression from all isofunctional ohnologues:
It results both from the relative gene dosage {//2k}{Ly/L}
and from individual promoter activities. One may define two
regions of total ohnologue expression: Above a certain level,
the selective pressure is below average because of the con-
cave relationship relating fitness and expression. The con-
verse is true at low dosage or expression, when the
selective pressure on metabolic ohnologues is higher than
average. These opposite trends tend to stabilize metabolic
ohnologue expression, hence dosage, around a neutral point
at which the selective pressure on metabolic gene expression
is equal to the average. Therefore, in the long term, the rel-
ative dosage of metabolic genes will be buffered by selection,
as we could indeed observe following the old WGD. In the
short term, however, metabolic genes will be more retained,
so that their relative dosage will increase as various other
genes are lost at a faster rate. As a consequence, they will
experience less and less selective pressure (shaded area,
fig. 5), so that their dosage will eventually tend to return
to their equilibrium level.

In conclusion, the pattern of retention of metabolic
genes after WGD in the genome of Paramecium is con-
sistent with the predictions of MCT. Interestingly, the
predictions of this model are different in case of individ-
ual gene duplications compared with WGDs: In the first
case MCT predicts a rapid loss of duplicated genes,
whereas in the latter, it predicts a global selective pres-
sure to retain gene duplicates, because the pressure on
a given gene depends on the fate of the other duplicated
genes in the metabolic pathway. With its three full rounds
of WGD, the Paramecium genome has thus offered
a unique opportunity to study selective forces acting
on metabolic gene dosage on a wide range of evolution-
ary timescales.

Supplementary Material

Supplementary Material is available at Molecular Biol-
ogy and Evolution online (http://www.mbe.oxfordjournals.

org/).
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