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ABSTRACT: Although mutations that are detrimental to
the fitness of organisms are expected to be rapidly purged
from populations by natural selection, some disease-
causing mutations are present at high frequencies in
human populations. Several nonexclusive hypotheses
have been proposed to account for this apparent paradox
(high new mutation rate, genetic drift, overdominance, or
recent changes in selective pressure). However, the
factors ultimately responsible for the presence at high
frequency of disease-causing mutations are still conten-
tious. Here we establish the existence of an additional
process that contributes to the spreading of deleterious
mutations: GC-biased gene conversion (gBGC), a
process associated with recombination that tends to favor
the transmission of GC-alleles over AT-alleles. We show
that the spectrum of amino acid-altering polymorphisms
in human populations exhibits the footprints of gBGC.
This pattern cannot be explained in terms of selection
and is evident with all nonsynonymous mutations,
including those predicted to be detrimental to protein
structure and function, and those implicated in human
genetic disease. We present simulations to illustrate the
conditions under which gBGC can extend the persistence
time of deleterious mutations in a finite population.
These results indicate that gBGC meiotic drive con-
tributes to the spreading of deleterious mutations in
human populations.
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Introduction

The majority of disease-causing mutations (DMs) detected in
human populations are very recent, having only been transmitted
over a few generations at most [Slatkin and Rannala, 2000].

A substantial fraction of DMs nevertheless correspond to more
ancient mutations that have persisted for a large number of
generations. Several nonexclusive hypotheses have been proposed to
explain why such detrimental mutations could have escaped negative
selection. First, detrimental mutations that have a limited impact on
reproductive success (e.g., mutations causing late-onset diseases) can
spread simply by genetic drift [Kryukov et al., 2007]. Second, some
DMs confer a selective advantage upon heterozygotes (over-
dominance) [Dean et al., 2002]. Third, some DMs may have
attained a high population frequency in the past because they were
once advantageous under environmental conditions that no longer
pertain [Di Rienzo and Hudson, 2005]. Finally, some DMs may
occur at high frequency because of a high de novo mutation rate or
a germ-line selective advantage [Choi et al., 2008].

Population genetic models indicate that in addition to genetic
drift and natural selection, there is a third process that can
contribute to the spreading of mutations within a population:
biased gene conversion (BGC). Gene conversion occurs during
homologous recombination and involves the nonreciprocal
transfer of sequence information between the two recombining
DNA molecules. This process is said to be biased if one of the two
DNA molecules involved is more likely than the other to be the
donor. Gene conversion can affect paralogous sequences duplicated
in the genome or different alleles at a given locus [Chen et al.,
2007]. In the case of allelic gene conversion, BGC leads to an excess
of the ‘‘favored’’ allele in the pool of gametes and hence tends to
increase the frequency of this allele in the population. Theoretical
analyses have shown that, as with selection, BGC can increase the
probability of fixation of the favored allele [Nagylaki, 1983].

Although the theoretical consequences of the BGC process have
been known for some time, the potential practical importance of
this phenomenon has remained largely unstudied. Recently, the
analysis of polymorphism and nucleotide substitution patterns in
primates has provided firm evidence for BGC acting genome-
wide, favoring GC alleles over AT alleles (for a review, see [Duret
and Galtier, 2009a]). Indeed, this process of GC-biased gene
conversion (gBGC) appears to be the major determinant of the
evolution of base composition at silent sites (noncoding regions,
synonymous codon positions) in primate genomes [Duret and
Arndt, 2008]. Further, there is now good evidence that gBGC has
impacted upon the evolution of functional sequences, both in
regulatory noncoding sequences [Duret and Galtier, 2009b; Galtier
and Duret, 2007] and in protein-coding exons [Berglund et al.,
2009; Galtier et al., 2009]. Importantly, these results indicate that,
in our species’ evolutionary past, gBGC is likely to have hampered
the action of purifying selection and led to the fixation of
deleterious mutations.
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Here we have sought to determine whether gBGC influences the
frequency of deleterious nonsynonymous polymorphisms in
extant human populations. To this end, we investigated the
segregation patterns of AT-GC and GC-AT single nucleotide
polymorphisms (SNPs) according to the local recombination rate.
We also analyzed different classes of nonsynonymous SNPs,
predicted to be deleterious or known to be involved in genetic
disease, using synonymous and noncoding SNPs as a neutral
control. All classes of SNPs were found to display the hallmarks of
the gBGC process. Further, we provide evidence that these
segregation patterns cannot be explained by ascertainment bias
in SNP detection, artifacts in SNP orientation, or other biological
processes such as natural selection. In support of these observa-
tions, we present simulations to illustrate the conditions under
which gBGC can extend the persistence of deleterious mutations
in finite populations. We conclude that gBGC has not only had a
substantial impact on human evolution but is also highly relevant
to human health and disease.

Materials and Methods

Single Nucleotide Polymorphism Data

To determine the frequency of SNPs in human populations, we
used the data gathered in the HapMap Project phase III, release 27
[Frazer et al., 2007]. We analyzed data from four HapMap
populations: YRI (Yoruba in Ibadan, Nigeria), JPT (Japanese in
Tokyo), CHB (Han Chinese in Beijing), and CEU (Utah residents
with ancestry from northern and western Europe) and we grouped
the CHB and JPT samples into a single set. We analyzed only SNPs
that were polymorphic in the unrelated individuals genotyped in
each sample (3,566,377 total, Supp. Table S1). Ensembl annota-
tions [Hubbard et al., 2009] were used to determine the positions
of SNPs with respect to transcripts and coding sequences. Four
classes of polymorphisms were retained for analysis: intergenic,
intronic, protein-coding synonymous and protein-coding non-
synonymous.

As a complement, we used an independent polymorphism
dataset comprising 39,440 autosomal SNPs, found exclusively in
coding sequences, at both synonymous and nonsynonymous
positions [Lohmueller et al., 2008]. These SNPs were determined
by direct exon sequencing in 10,150 transcripts, for two
population samples (hereafter termed AFR and CAU): 15
African-American individuals (30,718 SNPs) and 20 European-
American individuals (22,514 SNPs, Supp. Table S2).

Inference of Ancestral and Derived Alleles

We determined the ancestral and derived states of human
polymorphisms using human–chimpanzee whole-genome align-
ments, obtained from the UCSC Genome Browser [Rhead et al.,
2010] through Galaxy [Giardine et al., 2005].

To infer the most likely ancestral and derived alleles for each SNP,
we used a maximum likelihood approach that takes into account the
hypermutability of CpG dinucleotides [Duret and Arndt, 2008].
Starting from whole-genome alignments of the human and
chimpanzee sequences, we constructed triple alignments that
included two sequences for the human population, corresponding
to the two alleles observed for each SNP. The allocation of alleles to
the two human sequences was performed randomly. We then
inferred the ancestral sequence for the human population, thereby
obtaining for each genomic position a probability distribution for
the identity of the ancestral nucleotide. The ancestral nucleotide was

randomly drawn according to these four probabilities. In our
analysis, we included only SNPs with a constant 50-30 context (i.e.,
positions with two neighboring SNPs were removed, and we
required that the human and chimpanzee nucleotides should be
identical).

To confirm that this first approach had not been misled by
ancestral ‘‘misinference’’ issues, we also used a second approach,
developed by Hernandez et al. [2007a], which corrects the
spectrum of derived allele frequencies, obtained by parsimonious
reasoning, using a context-dependent model of sequence evolu-
tion (software kindly provided by Ryan D. Hernandez). We only
considered SNPs found within a constant 50-30 context, as defined
above. As indicated by the authors, we further restricted our
dataset to positions where the chimpanzee nucleotide corre-
sponded to one of the two alleles observed in the human
population. The context-dependent site frequency spectrum
obtained by maximum parsimony was then corrected using the
model proposed by Hernandez et al. [2007a].

As noted previously [Gibbs et al., 2007] for disease-associated
mutations, the disease-associated allele sometimes represents the
ancestral state; here, we focused exclusively on SNPs for which the
derived allele was associated with the disease.

SNP Sampling and Derived Allele Frequency Spectrum

The number of genotyped chromosomes varies widely between
individual SNPs. The correction method developed by Hernandez
et al. [2007a] requires the derived allele frequency spectrum to be
constructed employing the same number of chromosomes for all
SNPs. To fulfill this requirement, we applied the following
procedure (as proposed by [Hernandez et al., 2007b]): we
computed the minimum number of sampled chromosomes (nmin)
for a given SNP dataset and then estimated the derived allele
frequencies for a dataset reduced to nmin chromosomes. For a SNP
that was originally present in n out of m sampled chromosomes,
the probability that it will be present at a frequency i in the
reduced sample is given by the hypergeometric distribution:

Ci
n � Cnmin�i

m�n

Cnmin
m

;

where Cv
u is the number of choices of v elements among u. Using

this formula, we can generate the expected derived allele frequency
spectrum in a subsample of nmin chromosomes. Note that this
procedure was applied independently for each class of SNPs
analyzed here (intergenic, intronic, synonymous SNPs, etc.). The
nmin values for each SNPs sample and for each region are given in
Supp. Table S5.

Recombination Rates and Hot Spots

The positions of 34,136 recombination hotspots were taken
from HapMap release 21 [Myers et al., 2005], and converted from
hg17 to hg18 assembly coordinates using the liftover utility from
the UCSC Genome Browser [Rhead et al., 2010]. We also
computed the regional recombination rates in 10 kb sliding
windows for autosomal mutations using the genetic maps
provided by [Frazer et al., 2007], release 36.

Disease-Associated Mutations

We extracted 45,751 disease-associated mutations occurring in
protein-coding sequences from HGMD release 2008.3 [Stenson
et al., 2009]. Using annotations from the Ensembl database
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[Hubbard et al., 2009] release 49, we were able to map
unambiguously onto the human genome the positions of 43,953
disease-associated mutations. A total of 193 mutations were
synonymous and hence were excluded—here we only analyzed
nonsynonymous mutations (34,814 missense and 8,946 non-
sense).

HGMD mutations are allocated to four distinct classes with
respect to their association with disease: DM, mutations regarded
as being a direct cause of disease; DP, polymorphisms exhibiting a
significant statistical association with disease but without addi-
tional functional evidence supporting their involvement; DFP,
disease-associated polymorphisms with additional functional
evidence supporting their direct involvement; FP, polymorphisms
reported to affect the structure, function or expression of the gene
(or gene product), but with no known disease association (Supp.
Table S3).

PolyPhen Predictions

To predict which nonsynonymous SNPs present in HapMap are
potentially damaging for protein structure and function, we used
PolyPhen predictions for dbSNP build 126 [Sunyaev et al., 2001].
For the exon sequencing dataset, we used the PolyPhen
predictions provided by the authors [Lohmueller et al., 2008]
(Supp. Table S4). We focused on the SNPs predicted to be
‘‘probably damaging,’’ for which the derived allele has been shown
to be the deleterious allele in 99% of cases [Lohmueller et al.,
2008].

Definition of Recombination Classes

To define regions of high and low recombination, we sorted
each SNP dataset according to the minimum distance to a
recombination hotspot, and then divided the dataset into three
equal-sized classes. Only the first and the third classes were
compared in order to maximize the crossover rate difference
between the high and low recombination regions. This procedure
was applied independently for each genomic region (intergenic,
intronic, coding synonymous, etc.) and for each HGMD and
PolyPhen subset of SNPs.

Statistical Analyses

All statistical analyses were performed with the R environment
[R Development Core Team, 2008]. To test the effect of gBGC, we
compared the mean derived allele frequencies (DAF) for AT-GC
and GC-AT mutations. Given that the distribution of DAF is
non-Gaussian, we used a randomization procedure to test the
statistical significance of the mean difference [d 5 mean(AT-
GC)�mean(GC-AT)]. To do this, we randomized the direction
of AT-GC and GC-AT SNPs and compared the observed d
value with those obtained from 1,000 randomized datasets. We
computed a P-value corresponding to the proportion of simulated
datasets for which the d value was higher than that observed in the
real dataset; our test was thus one tailed.

We also analyzed the difference in mean DAF between the two
mutation classes (d) for regions of high and low recombination.
To test if the difference in d (dd) between the two recombination
classes was statistically significant, we developed a randomization
procedure: we drew randomly two sets of sites (from all possible
SNPs in a given genomic region), equal in size to the original low
recombination and high recombination classes, and computed dd

for the simulated dataset. A one-tailed p-value was computed by
comparing the observed dd value with 1,000 simulated datasets.

Simulation of the Impact of gBGC on the Derived Allele
Frequency Spectrum

We used simulations to determine the expected distribution of
derived allele frequencies (DAF) at loci that are subject to
mutation, negative selection, and biased gene conversion. The
initial population was homozygous and finite following a Fisher-
Wright probabilistic model with multinomial sampling, ensuring
a constant population size over time. The evolution of the derived
allele frequency was simulated independently for each locus. Each
simulation was performed for over 20,000 generations, at the end
of which the DAF of the derived allele was calculated.

The alleles that can segregate at each locus belong to one of two
classes: S(trong) (G or C) or W(eak) (A or T). The fitness of
genotypes SS, SW and WW are denoted respectively oSS, oSW and
oWW. The mean fitness value in the population is �o:

�o ¼ zSSoSS1zSWoSW 1zWWoWW

where z denotes the zygotic frequencies.
For individuals that are heterozygous at a given locus (SW), we

termed u the probability of conversion S-W and v the probability
of conversion W-S. The gene conversion bias at this site is
measured through d5 v�u and has positive values when gBGC
occurs. The frequency of the S allele is denoted p and hence the
frequency of allele W is 1�p. The model describes the transition
from one generation, n, to the next, n11, admitting panmixia,
with the following equations:

adults n: fSS; fSW ; fWW ;

gametes n: gS ¼
2fSS1ð11dÞfSW

2
; gW ¼ 1� gS

zygotes n11: zSS ¼ g2
S ; zSW ¼ 2gSgW ; zWW ¼ g2

W

adults n11: f �SS ¼
oSS

o
zSS; f �SW ¼

oSW

o
zSW ; f �WW ¼

oWW

o
zWW

alleles n11: ps ¼ f �SS1 1
2 f �SW ; pW ¼ 1� pS

where f represents the frequency of individuals at generation n, g
the frequency of gametes at generation n, and f� the frequency of
individuals at generation n11.

Here we only considered mutations that are both deleterious
and recessive. We termed s the selection coefficient, so that the
fitness of individuals homozygous for the mutant allele is
o5 1�s. Thus, for the simulations of the fate of a newly-arisen
W-S mutation in a WW population, we have oSS 5o and
oSW 5oWW 5 1, whereas for the simulations of the fate of a
newly-arisen S-W mutation in an SS population, we have
oSS 5oSW 5 1 and oWW 5o.

Simulations were run in populations of size Ne 5 10,000 with a
mutation rate of 10�8 mutations per base-pair per individual per
generation, using different combinations of gBGC coefficient
(d5 0, d5 0.00013, and d5 0.0013) and selection coefficient
(s 5 0, s 5 10�4, s 5 10�3, and s 5 10�2).

Supporting Information

The dataset used in this publication is freely available at
the following Website: ftp://pbil.univ-lyon1.fr/pub/datasets/
Necsulea2010
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Results

gBGC Hallmarks are Observed for Deleterious SNPs

To investigate whether gBGC affects the segregation of
deleterious mutations in human populations, we studied the
spectrum of derived allele frequencies (DAFs) of nonsynonymous
SNPs as a function of the local recombination rate across human
chromosomes. We first analyzed the HapMap dataset of human
SNPs, which provides frequencies of each allele in different
human populations [Frazer et al., 2007]. We inferred the ancestral
and derived alleles for SNPs by means of a maximum likelihood
approach that incorporates CpG hypermutability [Duret and
Arndt, 2008], using the chimpanzee genome as an outgroup.
Three distinct subsets of nonsynonymous polymorphisms were
investigated: (1) all HapMap nonsynonymous SNPs; (2) HapMap
nonsynonymous mutations for which the impact on the function
of the protein was predicted by PolyPhen [Sunyaev et al., 2001] to
be ‘‘probably damaging’’; and (3) HapMap SNPs corresponding to
disease-associated nonsynonymous mutations reported in the
HGMD database [Stenson et al., 2009]. We further split the
HGMD dataset in order to analyze specifically those inherited
mutations that are considered to be a direct cause of disease
(DM), thereby excluding those mutations that have only been
associated statistically with disease (Supp. Table S3). As a control,
we also analyzed SNPs at silent sites, for which evidence of gBGC
has already been reported [Galtier et al., 2001; Spencer et al., 2006;
Webster and Smith, 2004]. As expected, DAFs were found to be
negatively correlated with the strength of purifying selection: SNPs
in noncoding regions or at synonymous codon positions exhibited
the highest mean DAFs, whereas the lowest mean DAFs were
observed for mutations that are known to be involved in genetic
disease or that were predicted by PolyPhen to be deleterious
(Fig. 1 and Supp. Tables S8–S10).

The gBGC model makes two firm predictions: first, in regions
of high recombination, the spectrum of derived allele frequencies
(DAFs) for SNPs is expected to be skewed, with higher frequencies
for AT-GC than for GC-AT mutations; second, this skewing is
expected to be weaker in genomic regions characterized by a lower

recombination rate. To test these predictions, we classified SNPs
into groups of high and low recombination on the basis of their
physical distance to the nearest recombination hotspot [Myers
et al., 2005]; similar results were obtained when the recombination
classes were computed on the basis of the average crossover rate in
fixed-size sliding windows (not shown). We found that in regions
of high recombination, AT-GC mutations segregated at higher
frequencies than GC-AT mutations (Fig. 2, Supp. Tables S8–S10,
and Supp. Figs. S2–S4). This difference was statistically significant
in all HapMap samples, both for silent SNPs and for the three sets
of nonsynonymous SNPs (Table 1). This pattern was evident even
within the DM subset. For this class, the tests remained significant
in only one of the HapMap samples. Nevertheless, given that our
observations for the more abundant classes of mutations (silent
sites, nonsynonymous SNPs) were always in agreement with the
gBGC hypothesis, and significantly so, the uncertainty related to
the DM class is most likely only a consequence of the reduced
sample size. As predicted by the gBGC model, the difference
between the mean AT-GC and GC-AT frequencies is much
stronger for SNPs located in regions of high recombination rate
compared to SNPs located in regions of low recombination rate
(Fig. 1, Table 1, and Supp. Tables S13–S15). Thus, all classes of
SNPs exhibit the hallmarks of the gBGC process, not only the
silent sites but also the three subsets of nonsynonymous sites.

Control for Variations in Selective Pressure
on Nonsynonymous Mutations

We observed that at nonsynonymous sites, GC-AT mutations
segregate at lower frequency than AT-GC mutations. One
potential explanation for this observation is that AT-GC
nonsynonymous mutations might be, on average, less deleterious
than GC-AT nonsynonymous mutations. To test this hypothesis,
we compared AT-GC and GC-AT SNPs that lead to the same
amino acid replacement, and hence are expected to have the exact
same fitness impact. In total, there are 10 amino acid changes that
can be caused both by AT-GC and GC-AT mutations. For each
of the three populations, we performed pairwise comparisons of
the mean DAF of AT-GC and GC-AT SNPs causing the same
amino acid changes: in 23 out of 30 comparisons, the AT-GC
SNP had the highest mean DAF (Supp. Table S19). For example,
the mean DAF of Q-H nonsynonymous SNPs in the CEU
population is 0.19 when it results from an AT-GC mutation,
compared to 0.16 when it results from a GC-AT mutation.
Conversely, the mean DAF of the reverse amino acid change (H-Q)
is 0.35 when it results from an AT-GC mutation, compared to
0.23 when it results from a GC-AT mutation. Thus, the mean
DAF varies according to the direction of the GC-content change
(AT-GC vs. GC-AT), independently of the nature of the amino
acid change. Hence, the observed differences in mean DAF
between AT-GC and GC-AT nonsynonymous SNPs cannot be
attributed to differences in selective pressure on the corresponding
amino acid changes.

Control for SNP Ascertainment Bias and Ancestral
Misidentification

The HapMap dataset is known to be biased toward high-
frequency polymorphisms, and this representation bias can
confound some population genetic analyses [Clark et al., 2005].
There is, however, no a priori reason why this ascertainment bias
should differentially affect AT-GC- and GC-AT-derived allele
frequencies. This notwithstanding, to ensure that our observations

Figure 1. Mean derived allele frequencies for AT-GC and GC-
AT alleles in regions of high and low recombination, for the HapMap
YRI sample, for different genomic regions and classes of nonsynon-
ymous SNPs. Dark gray: AT-GC, light gray: GC-AT mutations. Solid
bars: low recombination, hatched bars: high recombination. Probably
damaging: HapMap nonsynonymous SNPs predicted by Polyphen to
be probably damaging. HGMD: entire HGMD dataset. DM: inherited
mutations known to be a direct cause of disease (HGMD mutations
minus those that have only been associated statistically with disease).
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Figure 2. Derived allele frequency spectra for the HapMap YRI sample, for different genomic regions and classes of nonsynonymous SNPs.
The data presented here relate only to the high recombination class. Dark gray: AT-GC mutations, light gray: GC-AT mutations.

Table 1. Summary Table for the BGC Hallmarks for the HapMap and Resequencing SNP Datasets

Intergenic Introns Synonymous Nonsynonymous HGMD DM Probably damaging

Dataset Population dH Dd dH Dd dH Dd dH Dd dH Dd dH Dd dH Dd

HapMap CEU 0.03 0.013 0.03 0.022 0.08 0.043 0.09 0.016 0.09 0.052 0.07 0.031 0.08 0.055

CHB1JPT 0.03 0.013 0.03 0.02 0.08 0.052 0.11 0.015 0.09 0.026 0.11 0.062 0.14 0.086

YRI 0.03 0.016 0.03 0.028 0.07 0.033 0.07 0.034 0.12 0.076 0.1 0.056 0.07 0.042

Resequencing AFR 0.1 0.073 0.06 0.05 0.1 0.09 0.05 0.052 0.02 0.046

CAU 0.1 0.092 0.05 0.035 0.07 0.098 �0.01 0.039 0.04 0.026

The difference in mean derived allele frequencies between AT-GC and GC-AT SNPs is denoted by d. dH is the value of d in regions of high recombination. Dd represents the
difference in d between the high and low recombination regions. Bold font: values are positive and significantly different from zero, with a P-value o0.05. Italic font: values are
positive but not significantly different from zero. Normal font: values are negative but not significantly different from zero. No cases were found where dH or Dd were
significantly lower than zero.
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were not affected by this intrinsic bias in HapMap data, we
repeated our analysis on an independent polymorphism dataset
that was acquired through direct exon resequencing in two human
populations [Lohmueller et al., 2008], and which should therefore
be free of ascertainment bias. Our conclusions remained un-
changed with the resequencing dataset: in regions of high
recombination, AT-GC mutations segregated at higher frequen-
cies than GC-AT mutations, and this excess was higher than in
regions of low recombination. This pattern was observed in both
populations, not only for the synonymous sites but also for the
three datasets of nonsynonymous sites (Table 1, Supp. Tables S11–S12,
S16–S17, and Supp. Figs. S5–S6). We may therefore conclude that
the observed skewing of derived allele frequencies was not simply
a consequence of ascertainment bias. It may be noted that the
pattern appears to be stronger with the HapMap dataset compared
to the resequencing dataset (Table 1). By means of simulations,
we showed that this difference is due to the fact that the HapMap
SNP sampling strategy provides greater power to detect gBGC
(see Supporting Information).

One other potential artifact that had to be considered and
assessed was the possibility that the observed gBGC-like pattern
stemmed from ancestral ‘‘misinference’’ [Hernandez et al., 2007a]:
when the mutational pattern is biased toward AT, and most
notably in the case of strong context dependence (such as CpG
dinucleotide mutational hotspots in mammalian genomes),
maximum parsimony tends to incorrectly ascribe directionality
for GC-AT mutations, yielding an apparent excess of high-
frequency AT-GC SNPs [Hernandez et al., 2007a]. Nevertheless,
we are confident that this artifact has not influenced our results
for the following reasons. First, instead of using parsimony-based
reasoning, we determined SNP directionality using a maximum-
likelihood approach that takes CpG hypermutability into account
[Duret and Arndt, 2008]. Second, our conclusions were un-
changed when CpG sites were excluded (Supp. Table S7). Third,
we repeated our analyses using the context-dependent model
proposed by Hernandez and colleagues [2007a] to correct for
potential ancestral allele misidentification. With this method, the
results remained in agreement with our previous observations
(Supp. Table S6). Finally, it should be highlighted that the
difference between the mean DAFs of AT-GC and GC-AT
mutation was found to be much stronger in regions of high
recombination (Fig. 1). This observation, which is consistent with
the gBGC model, cannot be explained by an ancestral misinference
artifact. Indeed, the pattern of substitution is more biased toward
AT in regions of low recombination compared to regions of high
recombination [Duret and Arndt, 2008]. Thus, an artifactual
increase in AT-GC DAFs caused by ancestral misinference would
be expected to be stronger in regions of low recombination, in
contradiction to our own observations (Fig. 1).

Simulation of the Impact of gBGC in a Finite Population

To investigate the impact of gBGC on the fate of deleterious
mutations (AT-GC or GC-AT), we performed simulations in a
finite population (effective population size Ne 5 10,000), con-
sidering recessive mutations subject to different selection coeffi-
cients (s) and gBGC coefficients (d; see Materials and Methods
section). The population-scale gBGC coefficient (Ned) in the
human genome was estimated by Spencer et al. [2006] by
analyzing the DAF spectra of noncoding SNPs. In genomic regions
of high recombination (defined as the top 20% of the genome
with the highest recombination rate; average crossover
rate 5 2.5 cM/Mb) their estimate was Ned5 0.325. Given that, in

the human genome, recombination is essentially confined to
hotspots (typically less than 2 kb long) with an average crossover
rate of about 40 cM/Mb [Myers et al., 2006], it is expected that the
gBGC coefficient should be about 16 times higher in these
hotspots. Recombination hotspots vary in intensity [Myers et al.,
2006]. We therefore considered two values for the population-scale
gBGC coefficient: Ned5 1.3 (for a moderate recombination hotspot)
and Ned5 13 (for a more intense recombination hotspot).

With gBGC parameters corresponding to those of a moderate
human recombination hotspot, the impact of gBGC on the DAF
spectrum was clearly detectable for both nearly neutral (|Nes| 5 1)
and mildly deleterious mutations (|Nes| 5 10): compared to a
situation without gBGC (Ned5 0), AT-GC segregate at higher
frequency, whereas GC-AT segregate at lower frequency (Fig. 3).
For the more intense recombination hotspots, the impact of gBGC
on the DAF spectrum was detectable even for highly deleterious
mutations (|Nes| 5 100). Recombination hotspots occupy only a
small fraction of the genome: among the nonsynonymous SNPs
that we analyzed, 6% were located within 2 kb of the center of a
recombination hotspot. Thus, only a limited fraction of SNPs is
expected to be affected by gBGC. This explains why the skewing
observed in real data (Fig. 2) is intermediate between the patterns
obtained in simulations corresponding to moderate hotspots
(Ned5 1.3) or to the absence of gBGC (Ned5 0) (Fig. 3). Thus,
the pattern observed with real data appears to be compatible with
the hypothesis that the skew in the DAF spectrum is due to gBGC
affecting deleterious mutations in recombination hotspots. It
should be noted that the location of recombination hotspots is
extremely dynamic [Baudat et al., 2010; Myers et al. 2010], which
suggests that the fraction of SNPs that are at some time affected by
gBGC, might be larger than that estimated above. To obtain a
more realistic estimation of the expected DAF spectra, it would be
necessary to take into account not only the intensity recombina-
tion hotspots but also their dynamics.

Discussion

We have shown that all functional classes of SNPs, including
nonsynoynmous SNPs known to be implicated in human disease,
and nonsynonymous SNPs predicted to be damaging for protein
structure and function, exhibit the hallmarks of gBGC: the derived
allele frequency of AT-GC mutations is higher than that of
GC-AT mutations, and this is more pronounced in regions
characterized by high recombination rates. Importantly, we
demonstrated that the observed excess of high-frequency SNPs
in regions of high recombination does not result from sampling
biases nor from artifacts of SNP directionality determination.

Is gBGC the only possible explanation for these observations?
One alternative hypothesis to explain the fact that nonsynon-
ymous GC-AT mutations segregate at lower frequency than
AT-GC mutations is that GC-AT mutations could be more
deleterious that the AT-GC mutations. For instance, it has been
recently shown that GC-AT mutations at hypermutable CpG
sites within coding regions are under stronger purifying selection
than other nonsynonymous mutations [Schmidt et al., 2008].
Several observations however argue against this hypothesis. First,
we note that our conclusions remained unchanged when SNPs
occurring within a CpG context were excluded (Supp. Table S7).
Second, comparison of GC-AT and AT-GC mutations causing
the same amino acid changes confirmed that the higher mean
DAF of the latter cannot be attributed to a weaker impact on the
encoded protein. Moreover, this hypothesis that AT-GC
mutations are relatively less deleterious cannot explain why their
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Figure 3. Derived allele frequency spectrum obtained through simulations with different parameter sets. Represented in light gray are the
distributions of derived allele frequencies for GC-AT alleles, and in dark gray, those of AT-GC alleles. The population-scaled selection
coefficient (Nes) and the population-scaled biased gene conversion parameter (Ned) is indicated for each graph.
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mean DAF increases with the recombination rate. Finally, we have
shown that the DAF pattern is consistent over all classes of SNP,
including those located in intergenic and intronic regions, which
may be presumed to be largely free of selective pressure. It has
been previously demonstrated that the relationship between
recombination and the evolution of GC-content in noncoding
regions is the consequence of gBGC and not selection [Duret and
Arndt, 2008]. Hence, the most parsimonious explanation for our
findings is that both silent sites and nonsynonymous sites are
subject to gBGC.

Taken together, the data presented are consistent with the
hypothesis that biased gene conversion is responsible for the excess
of AT-GC SNPs segregating at high frequency in regions of high
recombination. This result has important implications for human
health because it indicates that recombination, via gBGC, leads to
an increase in the frequency of disease-causing AT-GC
mutations in human populations. It should be stressed that the
impact of gBGC on deleterious mutations is not always negative.
Indeed, a majority (58.7%) of known DMs correspond to
GC-AT mutations. Thus, for a majority of DMs, gBGC acts in
such a way as to limit their probability of spreading. However,
the price to pay for this positive influence of gBGC is that it
can lead to an increase in the frequency of disease-causing
AT-GC mutations in human populations. We speculate that the
genes most likely to be influenced by this effect will be those that
are AT-rich (i.e., for which there are more opportunities for
AT-GC mutations) and which coincide with recombination
hotspots: an additional argument for these hotspots being an
Achilles’ heel of the human genome [Duret and Galtier, 2009b;
Galtier and Duret, 2007].
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