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Abstract Synonymous codon usage (SCU) varies widely among human genes. In particular,
genes involved in different functional categories display a distinct codon usage, which was
interpreted as evidence that SCU is adaptively constrained to optimize translation efficiency in
distinct cellular states. We demonstrate here that SCU is not driven by constraints on tRNA
abundance, but by large-scale variation in GC-content, caused by meiotic recombination, via the
non-adaptive process of GC-biased gene conversion (gBGC). Expression in meiotic cells is
associated with a strong decrease in recombination within genes. Differences in SCU among
functional categories reflect differences in levels of meiotic transcription, which is linked to
variation in recombination and therefore in gBGC. Overall, the gBGC model explains 70% of the
variance in SCU among genes. We argue that the strong heterogeneity of SCU induced by gBGC in
mammalian genomes precludes any optimization of the tRNA pool to the demand in codon usage.
DOI: https://doi.org/10.7554/eLife.27344.001

Introduction

In humans, the usage of synonymous codons varies substantially among genes. Both adaptive and
nonadaptive processes, not mutually exclusive, have been proposed to explain the existence of
codon usage biases (Duret, 2002; Chamary et al., 2006; Plotkin and Kudla, 2011). The main adap-
tive model, called translational selection, proposes that synonymous codon usage (SCU) and abun-
dance of tRNA are co-adapted to optimize the efficiency of translation (lkemura, 1981,
Kanaya et al., 2001; Drummond and Wilke, 2008; Hershberg and Petrov, 2008; dos Reis and
Wernisch, 2009). The selective pressure on translational efficiency (in terms of both speed and accu-
racy) is expected to be more pronounced in highly expressed genes because they mobilize a large
number of ribosomes (Bulmer, 1991) and are subject to stronger constraints on translational errors
(Akashi, 1994; Drummond and Wilke, 2008). A first prediction of this model is that preferred
codons should correspond to the most abundant tRNAs, particularly in highly expressed genes. A
second prediction is that codon usage bias should correlate with gene expression patterns and
tRNA contents. Both predictions are verified in some animals, such as flies and nematodes, the
genomes of which show clear signatures of translational selection (Shields et al., 1988; Duret and
Mouchiroud, 1999; Duret, 2002; Castillo-Davis and Hartl, 2002).

The situation is different in mammals, and notably humans, where the influence of translational
selection is still strongly debated (Duret, 2002; Chamary et al., 2006; Plotkin and Kudla, 2011). It
has long been shown that variation in SCU between genes is correlated to large-scale fluctuations of
GC-content along chromosomes, the so-called isochores (Bernardi et al., 1985, Mouchiroud et al.,
1988; Mouchiroud et al., 1991; Clay and Bernardi, 2011). The fact that codon usage correlates
with the base composition of non-coding regions demonstrates that SCU is affected by a process
that is not linked to translational selection. And indeed, there is strong evidence that isochores are
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the consequence of GC-biased gene conversion (gBGC), a form of segregation distortion that occurs
during meiotic recombination and that favors the transmission of GC alleles over AT alleles
(Duret and Galtier, 2009; Munch et al., 2014; Williams et al., 2015). This non-adaptive process
leads to an increase in GC-content in regions of high recombination rate, which affects both coding
and non-coding regions, including synonymous codon positions (Galtier and Duret, 2007,
Duret and Galtier, 2009; Glémin et al., 2015).

In principle, this does not exclude that besides gBGC, codon usage bias might also be affected
by translational selection. Interestingly, several studies have reported that human codon usage varies
among genes expressed in different tissues or cell types (Vinogradov, 2003; Plotkin et al., 2004,
Gingold et al., 2014). In particular, strong variations in SCU are observed among sets of human
genes associated to different functional categories and notably between sets of genes involved in
cellular proliferation or differentiation (Gingold et al., 2014). The relative abundance of tRNA varies
also according to the proliferative or differentiation state of cells, which was logically interpreted in
term of translational selection: different cell types express specific sets of genes whose coding
sequence is co-adapted with specific pools of tRNAs (Gingold et al., 2014). If true, this has impor-
tant implications regarding the role of translational regulation in determining cell fate (differentiation
versus proliferation).

However, this interpretation stands in contradiction with two other studies examining tRNA abun-
dance in mammals. First, although expression levels of individual tRNA genes vary substantially
between tissue types and developmental stages in mice, the collective expression levels of isoaccep-
tor tRNAs (which recognize the same codon) remain constant. Thus, the pool of available anticodons
is stable throughout development (Schmitt et al., 2014). Second, in continuation to this work, a
recent study specifically contrasted cells undergoing proliferation and those undergoing differentia-
tion, and found no covariation of tRNA pool and codon usage between these cells (Rudolph et al.,
2016). Both results are inconsistent with the differences in SCU between functional classes as being
a consequence of translational selection.

The question of the relative contributions of adaptive and nonadaptive processes to variation in
codon usage in mammals therefore remains open: on the one side, patterns of tRNA abundances do
not fit with the translational selection model, but on the other side, the reason why codon usage
varies among functional categories is not yet understood. Here, we examined the hypothesis that
variation in codon usage might result from differences in transcription activity in meiotic cells.
Indeed, it has been observed that intragenic recombination rate correlates negatively with expres-
sion level in the germline (McVicker and Green, 2010). It is therefore possible that differences in
germline expression levels among functional categories induce differences in gBGC, and hence
codon usage biases.

To test this hypothesis, we analyzed SCU among different functional categories of human genes,
and investigated covariation with GC-content, recombination rate and expression patterns. We first
show that the variation in codon usage among functional categories results from differences in GC
content. Then, we propose a new test that demonstrates that variation in SCU is not associated with
translational selection. Instead, SCU correlates with large-scale variation in genomic GC-content and
with differences in intragenic recombination rate. In turn, the difference in intragenic recombination
rate between functional categories is explained by their expression level in meiosis. Altogether, GC-
content of non-coding regions and meiotic expression explain 70% of the variation in SCU of human
genes. In the end, our results are fully consistent with the hypothesis that SCU is driven by gBGC,
and not by translational selection. They indicate that the differences observed among functional cat-
egories reflect variation in long-term intragenic recombination rates, resulting from differences in
meiotic expression levels.

Results

Variation in codon usage among functional categories results from
differences in GC-content

To better understand the causes of the differences in codon usage between sets of genes involved
in cellular proliferation and differentiation (reported by [Gingold et al., 2014]), we started by investi-
gating the main factors that discriminate codon usage between functional categories in general. For
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this purpose, we grouped genes per functional category (687 biological processes, associated to
more than 40 genes in the Gene Ontology database), and computed codon frequencies for each of
these gene sets. We used the classification proposed by Gingold et al. (2014) to distinguish GO
gene sets associated to ‘proliferation’ or 'differentiation’. Variation in relative synonymous codon
usage (RSCU; see Materials and methods) among GO gene sets was analyzed by Principal Compo-
nent Analysis (PCA). The first principal component of this analysis segregates ‘proliferation’ (red
dots) from ‘differentiation’ (blue dots) GO categories (Figure 1A). Thus, in agreement with
Gingold et al. (2014), synonymous codon usage clearly varies between functional categories in gen-
eral, and between proliferation and differentiation in particular. Previous studies had shown that syn-
onymous codon usage is correlated to GC content at third position of codons — termed GC3
(Mouchiroud et al., 1988). And indeed, we observed that the average GC3 of each GO gene set is
perfectly correlated to their coordinates on the first PCA axis (R? = 0.99; Figure 1B). Hence, varia-
tion in SCU between functional categories is fully explained by variation in GC3.

On average, in our dataset, each gene is associated to nine GO biological processes. Many genes
belong to more than one GO biological-process category, either because they have several functions
(pleiotropy) or because these categories are nested from specific to broad functions. Hence, GO-
terms are not independent. To avoid this redundancy, for the remainder of this study we switched
from analyses at the level of GO gene sets to analyses at the level of individual genes (except when
stated otherwise). Each gene was assigned with one of three categories based on their GO annota-
tion: 1008 genes associated with ‘proliferation’, 2833 genes associated with ‘differentiation’, and
12,129 ‘other’ genes unrelated to these key words (see Materials and methods). Genes associated
to ‘proliferation’ are on average less GC-rich than genes associated to ‘differentiation’ (mean GC3
0.53 and 0.61 in the two subsets respectively). The two distributions of GC3 differ significantly from
each other (t-test, p—value<2.10’16), and their peaks coincide with each of the two modes observed
for the rest of the genome (Figure 1C).

Variation in synonymous codon usage is not driven by translational
selection

We first investigated whether the observed variation in synonymous codon usage (i.e. variation in
GC3) might be driven by translational selection. This model proposes that the relative usage of syn-
onymous codons should co-vary with the abundance of their cognate tRNAs. A property of the
tRNA gene repertoires allows us to test this hypothesis. The human genome contains 506 tRNA
genes (decoding the 20 standard amino acids), corresponding to 48 different tRNA isoacceptors
(Chan and Lowe, 2016). Among the 18 amino acids having two or more synonymous codons, 4 are
decoded by a single tRNA isoacceptor (mono-isoacceptor amino acids: Phe, Asp, His and Cys), and
the 14 other ones are decoded by several tRNA isoacceptors (multi-isoacceptors amino acids).

For multi-isoacceptors amino acids, the relative abundance of the different tRNA isoacceptors
can vary among different cell types, and hence might covary with the relative synonymous codon
usage of genes preferentially expressed in these cell types. For instance, let us consider Gln, which
has two synonymous codons (CAG, CAA) that are decoded by two tRNA isoacceptors (respectively
anticodons CTG and TTG). Let us consider a theoretical example of two cell types (say A and B) that
differ in their relative tRNA abundance (CTG-tRNA being more abundant in A cells, and TTG-tRNA
in B cells). According to the translational selection model, sets of genes that are over-expressed in A
cells, should preferentially use the CAG codon, whereas genes that are over-expressed in B cells,
should preferentially use the CAA codon. However, mono-isoacceptor amino acids are, by definition,
decoded by a single tRNA isoacceptor and the relative tRNA abundance cannot vary across cell
types. Hence, according to the translational selection model, the relative synonymous codon usage
for mono-isoacceptor amino acids is not expected to vary among cell-specific gene sets. In other
words, for mono-isoacceptor amino acids, variation in synonymous codon usage among GO gene
sets cannot be explained by co-adaptation with the tRNA pool.

To test whether variation in synonymous codon usage was driven by translational selection, we
computed synonymous codon usage (GC3) in GO gene sets, separately for codons corresponding
to mono-isoacceptor amino acids and for codons corresponding to multi-isoacceptor amino acids.
We observed that the range of variation in GC3 is very similar for mono- and multi-isoacceptor
amino acids. Importantly, the two parameters are strongly correlated (R? = 0.90) (Figure 1D). This
implies that GC3 variation is driven by a process that affects both mono-isoacceptor and multi-
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Figure 1. Variation in synonymous codon usage and in GC3 among functional categories. (A) Factorial map of the principal-component analysis of
synonymous codon usage in GO functional categories in the human genome. Each dot corresponds to a GO gene set, for which the relative
synonymous codon usage (RSCU) was computed. GO categories that are associated with ‘differentiation’ or with ‘proliferation’ are displayed in blue
and in red, respectively. (B) Correlation between the RSCU of GO gene sets (first PCA axis) and their average GC-content at third codon position (GC3).
(C) Distribution of GC3 of human protein coding genes. Red: ‘proliferation’ genes (N = 1,008); blue: ‘differentiation’ genes (N = 2,833); grey: other
genes (N = 12,129). (D) Correlation between the GC3 of mono-isoacceptor amino acids and multi-isoacceptor amino acids. For each GO gene set, the
average GC3 was computed separately for amino acids decoded by multiple tRNA isoacceptors (N = 14 multi-isoacceptor amino acids), and for those
decoded by one single tRNA isoacceptor (mono-isoacceptor amino acids: Phe, Asp, His, Cys). Amino-acids encoded by a single codon (Met, Trp) were

excluded.
DOI: https://doi.org/10.7554/elife.27344.002

isoacceptor amino acids, and hence that this process is not related to variation in tRNA abundance.
This observation holds true for all functional categories, including those associated to differentiation
or proliferation (red and blue dots in Figure 1D).

Impact of large-scale variation in genomic GC-content on synonymous
codon usage
We observed that the GC3 of genes correlates with the GC-content of their flanking regions
(Figure 2A, Figure 2—figure supplement 1, R® = 0.48, p-value<2.107'%). This correlation is
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Figure 2. Difference in SCU between ‘proliferation’ and ‘differentiation’ genes is linked to variation in intragenic crossover rate, and not to their
isochore context. (A) Variation in gene GC3 according to the GC content of their flanking region (GC-flank) in each functional category. Genes were first
binned into 10 classes of equal sample size according to their GC-flank, and then split into three sets according to their functional category:
‘proliferation’ (red), 'differentiation’ (blue), and ‘other’ genes (grey). Boxplots display the distribution of GC3 for each functional category within each
GC-flank bin. (B) Mean sex-averaged intragenic crossover rate (HapMap) in each functional category. Error bars represent the 95% confidence interval
of the mean.

DOI: https://doi.org/10.7554/eLife.27344.003

The following figure supplement is available for figure 2:

Figure supplement 1. Correlation between the GC3 of genes and the GC content of their flanking regions (GC-flank).
DOI: https://doi.org/10.7554/eLife.27344.004

observed for all genes, including the subsets of genes associated with ‘proliferation’ and ‘differentia-
tion’ (R? = 0.48 and 0.46, all p-values<2.10_76). Thus, variation in SCU between genes is to a large
extent attributable to the GC-content of the genomic region in which they are located (the isochore
effect). However, when the regional GC-content is controlled for, there remains a difference in GC3
between gene categories (Figure 2A): for a given regional GC-content, the GC3 of proliferation-
associated genes is lower than that of differentiation or other genes. This difference is highly signifi-
cant (Figure 2A, Figure 2—figure supplement 1, p-value<2.10~"%). This implies that the difference
in synonymous codon usage between these gene categories does not result from a preferential loca-
tion in different isochores.

Variation in synonymous codon usage among functional categories
correlates with differences in intragenic recombination rate

Previous studies have demonstrated that the evolution of GC-content along chromosomes is driven
by meiotic recombination, both on a broad (Mb) scale (Duret and Arndt, 2008; Munch et al., 2014)
and on a fine (kb) scale (Clément and Arndt, 2013; Pratto et al., 2014). There is now strong
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evidence that this correlation between GC-content and recombination is caused by the process of
GC-biased gene conversion (gBGC) which leads to increase the GC-content in regions of high
recombination (Galtier et al., 2001; Galtier and Duret, 2007; Duret and Galtier, 2009;
Munch et al., 2014, Pratto et al., 2014; Williams et al., 2015). Recombination rate varies along
chromosomes, and notably tends to be lower within genes than in flanking regions (Myers et al.,
2005; McVicker and Green, 2010). Interestingly, we observed that intragenic crossover rates (in
cM/Mb) differ among the three sets of genes defined previously, and covary with their GC3: the
average intragenic crossover rate is lower in ‘proliferation’ genes compared to other genes, whereas
it is higher in ‘differentiation’ genes (Figure 2B; p-value of Kruskal-Wallis test <2.10~ % as for all pair-
wise Wilcoxon tests). These observations are therefore consistent with the hypothesis that differen-
ces in GC3 between 'differentiation’ and ‘proliferation’ genes could also be driven by gBGC.

The difference in intragenic recombination rate between functional
categories is explained by their expression level in meiosis

McVicker and Green (2010) reported a negative correlation between intragenic recombination rate
and meiotic gene expression level. We reevaluated this relationship using recently published high-
resolution genetic maps (Bhérer et al., 2017), meiotic double-strand breaks (DSBs) maps
(Pratto et al., 2014) and meiotic gene expression datasets (Guo et al., 2015; Lesch et al., 2016).
These new data show that the relationship between crossover rate and meiotic gene expression is
even stronger than initially reported: we observed that the crossover rate is 3.5 (males) to 5.4
(females) times lower in highly expressed genes (top 10%) compared to weakly expressed genes
(bottom 10%) (Figure 3A, Figure 3—figure supplement 3A,B). This reduction in crossover rate is
explained, at least in part, by a lower density of meiotic DSB hotspots within highly expressed genes
(Figure 3—figure supplement 3C). In agreement with Bhérer et al. (2017), we observed an eleva-
tion of crossover rate around transcription start sites, specifically in females (Figure 4—figure sup-
plement 1). However, this peak is observed only in genes with low or medium meiotic expression
level (Figure 4). Within genes with high meiotic expression level, we observed a strong reduction of
crossover rate in both sexes, affecting the entire transcription unit, from the TSS to the polyadenyla-
tion site (Figure 4).

We also analyzed other RNA-seq data sets (either from single cells or bulk samples), covering a
broad range of tissues/cell types: somatic or germ cells at different stages of developing male and
female embryo (20 different conditions; [Guo et al., 2015]) and differentiated adult tissues (26
somatic tissues, plus testis, which contains a fraction of germ cells; [Fagerberg et al., 2014]). In
agreement with McVicker and Green (2010), we observed that the negative correlation between
expression level and intragenic crossover rate is stronger in germ cells than in somatic samples (Fig-
ure 3—figure supplement 1), which indicates that recombination is associated with expression level,
specifically in meiotic cells.

Many ‘proliferation’ genes are involved in basic cellular functions, and hence, tend to be
expressed at relatively high levels in many tissues and at all developmental stages. In particular,
most of these genes are highly expressed in meiotic cells: 65% of ‘proliferation’ genes are among
the top 33% of genes with highest expression level (whereas only 11% are in the first tercile; Fig-
ure 3—figure supplement 2). Conversely, only 26% of ‘differentiation’ genes are highly expressed
in meiotic cells, while 42% of are in the first tercile (Figure 3—figure supplement 2). This large pro-
portion of ‘proliferation’ genes with high meiotic expression levels can therefore explain why they
tend to have relatively low intragenic crossover rate (Figure 2B), and hence, given the gBGC pro-
cess, why they tend to have a lower GC3 (Figure 1C). To further test whether these differences in
expression patterns could account for the difference in GC3 between ‘proliferation’, ‘differentiation’
and ‘other genes’, we binned genes into three classes of increasing meiotic expression level. The dis-
tribution of GC3 is clearly shifted toward lower values for genes highly expressed at meiosis (top
33%), compared to genes weakly expressed (bottom 33%): the average GC3 is 0.51 in the 'high’ cat-
egory compared to 0.65 in the ‘low’ category (p-value<2.10~"¢) (Figure 3B). However, there is no
significant difference in the distribution of GC3 between ‘proliferation’ and ‘differentiation’ within
bins of low or high expression (p-value=0.68 and 0.15 respectively). For the mid-expression bin,
there is still a significant difference of GC3 between ‘proliferation’ and ‘differentiation’ (p-val-
ue=3.2.10"%), potentially explained by differences in expression between categories within this bin.
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averaged expression level in meiotic cells into 10 bins of equal sample size. The mean sex-averaged intragenic crossover rate (HapMap) was computed
for each bin. Error bars represent the 95% confidence interval of the mean. Similar results were obtained when analyzing sex-specific crossover rates
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‘differentiation’ (blue), and ‘other’ genes (grey). Boxplots display the distribution of GC3 for each functional category within each expression bin.

DOI: https://doi.org/10.7554/elife.27344.005

The following figure supplements are available for figure 3:

Figure supplement 1. Differential intragenic crossover rate between lowly and highly expressed genes in adult tissues and in individual embryonic
cells.

DOI: https://doi.org/10.7554/eLife.27344.006

Figure supplement 2. Comparison of the distribution of meiotic gene expression levels for ‘proliferation’, ‘differentiation’ and other genes.

DOI: https://doi.org/10.7554/eLife.27344.007

Figure supplement 3. Variation in intragenic recombination rate and GC3 according to expression levels in meiotic cells.

DOI: https://doi.org/10.7554/eLife.27344.008

Thus, most of the difference in synonymous codon usage between functional categories (Figure 1C)
disappears once level of expression during meiosis is controlled for (Figure 3B).

Thus, differences in synonymous codon usage among gene categories in human can be explained
through the following causative chain: (i) The set of ‘proliferation’ genes is enriched in genes highly
expressed in meiosis. (ii) Because high expression at meiosis is associated with a decreased rate of
recombination, intragenic recombination rates are lower in the ‘proliferation’ set. (iii) In turn,
reduced intragenic recombination diminishes the effect of gBGC on exon base composition, and
hence GC3 is lower in the set ‘proliferation’ compared to ‘differentiation’.

To check whether this cascade of effects fully recapitulates the difference in synonymous codon
usage between ‘proliferation’ and ‘differentiation’, we investigated whether differences in SCU

Pouyet et al. eLife 2017;6:€27344. DOI: https://doi.org/10.7554/eLife.27344 7 of 19


https://doi.org/10.7554/eLife.27344.005
https://doi.org/10.7554/eLife.27344

e LI FE Research article

Genomics and Evolutionary Biology

3.0

o)

= o5

3

2 20

Q

S 45

S

2 1.0
©
£ 05
()]

LL
0.0
2.0

o)

=

S 15

o

Q

© 1.0

@)

&)

o 05

G

=
0.0

Female

nywy

Expr. level:

5 Low
Medium
® High

_40  -20 0 20 40
Distance to TSS (kb)

~20 0 20 40
Distance to polyA site (kb)

Figure 4. Variation in crossover rate as a function of the distance to transcription start site (TSS) and to the polyadenylation site, and according to
meiotic expression level. Autosomal genes longer than 5 kb (N = 15,055) were classified into three bins of equal sample size according to their
expression level in female (top panels) or male meiosis (bottom panels): low (green), medium (orange) and high (red) expression level. Sex-specific
crossover rates were measured in 1 kb-long non-overlapping windows. Shaded area represent the 95% confidence interval of the mean.
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The following figure supplements are available for figure 4:

Figure supplement 1. Variation in crossover rate as a function of the distance to transcription start site (TSS) and to the polyadenylation site.
DOV https://doi.org/10.7554/eLife.27344.010
Figure supplement 2. Variation in DSB hotspot density as a function of the distance to transcription start site (TSS) and to the polyadenylation site, and
according to meiotic expression level.

DOV https://doi.org/10.7554/elife.27344.011

between functional categories are driven by expression level in cells undergoing meiosis, rather than
by expression level in another cell type or tissue. We examined the relationship between GC3 and
expression levels in a broad panel of cell and tissue conditions (Figure 5). As predicted by our
model, expression levels in germ cells, either from single-cell samples or from testis (which contains
germ cells) are better predictors of GC3 than expression in all other somatic tissues. Strikingly, the
levels of expression in primary germ cells is, on average, twice as informative than expression in
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comparisons. Samples are sorted by increasing correlation coefficient (R%) between expression levels and GC3 (NB: all correlations are negative).
Samples containing somatic cells are shown in blue; male germ cells in orange (testis or single cell) and female germ cells in red (PGC: primordial germ
cells). The green point corresponds to cells from the inner cell mass (ICM) of the blastocysts, i.e. pluripotent cells from an early stage of development
preceding the differentiation of germ cells.

DOI: https://doi.org/10.7554/eLife.27344.012

somatic cells taken at comparable stage of development (Figure 5B). Among all individual samples,
the strongest correlation between GC3 and expression level was found in male meiotic cells (pachy-
tene spermatocytes, R? = 6.3%, p-value<2.107"%). Female meiotic cells (primordial germ cells, PGC
17 W) showed a similar correlation level (R? = 4.0%, p-value<2.10_76). As expected, the correlation
is even stronger with sex-averaged meiotic expression level (R = 8.6%, p-value<2.10"%). Hence,
these results confirm that the cell type for which gene expression level is the best predictor of GC3
(and therefore SCU) corresponds to meiotic cells.

GC-content of non-coding regions and meiotic expression explain 70%
of the variation in synonymous codon usage of human genes

Meiotic expression is associated with a deficit of recombination rates all along the gene (Figure 4).
Thus, the expression pattern is expected to affect gBGC intensity (and hence the GC-content) both
in exons and in introns. Consistent with that prediction, the GC3 of human genes is strongly corre-
lated to the GC-content of their introns (GCi, R? = 62.7%, p-value<2.10~"%). We build a linear model
to quantify the relative contribution of the different parameters that covary with the GC3 of human
genes (GCi, GC-flank, intragenic crossover rate, meiotic expression level, and ‘proliferation’ or 'dif-
ferentiation’ functional category). The analysis of variance demonstrates that GCi is by far the best
predictor of GC3, but GC-flank, intragenic crossover rate and gene expression level during meiosis,
also significantly improve the model (by 1%, 4% and 1.4%, respectively, Table 1, ANOVA, p--
values<2.107'%). The integration of a categorical variable 'differentiation’ versus ‘proliferation’ in the
model significantly improves the model but its quantitative influence is minor (0.1%, p--
value<2.107 6, Table 1). Altogether, 68.2% of the variance in GC3 among human genes can be
explained by the first four parameters (GCi, GC-flank, intragenic crossover rate, meiotic expression).
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Table 1. Analysis of the variance of GC3 among individual genes.

Variables included in the linear model are: GC-content of introns (GCi), GC-content of flanking regions (GC-flank), HapMap sex-aver-
aged intragenic crossover rate (log scale), sex-averaged meiotic gene expression level (log scale) and functional category ('differentia-
tion’, ‘proliferation’ and ‘other’). Pairwise correlations (pairwise R?) were computed between GC3 and each of the other variables.
Correlations of the model (model R?) were computed by adding variables sequentially.

GC3 predictors Pairwise R? p-value Model R? F statistic p-value

GCi 62.7% <2107 62.7% 302324 <2107
GC-flank 48.1% <2107 62.9% 1268 <2107
Intragenic crossover rate 12.8% <2.1077¢ 66.8% 1453.3 <2107
Expression level in meiosis 8.3% <2.1077¢ 68.2% 875.7 <2107
Functional category 1% <2107 68.3% 3043 <2.107"¢

DOV https://doi.org/10.7554/elife.27344.013

Adding interaction terms to the linear model gives very similar results (70.4% variance explained,
same levels of significance for all variables).

Discussion

Biased gene conversion drives codon usage in humans

In the human genome, gene sets that belong to different functional categories differ by their synony-
mous codon usage. Initially this pattern has been interpreted as evidence that the translation pro-
gram was under tight control, notably to ensure a precise regulation of genes involved in cellular
differentiation or proliferation (Gingold et al., 2014). According to this model, selection should opti-
mize the match between the SCU of genes and tRNA abundances in the cells where they are
expressed. However, the comparison of synonymous codon usage for amino acids with single or
multiple tRNA isoacceptors (Figure 1D) shows that the difference in SCU between functional cate-
gories does not result from constraints linked to tRNA abundance. In fact, variation in synonymous
codon usage among functional categories is explained by one single dominant factor: the GC-con-
tent at third codon position (Figure 1B). The GC3 of human genes is strongly correlated to the GC-
content of their introns and flanking regions (Table 1). This implies that variation in SCU results from
a process that affects both coding and non-coding regions (including non-transcribed intergenic
regions), and hence that it is not related to the process of translation. In fact, this observation inva-
lidates all the models that assume that SCU is driven by a selective pressure acting on RNAs (not
only translational selection, but also selection on mRNA processing, structure or stability).

Many lines of evidence indicate that large-scale variation in GC-content along chromosomes (iso-
chores) is driven by the gBGC process, both in mammals and birds. First, there is direct evidence
that recombination favors the transmission of GC-alleles over AT-alleles during meiosis (Odenthal-
Hesse et al., 2014; Arbeithuber et al., 2015, de Boer et al., 2015; Williams et al., 2015;
Smeds et al., 2016). Second, the analysis of polymorphism and divergence at different physical
scales (from kb to Mb) showed that recombination induces a fixation bias in favor of GC alleles
(Duret and Arndt, 2008; Clément and Arndt, 2013; Munch et al., 2014; Pratto et al., 2014;
Weber et al., 2014; Glémin et al., 2015; Singhal et al., 2015). Third, the gBGC model predicts that
the GC-content of a given genomic segment should reflect its average long-term recombination rate
over tens of million years (Duret and Arndt, 2008). Consistent with this prediction, analyses of
ancestral genetic maps in the primate lineage revealed a very strong correlation between long-term
recombination rates (in 1 Mb long windows) and stationary GC-content — R? = 0.64; (Munch et al.,
2014). The strong correlation between GC3 and GC-flank therefore implies that variation in synony-
mous codon usage is primarily driven by large-scale variation in long-term recombination rate.

Besides these regional fluctuations, recombination rates also vary at finer scale. In particular,
recombination rates tend to be reduced within human genes compared to their flanking regions
(Myers et al., 2005), and this decrease depends on the level of expression of genes during meiosis
(McVicker and Green, 2010) — see also Figure 3A and Figure 4. Hence, the gBGC model predicts
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that the GC3 of a gene should depend not only of the long-term recombination rate of the region
where it is located, but also on its specific pattern of expression. And indeed, we observed that the
difference in synonymous codon usage between ‘proliferation’ and ‘differentiation’ genes is not due
to their preferential location in different classes of isochores, but to the fact that ‘proliferation’ genes
tend to be expressed a high level in meiotic cells, and therefore to have a reduced intragenic recom-
bination rate (Figures 2 and 3).

To test whether this observation holds true for other functional categories, we measured the aver-
age GC3, intragenic crossover rate and meiotic expression level of each GO gene set. As predicted
by the gBGC model, we observed a strong correlation between GC3 and the average intragenic
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Figure 6. Relationships between GC-content, intragenic crossover rates and meiotic expression levels (sex-averaged) among functional gene
categories. Average values of these parameters were computed for each GO gene set. We then measured correlations between these parameters: (A)
Mean GC3 vs. mean sex-averaged intragenic crossover rate (HapMap). (B) Mean intragenic crossover rate vs. mean expression level in meiotic cells. (C)
Mean GC3 vs. mean expression level in meiotic cells. (D) Mean intronic GC-content (GCi) vs. mean intragenic crossover rate. GO gene sets associated
to 'proliferation’ (red) or ‘differentiation’ (blue) are displayed as in Figure 1. Similar results were obtained when analyzing separately expression levels in
female or male meiosis (Figure 6—figure supplement 1).

DOV https://doi.org/10.7554/eLife.27344.014

The following figure supplement is available for figure 6:

Figure supplement 1. Relationships between expression levels in female or male meiotic cells and GC3 and intragenic crossover rates.
DOI: https://doi.org/10.7554/eLife.27344.015
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crossover rate of GO gene sets (R? = 0.51, Figure 6A). The variance in intragenic crossover rate, in
turn, is very well explained by differences in meiotic expression levels among functional classes
(R? = 0.46, Figure 6B). As mentioned previously, these correlations measured on gene concatenates
should be interpreted with caution because the different points are not independent (a same gene
can belong to different GO categories). However, this analysis clearly shows that a large fraction of
the variance in SCU observed among GO gene sets can be explained by variation in gBGC intensity,
caused by variation in intragenic crossover rates, linked to differences expression patterns
(Figure 6C). In agreement with the gBGC model, the intragenic crossover rate correlates with the
base composition of the entire gene, including introns (Figure 6D). This observation clearly invalid-
ates the hypothesis that the observed differences in SCU among functional categories might be
driven by selection on codon usage.

In summary, the SCU of individual genes depends primarily on the isochore in which they are
located (i.e. large-scale long-term variation in recombination rate), and secondarily on their meiotic
expression level (which affects locally the intragenic recombination rate) (Table 1). In gene set analy-
ses, the variance in SCU explained by expression (Figure 6) appears much stronger than in individual
genes analyses (Table 1). This is due to the fact that in gene set analyses, SCU is averaged over a
large number of genes, located in different isochores, which leads to decrease the isochore effect
among functional categories (and hence mechanically increase the fraction of the variance explained
by expression). Overall, the different variables linked to the intensity of gBGC explain 70% of the
variance in GC3 of individual genes (Table 1). In other words, the gBGC model can account for most
of the variation in synonymous codon usage in the human genome.

It should be noted that co-variation between SCU and expression is generally considered as a
typical signature of translational selection and is often used to predict optimal codons (Duret, 2002;
Plotkin et al., 2004; dos Reis and Wernisch, 2009). However, as shown here, such correlations can
also emerge as a result of a non-adaptive process. Given that gBGC is widespread in eukaryotes
(Mancera et al., 2008; Capra and Pollard, 2011; Pessia et al., 2012; de Boer et al., 2015;
Williams et al., 2015; Smeds et al., 2016), it appears essential to take this process into account to
interpret variation in synonymous codon usage (and more generally in base composition) among
genes.

Relationship between meiotic expression and recombination

The reason why intragenic recombination rate correlates negatively with meiotic expression level is
not known. In human and mice, the location of recombination hotspots is determined by PRDM9, a
Zn-Finger DNA-binding protein with histone H3 lysine four trimethylation (H3K4me3) activity.
PRDM® is expressed during early meiosis and marks sites where DSBs are afterwards introduced by
Spo11 (for review, see Baudat et al., 2013). These DSBs are then repaired by homologous recombi-
nation, forming either crossovers, the reciprocal exchanges of genetic material between parental
chromosomes, or noncrossovers. Knockout experiments in mice have demonstrated that PRDM9 tar-
gets recombination away from active promoters (Brick et al., 2012). The analyses of male DSB maps
suggests that PRDM9 plays the same role in humans: we observed a deficit of DSB hotpots around
the transcription start site (TSS), specifically within genes that are highly expressed in meiotic cells
(Figure 4—figure supplement 2). The decrease in recombination rate within highly expressed genes
is however not restricted to the promoter region: in both sexes, there is a strong deficit of cross-
overs within the entire transcription unit, from the TSS to the polyadenylation site (Figure 4). In spe-
cies that lack Prdm9 (such as dogs, birds, arabidopsis or yeast), recombination hotspots are strongly
enriched in active promoters (Auton et al., 2013; Choi et al., 2013; Singhal et al., 2015; Lam and
Keeney, 2015), which indicates that there is no mechanistic incompatibility between recombination
and transcription activity in meiotic cells. However there is evidence that in highly expressed genes,
H3K36me3 marks trigger DNA methylation in the gene body, and thereby prevent spurious tran-
scription initiation (Neri et al., 2017). It is therefore possible that the peculiar chromatin state of
highly expressed genes also interferes with the binding of PRDM9 (or with its histone modification
activity), and thereby decrease the rate of DSB formation within the transcription unit. Consistent
with this hypothesis, we observed a deficit in male DSB hotspot density along the transcription unit
of highly expressed genes (Figure 4—figure supplement 2). This difference in DSB rates is, how-
ever, much less pronounced than the difference in male crossover rates (Figure 4; Figure 3—figure
supplement 3). Furthermore, the profile of DSB hotspot density in highly expressed genes differs
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from that of crossover rates, with a strong deficit around the TSS and an excess around the polyade-
nylation site (Figure 4—figure supplement 2), whereas the deficit in male crossovers is more uni-
form along the transcription unit (Figure 4). This suggests that the differences in crossover profiles
observed between highly and weakly expressed genes might also reflect differences in the way
recombination events are resolved (crossover vs. non-crossovers).

gBGC precludes selection on translation efficiency in humans

There is a clear evidence that the usage of synonymous codons is under selective pressure in some
metazoan species (such as drosophila or nematode), which implies that it has a significant impact on
the fitness of organisms — for review, see (Duret, 2002; Chamary et al., 2006; Plotkin and Kudla,
2011). It is a priori expected that codon usage should also affect translation efficiency (speed and
accuracy) in mammals. However, our results show that selection on codon usage is not strong
enough to counteract the impact of gBGC. In principle, this does not exclude the hypothesis that
the human genome might be subject to selection for translational efficiency: even if the GC-content
of genes is driven by non-adaptive processes, there might be a selective pressure on the expression
of tRNA genes to match the demand in synonymous codon usage. However, recent analyses of
tRNA isoacceptors pools found no evidence for such variation (Schmitt et al., 2014; Rudolph et al.,
2016). Moreover, we argue here that the peculiar base composition landscape induced by gBGC in
the genomes of mammals and birds makes it impossible to match the tRNA pool to the demand in
codon usage. Indeed, large-scale variation in recombination rates along the genome causes very
strong variation in GC3 among genes, and this, regardless of their functional category. In particular,
‘proliferative’ genes, which are involved in basic cellular process, and are expressed at high levels in
most tissues, show a very strong heterogeneity in GC3 (from 20% to almost 100%,; Figure 1C). This
implies that in any given cell, the set of highly expressed genes will show a very heterogeneous
usage of synonymous codons. Hence, whatever the pool of tRNA available in that cell, there will be
a large fraction of genes with a codon usage that does not match tRNA abundance. In other words,
the heterogeneity of synonymous codon usage in mammalian genomes reflects a non-optimal situa-
tion, caused the gBGC process, in which it is not possible to adapt the tRNA pool to the demand in
codon usage of the transcriptome of any cell type.

Materials and methods

Human protein coding genes

For each of the human protein coding genes in the Ensembl (RRID: SCR_002344) release 83
(Yates et al., 2016); assembly GRCh38.p5), we identified a canonical transcript as defined in http://
www.ensembl.org/Help/Glossary?id=346 (PERL script available in supplementary material). Mito-
chondrial genes were excluded from this analysis. Sequences of the remaining 19,766 canonical tran-
scripts together with exons coordinates, were downloaded through the BioMart query interface
(Smedley et al., 2015)(RRID: SCR_010714).

Recombination rates
Sex-specific crossover rates were measured using pedigree-based genetic maps (Bhérer et al.,
2017). For sex-averaged crossover rates, we used the HapMap genetic map (Frazer et al., 2007)
(RRID: SCR_002846), which is based on the analysis of linkage disequilibrium in human populations,
and provides a higher resolution than pedigree-based genetic maps.

The density in DSB hotspots along genes was measured using the map of DSB hotspots (targeted
by Prdm9 alleles A, B or C) identified by DMC1-ChipSeq experiments in male meiotic cells
(Pratto et al., 2014).

Definition of functional categories

The GO Term Accessions and GO domain were retrieved from Ensembl version 83 for the 19,766
genes. We retrieved biological process GO terms, counted the number of genes associated to each
GO term and kept the ones that include at least 40 genes, except GO:0005515 that is too general
to be informative (‘protein binding’ GO set, which includes 14,542 genes). This led to a final list of
687 GO gene sets. For each gene set, we concatenated coding sequences to compute the total
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codon usage, the relative synonymous codon usage (RSCU) and GC-content, and we also computed
the average intragenic crossover rate and average expression levels (see below). The RSCU of a
given codon corresponds to its frequency, normalized by its expected frequency if all corresponding
synonymous codons were equally used (Sharp et al., 1986). For a given amino acid (x), encoded by
nx synonymous codons, the RSCU of its codon y is given by:

RSCU,, = Cyy/(Ax/ny)

where C,, is the number y for amino acid x, A, is the total number of occurrence of codons for the
amino acid x.

Following the classification used by Gingold et al. (2014), we further defined two broad func-
tional categories: ‘proliferation’ and ‘differentiation’. GO terms containing the following keywords
were associated to ‘proliferation”: ‘Chromatin modification’, ‘chromatin remodeling’, ‘mitotic cell
cycle’, 'mRNA metabolic process’, ‘negative regulation of cell cycle’, ‘nucleosome assembly’, ‘trans-
lation’. GO terms containing the following keywords were associated to ‘differentiation’: ‘Develop-
ment’, ‘differentiation’, ‘cell adhesion’, ‘pattern specification’, 'multicellular organism growth’,
‘angiogenesis’. Please note that GO terms corresponding to negative effects were excluded where
appropriate (e.g. ‘negative regulation of proliferation’ was not included in the ‘proliferation’ cate-
gory). Complete lists of GO terms are available in the supplementary material.

Analyses of individual genes

We also measured the codon usage of individual genes, to analyze covariations with their GC-con-
tent, expression levels and sex-averaged intragenic crossover rate (HapMap). Owing to the low SNP
density in human populations, the resolution of recombination maps is limited to about 5 kb
(Myers et al., 2005). Because we investigate the relationship between GC3 and intragenic crossover
rate, we selected genes that are long enough to measure recombination, that is at least 5 kb long
(N = 16,223 genes).

We defined three non-overlapping classes of genes according to their GO category: genes asso-
ciated to at least one of the ‘proliferation’ GO terms (N = 1,008), genes associated to 'differentia-
tion" GO terms (N = 2,833) and other genes (N = 12,129). A group of 253 genes that were
associated to both ‘proliferation’ and ‘differentiation’” GO terms were discarded from further analy-
ses. The final dataset used in our analyses included 15,970 genes. In this dataset, there were 15,848
genes that contain at least one intron and for which we computed the GC content of intronic
regions. The analyses of sex-specific crossover rates and of DSB hotspot densities (Figure 4; Fig-
ure 4—figure supplement 2) were based on 15,055 autosomal genes.

Expression data

Gene expression levels were collected from three publicly available human RNA-seq experiment
datasets. The first one includes 27 differentiated adult tissues (Fagerberg et al., 2014; Kryuchkova-
Mostacci and Robinson-Rechavi, 2015); EBI| accession number E-MTAB-1733). We downloaded nor-
malized expression levels, already averaged across replicates, from (Fagerberg et al., 2014, Kryuch-
kova-Mostacci and Robinson-Rechavi, 2015) (see supplementary information). The second one is
based on single-cell RNA-seq analysis, and includes 20 samples, corresponding to inner cell mass
(ICM) of the blastocysts, and to primordial germ cells (PGC) and somatic cells, from male and female
embryos at different development stages (4, 7 or 8, 10, 11 and 17 or 19 weeks, (Guo et al., 2015)
GEO accession number GSE63818). We downloaded normalized expression levels from their dataset
of pool-split PGCs (for more details see supplementary information). Female 17 weeks PGCs are
entered in meiosis (Guo et al., 2015). This sample was therefore taken as representative of the tran-
scriptome of meiotic cells in female. The third dataset corresponds to human male germ cells at
pachytene spermatocytes (i.e. cells entering meiosis) and at round spermatids stages (post meiotic
stage) ([Lesch et al., 2016]; GEO accession number GSE68507, human RNA expression datasets
GSM1673959, GSM1673963, GSM1673967, GSM1673971, GSM1673975 and GSM1673978). Guo
and Lesch datasets include several replicates for each sample. We therefore computed the average
expression levels over all replicates for each sample. The sex-averaged meiotic expression level was
estimated by computing the mean of expression levels in female 17 weeks PGCs (Guo et al., 2015)
and male spermatocytes or spermatids (Lesch et al., 2016). The correspondence between gene
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expression datasets and codon usage tables was based on Ensembl gene identifiers (Fagerberg and
Lesch datasets), or on gene names (Guo dataset). In total, our analyses of expression levels were
based on 15,305 genes (665 genes were absent from the Guo dataset).

Statistical analysis

Unless stated otherwise, reported R? values correspond to Pearson correlation tests. R version 3.2.2
(Core Team R, 2015) was used with Base package for statistical tests and graphics, plus ade4 library
(Dray and Dufour, 2007) for PCA analysis. The data and R scripts, which permit to reproduce the
figures and tests presented here, are provided in the supplementary material.

Supplementary information
Supplementary materials with R scripts and supplementary methods are available at: http://doi.org/
10.5281/zenodo.835063 (Pouyet et al., 2017).
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