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Abstract Synonymous codon usage (SCU) varies widely among human genes. In particular,

genes involved in different functional categories display a distinct codon usage, which was

interpreted as evidence that SCU is adaptively constrained to optimize translation efficiency in

distinct cellular states. We demonstrate here that SCU is not driven by constraints on tRNA

abundance, but by large-scale variation in GC-content, caused by meiotic recombination, via the

non-adaptive process of GC-biased gene conversion (gBGC). Expression in meiotic cells is

associated with a strong decrease in recombination within genes. Differences in SCU among

functional categories reflect differences in levels of meiotic transcription, which is linked to

variation in recombination and therefore in gBGC. Overall, the gBGC model explains 70% of the

variance in SCU among genes. We argue that the strong heterogeneity of SCU induced by gBGC in

mammalian genomes precludes any optimization of the tRNA pool to the demand in codon usage.

DOI: https://doi.org/10.7554/eLife.27344.001

Introduction
In humans, the usage of synonymous codons varies substantially among genes. Both adaptive and

nonadaptive processes, not mutually exclusive, have been proposed to explain the existence of

codon usage biases (Duret, 2002; Chamary et al., 2006; Plotkin and Kudla, 2011). The main adap-

tive model, called translational selection, proposes that synonymous codon usage (SCU) and abun-

dance of tRNA are co-adapted to optimize the efficiency of translation (Ikemura, 1981;

Kanaya et al., 2001; Drummond and Wilke, 2008; Hershberg and Petrov, 2008; dos Reis and

Wernisch, 2009). The selective pressure on translational efficiency (in terms of both speed and accu-

racy) is expected to be more pronounced in highly expressed genes because they mobilize a large

number of ribosomes (Bulmer, 1991) and are subject to stronger constraints on translational errors

(Akashi, 1994; Drummond and Wilke, 2008). A first prediction of this model is that preferred

codons should correspond to the most abundant tRNAs, particularly in highly expressed genes. A

second prediction is that codon usage bias should correlate with gene expression patterns and

tRNA contents. Both predictions are verified in some animals, such as flies and nematodes, the

genomes of which show clear signatures of translational selection (Shields et al., 1988; Duret and

Mouchiroud, 1999; Duret, 2002; Castillo-Davis and Hartl, 2002).

The situation is different in mammals, and notably humans, where the influence of translational

selection is still strongly debated (Duret, 2002; Chamary et al., 2006; Plotkin and Kudla, 2011). It

has long been shown that variation in SCU between genes is correlated to large-scale fluctuations of

GC-content along chromosomes, the so-called isochores (Bernardi et al., 1985; Mouchiroud et al.,

1988; Mouchiroud et al., 1991; Clay and Bernardi, 2011). The fact that codon usage correlates

with the base composition of non-coding regions demonstrates that SCU is affected by a process

that is not linked to translational selection. And indeed, there is strong evidence that isochores are
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the consequence of GC-biased gene conversion (gBGC), a form of segregation distortion that occurs

during meiotic recombination and that favors the transmission of GC alleles over AT alleles

(Duret and Galtier, 2009; Munch et al., 2014; Williams et al., 2015). This non-adaptive process

leads to an increase in GC-content in regions of high recombination rate, which affects both coding

and non-coding regions, including synonymous codon positions (Galtier and Duret, 2007;

Duret and Galtier, 2009; Glémin et al., 2015).

In principle, this does not exclude that besides gBGC, codon usage bias might also be affected

by translational selection. Interestingly, several studies have reported that human codon usage varies

among genes expressed in different tissues or cell types (Vinogradov, 2003; Plotkin et al., 2004;

Gingold et al., 2014). In particular, strong variations in SCU are observed among sets of human

genes associated to different functional categories and notably between sets of genes involved in

cellular proliferation or differentiation (Gingold et al., 2014). The relative abundance of tRNA varies

also according to the proliferative or differentiation state of cells, which was logically interpreted in

term of translational selection: different cell types express specific sets of genes whose coding

sequence is co-adapted with specific pools of tRNAs (Gingold et al., 2014). If true, this has impor-

tant implications regarding the role of translational regulation in determining cell fate (differentiation

versus proliferation).

However, this interpretation stands in contradiction with two other studies examining tRNA abun-

dance in mammals. First, although expression levels of individual tRNA genes vary substantially

between tissue types and developmental stages in mice, the collective expression levels of isoaccep-

tor tRNAs (which recognize the same codon) remain constant. Thus, the pool of available anticodons

is stable throughout development (Schmitt et al., 2014). Second, in continuation to this work, a

recent study specifically contrasted cells undergoing proliferation and those undergoing differentia-

tion, and found no covariation of tRNA pool and codon usage between these cells (Rudolph et al.,

2016). Both results are inconsistent with the differences in SCU between functional classes as being

a consequence of translational selection.

The question of the relative contributions of adaptive and nonadaptive processes to variation in

codon usage in mammals therefore remains open: on the one side, patterns of tRNA abundances do

not fit with the translational selection model, but on the other side, the reason why codon usage

varies among functional categories is not yet understood. Here, we examined the hypothesis that

variation in codon usage might result from differences in transcription activity in meiotic cells.

Indeed, it has been observed that intragenic recombination rate correlates negatively with expres-

sion level in the germline (McVicker and Green, 2010). It is therefore possible that differences in

germline expression levels among functional categories induce differences in gBGC, and hence

codon usage biases.

To test this hypothesis, we analyzed SCU among different functional categories of human genes,

and investigated covariation with GC-content, recombination rate and expression patterns. We first

show that the variation in codon usage among functional categories results from differences in GC

content. Then, we propose a new test that demonstrates that variation in SCU is not associated with

translational selection. Instead, SCU correlates with large-scale variation in genomic GC-content and

with differences in intragenic recombination rate. In turn, the difference in intragenic recombination

rate between functional categories is explained by their expression level in meiosis. Altogether, GC-

content of non-coding regions and meiotic expression explain 70% of the variation in SCU of human

genes. In the end, our results are fully consistent with the hypothesis that SCU is driven by gBGC,

and not by translational selection. They indicate that the differences observed among functional cat-

egories reflect variation in long-term intragenic recombination rates, resulting from differences in

meiotic expression levels.

Results

Variation in codon usage among functional categories results from
differences in GC-content
To better understand the causes of the differences in codon usage between sets of genes involved

in cellular proliferation and differentiation (reported by [Gingold et al., 2014]), we started by investi-

gating the main factors that discriminate codon usage between functional categories in general. For
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this purpose, we grouped genes per functional category (687 biological processes, associated to

more than 40 genes in the Gene Ontology database), and computed codon frequencies for each of

these gene sets. We used the classification proposed by Gingold et al. (2014) to distinguish GO

gene sets associated to ‘proliferation’ or ‘differentiation’. Variation in relative synonymous codon

usage (RSCU; see Materials and methods) among GO gene sets was analyzed by Principal Compo-

nent Analysis (PCA). The first principal component of this analysis segregates ‘proliferation’ (red

dots) from ‘differentiation’ (blue dots) GO categories (Figure 1A). Thus, in agreement with

Gingold et al. (2014), synonymous codon usage clearly varies between functional categories in gen-

eral, and between proliferation and differentiation in particular. Previous studies had shown that syn-

onymous codon usage is correlated to GC content at third position of codons – termed GC3

(Mouchiroud et al., 1988). And indeed, we observed that the average GC3 of each GO gene set is

perfectly correlated to their coordinates on the first PCA axis (R2 = 0.99; Figure 1B). Hence, varia-

tion in SCU between functional categories is fully explained by variation in GC3.

On average, in our dataset, each gene is associated to nine GO biological processes. Many genes

belong to more than one GO biological-process category, either because they have several functions

(pleiotropy) or because these categories are nested from specific to broad functions. Hence, GO-

terms are not independent. To avoid this redundancy, for the remainder of this study we switched

from analyses at the level of GO gene sets to analyses at the level of individual genes (except when

stated otherwise). Each gene was assigned with one of three categories based on their GO annota-

tion: 1008 genes associated with ‘proliferation’, 2833 genes associated with ‘differentiation’, and

12,129 ‘other’ genes unrelated to these key words (see Materials and methods). Genes associated

to ‘proliferation’ are on average less GC-rich than genes associated to ‘differentiation’ (mean GC3

0.53 and 0.61 in the two subsets respectively). The two distributions of GC3 differ significantly from

each other (t-test, p-value<2.10�16), and their peaks coincide with each of the two modes observed

for the rest of the genome (Figure 1C).

Variation in synonymous codon usage is not driven by translational
selection
We first investigated whether the observed variation in synonymous codon usage (i.e. variation in

GC3) might be driven by translational selection. This model proposes that the relative usage of syn-

onymous codons should co-vary with the abundance of their cognate tRNAs. A property of the

tRNA gene repertoires allows us to test this hypothesis. The human genome contains 506 tRNA

genes (decoding the 20 standard amino acids), corresponding to 48 different tRNA isoacceptors

(Chan and Lowe, 2016). Among the 18 amino acids having two or more synonymous codons, 4 are

decoded by a single tRNA isoacceptor (mono-isoacceptor amino acids: Phe, Asp, His and Cys), and

the 14 other ones are decoded by several tRNA isoacceptors (multi-isoacceptors amino acids).

For multi-isoacceptors amino acids, the relative abundance of the different tRNA isoacceptors

can vary among different cell types, and hence might covary with the relative synonymous codon

usage of genes preferentially expressed in these cell types. For instance, let us consider Gln, which

has two synonymous codons (CAG, CAA) that are decoded by two tRNA isoacceptors (respectively

anticodons CTG and TTG). Let us consider a theoretical example of two cell types (say A and B) that

differ in their relative tRNA abundance (CTG-tRNA being more abundant in A cells, and TTG-tRNA

in B cells). According to the translational selection model, sets of genes that are over-expressed in A

cells, should preferentially use the CAG codon, whereas genes that are over-expressed in B cells,

should preferentially use the CAA codon. However, mono-isoacceptor amino acids are, by definition,

decoded by a single tRNA isoacceptor and the relative tRNA abundance cannot vary across cell

types. Hence, according to the translational selection model, the relative synonymous codon usage

for mono-isoacceptor amino acids is not expected to vary among cell-specific gene sets. In other

words, for mono-isoacceptor amino acids, variation in synonymous codon usage among GO gene

sets cannot be explained by co-adaptation with the tRNA pool.

To test whether variation in synonymous codon usage was driven by translational selection, we

computed synonymous codon usage (GC3) in GO gene sets, separately for codons corresponding

to mono-isoacceptor amino acids and for codons corresponding to multi-isoacceptor amino acids.

We observed that the range of variation in GC3 is very similar for mono- and multi-isoacceptor

amino acids. Importantly, the two parameters are strongly correlated (R2 = 0.90) (Figure 1D). This

implies that GC3 variation is driven by a process that affects both mono-isoacceptor and multi-
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isoacceptor amino acids, and hence that this process is not related to variation in tRNA abundance.

This observation holds true for all functional categories, including those associated to differentiation

or proliferation (red and blue dots in Figure 1D).

Impact of large-scale variation in genomic GC-content on synonymous
codon usage
We observed that the GC3 of genes correlates with the GC-content of their flanking regions

(Figure 2A, Figure 2—figure supplement 1, R2 = 0.48, p-value<2.10�16). This correlation is

Figure 1. Variation in synonymous codon usage and in GC3 among functional categories. (A) Factorial map of the principal-component analysis of

synonymous codon usage in GO functional categories in the human genome. Each dot corresponds to a GO gene set, for which the relative

synonymous codon usage (RSCU) was computed. GO categories that are associated with ‘differentiation’ or with ‘proliferation’ are displayed in blue

and in red, respectively. (B) Correlation between the RSCU of GO gene sets (first PCA axis) and their average GC-content at third codon position (GC3).

(C) Distribution of GC3 of human protein coding genes. Red: ‘proliferation’ genes (N = 1,008); blue: ‘differentiation’ genes (N = 2,833); grey: other

genes (N = 12,129). (D) Correlation between the GC3 of mono-isoacceptor amino acids and multi-isoacceptor amino acids. For each GO gene set, the

average GC3 was computed separately for amino acids decoded by multiple tRNA isoacceptors (N = 14 multi-isoacceptor amino acids), and for those

decoded by one single tRNA isoacceptor (mono-isoacceptor amino acids: Phe, Asp, His, Cys). Amino-acids encoded by a single codon (Met, Trp) were

excluded.

DOI: https://doi.org/10.7554/eLife.27344.002

Pouyet et al. eLife 2017;6:e27344. DOI: https://doi.org/10.7554/eLife.27344 4 of 19

Research article Genomics and Evolutionary Biology

https://doi.org/10.7554/eLife.27344.002
https://doi.org/10.7554/eLife.27344


observed for all genes, including the subsets of genes associated with ‘proliferation’ and ‘differentia-

tion’ (R2 = 0.48 and 0.46, all p-values<2.10�16). Thus, variation in SCU between genes is to a large

extent attributable to the GC-content of the genomic region in which they are located (the isochore

effect). However, when the regional GC-content is controlled for, there remains a difference in GC3

between gene categories (Figure 2A): for a given regional GC-content, the GC3 of proliferation-

associated genes is lower than that of differentiation or other genes. This difference is highly signifi-

cant (Figure 2A, Figure 2—figure supplement 1, p-value<2.10�16). This implies that the difference

in synonymous codon usage between these gene categories does not result from a preferential loca-

tion in different isochores.

Variation in synonymous codon usage among functional categories
correlates with differences in intragenic recombination rate
Previous studies have demonstrated that the evolution of GC-content along chromosomes is driven

by meiotic recombination, both on a broad (Mb) scale (Duret and Arndt, 2008; Munch et al., 2014)

and on a fine (kb) scale (Clément and Arndt, 2013; Pratto et al., 2014). There is now strong
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Figure 2. Difference in SCU between ‘proliferation’ and ‘differentiation’ genes is linked to variation in intragenic crossover rate, and not to their

isochore context. (A) Variation in gene GC3 according to the GC content of their flanking region (GC-flank) in each functional category. Genes were first

binned into 10 classes of equal sample size according to their GC-flank, and then split into three sets according to their functional category:

‘proliferation’ (red), ‘differentiation’ (blue), and ‘other’ genes (grey). Boxplots display the distribution of GC3 for each functional category within each

GC-flank bin. (B) Mean sex-averaged intragenic crossover rate (HapMap) in each functional category. Error bars represent the 95% confidence interval

of the mean.

DOI: https://doi.org/10.7554/eLife.27344.003

The following figure supplement is available for figure 2:

Figure supplement 1. Correlation between the GC3 of genes and the GC content of their flanking regions (GC-flank).

DOI: https://doi.org/10.7554/eLife.27344.004
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evidence that this correlation between GC-content and recombination is caused by the process of

GC-biased gene conversion (gBGC) which leads to increase the GC-content in regions of high

recombination (Galtier et al., 2001; Galtier and Duret, 2007; Duret and Galtier, 2009;

Munch et al., 2014; Pratto et al., 2014; Williams et al., 2015). Recombination rate varies along

chromosomes, and notably tends to be lower within genes than in flanking regions (Myers et al.,

2005; McVicker and Green, 2010). Interestingly, we observed that intragenic crossover rates (in

cM/Mb) differ among the three sets of genes defined previously, and covary with their GC3: the

average intragenic crossover rate is lower in ‘proliferation’ genes compared to other genes, whereas

it is higher in ‘differentiation’ genes (Figure 2B; p-value of Kruskal-Wallis test <2.10�16 as for all pair-

wise Wilcoxon tests). These observations are therefore consistent with the hypothesis that differen-

ces in GC3 between ‘differentiation’ and ‘proliferation’ genes could also be driven by gBGC.

The difference in intragenic recombination rate between functional
categories is explained by their expression level in meiosis
McVicker and Green (2010) reported a negative correlation between intragenic recombination rate

and meiotic gene expression level. We reevaluated this relationship using recently published high-

resolution genetic maps (Bhérer et al., 2017), meiotic double-strand breaks (DSBs) maps

(Pratto et al., 2014) and meiotic gene expression datasets (Guo et al., 2015; Lesch et al., 2016).

These new data show that the relationship between crossover rate and meiotic gene expression is

even stronger than initially reported: we observed that the crossover rate is 3.5 (males) to 5.4

(females) times lower in highly expressed genes (top 10%) compared to weakly expressed genes

(bottom 10%) (Figure 3A, Figure 3—figure supplement 3A,B). This reduction in crossover rate is

explained, at least in part, by a lower density of meiotic DSB hotspots within highly expressed genes

(Figure 3—figure supplement 3C). In agreement with Bhérer et al. (2017), we observed an eleva-

tion of crossover rate around transcription start sites, specifically in females (Figure 4—figure sup-

plement 1). However, this peak is observed only in genes with low or medium meiotic expression

level (Figure 4). Within genes with high meiotic expression level, we observed a strong reduction of

crossover rate in both sexes, affecting the entire transcription unit, from the TSS to the polyadenyla-

tion site (Figure 4).

We also analyzed other RNA-seq data sets (either from single cells or bulk samples), covering a

broad range of tissues/cell types: somatic or germ cells at different stages of developing male and

female embryo (20 different conditions; [Guo et al., 2015]) and differentiated adult tissues (26

somatic tissues, plus testis, which contains a fraction of germ cells; [Fagerberg et al., 2014]). In

agreement with McVicker and Green (2010), we observed that the negative correlation between

expression level and intragenic crossover rate is stronger in germ cells than in somatic samples (Fig-

ure 3—figure supplement 1), which indicates that recombination is associated with expression level,

specifically in meiotic cells.

Many ‘proliferation’ genes are involved in basic cellular functions, and hence, tend to be

expressed at relatively high levels in many tissues and at all developmental stages. In particular,

most of these genes are highly expressed in meiotic cells: 65% of ‘proliferation’ genes are among

the top 33% of genes with highest expression level (whereas only 11% are in the first tercile; Fig-

ure 3—figure supplement 2). Conversely, only 26% of ‘differentiation’ genes are highly expressed

in meiotic cells, while 42% of are in the first tercile (Figure 3—figure supplement 2). This large pro-

portion of ‘proliferation’ genes with high meiotic expression levels can therefore explain why they

tend to have relatively low intragenic crossover rate (Figure 2B), and hence, given the gBGC pro-

cess, why they tend to have a lower GC3 (Figure 1C). To further test whether these differences in

expression patterns could account for the difference in GC3 between ‘proliferation’, ‘differentiation’

and ‘other genes’, we binned genes into three classes of increasing meiotic expression level. The dis-

tribution of GC3 is clearly shifted toward lower values for genes highly expressed at meiosis (top

33%), compared to genes weakly expressed (bottom 33%): the average GC3 is 0.51 in the ‘high’ cat-

egory compared to 0.65 in the ‘low’ category (p-value<2.10�16) (Figure 3B). However, there is no

significant difference in the distribution of GC3 between ‘proliferation’ and ‘differentiation’ within

bins of low or high expression (p-value=0.68 and 0.15 respectively). For the mid-expression bin,

there is still a significant difference of GC3 between ‘proliferation’ and ‘differentiation’ (p-val-

ue=3.2.10�8), potentially explained by differences in expression between categories within this bin.
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Thus, most of the difference in synonymous codon usage between functional categories (Figure 1C)

disappears once level of expression during meiosis is controlled for (Figure 3B).

Thus, differences in synonymous codon usage among gene categories in human can be explained

through the following causative chain: (i) The set of ‘proliferation’ genes is enriched in genes highly

expressed in meiosis. (ii) Because high expression at meiosis is associated with a decreased rate of

recombination, intragenic recombination rates are lower in the ‘proliferation’ set. (iii) In turn,

reduced intragenic recombination diminishes the effect of gBGC on exon base composition, and

hence GC3 is lower in the set ‘proliferation’ compared to ‘differentiation’.

To check whether this cascade of effects fully recapitulates the difference in synonymous codon

usage between ‘proliferation’ and ‘differentiation’, we investigated whether differences in SCU
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Figure 3. Variation in intragenic crossover rate and GC3 according to expression levels in meiotic cells. (A) Genes were classified according to their sex-

averaged expression level in meiotic cells into 10 bins of equal sample size. The mean sex-averaged intragenic crossover rate (HapMap) was computed

for each bin. Error bars represent the 95% confidence interval of the mean. Similar results were obtained when analyzing sex-specific crossover rates

and expression levels or when using DSB maps to measure of recombination rate (Figure 3—figure supplement 3). (B) Variation in GC3 according to

meiotic expression levels. Genes were first binned into 3 classes of equal sample size according to their sex-averaged expression level in meiotic cells

(low:<3.07 FPKM; high:>22.68 FPKM: medium: the others), and then split into three sets according to their functional category: ‘proliferation’ (red),

‘differentiation’ (blue), and ‘other’ genes (grey). Boxplots display the distribution of GC3 for each functional category within each expression bin.

DOI: https://doi.org/10.7554/eLife.27344.005

The following figure supplements are available for figure 3:

Figure supplement 1. Differential intragenic crossover rate between lowly and highly expressed genes in adult tissues and in individual embryonic

cells.

DOI: https://doi.org/10.7554/eLife.27344.006

Figure supplement 2. Comparison of the distribution of meiotic gene expression levels for ‘proliferation’, ‘differentiation’ and other genes.

DOI: https://doi.org/10.7554/eLife.27344.007

Figure supplement 3. Variation in intragenic recombination rate and GC3 according to expression levels in meiotic cells.

DOI: https://doi.org/10.7554/eLife.27344.008
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between functional categories are driven by expression level in cells undergoing meiosis, rather than

by expression level in another cell type or tissue. We examined the relationship between GC3 and

expression levels in a broad panel of cell and tissue conditions (Figure 5). As predicted by our

model, expression levels in germ cells, either from single-cell samples or from testis (which contains

germ cells) are better predictors of GC3 than expression in all other somatic tissues. Strikingly, the

levels of expression in primary germ cells is, on average, twice as informative than expression in
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DOI: https://doi.org/10.7554/eLife.27344.009

The following figure supplements are available for figure 4:

Figure supplement 1. Variation in crossover rate as a function of the distance to transcription start site (TSS) and to the polyadenylation site.

DOI: https://doi.org/10.7554/eLife.27344.010

Figure supplement 2. Variation in DSB hotspot density as a function of the distance to transcription start site (TSS) and to the polyadenylation site, and

according to meiotic expression level.

DOI: https://doi.org/10.7554/eLife.27344.011
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somatic cells taken at comparable stage of development (Figure 5B). Among all individual samples,

the strongest correlation between GC3 and expression level was found in male meiotic cells (pachy-

tene spermatocytes, R2 = 6.3%, p-value<2.10�16). Female meiotic cells (primordial germ cells, PGC

17 W) showed a similar correlation level (R2 = 4.0%, p-value<2.10�16). As expected, the correlation

is even stronger with sex-averaged meiotic expression level (R2 = 8.6%, p-value<2.10�16). Hence,

these results confirm that the cell type for which gene expression level is the best predictor of GC3

(and therefore SCU) corresponds to meiotic cells.

GC-content of non-coding regions and meiotic expression explain 70%
of the variation in synonymous codon usage of human genes
Meiotic expression is associated with a deficit of recombination rates all along the gene (Figure 4).

Thus, the expression pattern is expected to affect gBGC intensity (and hence the GC-content) both

in exons and in introns. Consistent with that prediction, the GC3 of human genes is strongly corre-

lated to the GC-content of their introns (GCi, R2 = 62.7%, p-value<2.10�16). We build a linear model

to quantify the relative contribution of the different parameters that covary with the GC3 of human

genes (GCi, GC-flank, intragenic crossover rate, meiotic expression level, and ‘proliferation’ or ‘dif-

ferentiation’ functional category). The analysis of variance demonstrates that GCi is by far the best

predictor of GC3, but GC-flank, intragenic crossover rate and gene expression level during meiosis,

also significantly improve the model (by 1%, 4% and 1.4%, respectively, Table 1, ANOVA, p--

values<2.10�16). The integration of a categorical variable ‘differentiation’ versus ‘proliferation’ in the

model significantly improves the model but its quantitative influence is minor (0.1%, p--

value<2.10�16, Table 1). Altogether, 68.2% of the variance in GC3 among human genes can be

explained by the first four parameters (GCi, GC-flank, intragenic crossover rate, meiotic expression).
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Figure 5. Correlation between expression level and GC3 in a panel of tissues and cell types. (A) Bulk adult tissues data (Fagerberg et al., 2014) and

(B) early embryo single-cell data (Guo et al., 2015). These two subsets were obtained via very different protocols, which prevents direct cross-

comparisons. Samples are sorted by increasing correlation coefficient (R2) between expression levels and GC3 (NB: all correlations are negative).

Samples containing somatic cells are shown in blue; male germ cells in orange (testis or single cell) and female germ cells in red (PGC: primordial germ

cells). The green point corresponds to cells from the inner cell mass (ICM) of the blastocysts, i.e. pluripotent cells from an early stage of development

preceding the differentiation of germ cells.
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Adding interaction terms to the linear model gives very similar results (70.4% variance explained,

same levels of significance for all variables).

Discussion

Biased gene conversion drives codon usage in humans
In the human genome, gene sets that belong to different functional categories differ by their synony-

mous codon usage. Initially this pattern has been interpreted as evidence that the translation pro-

gram was under tight control, notably to ensure a precise regulation of genes involved in cellular

differentiation or proliferation (Gingold et al., 2014). According to this model, selection should opti-

mize the match between the SCU of genes and tRNA abundances in the cells where they are

expressed. However, the comparison of synonymous codon usage for amino acids with single or

multiple tRNA isoacceptors (Figure 1D) shows that the difference in SCU between functional cate-

gories does not result from constraints linked to tRNA abundance. In fact, variation in synonymous

codon usage among functional categories is explained by one single dominant factor: the GC-con-

tent at third codon position (Figure 1B). The GC3 of human genes is strongly correlated to the GC-

content of their introns and flanking regions (Table 1). This implies that variation in SCU results from

a process that affects both coding and non-coding regions (including non-transcribed intergenic

regions), and hence that it is not related to the process of translation. In fact, this observation inva-

lidates all the models that assume that SCU is driven by a selective pressure acting on RNAs (not

only translational selection, but also selection on mRNA processing, structure or stability).

Many lines of evidence indicate that large-scale variation in GC-content along chromosomes (iso-

chores) is driven by the gBGC process, both in mammals and birds. First, there is direct evidence

that recombination favors the transmission of GC-alleles over AT-alleles during meiosis (Odenthal-

Hesse et al., 2014; Arbeithuber et al., 2015; de Boer et al., 2015; Williams et al., 2015;

Smeds et al., 2016). Second, the analysis of polymorphism and divergence at different physical

scales (from kb to Mb) showed that recombination induces a fixation bias in favor of GC alleles

(Duret and Arndt, 2008; Clément and Arndt, 2013; Munch et al., 2014; Pratto et al., 2014;

Weber et al., 2014; Glémin et al., 2015; Singhal et al., 2015). Third, the gBGC model predicts that

the GC-content of a given genomic segment should reflect its average long-term recombination rate

over tens of million years (Duret and Arndt, 2008). Consistent with this prediction, analyses of

ancestral genetic maps in the primate lineage revealed a very strong correlation between long-term

recombination rates (in 1 Mb long windows) and stationary GC-content – R2 = 0.64; (Munch et al.,

2014). The strong correlation between GC3 and GC-flank therefore implies that variation in synony-

mous codon usage is primarily driven by large-scale variation in long-term recombination rate.

Besides these regional fluctuations, recombination rates also vary at finer scale. In particular,

recombination rates tend to be reduced within human genes compared to their flanking regions

(Myers et al., 2005), and this decrease depends on the level of expression of genes during meiosis

(McVicker and Green, 2010) – see also Figure 3A and Figure 4. Hence, the gBGC model predicts

Table 1. Analysis of the variance of GC3 among individual genes.

Variables included in the linear model are: GC-content of introns (GCi), GC-content of flanking regions (GC-flank), HapMap sex-aver-

aged intragenic crossover rate (log scale), sex-averaged meiotic gene expression level (log scale) and functional category (‘differentia-

tion’, ‘proliferation’ and ‘other’). Pairwise correlations (pairwise R2) were computed between GC3 and each of the other variables.

Correlations of the model (model R2) were computed by adding variables sequentially.

GC3 predictors Pairwise R2 p-value Model R2 F statistic p-value

GCi 62.7% <2.10�16 62.7% 30232.4 <2.10�16

GC-flank 48.1% <2.10�16 62.9% 126.8 <2.10�16

Intragenic crossover rate 12.8% <2.10�16 66.8% 1453.3 <2.10�16

Expression level in meiosis 8.3% <2.10�16 68.2% 875.7 <2.10�16

Functional category 1% <2.10�16 68.3% 30.43 <2.10�16

DOI: https://doi.org/10.7554/eLife.27344.013
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that the GC3 of a gene should depend not only of the long-term recombination rate of the region

where it is located, but also on its specific pattern of expression. And indeed, we observed that the

difference in synonymous codon usage between ‘proliferation’ and ‘differentiation’ genes is not due

to their preferential location in different classes of isochores, but to the fact that ‘proliferation’ genes

tend to be expressed a high level in meiotic cells, and therefore to have a reduced intragenic recom-

bination rate (Figures 2 and 3).

To test whether this observation holds true for other functional categories, we measured the aver-

age GC3, intragenic crossover rate and meiotic expression level of each GO gene set. As predicted

by the gBGC model, we observed a strong correlation between GC3 and the average intragenic

Figure 6. Relationships between GC-content, intragenic crossover rates and meiotic expression levels (sex-averaged) among functional gene

categories. Average values of these parameters were computed for each GO gene set. We then measured correlations between these parameters: (A)

Mean GC3 vs. mean sex-averaged intragenic crossover rate (HapMap). (B) Mean intragenic crossover rate vs. mean expression level in meiotic cells. (C)

Mean GC3 vs. mean expression level in meiotic cells. (D) Mean intronic GC-content (GCi) vs. mean intragenic crossover rate. GO gene sets associated

to ‘proliferation’ (red) or ‘differentiation’ (blue) are displayed as in Figure 1. Similar results were obtained when analyzing separately expression levels in

female or male meiosis (Figure 6—figure supplement 1).

DOI: https://doi.org/10.7554/eLife.27344.014

The following figure supplement is available for figure 6:

Figure supplement 1. Relationships between expression levels in female or male meiotic cells and GC3 and intragenic crossover rates.

DOI: https://doi.org/10.7554/eLife.27344.015
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crossover rate of GO gene sets (R2 = 0.51, Figure 6A). The variance in intragenic crossover rate, in

turn, is very well explained by differences in meiotic expression levels among functional classes

(R2 = 0.46, Figure 6B). As mentioned previously, these correlations measured on gene concatenates

should be interpreted with caution because the different points are not independent (a same gene

can belong to different GO categories). However, this analysis clearly shows that a large fraction of

the variance in SCU observed among GO gene sets can be explained by variation in gBGC intensity,

caused by variation in intragenic crossover rates, linked to differences expression patterns

(Figure 6C). In agreement with the gBGC model, the intragenic crossover rate correlates with the

base composition of the entire gene, including introns (Figure 6D). This observation clearly invalid-

ates the hypothesis that the observed differences in SCU among functional categories might be

driven by selection on codon usage.

In summary, the SCU of individual genes depends primarily on the isochore in which they are

located (i.e. large-scale long-term variation in recombination rate), and secondarily on their meiotic

expression level (which affects locally the intragenic recombination rate) (Table 1). In gene set analy-

ses, the variance in SCU explained by expression (Figure 6) appears much stronger than in individual

genes analyses (Table 1). This is due to the fact that in gene set analyses, SCU is averaged over a

large number of genes, located in different isochores, which leads to decrease the isochore effect

among functional categories (and hence mechanically increase the fraction of the variance explained

by expression). Overall, the different variables linked to the intensity of gBGC explain 70% of the

variance in GC3 of individual genes (Table 1). In other words, the gBGC model can account for most

of the variation in synonymous codon usage in the human genome.

It should be noted that co-variation between SCU and expression is generally considered as a

typical signature of translational selection and is often used to predict optimal codons (Duret, 2002;

Plotkin et al., 2004; dos Reis and Wernisch, 2009). However, as shown here, such correlations can

also emerge as a result of a non-adaptive process. Given that gBGC is widespread in eukaryotes

(Mancera et al., 2008; Capra and Pollard, 2011; Pessia et al., 2012; de Boer et al., 2015;

Williams et al., 2015; Smeds et al., 2016), it appears essential to take this process into account to

interpret variation in synonymous codon usage (and more generally in base composition) among

genes.

Relationship between meiotic expression and recombination
The reason why intragenic recombination rate correlates negatively with meiotic expression level is

not known. In human and mice, the location of recombination hotspots is determined by PRDM9, a

Zn-Finger DNA-binding protein with histone H3 lysine four trimethylation (H3K4me3) activity.

PRDM9 is expressed during early meiosis and marks sites where DSBs are afterwards introduced by

Spo11 (for review, see Baudat et al., 2013). These DSBs are then repaired by homologous recombi-

nation, forming either crossovers, the reciprocal exchanges of genetic material between parental

chromosomes, or noncrossovers. Knockout experiments in mice have demonstrated that PRDM9 tar-

gets recombination away from active promoters (Brick et al., 2012). The analyses of male DSB maps

suggests that PRDM9 plays the same role in humans: we observed a deficit of DSB hotpots around

the transcription start site (TSS), specifically within genes that are highly expressed in meiotic cells

(Figure 4—figure supplement 2). The decrease in recombination rate within highly expressed genes

is however not restricted to the promoter region: in both sexes, there is a strong deficit of cross-

overs within the entire transcription unit, from the TSS to the polyadenylation site (Figure 4). In spe-

cies that lack Prdm9 (such as dogs, birds, arabidopsis or yeast), recombination hotspots are strongly

enriched in active promoters (Auton et al., 2013; Choi et al., 2013; Singhal et al., 2015; Lam and

Keeney, 2015), which indicates that there is no mechanistic incompatibility between recombination

and transcription activity in meiotic cells. However there is evidence that in highly expressed genes,

H3K36me3 marks trigger DNA methylation in the gene body, and thereby prevent spurious tran-

scription initiation (Neri et al., 2017). It is therefore possible that the peculiar chromatin state of

highly expressed genes also interferes with the binding of PRDM9 (or with its histone modification

activity), and thereby decrease the rate of DSB formation within the transcription unit. Consistent

with this hypothesis, we observed a deficit in male DSB hotspot density along the transcription unit

of highly expressed genes (Figure 4—figure supplement 2). This difference in DSB rates is, how-

ever, much less pronounced than the difference in male crossover rates (Figure 4; Figure 3—figure

supplement 3). Furthermore, the profile of DSB hotspot density in highly expressed genes differs
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from that of crossover rates, with a strong deficit around the TSS and an excess around the polyade-

nylation site (Figure 4—figure supplement 2), whereas the deficit in male crossovers is more uni-

form along the transcription unit (Figure 4). This suggests that the differences in crossover profiles

observed between highly and weakly expressed genes might also reflect differences in the way

recombination events are resolved (crossover vs. non-crossovers).

gBGC precludes selection on translation efficiency in humans
There is a clear evidence that the usage of synonymous codons is under selective pressure in some

metazoan species (such as drosophila or nematode), which implies that it has a significant impact on

the fitness of organisms – for review, see (Duret, 2002; Chamary et al., 2006; Plotkin and Kudla,

2011). It is a priori expected that codon usage should also affect translation efficiency (speed and

accuracy) in mammals. However, our results show that selection on codon usage is not strong

enough to counteract the impact of gBGC. In principle, this does not exclude the hypothesis that

the human genome might be subject to selection for translational efficiency: even if the GC-content

of genes is driven by non-adaptive processes, there might be a selective pressure on the expression

of tRNA genes to match the demand in synonymous codon usage. However, recent analyses of

tRNA isoacceptors pools found no evidence for such variation (Schmitt et al., 2014; Rudolph et al.,

2016). Moreover, we argue here that the peculiar base composition landscape induced by gBGC in

the genomes of mammals and birds makes it impossible to match the tRNA pool to the demand in

codon usage. Indeed, large-scale variation in recombination rates along the genome causes very

strong variation in GC3 among genes, and this, regardless of their functional category. In particular,

‘proliferative’ genes, which are involved in basic cellular process, and are expressed at high levels in

most tissues, show a very strong heterogeneity in GC3 (from 20% to almost 100%; Figure 1C). This

implies that in any given cell, the set of highly expressed genes will show a very heterogeneous

usage of synonymous codons. Hence, whatever the pool of tRNA available in that cell, there will be

a large fraction of genes with a codon usage that does not match tRNA abundance. In other words,

the heterogeneity of synonymous codon usage in mammalian genomes reflects a non-optimal situa-

tion, caused the gBGC process, in which it is not possible to adapt the tRNA pool to the demand in

codon usage of the transcriptome of any cell type.

Materials and methods

Human protein coding genes
For each of the human protein coding genes in the Ensembl (RRID: SCR_002344) release 83

(Yates et al., 2016); assembly GRCh38.p5), we identified a canonical transcript as defined in http://

www.ensembl.org/Help/Glossary?id=346 (PERL script available in supplementary material). Mito-

chondrial genes were excluded from this analysis. Sequences of the remaining 19,766 canonical tran-

scripts together with exons coordinates, were downloaded through the BioMart query interface

(Smedley et al., 2015)(RRID: SCR_010714).

Recombination rates
Sex-specific crossover rates were measured using pedigree-based genetic maps (Bhérer et al.,

2017). For sex-averaged crossover rates, we used the HapMap genetic map (Frazer et al., 2007)

(RRID: SCR_002846), which is based on the analysis of linkage disequilibrium in human populations,

and provides a higher resolution than pedigree-based genetic maps.

The density in DSB hotspots along genes was measured using the map of DSB hotspots (targeted

by Prdm9 alleles A, B or C) identified by DMC1-ChipSeq experiments in male meiotic cells

(Pratto et al., 2014).

Definition of functional categories
The GO Term Accessions and GO domain were retrieved from Ensembl version 83 for the 19,766

genes. We retrieved biological process GO terms, counted the number of genes associated to each

GO term and kept the ones that include at least 40 genes, except GO:0005515 that is too general

to be informative (‘protein binding’ GO set, which includes 14,542 genes). This led to a final list of

687 GO gene sets. For each gene set, we concatenated coding sequences to compute the total

Pouyet et al. eLife 2017;6:e27344. DOI: https://doi.org/10.7554/eLife.27344 13 of 19

Research article Genomics and Evolutionary Biology

https://scicrunch.org/resolver/SCR_002344
http://www.ensembl.org/Help/Glossary?id=346
http://www.ensembl.org/Help/Glossary?id=346
https://scicrunch.org/resolver/SCR_010714
https://scicrunch.org/resolver/SCR_002846
https://doi.org/10.7554/eLife.27344


codon usage, the relative synonymous codon usage (RSCU) and GC-content, and we also computed

the average intragenic crossover rate and average expression levels (see below). The RSCU of a

given codon corresponds to its frequency, normalized by its expected frequency if all corresponding

synonymous codons were equally used (Sharp et al., 1986). For a given amino acid (x), encoded by

nx synonymous codons, the RSCU of its codon y is given by:

RSCUxy ¼Cxy=ðAx=nxÞ

where Cxy is the number y for amino acid x; Ax is the total number of occurrence of codons for the

amino acid x.

Following the classification used by Gingold et al. (2014), we further defined two broad func-

tional categories: ‘proliferation’ and ‘differentiation’. GO terms containing the following keywords

were associated to ‘proliferation’: ‘Chromatin modification’, ‘chromatin remodeling’, ‘mitotic cell

cycle’, ‘mRNA metabolic process’, ‘negative regulation of cell cycle’, ‘nucleosome assembly’, ‘trans-

lation’. GO terms containing the following keywords were associated to ‘differentiation’: ‘Develop-

ment’, ‘differentiation’, ‘cell adhesion’, ‘pattern specification’, ‘multicellular organism growth’,

‘angiogenesis’. Please note that GO terms corresponding to negative effects were excluded where

appropriate (e.g. ‘negative regulation of proliferation’ was not included in the ‘proliferation’ cate-

gory). Complete lists of GO terms are available in the supplementary material.

Analyses of individual genes
We also measured the codon usage of individual genes, to analyze covariations with their GC-con-

tent, expression levels and sex-averaged intragenic crossover rate (HapMap). Owing to the low SNP

density in human populations, the resolution of recombination maps is limited to about 5 kb

(Myers et al., 2005). Because we investigate the relationship between GC3 and intragenic crossover

rate, we selected genes that are long enough to measure recombination, that is at least 5 kb long

(N = 16,223 genes).

We defined three non-overlapping classes of genes according to their GO category: genes asso-

ciated to at least one of the ‘proliferation’ GO terms (N = 1,008), genes associated to ‘differentia-

tion’ GO terms (N = 2,833) and other genes (N = 12,129). A group of 253 genes that were

associated to both ‘proliferation’ and ‘differentiation’ GO terms were discarded from further analy-

ses. The final dataset used in our analyses included 15,970 genes. In this dataset, there were 15,848

genes that contain at least one intron and for which we computed the GC content of intronic

regions. The analyses of sex-specific crossover rates and of DSB hotspot densities (Figure 4; Fig-

ure 4—figure supplement 2) were based on 15,055 autosomal genes.

Expression data
Gene expression levels were collected from three publicly available human RNA-seq experiment

datasets. The first one includes 27 differentiated adult tissues (Fagerberg et al., 2014; Kryuchkova-

Mostacci and Robinson-Rechavi, 2015); EBI accession number E-MTAB-1733). We downloaded nor-

malized expression levels, already averaged across replicates, from (Fagerberg et al., 2014; Kryuch-

kova-Mostacci and Robinson-Rechavi, 2015) (see supplementary information). The second one is

based on single-cell RNA-seq analysis, and includes 20 samples, corresponding to inner cell mass

(ICM) of the blastocysts, and to primordial germ cells (PGC) and somatic cells, from male and female

embryos at different development stages (4, 7 or 8, 10, 11 and 17 or 19 weeks, (Guo et al., 2015)

GEO accession number GSE63818). We downloaded normalized expression levels from their dataset

of pool-split PGCs (for more details see supplementary information). Female 17 weeks PGCs are

entered in meiosis (Guo et al., 2015). This sample was therefore taken as representative of the tran-

scriptome of meiotic cells in female. The third dataset corresponds to human male germ cells at

pachytene spermatocytes (i.e. cells entering meiosis) and at round spermatids stages (post meiotic

stage) ([Lesch et al., 2016]; GEO accession number GSE68507, human RNA expression datasets

GSM1673959, GSM1673963, GSM1673967, GSM1673971, GSM1673975 and GSM1673978). Guo

and Lesch datasets include several replicates for each sample. We therefore computed the average

expression levels over all replicates for each sample. The sex-averaged meiotic expression level was

estimated by computing the mean of expression levels in female 17 weeks PGCs (Guo et al., 2015)

and male spermatocytes or spermatids (Lesch et al., 2016). The correspondence between gene
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expression datasets and codon usage tables was based on Ensembl gene identifiers (Fagerberg and

Lesch datasets), or on gene names (Guo dataset). In total, our analyses of expression levels were

based on 15,305 genes (665 genes were absent from the Guo dataset).

Statistical analysis
Unless stated otherwise, reported R2 values correspond to Pearson correlation tests. R version 3.2.2

(Core Team R, 2015) was used with Base package for statistical tests and graphics, plus ade4 library

(Dray and Dufour, 2007) for PCA analysis. The data and R scripts, which permit to reproduce the

figures and tests presented here, are provided in the supplementary material.

Supplementary information
Supplementary materials with R scripts and supplementary methods are available at: http://doi.org/

10.5281/zenodo.835063 (Pouyet et al., 2017).
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Glémin S, Arndt PF, Messer PW, Petrov D, Galtier N, Duret L. 2015. Quantification of GC-biased gene
conversion in the human genome. Genome Research 25:1215–1228. DOI: https://doi.org/10.1101/gr.185488.
114, PMID: 25995268

Guo F, Yan L, Guo H, Li L, Hu B, Zhao Y, Yong J, Hu Y, Wang X, Wei Y, Wang W, Li R, Yan J, Zhi X, Zhang Y, Jin
H, Zhang W, Hou Y, Zhu P, Li J, et al. 2015. The transcriptome and DNA methylome landscapes of human
primordial germ cells. Cell 161:1437–1452. DOI: https://doi.org/10.1016/j.cell.2015.05.015, PMID: 26046443

Hershberg R, Petrov DA. 2008. Selection on codon bias. Annual Review of Genetics 42:287–299. DOI: https://
doi.org/10.1146/annurev.genet.42.110807.091442, PMID: 18983258

Ikemura T. 1981. Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the
respective codons in its protein genes: a proposal for a synonymous codon choice that is optimal for the E. coli
translational system. Journal of Molecular Biology 151:389–409. DOI: https://doi.org/10.1016/0022-2836(81)
90003-6, PMID: 6175758

Kanaya S, Yamada Y, Kinouchi M, Kudo Y, Ikemura T. 2001. Codon usage and tRNA genes in eukaryotes:
correlation of codon usage diversity with translation efficiency and with CG-dinucleotide usage as assessed by
multivariate analysis. Journal of Molecular Evolution 53:290–298. DOI: https://doi.org/10.1007/s002390010219,
PMID: 11675589

Pouyet et al. eLife 2017;6:e27344. DOI: https://doi.org/10.7554/eLife.27344 17 of 19

Research article Genomics and Evolutionary Biology

https://doi.org/10.1038/nrg1770
http://www.ncbi.nlm.nih.gov/pubmed/16418745
https://doi.org/10.1093/nar/gkv1309
http://www.ncbi.nlm.nih.gov/pubmed/26673694
https://doi.org/10.1038/ng.2766
http://www.ncbi.nlm.nih.gov/pubmed/24056716
https://doi.org/10.1093/molbev/msq222
http://www.ncbi.nlm.nih.gov/pubmed/20817719
https://doi.org/10.1093/molbev/mst154
https://doi.org/10.1093/molbev/mst154
http://www.ncbi.nlm.nih.gov/pubmed/24030552
https://doi.org/10.1101/gad.265561.115
https://doi.org/10.1101/gad.265561.115
http://www.ncbi.nlm.nih.gov/pubmed/26251527
https://doi.org/10.1093/molbev/msn272
http://www.ncbi.nlm.nih.gov/pubmed/19033257
https://doi.org/10.1016/j.cell.2008.05.042
http://www.ncbi.nlm.nih.gov/pubmed/18662548
https://doi.org/10.1371/journal.pgen.1000071
http://www.ncbi.nlm.nih.gov/pubmed/18464896
https://doi.org/10.1146/annurev-genom-082908-150001
https://doi.org/10.1146/annurev-genom-082908-150001
http://www.ncbi.nlm.nih.gov/pubmed/19630562
https://doi.org/10.1073/pnas.96.8.4482
https://doi.org/10.1073/pnas.96.8.4482
http://www.ncbi.nlm.nih.gov/pubmed/10200288
https://doi.org/10.1016/S0959-437X(02)00353-2
http://www.ncbi.nlm.nih.gov/pubmed/12433576
https://doi.org/10.1074/mcp.M113.035600
http://www.ncbi.nlm.nih.gov/pubmed/24309898
https://doi.org/10.1038/nature06258
https://doi.org/10.1038/nature06258
http://www.ncbi.nlm.nih.gov/pubmed/17943122
https://doi.org/10.1016/j.tig.2007.03.011
http://www.ncbi.nlm.nih.gov/pubmed/17418442
http://www.ncbi.nlm.nih.gov/pubmed/11693127
https://doi.org/10.1016/j.cell.2014.08.011
http://www.ncbi.nlm.nih.gov/pubmed/25215487
https://doi.org/10.1101/gr.185488.114
https://doi.org/10.1101/gr.185488.114
http://www.ncbi.nlm.nih.gov/pubmed/25995268
https://doi.org/10.1016/j.cell.2015.05.015
http://www.ncbi.nlm.nih.gov/pubmed/26046443
https://doi.org/10.1146/annurev.genet.42.110807.091442
https://doi.org/10.1146/annurev.genet.42.110807.091442
http://www.ncbi.nlm.nih.gov/pubmed/18983258
https://doi.org/10.1016/0022-2836(81)90003-6
https://doi.org/10.1016/0022-2836(81)90003-6
http://www.ncbi.nlm.nih.gov/pubmed/6175758
https://doi.org/10.1007/s002390010219
http://www.ncbi.nlm.nih.gov/pubmed/11675589
https://doi.org/10.7554/eLife.27344


Kryuchkova-Mostacci N, Robinson-Rechavi M. 2015. Tissue-specific evolution of protein coding genes in human
and mouse. PLoS One 10:e0131673. DOI: https://doi.org/10.1371/journal.pone.0131673, PMID: 26121354

Lam I, Keeney S. 2015. Nonparadoxical evolutionary stability of the recombination initiation landscape in yeast.
Science 350:932–937. DOI: https://doi.org/10.1126/science.aad0814, PMID: 26586758

Lesch BJ, Silber SJ, McCarrey JR, Page DC. 2016. Parallel evolution of male germline epigenetic poising and
somatic development in animals. Nature Genetics 48:888–894. DOI: https://doi.org/10.1038/ng.3591,
PMID: 27294618

Mancera E, Bourgon R, Brozzi A, Huber W, Steinmetz LM. 2008. High-resolution mapping of meiotic crossovers
and non-crossovers in yeast. Nature 454:479–485. DOI: https://doi.org/10.1038/nature07135, PMID: 18615017

McVicker G, Green P. 2010. Genomic signatures of germline gene expression. Genome Research 20:1503–1511.
DOI: https://doi.org/10.1101/gr.106666.110, PMID: 20686123

Mouchiroud D, D’Onofrio G, Aı̈ssani B, Macaya G, Gautier C, Bernardi G. 1991. The distribution of genes in the
human genome. Gene 100:181–187. DOI: https://doi.org/10.1016/0378-1119(91)90364-H, PMID: 2055469

Mouchiroud D, Gautier C, Bernardi G. 1988. The compositional distribution of coding sequences and DNA
molecules in humans and murids. Journal of Molecular Evolution 27:311–320. DOI: https://doi.org/10.1007/
BF02101193, PMID: 3146641

Munch K, Mailund T, Dutheil JY, Schierup MH. 2014. A fine-scale recombination map of the human-chimpanzee
ancestor reveals faster change in humans than in chimpanzees and a strong impact of GC-biased gene
conversion. Genome Research 24:467–474. DOI: https://doi.org/10.1101/gr.158469.113, PMID: 24190946

Myers S, Bottolo L, Freeman C, McVean G, Donnelly P. 2005. A fine-scale map of recombination rates and
hotspots across the human genome. Science 310:321–324. DOI: https://doi.org/10.1126/science.1117196,
PMID: 16224025

Neri F, Rapelli S, Krepelova A, Incarnato D, Parlato C, Basile G, Maldotti M, Anselmi F, Oliviero S. 2017.
Intragenic DNA methylation prevents spurious transcription initiation. Nature 543:72–77. DOI: https://doi.org/
10.1038/nature21373, PMID: 28225755

Odenthal-Hesse L, Berg IL, Veselis A, Jeffreys AJ, May CA. 2014. Transmission distortion affecting human
noncrossover but not crossover recombination: a hidden source of meiotic drive. PLoS Genetics 10:e1004106.
DOI: https://doi.org/10.1371/journal.pgen.1004106, PMID: 24516398

Pessia E, Popa A, Mousset S, Rezvoy C, Duret L, Marais GA. 2012. Evidence for widespread GC-biased gene
conversion in eukaryotes. Genome Biology and Evolution 4:675–682. DOI: https://doi.org/10.1093/gbe/evs052,
PMID: 22628461

Plotkin JB, Kudla G. 2011. Synonymous but not the same: the causes and consequences of codon bias. Nature
Reviews Genetics 12:32–42. DOI: https://doi.org/10.1038/nrg2899, PMID: 21102527

Plotkin JB, Robins H, Levine AJ. 2004. Tissue-specific codon usage and the expression of human genes. PNAS
101:12588–12591. DOI: https://doi.org/10.1073/pnas.0404957101, PMID: 15314228

Pouyet F, Mouchiroud D, Duret L, Sémon M. 2017. Recombination, meiotic expression and human codon usage.
Zenodo. DOI: https://doi.org/10.5281/zenodo.835063

Pratto F, Brick K, Khil P, Smagulova F, Petukhova GV, Camerini-Otero RD. 2014. DNA recombination.
Recombination initiation maps of individual human genomes. Science 346:1256442. DOI: https://doi.org/10.
1126/science.1256442, PMID: 25395542

Rudolph KL, Schmitt BM, Villar D, White RJ, Marioni JC, Kutter C, Odom DT. 2016. Codon-driven translational
efficiency is stable across diverse mammalian cell states. PLOS Genetics 12:e1006024. DOI: https://doi.org/10.
1371/journal.pgen.1006024, PMID: 27166679

Schmitt BM, Rudolph KL, Karagianni P, Fonseca NA, White RJ, Talianidis I, Odom DT, Marioni JC, Kutter C.
2014. High-resolution mapping of transcriptional dynamics across tissue development reveals a stable mRNA-
tRNA interface. Genome Research 24:1797–1807. DOI: https://doi.org/10.1101/gr.176784.114,
PMID: 25122613

Sharp PM, Tuohy TM, Mosurski KR. 1986. Codon usage in yeast: cluster analysis clearly differentiates highly and
lowly expressed genes. Nucleic Acids Research 14:5125–5143. DOI: https://doi.org/10.1093/nar/14.13.5125,
PMID: 3526280

Shields DC, Sharp PM, Higgins DG, Wright F. 1988. "Silent" sites in Drosophila genes are not neutral: evidence
of selection among synonymous codons. Molecular Biology and Evolution 5:704–716. PMID: 3146682

Singhal S, Leffler EM, Sannareddy K, Turner I, Venn O, Hooper DM, Strand AI, Li Q, Raney B, Balakrishnan CN,
Griffith SC, McVean G, Przeworski M. 2015. Stable recombination hotspots in birds. Science 350:928–932.
DOI: https://doi.org/10.1126/science.aad0843, PMID: 26586757

Smedley D, Haider S, Durinck S, Pandini L, Provero P, Allen J, Arnaiz O, Awedh MH, Baldock R, Barbiera G,
Bardou P, Beck T, Blake A, Bonierbale M, Brookes AJ, Bucci G, Buetti I, Burge S, Cabau C, Carlson JW, et al.
2015. The BioMart community portal: an innovative alternative to large, centralized data repositories. Nucleic
Acids Research 43:W589–W598. DOI: https://doi.org/10.1093/nar/gkv350, PMID: 25897122

Smeds L, Mugal CF, Qvarnström A, Ellegren H. 2016. High-resolution mapping of crossover and non-crossover
recombination events by whole-genome re-sequencing of an avian pedigree. PLOS Genetics 12:e1006044.
DOI: https://doi.org/10.1371/journal.pgen.1006044, PMID: 27219623

Vinogradov AE. 2003. Isochores and tissue-specificity. Nucleic Acids Research 31:5212–5220. DOI: https://doi.
org/10.1093/nar/gkg699, PMID: 12930973

Weber CC, Boussau B, Romiguier J, Jarvis ED, Ellegren H. 2014. Evidence for GC-biased gene conversion as a
driver of between-lineage differences in avian base composition. Genome Biology 15:549. DOI: https://doi.
org/10.1186/s13059-014-0549-1, PMID: 25496599

Pouyet et al. eLife 2017;6:e27344. DOI: https://doi.org/10.7554/eLife.27344 18 of 19

Research article Genomics and Evolutionary Biology

https://doi.org/10.1371/journal.pone.0131673
http://www.ncbi.nlm.nih.gov/pubmed/26121354
https://doi.org/10.1126/science.aad0814
http://www.ncbi.nlm.nih.gov/pubmed/26586758
https://doi.org/10.1038/ng.3591
http://www.ncbi.nlm.nih.gov/pubmed/27294618
https://doi.org/10.1038/nature07135
http://www.ncbi.nlm.nih.gov/pubmed/18615017
https://doi.org/10.1101/gr.106666.110
http://www.ncbi.nlm.nih.gov/pubmed/20686123
https://doi.org/10.1016/0378-1119(91)90364-H
http://www.ncbi.nlm.nih.gov/pubmed/2055469
https://doi.org/10.1007/BF02101193
https://doi.org/10.1007/BF02101193
http://www.ncbi.nlm.nih.gov/pubmed/3146641
https://doi.org/10.1101/gr.158469.113
http://www.ncbi.nlm.nih.gov/pubmed/24190946
https://doi.org/10.1126/science.1117196
http://www.ncbi.nlm.nih.gov/pubmed/16224025
https://doi.org/10.1038/nature21373
https://doi.org/10.1038/nature21373
http://www.ncbi.nlm.nih.gov/pubmed/28225755
https://doi.org/10.1371/journal.pgen.1004106
http://www.ncbi.nlm.nih.gov/pubmed/24516398
https://doi.org/10.1093/gbe/evs052
http://www.ncbi.nlm.nih.gov/pubmed/22628461
https://doi.org/10.1038/nrg2899
http://www.ncbi.nlm.nih.gov/pubmed/21102527
https://doi.org/10.1073/pnas.0404957101
http://www.ncbi.nlm.nih.gov/pubmed/15314228
https://doi.org/10.5281/zenodo.835063
https://doi.org/10.1126/science.1256442
https://doi.org/10.1126/science.1256442
http://www.ncbi.nlm.nih.gov/pubmed/25395542
https://doi.org/10.1371/journal.pgen.1006024
https://doi.org/10.1371/journal.pgen.1006024
http://www.ncbi.nlm.nih.gov/pubmed/27166679
https://doi.org/10.1101/gr.176784.114
http://www.ncbi.nlm.nih.gov/pubmed/25122613
https://doi.org/10.1093/nar/14.13.5125
http://www.ncbi.nlm.nih.gov/pubmed/3526280
http://www.ncbi.nlm.nih.gov/pubmed/3146682
https://doi.org/10.1126/science.aad0843
http://www.ncbi.nlm.nih.gov/pubmed/26586757
https://doi.org/10.1093/nar/gkv350
http://www.ncbi.nlm.nih.gov/pubmed/25897122
https://doi.org/10.1371/journal.pgen.1006044
http://www.ncbi.nlm.nih.gov/pubmed/27219623
https://doi.org/10.1093/nar/gkg699
https://doi.org/10.1093/nar/gkg699
http://www.ncbi.nlm.nih.gov/pubmed/12930973
https://doi.org/10.1186/s13059-014-0549-1
https://doi.org/10.1186/s13059-014-0549-1
http://www.ncbi.nlm.nih.gov/pubmed/25496599
https://doi.org/10.7554/eLife.27344


Williams AL, Genovese G, Dyer T, Altemose N, Truax K, Jun G, Patterson N, Myers SR, Curran JE, Duggirala R,
Blangero J, Reich D, Przeworski M. 2015. Non-crossover gene conversions show strong GC bias and
unexpected clustering in humans. eLife 4:e04637. DOI: https://doi.org/10.7554/eLife.04637

Yates A, Akanni W, Amode MR, Barrell D, Billis K, Carvalho-Silva D, Cummins C, Clapham P, Fitzgerald S, Gil L,
Girón CG, Gordon L, Hourlier T, Hunt SE, Janacek SH, Johnson N, Juettemann T, Keenan S, Lavidas I, Martin
FJ, et al. 2016. Ensembl 2016. Nucleic Acids Research 44:D710–D716. DOI: https://doi.org/10.1093/nar/
gkv1157, PMID: 26687719

Pouyet et al. eLife 2017;6:e27344. DOI: https://doi.org/10.7554/eLife.27344 19 of 19

Research article Genomics and Evolutionary Biology

https://doi.org/10.7554/eLife.04637
https://doi.org/10.1093/nar/gkv1157
https://doi.org/10.1093/nar/gkv1157
http://www.ncbi.nlm.nih.gov/pubmed/26687719
https://doi.org/10.7554/eLife.27344

