Classification in High Dimension

Tristan Mary-Huard maryhuar@agroparistech.fr

Génétique Quantitative et Évolution - Le Moulon INRA/Univ. Paris Sud/CNRS/AgroParisTech AgroParisTech/INRA UMR 518

Overview

Introduction

- Basics in optimization
- Basics in classification
- 2 Logistic regression
 - Classical logistic regression
 - Regularized logistic regression
- 3 Support Vector Machines
 - Linear SVM
 - Kernel SVM

"You know nothing, John Snow."

V.Vapnik V.Koltchinskii Traditional wildling saying

Overview

Introduction

- Basics in optimization
- Basics in classification

Logistic regression

- Classical logistic regression
- Regularized logistic regression
- Support Vector Machines
 Linear SVM
 Kernel SVM
- Theoretical guarantees

Basics in optimization I - Theoretical aspects

An Introduction to Optimization [CZ13] Convex Optimization [BV04] (a.k.a. the convex surrogate of the Bible)

Standard optimization problem

Standard problem

 $\min_{x\in\Omega} f(x)$

with $f : \mathbb{R}^{p} \to \mathbb{R}$ differentiable, and $\Omega \subset \mathbb{R}^{p}$.

Definition

x* is a local minimizer iff

$$\exists \varepsilon / \forall x \in B(x^*, \varepsilon) \cap \Omega, \ f(x) \geq f(x^*)$$

x* is a global minimizer iff

 $\forall x \in \Omega, \ f(x) \ge f(x^*)$

First order necessary condition

Admissible direction

 $d \in \mathbb{R}^p$ is admissible at point x if

 $\exists \alpha_0 > 0 / \forall \alpha \in [0, \alpha_0]$, $x + \alpha d \in \Omega$.

The directional derivative w.r.t. d is defined as

$$\frac{\partial f(x)}{\partial d} = \lim_{\alpha \to 0} \frac{f(x + \alpha d) - f(x)}{\alpha} = d^{T} \nabla f(x)$$

Theorem (1st order necessary condition)

If f is C^1 and x^* is a local minimizer of f over Ω . Then for all d admissible at point x^* ,

$$d^T \nabla f(x^*) \ge 0$$

Note : If x^* is an interior point of Ω , then NC $\Rightarrow \nabla f(x^*) = 0$.

Convex optimization problems

Convex set, convex function Ω is convex if $\forall (x, y, \lambda) \in \Omega^2 \times [0, 1]$,

 $\lambda x + (1 - \lambda)y \in \Omega$

f is convex if $\forall (x, y, \lambda) \in \mathbb{R}^{p} \times \mathbb{R}^{p} \times [0, 1]$,

 $f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$

Proposition

- If f is convex, any local minimizer is a global minimizer.

- If f is convex and differentiable,

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle$$
, $\forall x, y$

Convex Optimization problems

Standard problem

 $\min_{x\in\Omega} f(x)$

with $f : \mathbb{R}^{p} \to \mathbb{R}$ differentiable, and $\Omega \in \mathbb{R}^{p}$.

Theorem

Assume f is convex and differentiable, and Ω is convex. Then $x^* \in \Omega$ is a global minimizer iff

 $< \langle \nabla f(x^*), y - x^* \rangle \ge 0, \ \forall y$

Primal optimization problem

Consider problem

minimize f(x)subject to $g_i(x) \le 0, \forall i = 1, ..., m$

New objective function :

$$f(x) + \sum_{i=1}^{m} \max_{\lambda_i \ge 0} \lambda_i g_i(x) = \max_{\lambda \ge 0} \left\{ f(x) + \sum_{i=1}^{m} \lambda_i g_i(x) \right\}$$
$$= \max_{\lambda \ge 0} L(x, \lambda)$$

 $\lambda_1, ..., \lambda_m$: Lagrange multipliers, L(.,.): Lagrange function.

The initial optimization problem becomes

$$\min_{x} \max_{\lambda \ge 0} L(x, \lambda) \qquad (\mathscr{P})$$

Dual optimization problem

Alternatively, consider problem

$$\max_{\lambda \ge 0} \min_{x} L(x, \lambda) \qquad (\mathscr{D})$$

 (\mathcal{D}) is the *dual* problem associated with *primal* problem (\mathcal{P}) .

Note G(.) the dual function

$$G(\lambda) = \min_{x} L(x,\lambda)$$

Proposition

For all $\lambda \ge 0$, one has

$$G(\lambda) \leq p^*$$

where $p^* = f(x^*)$

Duality gap

Definition

Note
$$d^* = \max_{\lambda \ge 0} G(\lambda)$$
 the solution of (\mathcal{D}) . Then

$$p^* - d^* \ge 0$$

is called the duality gap. If $p^* - d^* = 0$, then we say that **strong duality holds**.

Questions

- How does strong duality help?
- When does strong duality hold?

Complementary slackness conditions

Proposition

If strong duality holds, then

$$\lambda_i^* g_i(x^*) = 0, \quad \forall i = 1, ..., m$$

where $\lambda^* = \arg \max_{\lambda \geq 0} G(\lambda)$.

Also note that x^* is the minimizer of $L(x, \lambda^*)$, therefore

 $\nabla L(x^*,\lambda^*)=0$

Karush Kuhn Tucker conditions

Proposition

If strong duality holds, the optimal Lagrange multiplier vector λ^* and the optimal solution x^* of (\mathscr{P}) satisfy

$$\begin{split} g_i(x^*) &\leq 0, \quad \forall i = 1, ..., m \qquad (primal \ feasability) \\ \lambda_i^* &\geq 0, \quad \forall i = 1, ..., m \qquad (dual \ feasability) \\ \lambda_i^* g_i(x^*) &= 0, \quad \forall i = 1, ..., m \qquad (compl. \ slackness) \\ \nabla L(x^*, \lambda^*) &= \nabla f(x^*) + \sum_{i=1}^m \lambda_i^* \nabla g_i(x^*) = 0, \qquad (first \ order \ condition) \end{split}$$

Strong duality does not hold in general, but holds under mild conditions for convex optimization problems...

Slater's constraint qualification

Proposition

Consider problem (\mathscr{P}) where $f, g_1, ..., g_m$ are convex functions. Then strong duality holds if there exists a strictly feasible point, satisfying

 $g_i(x) < 0, \quad \forall i = 1, ..., m$

Proof : Technical ! See [BV04]

Proposition

Assume (\mathscr{P}) is convex. Then if (λ^*, x^*) satisfy the KKT conditions, strong duality holds and (λ^*, x^*) is optimal.

So far...

Convex + differentiability

If $f, g_1, ..., g_m$ are differentiable and convex, then the KKT conditions are necessary and sufficient for optimality.

Potential use

- * Solve analytically the KKT conditions,
- * Guidelines for the development of efficient algorithms,
- * Solve the dual rather than the primal when easier !

Limitation

Some objective functions (hinge loss) and/or constraints (L_1 norm) are convex but not differentiable...

Subdifferential and subgradients

Recall that for a convex, differentiable function f

$$\forall x, y \quad f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle$$

Definition

Let $f : \mathbb{R}^p \to \mathbb{R}$. ω_X is a subgradient of f at point x if

$$\forall x, y \quad f(y) \ge f(x) + \langle \omega_x, y - x \rangle$$

The set

$$\partial f(x) = \{ \omega / \forall y \quad f(y) \ge f(x) + \langle \omega, y - x \rangle \}$$

is called the subdifferential of f at point x

A graphical illustration

At x = 2 the function is differentiable \Rightarrow a unique tangent hyperplane At x = -1 the function is not differentiable \Rightarrow many "lower" hyperplanes !

Subdifferential for the L₁ norm

Subdifferential for the L_1 norm

$$\partial |x| = \begin{cases} sign[x] & \text{if } x \neq 0, \\ [-1,1] & \text{if } x = 0. \end{cases}$$

 $\partial ||x||_1 = \{ \omega \in \mathbb{R}^p / \omega_j = \operatorname{sign} [x_j] \text{ if } x_j \neq 0, \ \omega_j \in [-1, 1] \text{ if } x_j = 0 \}$

Subdifferential and subgradients

Subdifferential and convexity

★ f is convex
$$\Rightarrow \partial f(x)$$
 is non-empty, $\forall x$,
★ f is convex and differentiable at $x \Rightarrow \partial f(x) = \{\nabla f(x)\}$.
Proof : See [Gir14]

Theorem

Assume f is convex and non-differentiable. Then

$$x^* = \arg\min_{x} f(x) \Leftrightarrow 0 \in \partial f(x^*)$$

KKT conditions revisited

Consider

minimize f(x)subject to $g_i(x) \le 0, \forall i = 1, ..., m$

where $f, g_1, ..., g_m$ are convex but not differentiable everywhere.

Proposition

If strong duality holds, then necessary and sufficient conditions for primal and dual optimality of (λ^*, x^*) are

$$\begin{array}{ll} g_i(x^*) \leq 0, & \forall i = 1,...,m & (primal \ feasability) \\ \lambda_i^* \geq 0, & \forall i = 1,...,m & (dual \ feasability) \\ \lambda_i^* g_i(x^*) = 0, & \forall i = 1,...,m & (compl. \ slackness) \\ 0 \in \partial L(x^*,\lambda^*) = \partial f(x^*) + \sum_{i=1}^m \lambda_i^* \partial g_i(x^*), & (first \ order \ condition) \end{array}$$

Proof : Follows the same line as for the differentiable case.

Basics in optimization II - Algorithm(s)

From theory to practice

Back to the unconstrained optimization problem

 $\min_{x} f(x)$

If *f* is differentiable, then $\forall \alpha, d$, $||d||_2 = 1$:

$$f(x + \alpha d) = f(x) + \alpha \nabla f(x)^T d + o(\alpha)$$

$$\Rightarrow |f(x + \alpha d) - f(x)| \approx \alpha |\nabla f(x)^T d|$$

$$\leq \alpha ||\nabla f(x)||_2$$

Best direction :
$$-\frac{\nabla f(x)}{||\nabla f(x)||_2}$$

Gradient descent algorithm

Iterative procedure

for
$$t = 1, ..., T$$
 $x^{(t+1)} = x^{(t)} - \alpha_t \nabla f(x^{(t)})$

 $\alpha_t > 0$: step size parameter

Main difficulty : choice of $(\alpha_t)_t$.

- * constant stepsize,
- ★ decreasing stepsize,
- * "best" stepsize (a.k.a. steepest descent).

Both the convergence rate and the complexity depend on $(\alpha_t)_t$.

Example : Steepest gradient descent

Algorithm

Input
$$x_0, \varepsilon$$

while $\left\| \nabla f(x^{(t)}) \right\| \ge \varepsilon,$
 $x^{(t+1)} = x^{(t)} - \alpha_t \nabla f(x^{(t)})$
where $\alpha_t = \arg\min_{\alpha>0} f(x^{(t)} - \alpha_t \nabla f(x^{(t)}))(1)$

end

Properties

(*i*) $f(x^{(t+1)}) \le f(x^{(t)})$ (descent property), (*ii*) $< \nabla f(x^{(t+1)}), \nabla f(x^{(t)}) >$ (orthogonal directions), (*iii*) If *f* is C^1 and strictly convex, then $(x^{(t)})$ converges to x^* . **Proof of** (*iii*) : Technical! See [CZ13].

Limitations

- * Solving (1) may be non-trivial
- ★ May be slow (see Accelerations, e.g. [N⁺07])

Alternative formulation of the gradient descent

Initial formulation

At step
$$t + 1$$
, $x^{(t+1)} = x^{(t)} - \alpha_t \nabla f(x^{(t)})$

Recasted as

$$x^{(t+1)} = \arg\min_{x} \left\{ f(x^{(t)}) + \langle \nabla f(x^{(t)}), x - x^{(t)} \rangle + \frac{1}{2\alpha_t} \left\| \left| x - x^{(t)} \right\|_2^2 \right\} \right\}$$

Interpretation * $f(x^{(t)}) + \langle \nabla f(x^{(t)}), x - x^{(t)} \rangle$: linearization of *f* around $x^{(t)}$, * $\left| \left| x - x^{(t)} \right| \right|_{2}^{2}$: requires $x^{(t+1)}$ to be "not to far" from $x^{(t)}$, * α_{t} : rules the tradeoff.

Proximal gradient descent

 $\min_{x} f(x) + h(x)$

f convex and differentiable (e.g. L_2 loss), *h* convex but non differentiable (e.g. L_1 norm).

Linearize the differentiable part to obtain :

$$x^{(t+1)} = \arg\min_{x} \left\{ f(x^{(t)}) + \left\langle \nabla f(x^{(t)}), x - x^{(t)} \right\rangle + h(x) + \frac{1}{2\alpha_t} \left\| \left| x - x^{(t)} \right\|_2^2 \right\} \right\}$$

Proximal operator

$$\operatorname{prox}_{h}(\theta) = \arg\min_{z} \left\{ \frac{1}{2} ||\theta - z||_{2}^{2} + h(z) \right\}$$

In practice

- 1/ Compute the classical gradient step $x^{(t)} \alpha_t \nabla f(x^{(t)})$,
- 2/ project according to the proximal operator

$$x^{(t+1)} = \operatorname{prox}_{\alpha_t h} \left(x^{(t)} - \alpha_t \nabla f(x^{(t)}) \right)$$

Application I : projected gradient descent

If minimization is subject to constraint $x \in \Omega \subsetneq \mathbb{R}^{p}$:

$$\begin{aligned} x^{(t+1)} &= \arg\min_{x\in\Omega} \left\{ f(x^{(t)}) + <\nabla f(x^{(t)}), x - x^{(t)} > + \frac{1}{2\alpha_t} \left\| \left| x - x^{(t)} \right\|_2^2 \right\} \\ &= \arg\min_{x} \left\{ f(x^{(t)}) + <\nabla f(x^{(t)}), x - x^{(t)} > + \frac{1}{2\alpha_t} \left\| \left| x - x^{(t)} \right\|_2^2 + I_{\Omega}(x) \right\} \\ &\text{where } I_{\Omega}(x) = \begin{cases} 0 \text{ if } x \in \Omega, \\ +\infty \text{ otherwise.} \end{cases} \end{aligned}$$

In practice

1/ Compute the classical gradient step $x^{(t+1)} = x^{(t)} - \alpha_t \nabla f(x^{(t)})$, 2/ Project on Ω

$$x_{pr}^{(t+1)} = \Pi_{\Omega}\left(x^{(t+1)}\right).$$

Fast if projection can be easily computed...

Application II : projected gradient descent for lasso regression

$$x^{(t+1)} = \arg\min_{x} \left\{ f(x^{(t)}) + \langle \nabla f(x^{(t)}), x - x^{(t)} \rangle + \frac{1}{2\alpha_t} \left| \left| x - x^{(t)} \right| \right|_2^2 + \lambda \left| \left| x \right| \right|_1 \right\}$$

In practice

1/ Compute the classical gradient step $x^{(t+1)} = x^{(t)} - \alpha_t \nabla f(x^{(t)})$, 2/ Apply soft-thresholding to $x^{(t+1)}$

$$x_{pr,j}^{(t+1)} = \operatorname{sign}\left[x^{(t+1)_j}\right] \times \left|\left|x^{(t+1)_j}\right| - \alpha_t \lambda\right|_+.$$

Fast, easy, and amenable to parallelization.

Beyond first order algorithms

 $\min_{x} f(x)$

f convex and twice differentiable

Newton algorithm

* Consider 2^{nd} order Taylor expansion of f:

$$f(y) = f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2} (y - x)^T H_f(x) (y - x) + o(||y - x||_2^2)$$

= $Q_x(y) + o(||y - x||_2^2)$

* At step t + 1, use $Q_{X^{(t)}}$ as a proxy for f...

$$x^{(t+1)}$$
 = argmin $Q_{x^{(t)}}(x)$

 \star ... and get the (closed form) solution :

$$x^{(t+1)} = x^{(t)} - H_f(x^{(t)})^{-1} \nabla f(x^{(t)})$$

Take home message

Theoretical aspects

- * Mostly interested in convex problems,
- * Characterization of the solution(s),
- * Guidelines to derive efficient algorithms.

Gradient descent

- * Simple but quite versatile,
- * Can be generalized in many ways,
- More suited to deal with large problems than Newton method (more on this latter).

Non-addressed points

- * Complexity of the different algorithms
- * Rates of convergence
- * Convexity vs strong convexity, smoothness, etc.

Basics in classification

Elements of Statistical Learning [FHT01] A Probabilistic Theory of Pattern Recognition [DGL13]

Supervised classification

Goal

Predict the unknown label Y of an observation X.

- $Y \in \mathcal{Y}$ where $\mathcal{Y} = \{0, 1\}$ or $\mathcal{Y} = \{-1, 1\}$ (binary classif.),

$$X \in \mathscr{X}(=\mathbb{R}^{p}).$$

Supervision

 $\mathbb{P}_{X,Y}$ is unknown.

Training set : $\mathcal{D}_n = (X_1, Y_1), ..., (X_n, Y_n)$, where $(X_i, Y_i) \stackrel{i.i.d.}{\hookrightarrow} \mathbb{P}_{X,Y}$.

Classifier One aims at building

$$\widehat{h} \colon \mathscr{X} \to \mathscr{Y} \\ X \mapsto \widehat{Y}$$

Some examples

Cancer prediction Predict cancer grade (from 1 to 3) based on CNV. $\star X_i = (X_{i1}, ..., X_{ip})$, where $X_{ij} = \text{Nb of copies of chrom. segment } j \text{ in ind. } i.$ $\star \mathscr{X} = \mathbb{R}^p$ $\star \mathscr{Y} = \{1, 2, 3\}$

Credit scoring

Predict loan reimbursement based on social/economics/health measurements.

*
$$X_i = (X_{i1}, ..., X_{i3})$$
, where
 $X_{i1} =$ gross salary of ind. *i*,
 $X_{i2} \in 1, ..., K =$ socio-professional category of ind. *i*,
 $X_{i3} = 1$ if ind. *i* already has an ongoing loan, 0 otherwise.
* $\mathscr{X} = \mathbb{R} \times \{1, ..., K\} \times \{0, 1\}$
* $\mathscr{Y} = \{\text{"safe","risky"}\}$

Pattern detection in images, Text categorization, ...

Classification algorithms

Any strategy

$$\mathcal{A}: \bigcup_{n \ge 1} \{ \mathcal{X} \times \mathcal{Y} \}^n \to \mathcal{Y}^{\mathcal{X}}$$
$$\mathcal{D}_n \quad \mapsto \quad \hat{h}$$

defines a classification algorithm.

A few examples

- Discriminant analysis
- *k*NN
- Logistic regression
- Neural networks
- SVM
- CART & Random forest
- Boosting/bagging

- ...
Performance assessment

Quality of a classifier

$$L(\widehat{h}) = \mathbb{P}\left(\widehat{h}(X) \neq Y \mid \mathcal{D}_n\right) = \mathbb{E}\left[\ell_{HL}\left(Y, \widehat{h}(X)\right) \mid \mathcal{D}_n\right]$$

where
$$\ell_{HL}(Y, \hat{h}(X)) = I_{\{\hat{h}(X)\neq Y\}}$$
 (case {0, 1}),
 $\ell_{HL}(Y, \hat{h}(X)) = I_{\{Y\hat{h}(X)<0\}}$ (case {-1, 1}).

 $\ell_{\textit{HL}}$: hard loss.

Empirical error rate

$$L_n(\widehat{h}) = \frac{1}{n} \sum_{i=1}^n \ell_{HL} \Big(\widehat{h}(X_i), Y_i \Big)$$

Bayes classifier

Assume - \mathbb{P}_X has a density w.r.t. Lebesgue measure, - $\eta(x) = \mathbb{P}(Y = 1 | X = x)$ is defined everywhere, and define

$$h_B(x) = \begin{cases} 1 & \text{if } \eta(x) > 0.5 \\ 0 & \text{if } \eta(x) < 0.5 \\ \mathscr{B}(0.5) & \text{otherwise.} \end{cases}$$

Proposition

$$h_B = \arg\min_h L(h)$$

Some notations

In the following, we will consider classifiers of the form

$$h_f(x) = I_{\{f(x)>0\}}$$
 or $h_f(x) = \text{sign}[f(x)]$

Example 1 : Bayes classifier

$$h_B(x) = I_{\{\eta(x) - \frac{1}{2} > 0\}}$$
 or $h_B(x) = \text{sign}\left[\eta(x) - \frac{1}{2}\right]$

Example 2 : linear classifier

$$h_{\beta}(x) = I_{\{x^{T}\beta>0\}}$$
 or $h_{\beta}(x) = \operatorname{sign}\left[x^{T}\beta\right]$

Overview

- Basics in optimization
- Basics in classification

2 Logistic regression

- Classical logistic regression
- Regularized logistic regression
- Support Vector Machines
 Linear SVM
 Kernel SVM
- 4 Theoretical guarantees

Logistic regression

Statistical learning with sparsity [HTW15]

From LM to GLM

Linear (regression) model

$$\begin{split} Y_{i} &= x_{i}\beta + \varepsilon_{i}, \ \varepsilon_{i} \hookrightarrow \mathcal{N}\left(0, \sigma^{2}\right), \ i.i.d. \quad \Leftrightarrow \quad Y_{i} | X_{i} &= x_{i} \hookrightarrow \mathcal{N}\left(x_{i}\beta, \sigma^{2}\right), \ ind. \\ &\Leftrightarrow \quad \begin{cases} Y_{i} | X_{i} &= x_{i} \hookrightarrow \mathcal{N}\left(\mu_{X_{i}}, \sigma^{2}\right) \\ \mu_{X_{i}} &= x_{i}^{T}\beta \end{cases} \end{split}$$

Generalized linear model

$$\begin{cases} Y_i | X_i = x_i \hookrightarrow \mathscr{B}(p_{X_i}), \text{ ind.} \\ p_{X_i} = g^{-1} \left(x_i^T \beta \right) \end{cases}$$

where $g(t) = \log \left[\frac{t}{1-t}\right]$ is the "logit" *link function*.

Note : Only Y|x is considered.

Maximum likelihood inference

 $Y_1, ..., Y_n$ independent cond. to $x_1, ..., x_n$, $Y_i | x_i \hookrightarrow \mathscr{B}(p_{x_i}), \forall i = 1, ..., n$

$$\Rightarrow \mathscr{L}(\beta) = \log \left\{ \prod_{i=1}^{n} p_i^{y_i} (1-p_i)^{1-y_i} \right\}$$

Proposition

$$\nabla \mathscr{L}(\beta) = X^{T}(y-p),$$

$$\mathcal{HL}(\beta) = -X^{T}DX,$$

where $p = (p_1, ..., p_n)$, $D = diag(p_i(1 - p_i))$.

Note : No closed form solution for $\hat{\beta}$ but $\mathscr{L}(\beta)$ is concave. \Rightarrow Numeric optimization via Newton algorithm.

Newton method for LR

$$\begin{split} & \text{Main steps} \\ \star \ 2^{\text{nd}} \text{ order approximation} \\ & \widetilde{\mathscr{L}}_{(t)}(\beta) = \mathscr{L}(\widehat{\beta}^{(t)}) + \left[\nabla \mathscr{L}(\widehat{\beta}^{(t)})\right]^T \left(\beta - \widehat{\beta}^{(t)}\right) + \frac{1}{2} \left(\beta - \widehat{\beta}^{(t)}\right)^T \left[H\mathscr{L}(\beta)\right] \left(\beta - \widehat{\beta}^{(t)}\right) \\ \star \text{ Define} \\ & \widehat{\beta}^{(t+1)} = \arg\max_{\beta} \ \widetilde{\mathscr{L}}_{(t)}(\beta) \end{split}$$

Proposition

i)
$$\widehat{\beta}^{(t+1)} = \widehat{\beta}^{(t)} + [X^T D_{(t)} X]^{-1} X^T (y - p_{(t)}),$$

ii) $\widehat{\beta}^{(t+1)}$ is also solution of

$$\arg\min_{\beta} ||X\beta - Z_{(t)}||_{D_{(t)}^{-1}}^2$$
,

where $z_{(t)} = X\widehat{\beta}^{(t)} + D_{(t)}^{-1}(y - p_{(t)})$ and $p_{(t)} = (p_i(\widehat{\beta}^{(t)}))_{1 \le i \le n}$.

Logistic regression classifier

Proposition

The LR classifier is a linear classifier defined as

$$\widehat{h}_{LR}(x) = I_{\{x^T \widehat{\beta} > 0\}}$$
 where $\widehat{\beta} = \arg \max_{\beta} \mathscr{L}(\beta)$

Separability : definition

Definition

A training set is separable if there exists β such that

$$\forall i/y_i = 1, x_i^T \beta > 0$$

 $\forall i/y_i = 0, x_i^T \beta < 0$

Note 1 : \Leftrightarrow there exists a linear classifier *h* such that $L_n(h) = 0$, **Note 2 :** discrete case : can be relaxed to a single cell.

Separability : consequence

Proposition If the training set is separable, then $\mathscr{L}(\widehat{\beta}) = 0,$ and $||\widehat{\beta}|| = +\infty.$

 \Rightarrow Even in the "small dimension" setting, regularization may be required.

From MLE to convex risk minimization

Proposition

Assume $Y_i = \pm 1, \forall i$. One has

$$\widehat{h}_{LR}(x) = sign\left[x^{T}\widehat{\beta}\right],$$
with $\widehat{\beta}$ = argmin $\sum_{\beta=1}^{n} \ell_{LR}\left(y_{i}x_{i}^{T}\beta\right)$

where $\ell_{LR}(t) = \log [1 + e^{-t}]$ is the logistic loss.

Regularized logistic regression

Definition

For any $\lambda > 0$ the regularized LR classifier is defined as

$$\widehat{h}_{RLR}^{\lambda}(x) = sign\left[x^{T}\widehat{\beta}_{\lambda}\right],$$
with $\widehat{\beta}_{\lambda} = \arg\min_{\beta} \sum_{i=1}^{n} \ell_{LR}\left(y_{i}x_{i}^{T}\beta\right) + \lambda R(\beta)$

Ridge LR : $R(\beta) = ||\beta||_2^2$ $\hat{\beta}_{\lambda}$ is always defined and unique.

Lasso LR : $R(\beta) = ||\beta||_1$ $\hat{\beta}_{\lambda}$ is always defined and unique (under mild conditions, [T⁺13]).

Inference for regularized logistic regression

Recall in the low dimensional case

$$\widehat{\beta}^{(t+1)} = \arg\min_{\beta} ||X\beta - Z_{(t)}||_{D_{(t)}^{-1}}^2,$$

where
$$z_{(t)} = X \widehat{\beta}^{(t)} + D_{(t)}^{-1} (y - p_{(t)})$$
 and $p_{(t)} = (p_i(\widehat{\beta}^{(t)}))_i$.

Solving regularized LR... ... is replaced with solving

$$\widehat{\beta}_{\lambda}^{(t+1)} = \arg\min_{\beta} \left\{ \left| \left| X\beta - Z \right| \right|_{D_{(t)}^{-1}}^{2} + \lambda R(\beta) \right\}$$
(1)

hence boils down to regularized regression (at each step)!

Ridge LR : Solution of (1) has a closed form expression. Lasso LR : use proximal/coordinate gradient descent.

Exact optimization for Lasso LR [SK03]

Solve

$$\widehat{\beta}, \widehat{\beta}_{0} = \arg\min_{\beta, \beta_{0}} \left\{ \sum_{i=1}^{n} \ell_{LR}(y_{i}f(x_{i})) + \lambda \left| \left| \beta \right| \right|_{1} \right\}, \text{ where } f(x) = x^{T}\beta + \beta_{0}$$

First order conditions

Lead to the definition of the violation criterion :

At point
$$\beta$$
, $V_j = \begin{cases} |\lambda - F_j| & \text{if } \beta_j > 0\\ |\lambda + F_j| & \text{if } \beta_j < 0\\ \max(F_j - \lambda, -F_j - \lambda, 0) & \text{if } \beta_j = 0 \end{cases}$

where

$$F_{j} = \sum_{i=1}^{n} \frac{e^{-y_{i}f(x_{i})}}{1 + e^{-y_{i}f(x_{i})}} y_{i}x_{ij}$$

Note : At point $\hat{\beta}$, $V_j = 0 \forall j$.

Solving for a single value of λ

Require: $(x_1, y_1), ..., (x_n, y_n), \lambda$ Initialize β to β_{init} ; Set $\mathscr{A} = \{i \mid \beta_i \neq 0\}$ while There exists $j \notin \mathcal{A}$ s.t. $V_j \neq 0$ do Find $j_{\max} = \arg \max_{j \in \mathcal{A}} V_j$ Update $\mathscr{A} \leftarrow \mathscr{A} \cup \{j_{\max}\}$ while there exists $j \in \mathcal{A}$ s.t. $V_j \neq 0$ do Find $j_{\max} = \arg \max_{j \in \mathscr{A}} V_j$ Optimize $L(\beta)$ w.r.t. $\beta_{i_{max}}$ Recompute V_i , $j \in \mathcal{A}$ end while end while return β

Solving for a single value of $\boldsymbol{\lambda}$

```
Require: (x_1, y_1), ..., (x_n, y_n), \lambda
    Initialize \beta to \beta_{init}; Set \mathscr{A} = \{i \mid \beta_i \neq 0\}
   while There exists j \notin \mathcal{A} s.t. V_i \neq 0 do
       Find j_{\max} = \arg \max_{j \in \mathcal{A}} V_j
       Update \mathscr{A} \leftarrow \mathscr{A} \cup \{j_{\max}\}
       while there exists j \in \mathcal{A} s.t. V_j \neq 0 do
           Find j_{\max} = \arg \max_{j \in \mathscr{A}} V_j
           Optimize L(\beta) w.r.t. \beta_{i_{max}}
           Recompute V_i, j \in \mathcal{A}
       end while
   end while
    return β
```

Solving for a single value of $\boldsymbol{\lambda}$

Require: $(x_1, y_1), ..., (x_n, y_n), \lambda$ Initialize β to β_{init} ; Set $\mathscr{A} = \{i \mid \beta_i \neq 0\}$ while There exists $j \notin \mathcal{A}$ s.t. $V_i \neq 0$ do Find $j_{\max} = \arg \max_{j \in \mathcal{A}} V_j$ Update $\mathscr{A} \leftarrow \mathscr{A} \cup \{j_{\max}\}$ while there exists $j \in \mathcal{A}$ s.t. $V_j \neq 0$ do Find $j_{\max} = \arg \max_{j \in \mathscr{A}} V_j$ Optimize $L(\beta)$ w.r.t. $\beta_{i_{max}}$ Recompute V_i , $j \in \mathcal{A}$ end while end while return β

Solving for a single value of λ

Require: $(x_1, y_1), ..., (x_n, y_n), \lambda$ Initialize β to β_{init} ; Set $\mathscr{A} = \{j \mid \beta_i \neq 0\}$ while There exists $j \notin \mathcal{A}$ s.t. $V_j \neq 0$ do Find $j_{\max} = \arg \max_{j \in \mathcal{A}} V_j$ Update $\mathscr{A} \leftarrow \mathscr{A} \cup \{j_{\max}\}$ while there exists $j \in \mathcal{A}$ s.t. $V_j \neq 0$ do Find $j_{\max} = \arg \max_{j \in \mathscr{A}} V_j$ Optimize $L(\beta)$ w.r.t. $\beta_{i_{max}}$ Recompute V_i , $j \in \mathcal{A}$ end while end while **return** β

- * Sub-problem is str. convex $\Rightarrow L(\beta)$ decreases at each step,
- * Only a sparse vector to store.
- $\star \beta_{init} = 0$ seems perfect.

Solving for a set of λ values

Require: $(x_1, y_1), ..., (x_n, y_n), \lambda_1 > ... > \lambda_m$ for k=1,...,m do Initialize β^{λ_k} to $\hat{\beta}^{\lambda_{k-1}}$; Set $\mathscr{A} = \left\{ j / \beta_i^{\lambda_k} \neq 0 \right\}$ while There exists $j \notin \mathcal{A}$ s.t. $V_j \neq 0$ do Find $j_{\max} = \arg \max_{j \in \mathcal{A}} V_j$ Update $\mathscr{A} \leftarrow \mathscr{A} \cup \{i_{\max}\}$ while there exists $j \in \mathcal{A}$ s.t. $V_i \neq 0$ do Find $j_{\max} = \arg \max_{j \in \mathcal{A}} V_j$ Optimize $L(\beta^{\lambda_k})$ w.r.t. $\beta_{j_{max}}^{\lambda_k}$ Recompute V_i , $j \in \mathcal{A}$ end while end while end for return $\beta^{\lambda_1},...,\beta^{\lambda_m}$

Take home message

Logistic regression

- ★ Belongs to the GLM family,
- * Is a linear classifier,
- * Is also an ECRM minimizer.
- * May require regularization even in small dimension

Inference

- * Can be performed easily,
- * But cannot be performed easily !
- \Rightarrow Pay attention to which package you use...

Overview

- Basics in optimization
- Basics in classification
- 2 Logistic regression
 - Classical logistic regression
 - Regularized logistic regression
- Support Vector Machines
 Linear SVM
 - Kernel SVM
 - 4 Theoretical guarantees

Support Vector Machines

Learning With Kernels [SS01] Kernels Methods In Computational Biology [STV04]

Back to basics

Bayes classifier

$$h_B = \arg\min_h L(h)$$

- Requires $\mathbb{P}_{X,Y}$, - $\mathscr{Y}^{\mathscr{X}}$ is... large!

Find a linear classifier

$$\hat{h}_{\hat{f}} = \arg\min_{\substack{h_f \\ h_f}} L_n(h_f), \text{ where } f(x) = x^T \beta + \beta_0$$

- Not unique (in two ways),
- Still NP hard to find in practice...

Find the optimal linear classifier

$$\widehat{h}_{\widehat{f}} = \operatorname{sign}\left[\widehat{f}(x)\right] \quad \text{where } \widehat{f}(x) = x^{T}\widehat{\beta} + \widehat{\beta}_{0} \text{ and } \widehat{\beta}, \widehat{\beta}_{0} = \operatorname{arg\,min}_{\beta,\beta_{0}} Crit(\beta,\beta_{0})$$

Separating hyperplanes and margin

Consider a linearly separable dataset

Separating hyperplane : Any Δ : { $x^T\beta + \beta_0 = 0$ } s.t. $y_i(x_i^T\beta + \beta_0) > 0.$

Margin Smallest distance between a point and Δ .

Maximum margin hyperplane

If the dataset is linearly separable, choose $(\widehat{\beta}_0, \widehat{\beta})$ such that

$$\widehat{\Delta} = \left\{ \boldsymbol{x}^{T} \widehat{\boldsymbol{\beta}} + \widehat{\boldsymbol{\beta}}_{0} \right\} = \mathbf{0}$$

has maximum margin.

Proposition

$$(\widehat{\beta}_0, \widehat{\beta}) = \arg\min_{\beta_0, \beta} \frac{1}{2} ||\beta||_2^2 \ u.c. \quad y_i \left(x_i^T \beta + \beta_0 \right) > 1, \ \forall i$$

Note : Constraints account for - correct classification

- maximum margin
- Δ representation identification.

Non separable case

If the dataset is not linearly separable, relax constraints as follows

$$y_i(x_i^T\beta+\beta_0) \ge 1-\varepsilon_i, \ \forall i$$

where $\varepsilon_i \ge 0$, and penalize for the extend of margin violation.

Definition (Soft Margin SVM classifier)

$$\widehat{h}_{SVM} = sign\left[\widehat{\beta}_0 + x^T\widehat{\beta}\right]$$

where $(\widehat{\beta}_0,\widehat{\beta})$ is solution of

minimize
$$\frac{1}{2} ||\beta||_2^2 + C \sum_{i=1}^n \varepsilon_i$$

subject to $y_i \left(x_i^T \beta + \beta_0 \right) \ge 1 - \varepsilon_i, \ \forall i = 1, ..., n$
 $\varepsilon_i \ge 0, \ \forall i = 1, ..., n$

Inference

Inference boils down to solving the following problem :

minimize
$$\frac{1}{2} ||\beta||_2^2 + C \sum_{i=1}^n \varepsilon_i$$

subject to
$$y_i (x_i^T \beta + \beta_0) \ge 1 - \varepsilon_i$$

$$\varepsilon_i \ge 0$$

Associated primal problem :

$$\min_{\beta,\beta_0,\varepsilon} \max_{\alpha,\mu\geq 0} L(\beta,\beta_0,\varepsilon,\alpha,\mu)$$

where

$$L(\beta,\beta_0,\varepsilon,\alpha,\mu) = \frac{1}{2} \left| \left| \beta \right| \right|_2^2 + C \sum_{i=1}^n \varepsilon_i + \sum_{i=1}^n \alpha_i \left[1 - \varepsilon_i - y_i \left(x_i^T \beta + \beta_0 \right) \right] - \sum_{i=1}^n \mu_i \varepsilon_i$$

Dual optimization problem

Dual problem :

 $\max_{\alpha,\mu\geq 0} \min_{\beta,\beta_0,\varepsilon} L(\beta,\beta_0,\varepsilon,\alpha,\mu)$

Proposition

The SVM dual problem can be reformulated as

maximize
$$-\frac{1}{2}\alpha^T Q\alpha + 1^T_n \alpha$$

subject to $0 \le \alpha \le C$
 $\sum_{i=1}^n y_i \alpha_i = 0$

where $Q_{ij} = y_i y_j x_i^T x_j$.

Sequential Minimal Optimization [Pla98]

Let *B* a subset of $\{1, ..., n\}$. One has

$$\begin{array}{ll} \text{maximize} & \frac{1}{2} \left[\begin{array}{c} \alpha_B \\ \alpha_{\overline{B}} \end{array} \right] \left[\begin{array}{c} Q_{BB} & Q_{B\overline{B}} \\ Q_{\overline{BB}} & Q_{\overline{BB}} \end{array} \right] \left[\begin{array}{c} \alpha_B \\ \alpha_{\overline{B}} \end{array} \right] + \mathbf{1}_{|B|}^T \alpha_B + \mathbf{1}_{|\overline{B}|}^T \alpha_{\overline{B}} \\ \text{subject to} & 0 \le \alpha_B \le C, \ 0 \le \alpha_{\overline{B}} \le C \\ & Y_B^T \alpha_B + Y_{\overline{B}}^T \alpha_{\overline{B}} = 0 \end{array}$$

⇔

maximize
$$-\frac{1}{2}\alpha_B^T Q_{BB}\alpha_B + U(\overline{B})^T \alpha_B + \Delta_1(\overline{B})$$

subject to $0 \le \alpha_B \le C$
 $Y_B^T \alpha_B = \Delta_2(\overline{B})$

Apply with |B| = 2!

- * Simpler optimization problem,
- * Only 2 columns of Q need to be loaded at each step,
- * "Pairwise" coordinate descent.

Note : One can search for the "best" pair at each step...

From SVM to convex risk minimization

Proposition

Assume $Y_i = \pm 1, \forall i$. One has

$$\widehat{h}_{SVM}^{\lambda}(x) = sign\left[x^{T}\widehat{\beta}_{\lambda} + \widehat{\beta}_{0\lambda}\right],$$

with $(\widehat{\beta}_{0\lambda}, \widehat{\beta}_{\lambda}) = \arg\min_{\beta_{0},\beta} \sum_{i=1}^{n} \ell_{SVM}\left(y_{i}x_{i}^{T}\beta\right) + \lambda ||\beta||_{2}^{2}$

where $\ell_{SVM}(t) = |1 - t|_+$ is the hinge loss.

So far...

SVM classifier

$$\widehat{h}_{SVM}^{\lambda}(x) = \operatorname{sign} \left[x^{T} \widehat{\beta}_{\lambda} + \widehat{\beta}_{0\lambda} \right],$$
with $(\widehat{\beta}_{0\lambda}, \widehat{\beta}_{\lambda}) = \operatorname{arg\,min}_{\beta_{0},\beta} \sum_{i=1}^{n} \ell_{SVM} \left(y_{i} x_{i}^{T} \beta \right) + \lambda ||\beta||_{2}^{2}$

- * Linear classifier with largest margin,
- * Linear classifier that minimizes the hinge loss.

Inference

$$\widehat{\beta}_{\lambda} = \sum_{i=1}^{n} y_{i} \widehat{\alpha}_{i} x_{i}$$
with $\widehat{\alpha} = \arg \max_{0 \le \alpha \le 1/\lambda} \left\{ -\frac{1}{2} \alpha^{T} Q \alpha + \mathbf{1}_{n}^{T} \alpha \right\}$ u.c. $\sum_{i=1}^{n} y_{i} \alpha_{i} = 0$

So far...

Restricted to $\mathscr{X} = \mathbb{R}^{p}$.

- ...

What about - text classification?

- sequence classification?
- pathway classification?

Restricted to linear classification :

Naive way : transform and proceed (1/3)

Example 1 Document classification (e.g. Reuters dataset)

Bag of words

* $\mathcal{Y} = \{1, ..., M\}$, with *M* the number of document classes,

* Apply transformation $\phi : \mathscr{X} = \{\text{documents}\} \rightarrow \mathbb{R}^d$

 $\phi(doc) = (N_{W_1}, ..., N_{W_d}),$

where N_{w_i} is the nb. of occurrence of word w_j in *doc*.

Characteristics

★ d is large (\approx 35k),

 $\star \ \varphi(\textit{doc})$ is sparse (between 93 and 1263 words per doc).

Storing the $\phi(doc)$'s is cheap!

Naive way : transform and proceed (2/3)

Example 2 Non-linear classification (e.g. Sphere example)

Apply transformation

$$x = (x_1, x_2)^T \mapsto \phi(x) = (x_1^2, x_2^2, \sqrt{2}x_1x_2).$$

Characteristics

★ *x* ∈ \mathbb{R}^{ρ} is "big", $\phi(x)$ is way bigger, ★ $\phi(x)$ is not sparse.

Storing the $\phi(x)$'s is prohibitive.

Naive way : transform and proceed (3/3)

Example 3 Structured data classification

Networks, trees

Sequences

Finding $\phi : \mathscr{S} \to \mathbb{R}^d$ is non-trivial.
Smart way : kernel SVM

Combining CRM formulation + Inference leads to :

$$\widehat{h}_{SVM}(x) = \operatorname{sign} \left[\sum_{i=1}^{n} y_i \widehat{\alpha}_i \langle \mathbf{x}_i, \mathbf{x} \rangle + c_{\widehat{\alpha}} \right],$$
with $\widehat{\alpha} = \operatorname{arg}_{0 \le \alpha \le 1/\lambda} \left\{ \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{i'=1}^{n} y_i y_{i'} \alpha_i \alpha_{i'} \langle \mathbf{x}_i, \mathbf{x}_{i'} \rangle \right\}$
u.c. $\sum_{i=1}^{n} y_i \alpha_i = 0$

The x_i 's only appear through scalar products.

- \Rightarrow Only need to compute $\langle \phi(x_i), \phi(x_j) \rangle$.
- \Rightarrow Only need to store the $n \times n$ Gram matrix.

Smart way : kernel SVM

Combining CRM formulation + Inference leads to :

$$\hat{h}_{SVM}(x) = \operatorname{sign}\left[\sum_{i=1}^{n} y_i \hat{\alpha}_i k(x_i, x) + c_{\hat{\alpha}}\right],$$
with $\hat{\alpha} = \operatorname{arg}\max_{0 \le \alpha \le 1/\lambda} \left\{\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{i'=1}^{n} y_i y_{i'} \alpha_i \alpha_{i'} k(x_i, x_{i'})\right\}$
u.c. $\sum_{i=1}^{n} y_i \alpha_i = 0$

The x_i 's only appear through scalar products.

- \Rightarrow Only need to compute $\langle \phi(x_i), \phi(x_j) \rangle$.
- \Rightarrow Only need to store the $n \times n$ Gram matrix.
- \Rightarrow Only need to compute some similarity between x_i and x_j .

Kernels is what we need !

Stephen Boyd and Lieven Vandenberghe.

Convex optimization.

Cambridge university press, 2004.

Edwin KP Chong and Stanislaw H Zak.

An introduction to optimization, volume 76. John Wiley & Sons, 2013.

- Luc Devroye, László Györfi, and Gábor Lugosi. <u>A probabilistic theory of pattern recognition</u>, volume 31. Springer Science & Business Media, 2013.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical learning, volume 1. Springer series in statistics New York, 2001.

Christophe Giraud.

Introduction to high-dimensional statistics, volume 138.

CRC Press, 2014.

Trevor Hastie, Robert Tibshirani, and Martin Wainwright.

Statistical learning with sparsity : the lasso and generalizations. CRC press, 2015.

Yurii Nesterov et al.

Gradient methods for minimizing composite objective function, 2007.

John Platt.

Sequential minimal optimization : A fast algorithm for training support vector machines.

1998.

Shirish Krishnaj Shevade and S Sathiya Keerthi.

A simple and efficient algorithm for gene selection using sparse logistic regression.

Bioinformatics, 19(17) :2246–2253, 2003.

Bernhard Scholkopf and Alexander J Smola.

Learning with kernels : support vector machines, regularization, optimization, and beyond.

MIT press, 2001.

Bernhard Schölkopf, Koji Tsuda, and Jean-Philippe Vert. Kernel methods in computational biology.

MIT press, 2004.

Ryan J Tibshirani et al.

The lasso problem and uniqueness.

Electronic Journal of Statistics, 7 :1456–1490, 2013.