Classification in High Dimension

Tristan Mary-Huard maryhuar@agroparistech.fr

Génétique Quantitative et Évolution - Le Moulon INRA/Univ. Paris
Sud/CNRS/AgroParisTech
AgroParisTech/INRA UMR 518

気 SCIENCE \& IMPACT

Overview

(9) Introduction

- Basics in optimization
- Basics in classification
(2) Logistic regression
- Classical logistic regression
- Regularized logistic regression
(3) Support Vector Machines
- Linear SVM
- Kernel SVM

4 Theoretical guarantees

Prerequisites

"You know nothing, John Snow."

\forall.Vapnik
V.Koltchinskii Traditional wildling saying

Overview

(1) Introduction

- Basics in optimization
- Basics in classification
(2) Logistic regression
- Classical logistic regression
- Regularized logistic regression
(3) Support Vector Machines
- Linear SVM
- Kernel SVM

4 Theoretical guarantees

Basics in optimization

I - Theoretical aspects

An Introduction to Optimization [CZ13]
Convex Optimization [BV04]
(a.k.a. the convex surrogate of the Bible)

Standard optimization problem

Standard problem

$$
\min _{x \in \Omega} f(x)
$$

with $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ differentiable, and $\Omega \subset \mathbb{R}^{p}$.

Definition

x^{*} is a local minimizer iff

$$
\exists \varepsilon / \forall x \in B\left(x^{*}, \varepsilon\right) \cap \Omega, f(x) \geq f\left(x^{*}\right)
$$

x^{*} is a global minimizer iff

$$
\forall x \in \Omega, f(x) \geq f\left(x^{*}\right)
$$

First order necessary condition

Admissible direction
$d \in \mathbb{R}^{p}$ is admissible at point x if

$$
\exists \alpha_{0}>0 / \forall \alpha \in\left[0, \alpha_{0}\right], x+\alpha d \in \Omega .
$$

The directional derivative w.r.t. d is defined as

$$
\frac{\partial f(x)}{\partial d}=\lim _{\alpha \rightarrow 0} \frac{f(x+\alpha d)-f(x)}{\alpha}=d^{T} \nabla f(x)
$$

Theorem (1st order necessary condition)

If f is C^{1} and x^{*} is a local minimizer of f over Ω. Then for all d admissible at point x^{*},

$$
d^{T} \nabla f\left(x^{*}\right) \geq 0
$$

Note : If x^{*} is an interior point of Ω, then $N C \Rightarrow \nabla f\left(x^{*}\right)=0$.

Convex optimization problems

Convex set, convex function
Ω is convex if $\forall(x, y, \lambda) \in \Omega^{2} \times[0,1]$,

$$
\lambda x+(1-\lambda) y \in \Omega
$$

f is convex if $\forall(x, y, \lambda) \in \mathbb{R}^{p} \times \mathbb{R}^{p} \times[0,1]$,

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

Proposition

- If f is convex, any local minimizer is a global minimizer.
- If f is convex and differentiable,

$$
f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle, \forall x, y
$$

Convex Optimization problems

Standard problem

$$
\min _{x \in \Omega} f(x)
$$

with $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ differentiable, and $\Omega \in \mathbb{R}^{p}$.

Theorem

Assume f is convex and differentiable, and Ω is convex. Then $x^{*} \in \Omega$ is a global minimizer iff

$$
<\left\langle\nabla f\left(x^{*}\right), y-x^{*}\right\rangle \geq 0, \forall y
$$

Primal optimization problem

Consider problem

$$
\begin{aligned}
\operatorname{minimize} & f(x) \\
\text { subject to } & g_{i}(x) \leq 0, \forall i=1, \ldots, m
\end{aligned}
$$

New objective function :

$$
\begin{aligned}
f(x)+\sum_{i=1}^{m} \max _{\lambda_{i} \geq 0} \lambda_{i} g_{i}(x) & =\max _{\lambda \geq 0}\left\{f(x)+\sum_{i=1}^{m} \lambda_{i} g_{i}(x)\right\} \\
& =\max _{\lambda \geq 0} L(x, \lambda)
\end{aligned}
$$

$\lambda_{1}, \ldots, \lambda_{m}$: Lagrange multipliers,
$L(.,$.$) : Lagrange function.$
The initial optimization problem becomes

$$
\begin{equation*}
\min _{x} \max _{\lambda \geq 0} L(x, \lambda) \tag{P}
\end{equation*}
$$

Dual optimization problem

Alternatively, consider problem

$$
\begin{equation*}
\max _{\lambda \geq 0} \min _{x} L(x, \lambda) \tag{D}
\end{equation*}
$$

(\mathscr{D}) is the dual problem associated with primal problem (\mathscr{P}).
Note $G($.$) the dual function$

$$
G(\lambda)=\min _{x} L(x, \lambda)
$$

Proposition

For all $\lambda \geq 0$, one has

$$
G(\lambda) \leq p^{*}
$$

where $p^{*}=f\left(x^{*}\right)$

Duality gap

Definition

Note $d^{*}=\max _{\lambda \geq 0} G(\lambda)$ the solution of (\mathscr{D}). Then

$$
p^{*}-d^{*} \geq 0
$$

is called the duality gap.
If $p^{*}-d^{*}=0$, then we say that strong duality holds.

Questions

- How does strong duality help?
- When does strong duality hold?

Complementary slackness conditions

Proposition

If strong duality holds, then

$$
\lambda_{i}^{*} g_{i}\left(x^{*}\right)=0, \quad \forall i=1, \ldots, m
$$

where $\lambda^{*}=\arg \max _{\lambda \geq 0} G(\lambda)$.

Also note that x^{*} is the minimizer of $L\left(x, \lambda^{*}\right)$, therefore

$$
\nabla L\left(x^{*}, \lambda^{*}\right)=0
$$

Karush Kuhn Tucker conditions

Proposition

If strong duality holds, the optimal Lagrange multiplier vector λ^{*} and the optimal solution x^{*} of ($\left.\mathscr{P}\right)$ satisfy

$$
\begin{array}{rlrl}
g_{i}\left(x^{*}\right) \leq 0, & & \forall i=1, \ldots, m & \\
\lambda_{i}^{*} \geq 0, & \forall i=1, \ldots, m & & \text { (dual feasability) } \\
\lambda_{i}^{*} g_{i}\left(x^{*}\right)=0, & \forall i=1, \ldots, m & & \text { (compl. slackness) } \\
\nabla L\left(x^{*}, \lambda^{*}\right)=\nabla f\left(x^{*}\right)+\sum_{i=1}^{m} \lambda_{i}^{*} \nabla g_{i}\left(x^{*}\right)=0, & & \text { (first order condition) }
\end{array}
$$

Strong duality does not hold in general, but holds under mild conditions for convex optimization problems...

Slater's constraint qualification

Proposition

Consider problem (\mathscr{P}) where f, g_{1}, \ldots, g_{m} are convex functions. Then strong duality holds if there exists a strictly feasible point, satisfying

$$
g_{i}(x)<0, \quad \forall i=1, \ldots, m
$$

Proof: Technical! See [BV04]

Proposition

Assume (\mathscr{P}) is convex. Then if $\left(\lambda^{*}, x^{*}\right)$ satisfy the KKT conditions, strong duality holds and (λ^{*}, x^{*}) is optimal.

So far...

Convex + differentiability
If f, g_{1}, \ldots, g_{m} are differentiable and convex, then the KKT conditions are necessary and sufficient for optimality.

Potential use
\star Solve analytically the KKT conditions,
\star Guidelines for the development of efficient algorithms,
\star Solve the dual rather than the primal when easier!
Limitation
Some objective functions (hinge loss) and/or constraints (L_{1} norm) are convex but not differentiable...

Subdifferential and subgradients

Recall that for a convex, differentiable function f

$$
\forall x, y \quad f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle
$$

Definition

Let $f: \mathbb{R}^{p} \rightarrow \mathbb{R} . \omega_{x}$ is a subgradient of f at point x if

$$
\forall x, y \quad f(y) \geq f(x)+\left\langle\omega_{x}, y-x\right\rangle
$$

The set

$$
\partial f(x)=\{\omega / \forall y \quad f(y) \geq f(x)+\langle\omega, y-x\rangle\}
$$

is called the subdifferential of f at point x

A graphical illustration

At $x=2$ the function is differentiable
\Rightarrow a unique tangent hyperplane
At $x=-1$ the function is not differentiable
\Rightarrow many "lower" hyperplanes!

Subdifferential for the L_{1} norm

$\partial|x|=$

Subdifferential for the L_{1} norm

$$
\begin{aligned}
& \partial|x|=\left\{\begin{array}{lll}
\operatorname{sign}[x] & \text { if } x \neq 0, \\
{[-1,1]} & \text { if } x=0,
\end{array}\right. \\
& \partial\|x\|_{1}=\left\{\omega \in \mathbb{R}^{p} / \omega_{j}=\operatorname{sign}\left[x_{j}\right] \text { if } x_{j} \neq 0, \omega_{j} \in[-1,1] \text { if } x_{j}=0\right\}
\end{aligned}
$$

Subdifferential and subgradients

Subdifferential and convexity
$\star f$ is convex $\Rightarrow \partial f(x)$ is non-empty, $\forall x$,
$\star f$ is convex and differentiable at $x \Rightarrow \partial f(x)=\{\nabla f(x)\}$.
Proof : See [Gir14]

Theorem

Assume f is convex and non-differentiable. Then

$$
x^{*}=\arg \min _{x} f(x) \Leftrightarrow 0 \in \partial f\left(x^{*}\right)
$$

KKT conditions revisited

Consider

$$
\begin{aligned}
\operatorname{minimize} & f(x) \\
\text { subject to } & g_{i}(x) \leq 0, \forall i=1, \ldots, m
\end{aligned}
$$

where f, g_{1}, \ldots, g_{m} are convex but not differentiable everywhere.

Proposition

If strong duality holds, then necessary and sufficient conditions for primal and dual optimality of (λ^{*}, x^{*}) are

$$
\begin{array}{rlrl}
g_{i}\left(x^{*}\right) \leq 0, & \forall i=1, \ldots, m & & \text { (primal feasability) } \\
\lambda_{i}^{*} \geq 0, & \forall i=1, \ldots, m & & \text { (dual feasability) } \\
\lambda_{i}^{*} g_{i}\left(x^{*}\right)=0, & \forall i=1, \ldots, m & & \text { (compl. slackness) } \\
0 \in \partial L\left(x^{*}, \lambda^{*}\right)=\partial f\left(x^{*}\right)+\sum_{i=1}^{m} \lambda_{i}^{*} \partial g_{i}\left(x^{*}\right), & & \text { (first order condition) }
\end{array}
$$

Proof : Follows the same line as for the differentiable case.

Basics in optimization

II - Algorithm(s)

From theory to practice

Back to the unconstrained optimization problem

$$
\min _{x} f(x)
$$

If f is differentiable, then $\forall \alpha, d,\|d\|_{2}=1$:

$$
\begin{aligned}
f(x+\alpha d) & =f(x)+\alpha \nabla f(x)^{T} d+o(\alpha) \\
\Rightarrow|f(x+\alpha d)-f(x)| & \approx \alpha\left|\nabla f(x)^{T} d\right| \\
& \leq \alpha\|\nabla f(x)\|_{2}
\end{aligned}
$$

Best direction : $-\frac{\nabla f(x)}{\|\nabla f(x)\|_{2}}$!

Gradient descent algorithm

Iterative procedure

$$
\text { for } t=1, \ldots, T \quad x^{(t+1)}=x^{(t)}-\alpha_{t} \nabla f\left(x^{(t)}\right)
$$

$\alpha_{t}>0$: step size parameter
Main difficulty : choice of $\left(\alpha_{t}\right)_{t}$.
\star constant stepsize,
\star decreasing stepsize,
\star "best" stepsize (a.k.a. steepest descent).
Both the convergence rate and the complexity depend on $\left(\alpha_{t}\right)_{t}$.

Example : Steepest gradient descent

Algorithm
Input x_{0}, ε
while $\left\|\nabla f\left(x^{(t)}\right)\right\| \geq \varepsilon$,
$x^{(t+1)}=x^{(t)}-\alpha_{t} \nabla f\left(x^{(t)}\right)$ where $\alpha_{t}=\arg \min _{\alpha>0} f\left(x^{(t)}-\alpha_{t} \nabla f\left(x^{(t)}\right)\right)(1)$
end
Properties
(i) $f\left(x^{(t+1)}\right) \leq f\left(x^{(t)}\right) \quad$ (descent property),
(ii) $<\nabla f\left(x^{(t+1)}\right), \nabla f\left(x^{(t)}\right)>\quad$ (orthogonal directions),
(iii) If f is C^{1} and strictly convex, then $\left(x^{(t)}\right)$ converges to x^{*}.

Proof of (iii) : Technical! See [CZ13].
Limitations
夫 Solving (1) may be non-trivial
\star May be slow (see Accelerations, e.g. [$\left.\mathrm{N}^{+} 07\right]$)

Alternative formulation of the gradient descent

Initial formulation

$$
\text { At step } t+1, \quad x^{(t+1)}=x^{(t)}-\alpha_{t} \nabla f\left(x^{(t)}\right)
$$

Recasted as
$x^{(t+1)}=\arg \min _{x}\left\{f\left(x^{(t)}\right)+<\nabla f\left(x^{(t)}\right), x-x^{(t)}>+\frac{1}{2 \alpha_{t}}\left\|x-x^{(t)}\right\|_{2}^{2}\right\}$

Interpretation
$\star f\left(x^{(t)}\right)+<\nabla f\left(x^{(t)}\right), x-x^{(t)}>$: linearization of f around $x^{(t)}$,
$\star\left\|x-x^{(t)}\right\|_{2}^{2}$: requires $x^{(t+1)}$ to be "not to far" from $x^{(t)}$,
$\star \alpha_{t}$: rules the tradeoff.

Proximal gradient descent

$$
\min _{x} f(x)+h(x)
$$

f convex and differentiable (e.g. L_{2} loss),
h convex but non differentiable (e.g. L_{1} norm).
Linearize the differentiable part to obtain :
$x^{(t+1)}=\arg \min _{x}\left\{f\left(x^{(t)}\right)+\left\langle\nabla f\left(x^{(t)}\right), x-x^{(t)}\right\rangle+h(x)+\frac{1}{2 \alpha_{t}}\left\|x-x^{(t)}\right\|_{2}^{2}\right\}$
Proximal operator

$$
\operatorname{prox}_{h}(\theta)=\arg \min _{z}\left\{\frac{1}{2}\|\theta-z\|_{2}^{2}+h(z)\right\}
$$

In practice
1/ Compute the classical gradient step $x^{(t)}-\alpha_{t} \nabla f\left(x^{(t)}\right)$,
2/ project according to the proximal operator

$$
x^{(t+1)}=\operatorname{prox}_{\alpha_{t} h}\left(x^{(t)}-\alpha_{t} \nabla f\left(x^{(t)}\right)\right)
$$

Application I : projected gradient descent

If minimization is subject to constraint $x \in \Omega \subsetneq \mathbb{R}^{p}$:

$$
\begin{aligned}
& x^{(t+1)}=\arg \min _{x \in \Omega}\left\{f\left(x^{(t)}\right)+<\nabla f\left(x^{(t)}\right), x-x^{(t)}>+\frac{1}{2 \alpha_{t}}\left\|x-x^{(t)}\right\|_{2}^{2}\right\} \\
&=\arg \min _{x}\left\{f\left(x^{(t)}\right)+<\nabla f\left(x^{(t)}\right), x-x^{(t)}>+\frac{1}{2 \alpha_{t}}\left\|x-x^{(t)}\right\|_{2}^{2}+I_{\Omega}(x)\right\} \\
& \text { where } I_{\Omega}(x)=\left\{\begin{array}{c}
0 \text { if } x \in \Omega, \\
+\infty \text { otherwise. }
\end{array}\right.
\end{aligned}
$$

In practice
1/ Compute the classical gradient step $x^{(t+1)}=x^{(t)}-\alpha_{t} \nabla f\left(x^{(t)}\right)$,
2/ Project on Ω

$$
x_{p r}^{(t+1)}=\Pi_{\Omega}\left(x^{(t+1)}\right)
$$

Fast if projection can be easily computed...

Application II : projected gradient descent for lasso regression

$$
x^{(t+1)}=\arg \min _{x}\left\{f\left(x^{(t)}\right)+<\nabla f\left(x^{(t)}\right), x-x^{(t)}>+\frac{1}{2 \alpha_{t}}\left\|x-x^{(t)}\right\|_{2}^{2}+\lambda\|x\|_{1}\right\}
$$

In practice
1 Compute the classical gradient step $x^{(t+1)}=x^{(t)}-\alpha_{t} \nabla f\left(x^{(t)}\right)$,
2/ Apply soft-thresholding to $x^{(t+1)}$

$$
x_{p r, j}^{(t+1)}=\operatorname{sign}\left[x^{(t+1)_{j}}\right] \times\left|\left|x^{(t+1)_{j}}\right|-\alpha_{t} \lambda\right|_{+}
$$

Fast, easy, and amenable to parallelization.

Beyond first order algorithms

$$
\min _{x} f(x)
$$

f convex and twice differentiable
Newton algorithm
\star Consider $2^{\text {nd }}$ order Taylor expansion of f :

$$
\begin{aligned}
f(y) & =f(x)+<\nabla f(x), y-x>+\frac{1}{2}(y-x)^{T} H_{f}(x)(y-x)+o\left(\|y-x\|_{2}^{2}\right) \\
& =Q_{x}(y)+o\left(\|y-x\|_{2}^{2}\right)
\end{aligned}
$$

\star At step $t+1$, use $Q_{x^{(t)}}$ as a proxy for $f \ldots$

$$
x^{(t+1)}=\arg \min _{x} Q_{x^{(t)}}(x)
$$

\star... and get the (closed form) solution :

$$
x^{(t+1)}=x^{(t)}-H_{f}\left(x^{(t)}\right)^{-1} \nabla f\left(x^{(t)}\right)
$$

Take home message

Theoretical aspects
\star Mostly interested in convex problems,
\star Characterization of the solution(s),
\star Guidelines to derive efficient algorithms.
Gradient descent
\star Simple but quite versatile,
\star Can be generalized in many ways,
\star More suited to deal with large problems than Newton method (more on this latter).

Non-addressed points
\star Complexity of the different algorithms
\star Rates of convergence
\star Convexity vs strong convexity, smoothness, etc.

Basics in classification

Elements of Statistical Learning [FHT01]
A Probabilistic Theory of Pattern Recognition [DGL13]

Supervised classification

Goal
Predict the unknown label Y of an observation X.

- $Y \in \mathscr{Y}$ where $\mathscr{Y}=\{0,1\}$ or $\mathscr{Y}=\{-1,1\}$ (binary classif.),
- $X \in \mathscr{X}\left(=\mathbb{R}^{p}\right)$.

Supervision
$\mathbb{P}_{X, Y}$ is unknown.
Training set $: \mathscr{D}_{n}=\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$, where $\left(X_{i}, Y_{i}\right) \stackrel{\text { i.i.d. }}{\hookrightarrow} \mathbb{P}_{X, Y}$.
Classifier
One aims at building

$$
\begin{aligned}
\hat{h}: \mathscr{X} & \rightarrow \mathscr{Y} \\
X & \mapsto \widehat{Y}
\end{aligned}
$$

Some examples

Cancer prediction
Predict cancer grade (from 1 to 3) based on CNV.
$\star X_{i}=\left(X_{i 1}, \ldots, X_{i p}\right)$, where
$X_{i j}=\mathrm{Nb}$ of copies of chrom. segment j in ind. i.
$\star \mathscr{X}=\mathbb{R}^{p}$
$\star \mathscr{Y}=\{1,2,3\}$
Credit scoring
Predict loan reimbursement based on social/economics/health measurements.
$\star X_{i}=\left(X_{i 1}, \ldots, X_{i 3}\right)$, where
$X_{i 1}=$ gross salary of ind. i,
$X_{i 2} \in 1, \ldots, K=$ socio-professional category of ind. i,
$X_{i 3}=1$ if ind. i already has an ongoing loan, 0 otherwise.
$\star \mathscr{X}=\mathbb{R} \times\{1, \ldots, K\} \times\{0,1\}$
$\star \mathscr{Y}=\{$ "safe","risky" $\}$
Pattern detection in images, Text categorization, ...

Classification algorithms

Any strategy

$$
\begin{aligned}
\mathscr{A}: \bigcup_{n \geq 1}\{\mathscr{X} \times \mathscr{Y}\}^{n} & \rightarrow \mathscr{Y}^{\mathscr{X}} \\
\mathscr{D}_{n} & \mapsto \hat{h}
\end{aligned}
$$

defines a classification algorithm.
A few examples

- Discriminant analysis
- kNN
- Logistic regression
- Neural networks
- SVM
- CART \& Random forest
- Boosting/bagging
- ...

Performance assessment

Quality of a classifier

$$
\left.\left.\begin{array}{rl}
L(\widehat{h})=\mathbb{P}\left(\widehat{h}(X) \neq Y \mid \mathscr{D}_{n}\right)=\mathbb{E}\left[\ell_{H L}(Y, \widehat{h}(X)) \mid \mathscr{D}_{n}\right] \\
\text { where } \quad \ell_{H L}(Y, \widehat{h}(X)) & =I_{\{\widehat{h}(X) \neq Y\}} \\
\ell_{H L}(Y, \widehat{h}(X)) & =I_{\{Y \widehat{h}(X)<0\}}
\end{array}\right) \text { (case }\{0,1\}\right), ~(\text { case }\{-1,1\}) .
$$

$\ell_{H L}$: hard loss.
Empirical error rate

$$
L_{n}(\widehat{h})=\frac{1}{n} \sum_{i=1}^{n} \ell_{H L}\left(\widehat{h}\left(X_{i}\right), Y_{i}\right)
$$

Bayes classifier

Assume $-\mathbb{P}_{X}$ has a density w.r.t. Lebesgue measure, $-\eta(x)=\mathbb{P}(Y=1 \mid X=x)$ is defined everywhere, and define

$$
h_{B}(x)= \begin{cases}1 & \text { if } \eta(x)>0.5 \\ 0 & \text { if } \eta(x)<0.5 \\ \mathscr{B}(0.5) & \text { otherwise }\end{cases}
$$

Proposition

$$
h_{B}=\arg \min _{h} L(h)
$$

Some notations

In the following, we will consider classifiers of the form

$$
h_{f}(x)=I_{\{f(x)>0\}} \quad \text { or } \quad h_{f}(x)=\operatorname{sign}[f(x)]
$$

Example 1: Bayes classifier

$$
h_{B}(x)=I_{\left\{\eta(x)-\frac{1}{2}>0\right\}} \text { or } \quad h_{B}(x)=\operatorname{sign}\left[\eta(x)-\frac{1}{2}\right]
$$

Example 2 : linear classifier

$$
h_{\beta}(x)=I_{\left\{x^{\top} \beta>0\right\}} \quad \text { or } \quad h_{\beta}(x)=\operatorname{sign}\left[x^{\top} \beta\right]
$$

Overview

(2) Logistic regression

- Classical logistic regression
- Regularized logistic regression

4 Theoretical guarantees

Logistic regression

Statistical learning with sparsity [HTW15]

From LM to GLM

Linear (regression) model
$Y_{i}=x_{i} \beta+\varepsilon_{i}, \varepsilon_{i} \hookrightarrow \mathscr{N}\left(0, \sigma^{2}\right)$, i.i.d. $\quad \Leftrightarrow \quad Y_{i} \mid X_{i}=x_{i} \hookrightarrow \mathscr{N}\left(x_{i} \beta, \sigma^{2}\right)$, ind.
$\Leftrightarrow\left\{\begin{array}{c}Y_{i} \mid X_{i}=x_{i} \hookrightarrow \mathscr{N}\left(\mu_{x_{i}}, \sigma^{2}\right) \\ \mu_{x_{i}}=x_{i}^{T} \beta\end{array}\right.$
Generalized linear model

$$
\left\{\begin{aligned}
Y_{i} \mid X_{i} & =x_{i} \hookrightarrow \mathscr{B}\left(p_{x_{i}}\right), \text { ind } . \\
p_{x_{i}} & =g^{-1}\left(x_{i}^{T} \beta\right)
\end{aligned}\right.
$$

where $g(t)=\log \left[\frac{t}{1-t}\right]$ is the "logit" link function.
Note: Only $Y \mid x$ is considered.

Maximum likelihood inference

Y_{1}, \ldots, Y_{n} independent cond. to x_{1}, \ldots, x_{n},
$Y_{i} \mid x_{i} \hookrightarrow \mathscr{B}\left(p_{x_{i}}\right), \forall i=1, \ldots, n$

$$
\Rightarrow \mathscr{L}(\beta)=\log \left\{\prod_{i=1}^{n} p_{i}^{y_{i}}\left(1-p_{i}\right)^{1-y_{i}}\right\}
$$

Proposition

$$
\begin{aligned}
\nabla \mathscr{L}(\beta) & =X^{T}(y-p) \\
H \mathscr{L}(\beta) & =-X^{T} D X
\end{aligned}
$$

where $p=\left(p_{1}, \ldots, p_{n}\right), D=\operatorname{diag}\left(p_{i}\left(1-p_{i}\right)\right)$.
Note : No closed form solution for $\widehat{\beta}$ but $\mathscr{L}(\beta)$ is concave.
\Rightarrow Numeric optimization via Newton algorithm.

Newton method for LR

Main steps
$\star 2^{\text {nd }}$ order approximation
$\widetilde{\mathscr{L}}_{(t)}(\beta)=\mathscr{L}\left(\widehat{\beta}^{(t)}\right)+\left[\nabla \mathscr{L}\left(\widehat{\beta}^{(t)}\right)\right]^{T}\left(\beta-\widehat{\beta}^{(t)}\right)+\frac{1}{2}\left(\beta-\widehat{\beta}^{(t)}\right)^{T}[H \mathscr{L}(\beta)]\left(\beta-\widehat{\beta}^{(t)}\right)$
\star Define

$$
\widehat{\beta}^{(t+1)}=\arg \max _{\beta} \widetilde{\mathscr{L}}_{(t)}(\beta)
$$

Proposition

i) $\widehat{\beta}^{(t+1)}=\widehat{\beta}^{(t)}+\left[X^{T} D_{(t)} X\right]^{-1} X^{T}\left(y-p_{(t)}\right)$,
ii) $\widehat{\beta}^{(t+1)}$ is also solution of

$$
\arg \min _{\beta}\left\|X \beta-z_{(t)}\right\|_{D_{(t)}^{-1}}^{2}
$$

where $z_{(t)}=X \widehat{\beta}^{(t)}+D_{(t)}^{-1}\left(y-p_{(t)}\right)$ and $p_{(t)}=\left(p_{i}\left(\widehat{\beta}^{(t)}\right)\right)_{1 \leq i \leq n}$.

Logistic regression classifier

Proposition

The LR classifier is a linear classifier defined as

$$
\widehat{h}_{L R}(x)=I_{\left\{x^{\top} \widehat{\beta}>0\right\}} \quad \text { where } \hat{\beta}=\arg \max _{\beta} \mathscr{L}(\beta)
$$

Separability : definition

Definition

A training set is separable if there exists β such that

$$
\begin{aligned}
& \forall i / y_{i}=1, x_{i}^{T} \beta>0 \\
& \forall i / y_{i}=0, x_{i}^{T} \beta<0
\end{aligned}
$$

Note 1: \Leftrightarrow there exists a linear classifier h such that $L_{n}(h)=0$, Note 2 : discrete case : can be relaxed to a single cell.

Separability : consequence

Proposition

If the training set is separable, then

$$
\begin{aligned}
\mathscr{L}(\widehat{\beta}) & =0, \\
\text { and }\|\widehat{\beta}\| & =+\infty .
\end{aligned}
$$

\Rightarrow Even in the "small dimension" setting, regularization may be required.

From MLE to convex risk minimization

Proposition

Assume $Y_{i}= \pm 1, \forall i$. One has

$$
\begin{aligned}
\hat{h}_{L R}(x) & =\operatorname{sign}\left[x^{\top} \widehat{\beta}\right], \\
\text { with } \widehat{\beta} & =\arg \min _{\beta} \sum_{i=1}^{n} \ell_{L R}\left(y_{i} x_{i}^{\top} \beta\right)
\end{aligned}
$$

where $\ell_{L R}(t)=\log \left[1+e^{-t}\right]$ is the logistic loss.

Regularized logistic regression

Definition

For any $\lambda>0$ the regularized $L R$ classifier is defined as

$$
\begin{aligned}
& \hat{h}_{R L R}^{\lambda}(x)=\operatorname{sign}\left[x^{\top} \widehat{\beta}_{\lambda}\right], \\
& \text { with } \widehat{\beta}_{\lambda}=\arg \min _{\beta} \sum_{i=1}^{n} \ell_{L R}\left(y_{i} x_{i}^{\top} \beta\right)+\lambda R(\beta)
\end{aligned}
$$

Ridge LR: $R(\beta)=\|\beta\|_{2}^{2}$
$\widehat{\beta}_{\lambda}$ is always defined and unique.
Lasso LR : $R(\beta)=\|\beta\|_{1}$
$\widehat{\beta}_{\lambda}$ is always defined and unique (under mild conditions, [$\left.T^{+} 13\right]$).

Inference for regularized logistic regression

Recall in the low dimensional case

$$
\widehat{\beta}^{(t+1)}=\arg \min _{\beta}\left\|X \beta-z_{(t)}\right\|_{D_{(t)}^{-1}}^{2},
$$

where $z_{(t)}=X \widehat{\beta}^{(t)}+D_{(t)}^{-1}\left(y-p_{(t)}\right)$ and $p_{(t)}=\left(p_{i}\left(\widehat{\beta}^{(t)}\right)\right)_{i}$.
Solving regularized LR...
... is replaced with solving
$\widehat{\beta}_{\lambda}^{(t+1)}=\arg \min _{\beta}\left\{\|X \beta-z\|_{D_{(t)}^{-1}}^{2}+\lambda R(\beta)\right\}$
hence boils down to regularized regression (at each step)!
Ridge LR : Solution of (1) has a closed form expression.
Lasso LR : use proximal/coordinate gradient descent.

Exact optimization for Lasso LR [SK03]

Solve
$\widehat{\beta}, \widehat{\beta}_{0}=\underset{\beta, \beta_{0}}{\arg \min }\left\{\sum_{i=1}^{n} \ell_{L R}\left(y_{i} f\left(x_{i}\right)\right)+\lambda\|\beta\|_{1}\right\}, \quad$ where $f(x)=x^{\top} \beta+\beta_{0}$
First order conditions
Lead to the definition of the violation criterion :

$$
\text { At point } \beta, \quad v_{j}= \begin{cases}\left|\lambda-F_{j}\right| & \text { if } \beta_{j}>0 \\ \left|\lambda+F_{j}\right| & \text { if } \beta_{j}<0 \\ \max \left(F_{j}-\lambda,-F_{j}-\lambda, 0\right) & \text { if } \beta_{j}=0\end{cases}
$$

where

$$
F_{j}=\sum_{i=1}^{n} \frac{e^{-y_{i} f\left(x_{i}\right)}}{1+e^{-y_{i} f\left(x_{i}\right)}} y_{i} x_{i j}
$$

Note : At point $\widehat{\beta}, V_{j}=0 \forall j$.

Solving for a single value of λ

Require: $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right), \lambda$
Initialize β to $\beta_{\text {init }}$; Set $\mathscr{A}=\left\{j / \beta_{j} \neq 0\right\}$
while There exists $j \notin \mathscr{A}$ s.t. $V_{j} \neq 0$ do
Find $j_{\text {max }}=\arg \max _{j \in \mathscr{A}} V_{j}$
Update $\mathscr{A} \leftarrow \mathscr{A} \cup\left\{j_{\max }\right\}$
while there exists $j \in \mathscr{A}$ s.t. $V_{j} \neq 0$ do
Find $j_{\text {max }}=\arg \max _{j \in \mathscr{A}} V_{j}$
Optimize $L(\beta)$ w.r.t. $\beta_{j_{\text {max }}}$
Recompute $V_{j}, j \in \mathscr{A}$
end while
end while
return β

Solving for a single value of λ

Require: $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right), \lambda$
Initialize β to $\beta_{\text {init }}$; Set $\mathscr{A}=\left\{j / \beta_{j} \neq 0\right\}$
while There exists $j \notin \mathscr{A}$ s.t. $V_{j} \neq 0$ do
Find $j_{\text {max }}=\arg \max _{j \in \mathscr{A}} V_{j}$
Update $\mathscr{A} \leftarrow \mathscr{A} \cup\left\{j_{\max }\right\}$
while there exists $j \in \mathscr{A}$ s.t. $V_{j} \neq 0$ do
Find $j_{\text {max }}=\arg \max _{j \in \mathscr{A}} V_{j}$
Optimize $L(\beta)$ w.r.t. $\beta_{j_{\text {max }}}$
Recompute $V_{j}, j \in \mathscr{A}$
end while
end while
return β

Solving for a single value of λ

Require: $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right), \lambda$
Initialize β to $\beta_{\text {init }}$; Set $\mathscr{A}=\left\{j / \beta_{j} \neq 0\right\}$
while There exists $j \notin \mathscr{A}$ s.t. $V_{j} \neq 0$ do
Find $j_{\text {max }}=\arg \max _{j \in \mathscr{A}} V_{j}$
Update $\mathscr{A} \leftarrow \mathscr{A} \cup\left\{j_{\max }\right\}$
while there exists $j \in \mathscr{A}$ s.t. $V_{j} \neq 0$ do
Find $j_{\text {max }}=\arg \max _{j \in \mathscr{A}} V_{j}$
Optimize $L(\beta)$ w.r.t. $\beta_{j_{\text {max }}}$
Recompute $V_{j}, j \in \mathscr{A}$
end while
end while
return β

Solving for a single value of λ

Require: $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right), \lambda$
Initialize β to $\beta_{\text {init }}$; Set $\mathscr{A}=\left\{j / \beta_{j} \neq 0\right\}$
while There exists $j \notin \mathscr{A}$ s.t. $V_{j} \neq 0$ do
Find $j_{\text {max }}=\arg \max _{j \in \mathscr{A}} V_{j}$
Update $\mathscr{A} \leftarrow \mathscr{A} \cup\left\{j_{\text {max }}\right\}$
while there exists $j \in \mathscr{A}$ s.t. $V_{j} \neq 0$ do
Find $j_{\text {max }}=\arg \max _{j \in \mathscr{A}} V_{j}$
Optimize $L(\beta)$ w.r.t. $\beta_{j_{\text {max }}}$
Recompute $V_{j}, j \in \mathscr{A}$ end while end while
return β
\star Sub-problem is str. convex $\Rightarrow L(\beta)$ decreases at each step,
\star Only a sparse vector to store.
$\star \beta_{\text {init }}=0$ seems perfect.

Solving for a set of λ values

Require: $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right), \lambda_{1}>\ldots>\lambda_{m}$
for $\mathrm{k}=1, \ldots, \mathrm{~m}$ do
Initialize $\beta^{\lambda_{k}}$ to $\widehat{\beta}^{\lambda_{k-1}}$; Set $\mathscr{A}=\left\{j / \beta_{j}^{\lambda_{k}} \neq 0\right\}$
while There exists $j \notin \mathscr{A}$ s.t. $V_{j} \neq 0$ do
Find $j_{\text {max }}=\arg \max _{j \in \mathscr{A}} V_{j}$
Update $\mathscr{A} \leftarrow \mathscr{A} \cup\left\{j_{\max }\right\}$
while there exists $j \in \mathscr{A}$ s.t. $V_{j} \neq 0$ do
Find $j_{\text {max }}=\arg \max _{j \in \mathscr{A}} V_{j}$
Optimize $L\left(\beta^{\lambda_{k}}\right)$ w.r.t. $\beta_{j_{\text {max }}}^{\lambda_{k}}$
Recompute $V_{j}, j \in \mathscr{A}$
end while end while
end for
return $\beta^{\lambda_{1}}, \ldots, \beta^{\lambda_{m}}$

Take home message

Logistic regression
\star Belongs to the GLM family,
\star Is a linear classifier,
\star Is also an ECRM minimizer.

* May require regularization even in small dimension

Inference
^ Can be performed easily,
\star But cannot be performed easily!
\Rightarrow Pay attention to which package you use...

Overview

(1) Introduction

- Basics in optimization
- Basics in classification
(2) Logistic regression
- Classical logistic regression
- Regularized logistic regression
(3) Support Vector Machines
- Linear SVM
- Kernel SVM
(4) Theoretical guarantees

Support Vector Machines

Learning With Kernels [SS01]
Kernels Methods In Computational Biology [STV04]

Back to basics

Bayes classifier

$$
h_{B}=\arg \min _{h} L(h)
$$

- Requires $\mathbb{P}_{X, Y}$,
- $\mathscr{Y}^{\mathscr{X}}$ is... large!

Find a linear classifier

$$
\widehat{h}_{\hat{f}}=\arg \min _{h_{f}} L_{n}\left(h_{f}\right), \quad \text { where } f(x)=x^{T} \beta+\beta_{0}
$$

- Not unique (in two ways),
- Still NP hard to find in practice...

Find the optimal linear classifier
$\widehat{h}_{\hat{f}}=\operatorname{sign}[\widehat{f}(x)] \quad$ where $\widehat{f}(x)=x^{T} \widehat{\beta}+\widehat{\beta}_{0}$ and $\widehat{\beta}, \widehat{\beta}_{0}=\arg \min _{\beta, \beta_{0}} \operatorname{Crit}\left(\beta, \beta_{0}\right)$

Separating hyperplanes and margin

Consider a linearly separable dataset

Separating hyperplane : Any $\Delta:\left\{x^{\top} \beta+\beta_{0}=0\right\}$ s.t.

$$
y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right)>0
$$

Margin Smallest distance between a point and Δ.

Maximum margin hyperplane

If the dataset is linearly separable, choose ($\left(\widehat{\widehat{\beta}_{0}}, \widehat{\widehat{\beta}}\right)$ such that

$$
\widehat{\Delta}=\left\{x^{T} \widehat{\beta}+\widehat{\beta}_{0}\right\}=0
$$

has maximum margin.

Proposition

$$
\left(\widehat{\beta}_{0}, \widehat{\beta}\right)=\underset{\beta_{0}, \beta}{\arg \min } \frac{1}{2}\|\beta\|_{2}^{2} \text { u.c. } \quad y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right)>1, \forall i
$$

Note : Constraints account for - correct classification

- maximum margin
- Δ representation identification.

Non separable case

If the dataset is not linearly separable, relax constraints as follows

$$
y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right) \geq 1-\varepsilon_{i}, \forall i
$$

where $\varepsilon_{i} \geq 0$, and penalize for the extend of margin violation.

Definition (Soft Margin SVM classifier)

$$
\widehat{h}_{S V M}=\operatorname{sign}\left[\widehat{\beta}_{0}+x^{T} \widehat{\beta}\right]
$$

where $\left(\widehat{\beta}_{0}, \widehat{\beta}\right)$ is solution of

$$
\begin{aligned}
\text { minimize } & \frac{1}{2}\|\beta\|_{2}^{2}+C \sum_{i=1}^{n} \varepsilon_{i} \\
\text { subject to } & y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right) \geq 1-\varepsilon_{i}, \forall i=1, \ldots, n \\
& \varepsilon_{i} \geq 0, \forall i=1, \ldots, n
\end{aligned}
$$

Inference

Inference boils down to solving the following problem :

$$
\begin{array}{ll}
\operatorname{minimize} & \frac{1}{2}\|\beta\|_{2}^{2}+C \sum_{i=1}^{n} \varepsilon_{i} \\
\text { subject to } & y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right) \geq 1-\varepsilon_{i} \\
& \varepsilon_{i} \geq 0
\end{array}
$$

Associated primal problem :

$$
\min _{\beta, \beta_{0}, \varepsilon} \max _{\alpha, \mu \geq 0} L\left(\beta, \beta_{0}, \varepsilon, \alpha, \mu\right)
$$

where
$L\left(\beta, \beta_{0}, \varepsilon, \alpha, \mu\right)=\frac{1}{2}\|\beta\|_{2}^{2}+C \sum_{i=1}^{n} \varepsilon_{i}+\sum_{i=1}^{n} \alpha_{i}\left[1-\varepsilon_{i}-y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right)\right]-\sum_{i=1}^{n} \mu_{i} \varepsilon_{i}$

Dual optimization problem

Dual problem :

$$
\max _{\alpha, \mu \geq 0} \min _{\beta, \beta_{0}, \varepsilon} L\left(\beta, \beta_{0}, \varepsilon, \alpha, \mu\right)
$$

Proposition

The SVM dual problem can be reformulated as

$$
\begin{array}{ll}
\text { maximize } & -\frac{1}{2} \alpha^{T} Q \alpha+1_{n}^{T} \alpha \\
\text { subject to } & 0 \leq \alpha \leq C \\
& \sum_{i=1}^{n} y_{i} \alpha_{i}=0
\end{array}
$$

where $Q_{i j}=y_{i} y_{j} x_{i}^{T} x_{j}$.

Sequential Minimal Optimization [Pla98]

Let B a subset of $\{1, \ldots, n\}$. One has

$$
\begin{array}{ll}
\text { maximize } & \frac{1}{2}\left[\begin{array}{c}
\alpha_{B} \\
\alpha_{\bar{B}}
\end{array}\right]\left[\begin{array}{cc}
Q_{B B} & Q_{B \bar{B}} \\
Q_{\bar{B} B} & Q_{\bar{B}}
\end{array}\right]\left[\begin{array}{c}
\alpha_{B} \\
\alpha_{\bar{B}}
\end{array}\right]+1_{|B|}^{T} \alpha_{B}+1_{|\bar{B}|}^{T} \alpha_{\bar{B}} \\
\text { subject to } & 0 \leq \alpha_{B} \leq C, 0 \leq \alpha_{\bar{B}} \leq C \\
& Y_{B}^{T} \alpha_{B}+Y_{\bar{B}}^{T} \alpha_{\bar{B}}=0
\end{array}
$$

$$
\text { maximize } \quad-\frac{1}{2} \alpha_{B}^{T} Q_{B B} \alpha_{B}+U(\bar{B})^{T} \alpha_{B}+\Delta_{1}(\bar{B})
$$

$$
\text { subject to } 0 \leq \alpha_{B} \leq C
$$

$$
Y_{B}^{T} \alpha_{B}=\Delta_{2}(\bar{B})
$$

Apply with $|B|=2$!

* Simpler optimization problem,
\star Only 2 columns of Q need to be loaded at each step,
^ "Pairwise" coordinate descent.
Note : One can search for the "best" pair at each step...

From SVM to convex risk minimization

Proposition

Assume $Y_{i}= \pm 1, \forall i$. One has

$$
\begin{aligned}
\widehat{h}_{S V M}^{\lambda}(x) & =\operatorname{sign}\left[x^{\top} \widehat{\beta}_{\lambda}+\widehat{\beta}_{0 \lambda}\right], \\
\text { with }\left(\widehat{\beta}_{0_{\lambda},}, \widehat{\beta}_{\lambda}\right) & =\underset{\beta_{0}, \beta}{\operatorname{argmin}} \sum_{i=1}^{n} \ell \ell_{S V M}\left(y_{i} x_{i}^{\top} \beta\right)+\lambda\|\beta\|_{2}^{2}
\end{aligned}
$$

where $\ell_{S V M}(t)=|1-t|_{+}$is the hinge loss.

So far...

SVM classifier

$$
\begin{aligned}
\hat{h}_{S V M}^{\lambda}(x) & =\operatorname{sign}\left[x^{T} \widehat{\beta}_{\lambda}+\widehat{\beta}_{0 \lambda}\right], \\
\text { with }\left(\widehat{\beta}_{0 \lambda}, \widehat{\beta}_{\lambda}\right) & =\arg \min _{\beta_{0}, \beta} \sum_{i=1}^{n} \ell_{S V M}\left(y_{i} x_{i}^{T} \beta\right)+\lambda\|\beta\|_{2}^{2}
\end{aligned}
$$

* Linear classifier with largest margin,
\star Linear classifier that minimizes the hinge loss.
Inference

$$
\widehat{\beta}_{\lambda}=\sum_{i=1}^{n} y_{i} \widehat{\alpha}_{i} x_{i}
$$

with $\widehat{\alpha}=\arg \max _{0 \leq \alpha \leq 1 / \lambda}\left\{-\frac{1}{2} \alpha^{T} Q \alpha+1_{n}^{T} \alpha\right\}$ u.c. $\sum_{i=1}^{n} y_{i} \alpha_{i}=0$

So far...

Restricted to $\mathscr{X}=\mathbb{R}^{p}$.
What about - text classification?

- sequence classification?
- pathway classification?
- ...

Restricted to linear classification :

Naive way : transform and proceed (1/3)

Example 1 Document classification (e.g. Reuters dataset)
Bag of words
$\star \mathscr{Y}=\{1, \ldots, M\}$, with M the number of document classes,
\star Apply transformation $\phi: \mathscr{X}=\{$ documents $\} \rightarrow \mathbb{R}^{d}$

$$
\phi(d o c)=\left(N_{w_{1}}, \ldots, N_{w_{d}}\right),
$$

where $N_{w_{j}}$ is the nb. of occurrence of word w_{j} in doc.
Characteristics
$\star d$ is large ($\approx 35 \mathrm{k}$),
$\star \phi(d o c)$ is sparse (between 93 and 1263 words per doc).
Storing the $\phi(d o c)$'s is cheap !

Naive way : transform and proceed (2/3)

Example 2 Non-linear classification (e.g. Sphere example)

Apply transformation

$$
x=\left(x_{1}, x_{2}\right)^{T} \mapsto \phi(x)=\left(x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}\right) .
$$

Characteristics
$\star x \in \mathbb{R}^{p}$ is "big", $\phi(x)$ is way bigger,
$\star \phi(x)$ is not sparse.
Storing the $\phi(x)$'s is prohibitive.

Naive way : transform and proceed (3/3)

Example 3 Structured data classification
Networks, trees

Sequences

```
5' ACTACTAGATTACTTACGGATCAGGTACTTTAGAGGCTTGCAACCA 3'
    ||||||||| |||||| |||||||||||| ||||||
5' ACTACTAGATT----ACGGATC--GTACTTTAGAGGCTAGCAACCA 3'
```

Finding $\phi: \mathscr{S} \rightarrow \mathbb{R}^{d}$ is non-trivial.

Smart way : kernel SVM

Combining CRM formulation + Inference leads to :

$$
\begin{aligned}
\widehat{h}_{S V M}(x)= & \operatorname{sign}\left[\sum_{i=1}^{n} y_{i} \widehat{\alpha}_{i}\left\langle x_{i}, x\right\rangle+c_{\widehat{\alpha}}\right] \\
\text { with } \widehat{\alpha}= & \arg \max _{0 \leq \alpha \leq 1 / \lambda}\left\{\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{i^{\prime}=1}^{n} y_{i} y_{i^{\prime}} \alpha_{i} \alpha_{i^{\prime}}\left\langle x_{i}, x_{i^{\prime}}\right\rangle\right\} \\
& \text { u.c. } \quad \sum_{i=1}^{n} y_{i} \alpha_{i}=0
\end{aligned}
$$

The x_{i} 's only appear through scalar products.
\Rightarrow Only need to compute $<\phi\left(x_{i}\right), \phi\left(x_{j}\right)>$.
\Rightarrow Only need to store the $n \times n$ Gram matrix.

Smart way : kernel SVM

Combining CRM formulation + Inference leads to :

$$
\begin{aligned}
\hat{h}_{\text {SVM }}(x)= & \operatorname{sign}\left[\sum_{i=1}^{n} y_{i} \hat{\alpha}_{i} k\left(x_{i}, x\right)+c_{\hat{\alpha}}\right], \\
\text { with } \widehat{\alpha}= & \arg \max _{0 \leq \alpha \leq 1 / \lambda}\left\{\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{i^{\prime}=1}^{n} y_{i} y_{i^{\prime}} \alpha_{i} \alpha_{i^{\prime}} k\left(x_{i}, x_{i^{\prime}}\right)\right\} \\
& \text { u.c. } \quad \sum_{i=1}^{n} y_{i} \alpha_{i}=0
\end{aligned}
$$

The x_{i} 's only appear through scalar products.
\Rightarrow Only need to compute $\left\langle\phi\left(x_{i}\right), \phi\left(x_{j}\right)\right\rangle$.
\Rightarrow Only need to store the $n \times n$ Gram matrix.
\Rightarrow Only need to compute some similarity between x_{i} and x_{j}.
Kernels is what we need!

围 Stephen Boyd and Lieven Vandenberghe.
Convex optimization.
Cambridge university press, 2004.
E Edwin KP Chong and Stanislaw H Zak.
An introduction to optimization, volume 76.
John Wiley \& Sons, 2013.
目 Luc Devroye, László Györfi, and Gábor Lugosi.
A probabilistic theory of pattern recognition, volume 31.
Springer Science \& Business Media, 2013.
© Jerome Friedman, Trevor Hastie, and Robert Tibshirani.
The elements of statistical learning, volume 1.
Springer series in statistics New York, 2001.
Christophe Giraud.
Introduction to high-dimensional statistics, volume 138.
CRC Press, 2014.

荛
Trevor Hastie, Robert Tibshirani, and Martin Wainwright.
Statistical learning with sparsity : the lasso and generalizations.
CRC press, 2015.
围 Yurii Nesterov et al.
Gradient methods for minimizing composite objective function, 2007.

E John Platt.
Sequential minimal optimization : A fast algorithm for training support vector machines.
1998.

Rhirish Krishnaj Shevade and S Sathiya Keerthi.
A simple and efficient algorithm for gene selection using sparse logistic regression.
Bioinformatics, 19(17) :2246-2253, 2003.

固 Bernhard Scholkopf and Alexander J Smola.
Learning with kernels : support vector machines, regularization, optimization, and beyond.
MIT press, 2001.
Rernhard Schölkopf, Koji Tsuda, and Jean-Philippe Vert.
Kernel methods in computational biology.
MIT press, 2004.
Ryan J Tibshirani et al.
The lasso problem and uniqueness.
Electronic Journal of Statistics, 7 :1456-1490, 2013.

