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Prerequisites

"You know nothing, John Snow."

V-Vapnik
V.Koltchinskii
Traditional wildling saying
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Basics in optimization

| - Theoretical aspects

An Introduction to Optimization [CZ13]
Convex Optimization [BV04]
(a.k.a. the convex surrogate of the Bible)



Standard optimization problem

Standard problem

min f(x)

with f: RP — R differentiable, and Q c RP.

Definition
X* is a local minimizer iff

Je/Vx e B(x*,e)nQ, f(x)=f(x")
x* is a global minimizer iff

VxeQ, f(x)=f(x")
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First order necessary condition

Admissible direction
d € RP is admissible at point x if

Jag >0/Vae [0,ap], X +ad € Q.

The directional derivative w.r.t. d is defined as

of(x) _ . fx+ad)-f(x)

_ T
od a—0 (04 =d Vf(X)

Theorem (1st order necessary condition)

If f is C' and x* is a local minimizer of f over Q. Then for all d
admissible at point x*,

dTVf(x*)=0

Note : If x* is an interior point of Q, then NC=Vf(x*) =0.
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Convex optimization problems

Convex set, convex function
Q is convex if Y(x,y,\) € Q2 x [0, 1],

AxX+(1-A)yeQ
f is convex if ¥(x,y,A) e R° x RP x [0, 1],

F(AX+(1=N)y) = Af(x)+(1-N)f(y)

Proposition

- If f is convex, any local minimizer is a global minimizer.
- If f is convex and differentiable,

() = f(x) + (VF(X).y - x) , ¥x.y
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Convex Optimization problems

Standard problem

min f(x)

with f: RP — R differentiable, and Q € RP.

Theorem

Assume f is convex and differentiable, and Q is convex. Then
x* e Q is a global minimizer iff

<(Vf(x*),y—x*)=0, Vy
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Primal optimization problem
Consider problem
minimize  f(x)

subjectto gj(x)<0, Vi=1,..m

New objective function :

Zmag)\,g,() = fo{ Z)\/g/ }
i=1 i

= L(x, A
max L(xA)

Ai,...Am : Lagrange multipliers,
L(.,.) : Lagrange function.

The initial optimization problem becomes

min max L(x,A) (22)

X A=0
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Dual optimization problem

Alternatively, consider problem

max min L(x,A) (2)

A=0 X
(2) is the dual problem associated with primal problem (22).
Note G(.) the dual function

G(A) = min L(x,\)

Proposition
For all A =0, one has

where p* = f(x*)
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Duality gap

Definition
Note d* = max G(A) the solution of (2). Then

p*—d* =0

is called the duality gap.
If p* —d* =0, then we say that strong duality holds.

Questions
- How does strong duality help ?
- When does strong duality hold ?
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Complementary slackness conditions

Proposition
If strong duality holds, then

A7gi(x*)=0, Vi=1,.,m

where \* = argmax G(A).
A=0

Also note that x* is the minimizer of L(x,A*), therefore

VL(x*,A*)=0
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Karush Kuhn Tucker conditions

Proposition

If strong duality holds, the optimal Lagrange multiplier vector \*

and the optimal solution x* of (%) satisfy

g/(X*)SO, Vi:1,...,m
Af=0, Vi=1,..m
Afgi(x*)=0, Vi=1,.,m

m
VL(x*, ") = VA(X")+ > A7 Vgi(x") =0,
i=1

(primal feasability)
(dual feasability)
(compl. slackness)

(first order condition)

Strong duality does not hold in general, but holds under mild
conditions for convex optimization problems...
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Slater’s constraint qualification

Proposition
Consider problem (22) where f,94,...,gm are convex functions.
Then strong duality holds if there exists a strictly feasible point,
satisfying

gi(x)<0, Vi=1,..m

Proof : Technical !
See [BV04]

Proposition

Assume (2) is convex. Then if (\*,x*) satisfy the KKT
conditions, strong duality holds and (\*,x* ) is optimal.
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So far...

Convex + differentiability
If f,91,....gm are differentiable and convex, then the KKT
conditions are necessary and sufficient for optimality.

Potential use

* Solve analytically the KKT conditions,

* Guidelines for the development of efficient algorithms,
* Solve the dual rather than the primal when easier!

Limitation

Some objective functions (hinge loss) and/or constraints (L1
norm) are convex but not differentiable...
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Subdifferential and subgradients

Recall that for a convex, differentiable function f

vx,y  f(y)=f(x)+({VF(x),y - X)

Definition
Let f:RP — R. wy is a subgradient of f at point x if

vx,y f(y)=f(x)+{ox,y—x)
The set
af(x)={w /Yy f(y)=1(x)+{wy-x)}
is called the subdifferential of f at point x
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A graphical illustration
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f(x)

40
|

20

At x = 2 the function is differentiable
= a unique tangent hyperplane
At x = —1 the function is not differentiable

= many "lower" hyperplanes!
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Subdifferential for the Ly norm

olx| =

IxI
00 05 10 15 20 25 30
. . . . . . .
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Subdifferential for the Ly norm

sign[x] if x#0, S
a|)(| g [] . # =< 2
[-1,1] ifx=0. B
olixlly = {weRP/ wj=sign[x;] if x;#0, w;e[-1,1] if x;=0}
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Subdifferential and subgradients

Subdifferential and convexity

* fis convex = 0f(x) is non-empty, Vx,

* f is convex and differentiable at x = 3f(x) = {Vf(x)}.
Proof : See [Gir14]

Theorem
Assume f is convex and non-differentiable. Then

X* =arg min f(x) © 0edf(x™)
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KKT conditions revisited

Consider
minimize  f(x)
subjectto gj(x)<0, Vi=1,...m
where f,94,...,gm are convex but not differentiable everywhere.

Proposition

If strong duality holds, then necessary and sufficient conditions
for primal and dual optimality of (\*,x*) are

gi(x*)<0, Vi=1,..m  (primal feasability)
A =0, Vi=1,.,m (dual feasability)
Aigi(x*)=0, Vi=1,.,m (compl. slackness)

m
0€dL(x",A*)=0f(x*)+ ) _Ajogi(x*), (first order condition)
i=1

Proof : Follows the same line as for the differentiable case. ot /87



Basics in optimization
Il - Algorithm(s)
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From theory to practice

Back to the unconstrained optimization problem

min f(x)

If f is differentiable, then Vo, d, ||d|lo=1:
f(x+ad) = f(x)+aVf(x)Td+o(a)
> [F(x+ad)— ()] |w x)Td|
o[Vl

u

IA

vi(x)

Best direction ; —————
VIl
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Gradient descent algorithm

Iterative procedure
fort=1,...T  x(D = x(O _,vf(x1)
as >0 : step size parameter

Main difficulty : choice of (ay);.

* constant stepsize,

* decreasing stepsize,

* "best" stepsize (a.k.a. steepest descent).

Both the convergence rate and the complexity depend on (ot);.
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Example : Steepest gradient descent

Algorithm
Input Xxg, €
while || v(x®)|| =,
X1 = x( _ g, v (x(D)
where o; = arggLiS f(X(t) —(XtVf(X(t))) (M

end

Properties

(1) f(xTD) < f(x(D)  (descent property),

(if) < VE(xT D), vi(x(D) > (orthogonal directions),

(i) If fis C' and strictly convex, then (x(!)) converges to x*.
Proof of (iii) : Technical ! See [CZ13].

Limitations
* Solving (1) may be non-trivial
* May be slow (see Accelerations, e.g. [N*07]) 25/87



Alternative formulation of the gradient descent

Initial formulation
Atstep t+1,  xHD = x(O) _qvf(xD)
Recasted as

2
X1 = argmin {f(xm)+<W(x<f>),x_x<t> >+2La, ||x_x<f>||2}

Interpretation
* F(xD)+ < vF(xD), x - x(D > : linearization of f around x(?,

2
* Hx—x(’)H2 : requires x(t*1) to be "not to far" from x(0,
* o : rules the tradeoff.
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Proximal gradient descent

min f(x)+ h(x)

f convex and differentiable (e.g. Lo loss),
h convex but non differentiable (e.g. Ly norm).

Linearize the differentiable part to obtain :

N — {f(x(t))+<Vf(x(l‘)),x—x(t)>+h(x) 2a,HX x( ||}

Proximal operator

prox,(0) = arg min {% ||9—Z||§ + h(z)}

In practice
1/ Compute the classical gradient step x() —a;VF(x()),
2/ project according to the proximal operator

x1) = proxg, p (X(’) - atvf(x(t)))
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Application | : projected gradient descent

If minimization is subject to constraint x e Q CRP :

x4 = arg min {f(x<t))+<w(x<f>),x_x<f>>+_|yx ol }
Xe
=argmin {f(x(’))+<vf(x(’)),x—x()>+—Hx x(’)H +Io(x )}

0if xeQ,

h / =
where la(x) {+oo otherwise.

In practice
1/ Compute the classical gradient step x(*1) = x() — q;Vf(x(1)),
2/ Project on Q

t+1
X,c()r+ ) _ Mg (X(t+1)).
Fast if projection can be easily computed...
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Application Il : projected gradient descent for lasso
regression

2
X(t+1):argmxin {f(X(t))+<Vf( ()) X(t)>+—||X X )H2+M|X”1}

In practice
1/ Compute the classical gradient step x(t*1) = x() — ;v £(x(D)),
2/ Apply soft-thresholding to x(t+1)

M)

t+1);
: x(+1);
prj

=sign

s || x(E1)i ' (x)\|

Fast, easy, and amenable to parallelization.
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Beyond first order algorithms

min f(x)
f convex and twice differentiable

Newton algorithm
x Consider 2" order Taylor expansion of f :

f(y)

(x4 < VI, = x> 43y = X)THi(x)y )+ o [ly x|}

Qu(y) +o(|ly - xI[2)

* At step t+1, use Q) as a proxy for f...
t+1)

x( = argmin Q0 (x)
* ... and get the (closed form) solution :
X(t+1) — X(t) _Hf(X(t))_1vf(X(t))

30/87



Take home message

Theoretical aspects

* Mostly interested in convex problems,

* Characterization of the solution(s),

* Guidelines to derive efficient algorithms.

Gradient descent

* Simple but quite versatile,

* Can be generalized in many ways,

* More suited to deal with large problems
than Newton method (more on this latter).

Non-addressed points

* Complexity of the different algorithms

* Rates of convergence

* Convexity vs strong convexity, smoothness, etc.

31/87



Basics in classification

Elements of Statistical Learning [FHTO01]
A Probabilistic Theory of Pattern Recognition [DGL13]
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Supervised classification

Goal

Predict the unknown label Y of an observation X.
- Ye% where % ={0,1} or & = {-1,1} (binary classif.),
- XeZ(=RP).

Supervision
Px y is unknown.

Training set : 2, = (X1, Y1),...,(Xn, Yn), where (X, Y;) Eag Pxy.

Classifier
One aims at building

>)
X 8
|
<R

!
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Some examples

Cancer prediction
Predict cancer grade (from 1 to 3) based on CNV.
*x Xi=(Xi1,.... Xjp), where

Xj = Nb of copies of chrom. segment j in ind. /.
* X =RP
* % ={1,2,3}

Credit scoring
Predict loan reimbursement based on social/economics/health
measurements.
* Xj= ()(,'1,...,)(,'3), where
Xij1 = gross salary of ind. /,
Xio €1,..., K = socio-professional category of ind. /,
Xiz =1 ifind. i already has an ongoing loan, 0 otherwise.
* %ZRX{‘],...,K}X{OJ}
* % = {"safe","risky"}

Pattern detection in images, Text categorization, ... .



Classification algorithms

Any strategy

o Jx <y - ¥

n=1

@n — //:)
defines a classification algorithm.

A few examples

- Discriminant analysis

- kNN

- Logistic regression

- Neural networks

- SVM

- CART & Random forest
- Boosting/bagging
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Performance assessment

Quality of a classifier

L) =P (A(X) # Y 12n) =E [eu (Y, A(X)) 125

where ¢ (Y, A(X)) = ley) (case{O,1})
tn (Y, h(X)) = ltyx<ol (case{-1,1}).
¢ > hard loss.
Empirical error rate

Lo(F) = 5 3t (A0, )
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Bayes classifier

Assume - Px has a density w.r.t. Lebesgue measure,
-n(x)=P(Y =1 |X=x) is defined everywhere,
and define

if n(x)>0.5

1
hg(x) = { 0 if n(x)<0.5
%(0.5) otherwise.

hg =arg mfin L(h)
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Some notations

In the following, we will consider classifiers of the form

he(x) = igxy=0y  OF  he(x) =sign[f(x)]

Example 1 : Bayes classifier

. 1
hg(x) = /{n(x)—;>0} or hg(x)=sign|n(x)- 5]
Example 2 : linear classifier

he(X) = lix7g50y  OF hﬁ(x):sign[xTﬁ]
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Overview

9 Logistic regression
@ Classical logistic regression
@ Regularized logistic regression
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Logistic regression

Statistical learning with sparsity [HTW15]
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From LM to GLM

Linear (regression) model
Yi=XxP+e, &= N (o, 02), iid. o YiXi=x—N (x,-ﬁ, 62), ind.
{ YilXi=Xj — A (Hx,,crz)
Kx; = X,'Tﬁ
Generalized linear model
YilX; = X — B (px,), ind.
{ px=g" (XiTﬁ)

—— | is the "logit" link function.

where g(t) =log 3

Note : Only Y|x is considered.
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Maximum likelihood inference

Yi,...,, Yn independent cond. to xy,..., Xp
Yilxi— B (px,), Vi=1,..,n

:]:

= Z(p)= |0g{ pl(1 —Pi)1_y"}

1l
-

i

XT(y-p),
-XTDX,

vZ(B)
H2(p)

where p=(ps,...,Pn), D= diag(pi(1-p;)).-

Note : No closed form solution for p but £(B) is concave.
= Numeric optimization via Newton algorithm.
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Newton method for LR

Main steps
* 24 order approximation

Zy(8) = 2@O)+[v£ (D)) (5-0)+ 5 (5-59) (H(B) (- B

* Define ~
pi+?) = argmax Z1)(B)

Proposition

i) B =B 4 [XTD(t)X] T(y-pw),
ii) (1) js also solution of

. 2
argmin || XB~z|[5s

where z; = Xp(! +Dt) (¥ =p()) and p) (P/(Bm)) .
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Logistic regression classifier

The LR classifier is a linear classifier defined as

hLp(x) = I{XTB>O} where P=arg mgx £B)
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Separability : definition

A training set is separable if there exists p such that

Vi/yi=1, xiTﬁ>0

Vi/y;=0, xiTﬁ <0
Note 1 : < there exists a linear classifier h such that L,(h) =0,
Note 2 : discrete case : can be relaxed to a single cell.
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Separability : consequence

Proposition
If the training set is separable, then

"%@
and |||

[
=

+00.

= Even in the "small dimension" setting, regularization may be
required.
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From MLE to convex risk minimization

Assume Y;=+1,Vi. One has

hip(x) = sign|x|,

n
with p = argmﬁin ZELR(y,-XiTB)
i=1

where £, (t) =log[1+e7!] is the logistic loss.

©
— Hard
—— Logistic

w4

<

- —
o4 g
T T T T
" a
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Regularized logistic regression

Definition
For any A > 0 the regularized LR classifier is defined as

sign [XTB)\] )

n
with By = argmin ZeLR(y,-x,Ts)+AR(ﬁ)

i=1

>
vk
=y
o
~—~

>~
N

1

Ridge LR : A(B) =I5
B, is always defined and unique.

Lasso LR : R(p) = |pl|
B is always defined and unique (under mild conditions, [T*13]).
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Inference for regularized logistic regression

Recall in the low dimensional case

6(t+1)=argmﬁin ||X[3—Z(t)||%(_t; )

where z() = XB() + D) (v~ p(yy) and pyy) = (p"(g(t)))

i.

Solving regularized LR...
... is replaced with solving

B+ =argrmin {||Xﬁ—z||20(-t; +AR(5)} (1)

hence boils down to regularized regression (at each step) !

Ridge LR : Solution of (1) has a closed form expression.
Lasso LR : use proximal/coordinate gradient descent.
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Exact optimization for Lasso LR [SK03]

Solve

B.Bo =argfﬁné2 {;fLR(YIf(Xi))+)\||ﬁ||1 } where f(x) = x"p+po

First order conditions
Lead to the definition of the violation criterion :

Atpointp, V= |+ Fl if B; <0
max(Fj—)\, -Fi-X 0) if pi=0
where
F n e yif(x;)
T ,221 15 eyion Vi%i

Note : At point §, V;=0 V.
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Solving for a single value of A

Require: (x1,¥1),....(Xn,¥n), A
Initialize B to Binit; Set o ={j/ p; # 0}
while There exists j¢ o/ s.t. V;#0 do
Find jmax = argmax V;
Jed

Update of — o/ U {jmax}
while there exists je o« s.t. V;#0 do
Find jnax = argmax V;
Jedd

Optimize L(B) w.r.t. B,
Recompute V}, je of
end while
end while
return B
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Solving for a single value of A

Require: (x1,¥1),....(Xn,¥n), A
Initialize B to Bt ; Set o = {j/ p; # 0}
while There exists j¢ o/ s.t. V;#0 do
Find jmax = argmax V;
jed

Update of — o/ U {jmax}
while there exists je o« s.t. V;#0 do
Find jnax = argmax V;
Jedd

Optimize L(B) w.r.t. B
Recompute V}, je of
end while
end while
return B

* Sub-problem is str. convex = L(p) decreases at each step,
* Only a sparse vector to store.
* Pinit =0 seems perfect.
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Solving for a set of A values

Require: (x1,¥1),...(Xn,¥n), A1 >...> A
for k=1,....m do
Initialize B to -1 ; Set o = {j/ p}* # 0}
while There exists j¢ «f s.t. V;#0 do
Find jmax = argmax V;
Jed

Update of — of U {jmax}
while there exists je o s.t. V;#0 do
Find jmax = argmax V;
Jjed

Optimize L(pM) w.r.t. ﬁfmk
Recompute Vj, je of
end while
end while
end for
return pM, .., pAm
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Take home message

Logistic regression

* Belongs to the GLM family,

* |s a linear classifier,

* |s also an ECRM minimizer.

* May require regularization even in small dimension

Inference

* Can be performed easily,

* But cannot be performed easily !

= Pay attention to which package you use...
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Overview

e Support Vector Machines
@ Linear SVM
@ Kernel SVM
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Support Vector Machines

Learning With Kernels [SS01]
Kernels Methods In Computational Biology [STV04]
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Back to basics
Bayes classifier
hg =arg mhin L(h)

- Requires Py v,
- ¥ is... large !

Find a linear classifier

h;=arg min Ly(hy), where f(x) = xTB+Po
f

- Not unique (in two ways),
- Still NP hard to find in practice...

Find the optimal linear classifier

h; = sign [7(x)] where f(x)=x"B+po and B,po=arg g%n Crit(B,Bo)
)P0
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Separating hyperplanes and margin

Consider a linearly separable dataset

Separating hyperplane : Any A: {x7p +Bg =0} s.t.
yi(xB+Bo) >0.

Margin Smallest distance between a point and A.
57/87



Maximum margin hyperplane

If the dataset is linearly separable, choose (Bg,p) such that
3 = {XTB"'BO = 0}
has maximum margin.

(90»5)=argg;'g 5”5”2 u.c. (XiTﬁ+ﬁo) >1, Vi

Note : Constraints account for - correct classification
- maximum margin
- A representation identification.
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Non separable case

If the dataset is not linearly separable, relax constraints as
follows

Vi (X,Tﬁ+ﬁo) >1-¢;, Vi
where ¢; = 0, and penalize for the extend of margin violation.

Definition (Soft Margin SVM classifier)

hsym = sign [Bo +X TB]
where (Bo,P) is solution of
L 1 2 L
minimize 5 IBl|z+C ) e
i=

subjectto y; (X,Tﬁ+ﬁo) >1-¢;, Vi=1,..,n
g=0,Vi=1,..,n
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Inference

Inference boils down to solving the following problem :
T 1 2 n
minimize 3 Bl +C e
i=1

subjectto  y;(x/p+Po) = 1-¢;
€i=0

Associated primal problem :

min max L(f,Bo, €,
goin - max (B,Bo )

where
1 2 L n T <
L(ﬁ,ﬁo,e,a,u)=§||ﬁ||2+CZ€i+ZO<i[1 —€i—y/'(X,- ﬁ+ﬁo)] =) uig
i = i=1
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Dual optimization problem

Dual problem :

max min L(B,Bg,€,q,
max. min (B,Po,€, 0, 1)

The SVM dual problem can be reformulated as
maximize —%aTQa +1]«

subjectto 0=<a=<C
Yol yiai=0

- T
where Qj = y;y;x;' X;.
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Sequential Minimal Optimization [Pla98]

Let B a subset of {1,...,n}. One has

1[ ag Qs Q. ag
i BB T T
maximize — +1/h0g+1-«
Q Q B“B B
2] ag BB “BB Rz I8l

subjectto 0=<ag=<C, 0<ag=C

T T _
YBO(B+ YE(XE_O

maximize - %O‘,EQBBO(B +U(B)Tag+A1(B)
subjectto O0=<ag=C
Y2 ag = An(B)
Apply with |B| =2
* Simpler optimization problem,

* Only 2 columns of Q need to be loaded at each step,
* "Pairwise" coordinate descent.

Note : One can search for the "best" pair at each step... 62/87



From SVM to convex risk minimization

Assume Y;=+1,Vi. One has
Wév;\//(x)

with  (Bor,B2)

sign [X TBa+ BOA] )

arg gug Z Csym (y,[[] XiTﬁJfBO]) +)‘||ﬁ||§
b i

where Ly (t) =1 -t is the hinge loss.

©
— Hard

— Logistic
o~ —— Hinge

<

| N

B~ 63/87




So far...

SVM classifier

Psvm(x) sign [XT6A+BO)\],

R R n
with  (BorBr) = argmin 3 Csum (i [x7B-+Bo|) + AlIBI;
Pi=1

* Linear classifier with largest margin,
* Linear classifier that minimizes the hinge loss.

Inference

~

n
Br = X YidX
i=1

. 1
with a = argoggi(/)\ {—éaTQaH;a} u.c. Zy,-a,-:O
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So far...

Restricted to & = RP.
What about - text classification ?

- sequence classification ?
- pathway classification ?

Restricted to linear classification :

x A5
X x X
« X
B X
i
x x- N
/ g X
/[ O 5 ) 1
|
\\ § ]
X N )/
x N7 7%
_ -
x e X
X
x X x X
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Naive way : transform and proceed (1/3)

Example 1 Document classification (e.g. Reuters dataset)

Bag of words
* % ={1,.., M}, with M the number of document classes,
* Apply transformation ¢ : 2 = {documents} — R¢

(‘p(doc) = (NW1 yeeoy NWd) y
where ij is the nb. of occurrence of word w; in doc.

Characteristics
* d is large (= 35k),
* ¢(doc) is sparse (between 93 and 1263 words per doc).

Storing the ¢(doc)’s is cheap'!
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Naive way : transform and proceed (2/3)

Example 2 Non-linear classification (e.g. Sphere example)

Apply transformation
x=(x1,%2) = &(x) = (6F, x5, V2x1 xp).
Characteristics

* x € RP is "big", ¢(x) is way bigger,
* ¢(x) is not sparse.

Storing the ¢(x)’s is prohibitive.
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Naive way : transform and proceed (3/3)

Example 3 Structured data classification

Networks, trees

Sequences

5' ACTACTAGATTACTTACGGATCAGGTACTTTAGAGGCTTGCAACCA 3'

ARNNARNARY FEVEEEE TEEPEERTEEEEEr T

5' ACTACTAGATT----ACGGATC--GTACTTTAGAGGCTAGCAACCA 3'

Finding ¢ :.% — R? is non-trivial.
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Smart way : kernel SVM
Combining CRM formulation + Inference leads to :

sign

hsym(x)

’

n
)" Yi®i(Xj, X) + Ca
i=1

n 1.0 N
a a oj— — Vi oGO (X, Xin
rgOﬁrgsf/)\ {/; ! 2;/;}’/}’/ i (X; ,)}

with «

n
u.c. Z yiaj = 0
i=1

The x;’s only appear through scalar products.
= Only need to compute < ¢(x;), b(x;) >.
= Only need to store the nx n Gram matrix.
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Smart way : kernel SVM

Combining CRM formulation + Inference leads to :

n
hsym(x) = sign |} yidik (X, x)+cal,
i=1
n n n
with @ = arg max {Za,- ZZ yiyirajagk x,,x,,)}

0<0(<1/)\ i=1 =1/

u.c. Z yiaj = 0
The x;’s only appear through scalar products.
= Only need to compute < ¢(x;), b(x;) >

= Only need to store the nx n Gram matrix.
= Only need to compute some similarity between x; and ;.

Kernels is what we need !
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Kernels and RKHS

A kernel is a function k : & x & — R satisfying

VX1 , X2, k(X1,X2) = k(Xg,X1 ),
YneN, Y(Xq,..,Xy) =€ X", (k(x,-,xj)),.jzo

Hilbert space representation of a kernel

Proposition

For any kernel k on & , there exists a Hilbert space & c R* and
a mapping ¢ : & — F such that

vx,x' €, k(x,x')={(dp(X),d(X")) 5

(Reproducing property)
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Examples of kernels

Polynomial kernels
Z=RP, k(x,y)=((x,y)+1)" (meN).

A string kernel

Wi =wjo..owp, wy e :string of size n; in alphabet <.
Fg=1{8/s10..08q, sj€ ot} : set of strings with size g
Ns(W;) : nb of occurrence of string s in W;

k(W, Wj) ZNS Ns(W))

Note : k(W;, W;) can be computed in time n; + n;.

More kernels

_ _y\2
Gaussian (RBF) kemnel : 2 =R, k(x, ) = exp| 2 X —X) )

202
Kernels for structured data : see [STV04] for many examples.
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Polynomial kernel
I ({xyy+ 1) =Y (L) (x,y) = prove that {x,y) is a kernel.
j=0

2/ Define ¢(x) = ((Ps(X))ses, such that

Pps(x) = (xf‘ x...xx;"), se§;= {S1,...,Sp€Np/ZSu=j}
u

2/ Define
(oo (7 )

(o( y)= Z Ps(X)bs(y) g
g (X1y1)% % oo x (XpYp)*)

seS;

j .
(;Xi}’i) =(x,yY

Note : Give access to non linear classification without

additional computational cost.
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Kernel trick

Proposition (Representer theorem ([STV04]))

Let & be a set endowed with kernel k, and ¥ : R" — R. Then
any solution of problem

~ _ 5
f=argr;r€1]gr€1 W (f(x1),... f(Xn)) + A || f]|5

has the form
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Kernel trick applied to SVM

Let k be a kernel on & , and & its associated RKHS. Consider

the SVM classifier

E)é‘VM(X)

where 7
Then 7

with &

sign [?"(x)]

n
- {zeSVM<y,-f<x,->>+A||f||;}-
7 |i=t

n 1 n n
arg max {Z a-3 Z Za,a/k(x,-,xj)}.

= Same computational efficiency as in the linear case...
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Overview

@ Theoretical guarantees
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Theoretical guarantees

Introduction to high-dimensional statistics [Gir14]
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Connection with the Bayes classifier

Let ¢ be a convex loss function. Define

hy-(x)
where f*

sign[f*(x)]
arg mfin E[e(Yf(X))]

hg is "optimal" in the sense of loss ¢.

How does hy- compare with hg ?

Proposition
Assume that ¢ satisfies €'(0) <0. Then

77187



ECRM on a ball

Consider the classifier based on the Empirical Convex Risk
Minimizer (ECRM) on a ball of & :

~

h(x) =sign [?(x)]

where

~)
Il

n
argmm {ZE yif(xi) +)\||f||9}
i=1

arg min {Lh(n}

Z : RKHS associated with kernel k,
Zn : Centered ball of radius R in &.

78/87



Upper bound for the risk

Theorem ([Gir14])

Let R> 0, and consider a loss function ¢ such that
- £ is positive, non-increasing and convex,

- £ is a-Lipschitz on [-R, R,

- £ dominates the hard loss on R.

Let h the classifier previously defined, with kernel k satisfying
k(x,x)<1,vx.

With probability 1 — e~t, one has

where C is a constant.
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Step 1 : connect L(h) and L (7)

~

First note that L(h)

IN A
~ ~
5~ ~
=~
- =
+

(2]

c

o

Theorem (McDiarmid)

If g:R" — R satisfies |g(z1,..., Zj, - Zn) — (21, -+» Zjt, .y Zn)| < b,

. . 20
then P(g(Zy)>E[g(Z])]+u)<exp (—@)

Applied to g ((X;, Y))T) = supz, | L5 () - L()|, one gets

[t
+ %C

sup
IR

L(h) < Lf,(?)HE

L (f)= L)

with prob. 1-e~t and C=1¢(-R) - ¢(R)|
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Step 2 : symmetrization and Rademacher complexity
Let {(X{,Y]),... (X}, Y},)} be a set of independent copies

E |sup Lg(f)—Lf(f)” = E|sup|Lb(N-F[L5(7)]]
FR IR
< [E'E|sup L%(f)—Lg(f)|]
IR
< 1[E[E sup Zf (Yif(Xp)) - Z(Y,-/f(X,'/))H
IR |i=1

Let o4,...,0, uniform on {-1,1} and independent. Then

E|sup Lf,(f)—Lf(f)|] s%{E’[E Eo |sup Zo, E(Y;«f(Xw)))‘”
FR R |i=1
< 2|k, |sup zo,-e(y,-f()c))‘”
n IR |i=1
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Step 3 : get rid of loss function and labels

Theorem (Contraction principle)

- Q : bounded subset of R"
-v:R— R, a-Lipschitz, v(0) =0

Then Eg |sup < 20k,

zeQ

sup
zeQ

n
ZGiZi

i=1

i o;v(Z;)

i=1

Application : v =¢, z; = y;f(x;). Note that |f(x)| < R...

2 4 n
—Eq [sup ZGQ if(xi)|| = —Eq |sup|d. oiyif(x;)
qu i=1 g,‘? i=1
4 n
< —(x[Eg sup ZG,‘f(X,‘)
n Zr |i=1
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Step 4 : bound the expectation over o’s

Getrid of f: Vfe Fp,

)| = éo,-(f,k(x,-,-»g

= ‘<f,£0’,’k(X,‘,-)>
i=1 T

[ 2k<>

IA

F
n

Y oik(Xi,-)

i=1

R

I\

F

n
Y oik(x;,-)
iz

|
i

RJ 3 Zn: Eo [oi07] K(Xj, Xi)< RV
=

i=1i'=1

= ks RE

I\

sup
IR

3 o,-f(x,-)H

i=1 F

M=

n
Oidi/k(X,',X,'/)
=1

I/

Il
ry

IA
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Conclusion

A unified framework...
Two algorithms, one strategy : ECRM. Allows for
- the derivation of theoretical guarantees
- common optimization strategies
- application of classical penalties (group/fused lasso, EN,...)

... a very general kernel trick...
- allows for non-linear classification
- makes SVM and LR amenable to structured data
- useful in other application (KPCA, kClustering, KCCA,...)

... and still some specificities
- convex vs strictly convex (uniqueness of the solution, ...)
- regularization paths for the ps

What's next? HD data vs big data
- primal vs dual

- stochastic gradient descent
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