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Prerequisites

"You know nothing, John Snow."

V.Vapnik
V.Koltchinskii

Traditional wildling saying
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Basics in optimization
I - Theoretical aspects

An Introduction to Optimization [CZ13]
Convex Optimization [BV04]

(a.k.a. the convex surrogate of the Bible)
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Standard optimization problem

Standard problem

min
x∈Ω

f (x)

with f :Rp →R differentiable, and Ω⊂Rp.

Definition
x∗ is a local minimizer iff

∃ε/∀x ∈B (x∗,ε)∩Ω, f (x)≥ f (x∗)

x∗ is a global minimizer iff

∀x ∈Ω, f (x)≥ f (x∗)
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First order necessary condition

Admissible direction
d ∈Rp is admissible at point x if

∃α0 > 0/∀α ∈ [0,α0] ,x +αd ∈Ω.

The directional derivative w.r.t. d is defined as

∂f (x)
∂d

= lim
α→0

f (x +αd)− f (x)
α

= dT∇f (x)

Theorem (1st order necessary condition)

If f is C1 and x∗ is a local minimizer of f over Ω. Then for all d
admissible at point x∗,

dT∇f (x∗)≥ 0

Note : If x∗ is an interior point of Ω, then NC⇒∇f (x∗)= 0.
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Convex optimization problems

Convex set, convex function
Ω is convex if ∀(x ,y ,λ) ∈Ω2 × [0,1],

λx + (1−λ)y ∈Ω

f is convex if ∀(x ,y ,λ) ∈Rp ×Rp × [0,1],

f (λx + (1−λ)y)≤ λf (x)+ (1−λ)f (y)

Proposition
- If f is convex, any local minimizer is a global minimizer.
- If f is convex and differentiable,

f (y)≥ f (x)+〈∇f (x),y −x
〉

, ∀x ,y
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Convex Optimization problems

Standard problem

min
x∈Ω

f (x)

with f :Rp →R differentiable, and Ω ∈Rp.

Theorem
Assume f is convex and differentiable, and Ω is convex. Then
x∗ ∈Ω is a global minimizer iff

< 〈∇f (x∗),y −x∗〉≥ 0, ∀y
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Primal optimization problem

Consider problem

minimize f (x)
subject to gi(x)≤ 0, ∀i = 1, ...,m

New objective function :

f (x)+
m∑

i=1
max
λi≥0

λigi(x) = max
λº0

{
f (x)+

m∑
i=1

λigi(x)

}
= max

λº0
L(x ,λ)

λ1, ...,λm : Lagrange multipliers,
L(., .) : Lagrange function.

The initial optimization problem becomes

min
x

max
λº0

L(x ,λ) (P )
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Dual optimization problem

Alternatively, consider problem

max
λº0

min
x

L(x ,λ) (D)

(D) is the dual problem associated with primal problem (P ).

Note G(.) the dual function

G(λ)=min
x

L(x ,λ)

Proposition
For all λ≥ 0, one has

G(λ)≤ p∗

where p∗ = f (x∗)
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Duality gap

Definition
Note d∗ =max

λº0
G(λ) the solution of (D). Then

p∗−d∗ ≥ 0

is called the duality gap.
If p∗−d∗ = 0, then we say that strong duality holds.

Questions
- How does strong duality help?
- When does strong duality hold?
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Complementary slackness conditions

Proposition
If strong duality holds, then

λ∗i gi(x∗)= 0, ∀i = 1, ...,m

where λ∗ = argmax
λº0

G(λ).

Also note that x∗ is the minimizer of L(x ,λ∗), therefore

∇L(x∗,λ∗)= 0
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Karush Kuhn Tucker conditions

Proposition
If strong duality holds, the optimal Lagrange multiplier vector λ∗

and the optimal solution x∗ of (P ) satisfy

gi(x∗)≤ 0, ∀i = 1, ...,m (primal feasability)
λ∗i ≥ 0, ∀i = 1, ...,m (dual feasability)

λ∗i gi(x∗)= 0, ∀i = 1, ...,m (compl. slackness)

∇L(x∗,λ∗)=∇f (x∗)+
m∑

i=1
λ∗i ∇gi(x∗)= 0, (first order condition)

Strong duality does not hold in general, but holds under mild
conditions for convex optimization problems...
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Slater’s constraint qualification

Proposition

Consider problem (P ) where f ,g1, ...,gm are convex functions.
Then strong duality holds if there exists a strictly feasible point,
satisfying

gi(x)< 0, ∀i = 1, ...,m

Proof : Technical !
See [BV04]

Proposition

Assume (P ) is convex. Then if (λ∗,x∗) satisfy the KKT
conditions, strong duality holds and (λ∗,x∗) is optimal.
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So far...

Convex + differentiability
If f ,g1, ...,gm are differentiable and convex, then the KKT
conditions are necessary and sufficient for optimality.

Potential use
? Solve analytically the KKT conditions,
? Guidelines for the development of efficient algorithms,
? Solve the dual rather than the primal when easier !

Limitation
Some objective functions (hinge loss) and/or constraints (L1
norm) are convex but not differentiable...
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Subdifferential and subgradients

Recall that for a convex, differentiable function f

∀x ,y f (y)≥ f (x)+〈∇f (x),y −x
〉

Definition
Let f :Rp →R. ωx is a subgradient of f at point x if

∀x ,y f (y)≥ f (x)+〈
ωx ,y −x

〉
The set

∂f (x)= {
ω / ∀y f (y)≥ f (x)+〈

ω,y −x
〉}

is called the subdifferential of f at point x
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A graphical illustration
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At x = 2 the function is differentiable
⇒ a unique tangent hyperplane

At x =−1 the function is not differentiable
⇒ many "lower" hyperplanes !
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Subdifferential for the L1 norm

∂ |x | =

{
sign [x ] if x 6= 0,

[−1,1] if x = 0.
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∂ ||x ||1 = {
ω ∈Rp/ ωj = sign

[
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]
if xj 6= 0, ωj ∈ [−1,1] if xj = 0

}
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Subdifferential and subgradients

Subdifferential and convexity
? f is convex ⇒ ∂f (x) is non-empty, ∀x ,
? f is convex and differentiable at x ⇒ ∂f (x)= {∇f (x)

}
.

Proof : See [Gir14]

Theorem
Assume f is convex and non-differentiable. Then

x∗ = argmin
x

f (x)⇔ 0 ∈ ∂f (x∗)
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KKT conditions revisited

Consider
minimize f (x)

subject to gi(x)≤ 0, ∀i = 1, ...,m

where f ,g1, ...,gm are convex but not differentiable everywhere.

Proposition
If strong duality holds, then necessary and sufficient conditions
for primal and dual optimality of (λ∗,x∗) are

gi(x∗)≤ 0, ∀i = 1, ...,m (primal feasability)
λ∗i ≥ 0, ∀i = 1, ...,m (dual feasability)

λ∗i gi(x∗)= 0, ∀i = 1, ...,m (compl. slackness)

0 ∈ ∂L(x∗,λ∗)= ∂f (x∗)+
m∑

i=1
λ∗i ∂gi(x∗), (first order condition)

Proof : Follows the same line as for the differentiable case. 21 / 87



Basics in optimization
II - Algorithm(s)
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From theory to practice

Back to the unconstrained optimization problem

min
x

f (x)

If f is differentiable, then ∀α,d , ||d ||2 = 1 :

f (x +αd) = f (x)+α∇f (x)T d +o(α)

⇒ ∣∣f (x +αd)− f (x)
∣∣ ≈ α

∣∣∣∇f (x)T d
∣∣∣

≤ α
∣∣∣∣∇f (x)

∣∣∣∣
2

Best direction : − ∇f (x)∣∣∣∣∇f (x)
∣∣∣∣

2
!
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Gradient descent algorithm

Iterative procedure

for t = 1, ...,T x (t+1) = x (t)−αt∇f (x (t))

αt > 0 : step size parameter

Main difficulty : choice of (αt)t .
? constant stepsize,
? decreasing stepsize,
? "best" stepsize (a.k.a. steepest descent).

Both the convergence rate and the complexity depend on (αt)t .
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Example : Steepest gradient descent

Algorithm

Input x0, ε

while
∣∣∣∣∣∣∇f (x (t))

∣∣∣∣∣∣≥ ε,

x (t+1) = x (t)−αt∇f (x (t))

where αt = argmin
α>0

f
(
x (t)−αt∇f (x (t))

)
(1)

end

Properties
(i) f (x (t+1))≤ f (x (t)) (descent property),
(ii) <∇f (x (t+1)),∇f (x (t))> (orthogonal directions),
(iii) If f is C1 and strictly convex, then (x (t)) converges to x∗.
Proof of (iii) : Technical ! See [CZ13].

Limitations
? Solving (1) may be non-trivial
? May be slow (see Accelerations, e.g. [N+07]) 25 / 87



Alternative formulation of the gradient descent

Initial formulation

At step t +1, x (t+1) = x (t)−αt∇f (x (t))

Recasted as

x (t+1) = argmin
x

{
f (x (t))+<∇f (x (t)),x −x (t) >+ 1

2αt

∣∣∣∣∣∣x −x (t)
∣∣∣∣∣∣2

2

}

Interpretation
? f (x (t))+<∇f (x (t)),x −x (t) > : linearization of f around x (t),

?
∣∣∣∣∣∣x −x (t)

∣∣∣∣∣∣2
2

: requires x (t+1) to be "not to far" from x (t),
? αt : rules the tradeoff.
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Proximal gradient descent

min
x

f (x)+h(x)

f convex and differentiable (e.g. L2 loss),
h convex but non differentiable (e.g. L1 norm).

Linearize the differentiable part to obtain :

x (t+1) = argmin
x

{
f (x (t))+

〈
∇f (x (t)),x −x (t)

〉
+h(x)+ 1

2αt

∣∣∣∣∣∣x −x (t)
∣∣∣∣∣∣2

2

}

Proximal operator

proxh(θ)= argmin
z

{
1
2
||θ−z||22 +h(z)

}
In practice
1/ Compute the classical gradient step x (t)−αt∇f (x (t)),
2/ project according to the proximal operator

x (t+1) = proxαt h

(
x (t)−αt∇f (x (t))

)
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Application I : projected gradient descent

If minimization is subject to constraint x ∈Ω(Rp :

x (t+1)=argmin
x∈Ω

{
f (x (t))+<∇f (x (t)),x −x (t) >+ 1

2αt

∣∣∣∣∣∣x −x (t)
∣∣∣∣∣∣2

2

}
=argmin

x

{
f (x (t))+<∇f (x (t)),x −x (t) >+ 1

2αt

∣∣∣∣∣∣x −x (t)
∣∣∣∣∣∣2

2
+ IΩ(x)

}

where IΩ(x)=
{

0 if x ∈Ω,

+∞ otherwise.

In practice
1/ Compute the classical gradient step x (t+1) = x (t)−αt∇f (x (t)),
2/ Project on Ω

x (t+1)
pr =ΠΩ

(
x (t+1)

)
.

Fast if projection can be easily computed...
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Application II : projected gradient descent for lasso
regression

x (t+1) = argmin
x

{
f (x (t))+<∇f (x (t)),x −x (t) >+ 1

2αt

∣∣∣∣∣∣x −x (t)
∣∣∣∣∣∣2

2
+λ ||x ||1

}

In practice
1/ Compute the classical gradient step x (t+1) = x (t)−αt∇f (x (t)),
2/ Apply soft-thresholding to x (t+1)

x (t+1)
pr ,j = sign

[
x (t+1)j

]
×

∣∣∣∣∣∣x (t+1)j
∣∣∣−αtλ

∣∣∣+ .

Fast, easy, and amenable to parallelization.
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Beyond first order algorithms

min
x

f (x)

f convex and twice differentiable

Newton algorithm
? Consider 2nd order Taylor expansion of f :

f (y) = f (x)+<∇f (x),y −x >+1
2
(y −x)T Hf (x)(y −x)+o

(∣∣∣∣y −x
∣∣∣∣2

2

)
= Qx (y)+o

(∣∣∣∣y −x
∣∣∣∣2

2

)
? At step t +1, use Qx (t) as a proxy for f ...

x (t+1) = argmin
x

Qx (t)(x)

? ... and get the (closed form) solution :

x (t+1) = x (t)−Hf (x (t))−1∇f (x (t))
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Take home message

Theoretical aspects
? Mostly interested in convex problems,
? Characterization of the solution(s),
? Guidelines to derive efficient algorithms.

Gradient descent
? Simple but quite versatile,
? Can be generalized in many ways,
? More suited to deal with large problems

than Newton method (more on this latter).

Non-addressed points
? Complexity of the different algorithms
? Rates of convergence
? Convexity vs strong convexity, smoothness, etc.
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Basics in classification

Elements of Statistical Learning [FHT01]
A Probabilistic Theory of Pattern Recognition [DGL13]
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Supervised classification

Goal
Predict the unknown label Y of an observation X .

- Y ∈Y where Y = {
0,1

}
or Y = {−1,1

}
(binary classif.),

- X ∈X (=Rp).

Supervision
PX ,Y is unknown.

Training set : Dn = (X1,Y1), ...,(Xn,Yn), where (Xi ,Yi)
i .i .d .
,→ PX ,Y .

Classifier
One aims at building

ĥ :X → Y

X 7→ Ŷ
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Some examples

Cancer prediction
Predict cancer grade (from 1 to 3) based on CNV.
? Xi = (Xi1, ...,Xip), where

Xij = Nb of copies of chrom. segment j in ind. i .
? X =Rp

? Y = {
1,2,3

}
Credit scoring
Predict loan reimbursement based on social/economics/health
measurements.
? Xi = (Xi1, ...,Xi3), where

Xi1 = gross salary of ind. i ,
Xi2 ∈ 1, ...,K = socio-professional category of ind. i ,
Xi3 = 1 if ind. i already has an ongoing loan, 0 otherwise.

? X =R×{
1, ...,K

}×{
0,1

}
? Y = {

"safe","risky"
}

Pattern detection in images, Text categorization, ... 34 / 87



Classification algorithms

Any strategy

A :
⋃
n≥1

{X ×Y }n → Y X

Dn 7→ ĥ

defines a classification algorithm.

A few examples
- Discriminant analysis
- kNN
- Logistic regression
- Neural networks
- SVM
- CART & Random forest
- Boosting/bagging
- ...
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Performance assessment

Quality of a classifier

L(ĥ)=P
(
ĥ(X ) 6=Y |Dn

)
= E

[
`HL

(
Y , ĥ(X )

)
|Dn

]

where `HL

(
Y , ĥ(X )

)
= I{

ĥ(X ) 6=Y
} (case

{
0,1

}
),

`HL

(
Y , ĥ(X )

)
= I{

Yĥ(X )<0
} (case

{−1,1
}
).

`HL : hard loss.

Empirical error rate

Ln(ĥ)= 1
n

n∑
i=1

`HL

(
ĥ(Xi),Yi

)
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Bayes classifier

Assume - PX has a density w.r.t. Lebesgue measure,
- η(x)=P(Y = 1 |X = x ) is defined everywhere,

and define

hB(x)=


1 if η(x)> 0.5
0 if η(x)< 0.5
B(0.5) otherwise.

Proposition

hB = argmin
h

L(h)
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Some notations

In the following, we will consider classifiers of the form

hf (x)= I{f (x)>0} or hf (x)= sign [f (x)]

Example 1 : Bayes classifier

hB(x)= I{
η(x)− 1

2>0
} or hB(x)= sign

[
η(x)− 1

2

]
Example 2 : linear classifier

hβ(x)= I{xT β>0} or hβ(x)= sign
[
xTβ

]
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Logistic regression

Statistical learning with sparsity [HTW15]
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From LM to GLM

Linear (regression) model

Yi = xiβ+εi , εi ,→N
(
0,σ2

)
, i .i .d . ⇔ Yi |Xi = xi ,→N

(
xiβ,σ2

)
, ind .

⇔
Yi |Xi = xi ,→N

(
µxi ,σ

2
)

µxi = xT
i β

Generalized linear modelYi |Xi = xi ,→B (pxi ) , ind .

pxi = g−1
(
xi

Tβ
)

where g(t)= log

[
t

1− t

]
is the "logit" link function.

Note : Only Y |x is considered.
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Maximum likelihood inference

Y1, ..., ,Yn independent cond. to x1, ...,xn,
Yi |xi ,→B (pxi ) , ∀i = 1, ...,n

⇒L (β)= log

{
n∏

i=1
pyi

i (1−pi)
1−yi

}

Proposition

∇L (β) = X T (y −p),

HL (β) = −X T DX ,

where p = (p1, ...,pn), D = diag(pi(1−pi)).

Note : No closed form solution for β̂ but L (β) is concave.
⇒ Numeric optimization via Newton algorithm.
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Newton method for LR

Main steps
? 2nd order approximation

L̃(t)(β)=L (β̂(t))+
[
∇L (β̂(t))

]T (
β− β̂(t)

)
+1

2

(
β− β̂(t)

)T
[HL (β)]

(
β− β̂(t)

)
? Define

β̂(t+1) = argmax
β

L̃(t)(β)

Proposition

i) β̂(t+1) = β̂(t)+
[
X T D(t)X

]−1
X T (y −p(t)),

ii) β̂(t+1) is also solution of

argmin
β

∣∣∣∣Xβ−z(t)
∣∣∣∣2

D−1
(t)

,

where z(t) =X β̂(t)+D−1
(t) (y −p(t)) and p(t) =

(
pi(β̂

(t))
)
1≤i≤n

.
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Logistic regression classifier

Proposition
The LR classifier is a linear classifier defined as

ĥLR(x)= I{xT β̂>0
} where β̂= argmax

β
L (β)
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Separability : definition
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Definition
A training set is separable if there exists β such that

∀i/yi = 1, xT
i β> 0

∀i/yi = 0, xT
i β< 0

Note 1 : ⇔ there exists a linear classifier h such that Ln(h)= 0,
Note 2 : discrete case : can be relaxed to a single cell.
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Separability : consequence

Proposition
If the training set is separable, then

L (β̂) = 0,

and
∣∣∣∣β̂∣∣∣∣ = +∞.

⇒ Even in the "small dimension" setting, regularization may be
required.
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From MLE to convex risk minimization

Proposition
Assume Yi =±1,∀i . One has

ĥLR(x) = sign
[
xT β̂

]
,

with β̂ = argmin
β

n∑
i=1

`LR

(
yixT

i β
)

where `LR (t)= log
[
1+e−t] is the logistic loss.

−4 −2 0 2 4

0
1

2
3

4
5

6

t

Hard
Logistic
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Regularized logistic regression

Definition
For any λ> 0 the regularized LR classifier is defined as

ĥλRLR(x) = sign
[
xT β̂λ

]
,

with β̂λ = argmin
β

n∑
i=1

`LR

(
yixT

i β
)
+λR(β)

Ridge LR : R(β)= ∣∣∣∣β∣∣∣∣22
β̂λ is always defined and unique.

Lasso LR : R(β)= ∣∣∣∣β∣∣∣∣1
β̂λ is always defined and unique (under mild conditions, [T+13]).
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Inference for regularized logistic regression

Recall in the low dimensional case

β̂(t+1) = argmin
β

∣∣∣∣Xβ−z(t)
∣∣∣∣2

D−1
(t)

,

where z(t) =X β̂(t)+D−1
(t) (y −p(t)) and p(t) =

(
pi(β̂

(t))
)
i
.

Solving regularized LR...
... is replaced with solving

β̂
(t+1)
λ

= argmin
β

{∣∣∣∣Xβ−z
∣∣∣∣2

D−1
(t)
+λR(β)

}
(1)

hence boils down to regularized regression (at each step) !

Ridge LR : Solution of (1) has a closed form expression.
Lasso LR : use proximal/coordinate gradient descent.

49 / 87



Exact optimization for Lasso LR [SK03]

Solve

β̂, β̂0 = argmin
β,β0

{
n∑

i=1
`LR (yi f (xi))+λ

∣∣∣∣β∣∣∣∣1
}

, where f (x)= xTβ+β0

First order conditions
Lead to the definition of the violation criterion :

At point β, Vj =


∣∣λ−Fj
∣∣ if βj > 0∣∣λ+Fj
∣∣ if βj < 0

max
(
Fj −λ, −Fj −λ, 0

)
if βj = 0

where

Fj =
n∑

i=1

e−yi f (xi )

1+e−yi f (xi )
yixij

Note : At point β̂, Vj = 0 ∀j .
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Solving for a single value of λ

Require: (x1,y1), ...,(xn,yn), λ
Initialize β to βinit ; Set A = {

j/ βj 6= 0
}

while There exists j ∉A s.t. Vj 6= 0 do
Find jmax = argmax

j∈A
Vj

Update A ←A ∪{
jmax

}
while there exists j ∈A s.t. Vj 6= 0 do

Find jmax = argmax
j∈A

Vj

Optimize L(β) w.r.t. βjmax

Recompute Vj , j ∈A

end while
end while
return β

? Sub-problem is str. convex ⇒ L(β) decreases at each step,
? Only a sparse vector to store.
? βinit = 0 seems perfect.
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}
while there exists j ∈A s.t. Vj 6= 0 do

Find jmax = argmax
j∈A

Vj

Optimize L(β) w.r.t. βjmax

Recompute Vj , j ∈A

end while
end while
return β

? Sub-problem is str. convex ⇒ L(β) decreases at each step,
? Only a sparse vector to store.
? βinit = 0 seems perfect.

51 / 87



Solving for a single value of λ

Require: (x1,y1), ...,(xn,yn), λ
Initialize β to βinit ; Set A = {

j/ βj 6= 0
}

while There exists j ∉A s.t. Vj 6= 0 do
Find jmax = argmax

j∈A
Vj

Update A ←A ∪{
jmax

}
while there exists j ∈A s.t. Vj 6= 0 do

Find jmax = argmax
j∈A

Vj

Optimize L(β) w.r.t. βjmax

Recompute Vj , j ∈A

end while
end while
return β

? Sub-problem is str. convex ⇒ L(β) decreases at each step,
? Only a sparse vector to store.
? βinit = 0 seems perfect.

51 / 87



Solving for a single value of λ

Require: (x1,y1), ...,(xn,yn), λ
Initialize β to βinit ; Set A = {

j/ βj 6= 0
}

while There exists j ∉A s.t. Vj 6= 0 do
Find jmax = argmax

j∈A
Vj

Update A ←A ∪{
jmax

}
while there exists j ∈A s.t. Vj 6= 0 do

Find jmax = argmax
j∈A

Vj

Optimize L(β) w.r.t. βjmax

Recompute Vj , j ∈A

end while
end while
return β

? Sub-problem is str. convex ⇒ L(β) decreases at each step,
? Only a sparse vector to store.
? βinit = 0 seems perfect.

51 / 87



Solving for a set of λ values

Require: (x1,y1), ...,(xn,yn), λ1 > ... > λm
for k=1,...,m do

Initialize βλk to β̂λk−1 ; Set A =
{
j/ βλk

j 6= 0
}

while There exists j ∉A s.t. Vj 6= 0 do
Find jmax = argmax

j∈A
Vj

Update A ←A ∪{
jmax

}
while there exists j ∈A s.t. Vj 6= 0 do

Find jmax = argmax
j∈A

Vj

Optimize L(βλk ) w.r.t. βλk
jmax

Recompute Vj , j ∈A

end while
end while

end for
return βλ1 , ...,βλm
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Take home message

Logistic regression
? Belongs to the GLM family,
? Is a linear classifier,
? Is also an ECRM minimizer.
? May require regularization even in small dimension

Inference
? Can be performed easily,
? But cannot be performed easily !
⇒ Pay attention to which package you use...
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Overview

1 Introduction
Basics in optimization
Basics in classification

2 Logistic regression
Classical logistic regression
Regularized logistic regression

3 Support Vector Machines
Linear SVM
Kernel SVM

4 Theoretical guarantees
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Support Vector Machines

Learning With Kernels [SS01]
Kernels Methods In Computational Biology [STV04]
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Back to basics

Bayes classifier

hB = argmin
h

L(h)

- Requires PX ,Y ,
- Y X is... large !

Find a linear classifier

ĥf̂ = argmin
hf

Ln(hf ), where f (x)= xTβ+β0

- Not unique (in two ways),
- Still NP hard to find in practice...

Find the optimal linear classifier

ĥf̂ = sign
[
f̂ (x)

]
where f̂ (x)= xT β̂+ β̂0 and β̂, β̂0 = argmin

β,β0
Crit(β,β0)
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Separating hyperplanes and margin

Consider a linearly separable dataset
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Separating hyperplane : Any ∆ :
{
xTβ+β0 = 0

}
s.t.

yi

(
xT

i β+β0

)
> 0.

Margin Smallest distance between a point and ∆.
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Maximum margin hyperplane

If the dataset is linearly separable, choose (β̂0, β̂) such that

∆̂=
{
xT β̂+ β̂0 = 0

}
has maximum margin.

Proposition

(β̂0, β̂)= argmin
β0,β

1
2

∣∣∣∣β∣∣∣∣22 u.c. yi

(
xT

i β+β0

)
≥ 1, ∀i

Note : Constraints account for - correct classification
- maximum margin
- ∆ representation identification.
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Non separable case

If the dataset is not linearly separable, relax constraints as
follows

yi

(
xT

i β+β0

)
≥ 1−εi , ∀i

where εi ≥ 0, and penalize for the extend of margin violation.

Definition (Soft Margin SVM classifier)

ĥSVM = sign
[
β̂0 +xT β̂

]
where (β̂0, β̂) is solution of

minimize
1
2

∣∣∣∣β∣∣∣∣22 +C
n∑

i=1
εi

subject to yi

(
xT

i β+β0

)
≥ 1−εi , ∀i = 1, ...,n

εi ≥ 0, ∀i = 1, ...,n
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Inference

Inference boils down to solving the following problem :

minimize
1
2

∣∣∣∣β∣∣∣∣22 +C
n∑

i=1
εi

subject to yi
(
xT

i β+β0
)≥ 1−εi

εi ≥ 0

Associated primal problem :

min
β,β0,ε

max
α,µº0

L(β,β0,ε,α,µ)

where

L(β,β0,ε,α,µ)= 1
2

∣∣∣∣β∣∣∣∣22 +C
n∑

i=1
εi +

n∑
i=1

αi

[
1−εi −yi

(
xT

i β+β0

)]
−

n∑
i=1

µiεi
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Dual optimization problem

Dual problem :

max
α,µº0

min
β,β0,ε

L(β,β0,ε,α,µ)

Proposition
The SVM dual problem can be reformulated as

maximize −1
2
αT Qα+1T

n α

subject to 0¹ α¹C∑n
i=1 yiαi = 0

where Qij = yiyjxT
i xj .
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Sequential Minimal Optimization [Pla98]

Let B a subset of {1, ...,n}. One has

maximize
1
2

[
αB
αB

][
QBB QBB
QBB QBB

][
αB
αB

]
+1T

|B|αB +1T
|B|αB

subject to 0¹ αB ¹C, 0¹ αB ¹C

Y T
B αB +Y T

B
αB = 0

⇔
maximize − 1

2
αT

BQBBαB +U(B)TαB +∆1(B)

subject to 0¹ αB ¹C

Y T
B αB =∆2(B)

Apply with |B| = 2 !
? Simpler optimization problem,
? Only 2 columns of Q need to be loaded at each step,
? "Pairwise" coordinate descent.

Note : One can search for the "best" pair at each step... 62 / 87



From SVM to convex risk minimization

Proposition
Assume Yi =±1,∀i . One has

ĥλSVM(x) = sign
[
xT β̂λ+ β̂0λ

]
,

with (β̂0λ, β̂λ) = argmin
β0,β

n∑
i=1

`SVM

(
yi [[]xT

i β+β0]
)
+λ ∣∣∣∣β∣∣∣∣22

where `SVM (t)= |1− t |+ is the hinge loss.
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So far...

SVM classifier

ĥλSVM(x) = sign
[
xT β̂λ+ β̂0λ

]
,

with (β̂0λ, β̂λ) = argmin
β0,β

n∑
i=1

`SVM

(
yi

[
xT

i β+β0

])
+λ ∣∣∣∣β∣∣∣∣22

? Linear classifier with largest margin,
? Linear classifier that minimizes the hinge loss.

Inference

β̂λ =
n∑

i=1
yi α̂ixi

with α̂ = arg max
0¹α¹1/λ

{
−1

2
αT Qα+1T

n α

}
u.c.

n∑
i=1

yiαi = 0
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So far...

Restricted to X =Rp.
What about - text classification?

- sequence classification?
- pathway classification?
- ...

Restricted to linear classification :
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Naive way : transform and proceed (1/3)

Example 1 Document classification (e.g. Reuters dataset)

Bag of words
? Y = {

1, ...,M
}
, with M the number of document classes,

? Apply transformation φ :X = {
documents

}→Rd

φ(doc)= (Nw1 , ...,Nwd ) ,

where Nwj is the nb. of occurrence of word wj in doc.

Characteristics
? d is large (≈ 35k),
? φ(doc) is sparse (between 93 and 1263 words per doc).

Storing the φ(doc)’s is cheap !
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Naive way : transform and proceed (2/3)

Example 2 Non-linear classification (e.g. Sphere example)

Apply transformation

x = (x1,x2)
T 7→φ(x)= (x2

1 ,x2
2 ,
p

2x1x2).

Characteristics

? x ∈Rp is "big", φ(x) is way bigger,
? φ(x) is not sparse.

Storing the φ(x)’s is prohibitive.
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Naive way : transform and proceed (3/3)

Example 3 Structured data classification

Networks, trees

Sequences

Finding φ :S →Rd is non-trivial.
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Smart way : kernel SVM

Combining CRM formulation + Inference leads to :

ĥSVM(x) = sign

[
n∑

i=1
yi α̂i 〈xi ,x〉+cα̂

]
,

with α̂ = arg max
0¹α¹1/λ

{
n∑

i=1
αi −

1
2

n∑
i=1

n∑
i ′=1

yiyi ′αiαi ′〈xi ,xi ′〉
}

u.c.
n∑

i=1
yiαi = 0

The xi ’s only appear through scalar products.
⇒ Only need to compute <φ(xi),φ(xj)>.
⇒ Only need to store the n×n Gram matrix.

⇒ Only need to compute some similarity between xi and xj .

Kernels is what we need !
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ĥSVM(x) = sign

[
n∑

i=1
yi α̂ik (xi ,x)+cα̂

]
,

with α̂ = arg max
0¹α¹1/λ

{
n∑

i=1
αi −

1
2

n∑
i=1

n∑
i ′=1

yiyi ′αiαi ′k (xi ,xi ′)

}

u.c.
n∑

i=1
yiαi = 0

The xi ’s only appear through scalar products.
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Kernels and RKHS

Definition
A kernel is a function k :X ×X →R satisfying

∀x1,x2, k(x1,x2)= k(x2,x1),

∀n ∈N, ∀(x1, ...,xn)=∈X n,
(
k(xi ,xj)

)
ij º 0

Hilbert space representation of a kernel

Proposition

For any kernel k on X , there exists a Hilbert space F ⊂RX and
a mapping φ :X →F such that

∀x ,x ′ ∈X , k(x ,x ′)= 〈
φ(x),φ(x ′)

〉
F

(Reproducing property)

70 / 87



Examples of kernels

Polynomial kernels
X =Rp, k(x ,y)= (

〈
x ,y

〉+1)m (m ∈N).

A string kernel
Wi =w1 ◦ ...◦wni , w1 ∈A : string of size ni in alphabet A .
Sq = {

s/s1 ◦ ...◦sq , sj ∈A
}

: set of strings with size q
Ns(Wi) : nb of occurrence of string s in Wi

k(Wi ,Wj)=
∑
s

Ns(Wi)Ns(Wj)

Note : k(Wi ,Wj) can be computed in time ni +nj .

More kernels

Gaussian (RBF) kernel : X =Rp, k(x ,y)= exp

(
−d (x −x ′)2

2σ2

)
.

Kernels for structured data : see [STV04] for many examples.
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Polynomial kernel

1/ (
〈
x ,y

〉+1)m =
m∑

j=0
(
j
m)

〈
x ,y

〉j ⇒ prove that
〈
x ,y

〉j is a kernel.

2/ Define φ(x)= (φs(x))s∈Sj
such that

φs(x)=
(
xs1

1 × ...×xsp
p

)
, s ∈Sj =

{
s1, ...,sp ∈Np/

∑
u

su = j
}

2/ Define〈
φ(x),φ(y)

〉= ∑
s∈Sj

φs(x)φs(y) = ∑
s

(
xs1

1 × ...×xsp
p

)(
ys1

1 × ...×ysp
p

)
= ∑

s
((x1y1)

s1 × ...× (xpyp)
sp)

=
(

p∑
i=1

xiyi

)j

= 〈
x ,y

〉j

Note : Give access to non linear classification without
additional computational cost.
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Kernel trick

Proposition (Representer theorem ([STV04]))

Let X be a set endowed with kernel k, and Ψ :Rn →R. Then
any solution of problem

f̂ = argmin
f∈F

Ψ(f (x1), .., f (xn))+λ
∣∣∣∣f ∣∣∣∣2F

has the form

f̂ =
n∑

i=1
αik(xi , ·).
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Kernel trick applied to SVM

Proposition
Let k be a kernel on X , and F its associated RKHS. Consider
the SVM classifier

ĥλSVM(x) = sign
[
f̂ λ(x)

]
where f̂ λ = argmin

f∈F

{
n∑

i=1
`SVM (yi f (xi))+λ

∣∣∣∣f ∣∣∣∣2F
}

.

Then f̂ λ =
n∑

i=1
yi α̂ik(xi , ·),

with α̂ = arg max
0¹α¹ 1

λ

{
n∑

i=1
αi −

1
2

n∑
i=1

n∑
j=1

αiαjk(xi ,xj)

}
.

⇒ Same computational efficiency as in the linear case...
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Overview

1 Introduction
Basics in optimization
Basics in classification

2 Logistic regression
Classical logistic regression
Regularized logistic regression

3 Support Vector Machines
Linear SVM
Kernel SVM

4 Theoretical guarantees
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Theoretical guarantees

Introduction to high-dimensional statistics [Gir14]
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Connection with the Bayes classifier

Let ` be a convex loss function. Define

hf ∗(x) = sign [f ∗(x)]
where f ∗ = argmin

f
E [`(Yf (X ))]

hf ∗ is "optimal" in the sense of loss `.

How does hf ∗ compare with hB ?

Proposition

Assume that ` satisfies `′(0)< 0. Then

hf ∗ = hB .
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ECRM on a ball

Consider the classifier based on the Empirical Convex Risk
Minimizer (ECRM) on a ball of F :

ĥ(x)= sign
[
f̂ (x)

]
where

f̂ = argmin
f∈F

{
n∑

i=1
`(yi f (xi))+λ

∣∣∣∣f ∣∣∣∣F
}

= arg min
f∈FR

{
L`n (f )

}
F : RKHS associated with kernel k ,
FR : Centered ball of radius R in F .
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Upper bound for the risk

Theorem ([Gir14])
Let R > 0, and consider a loss function ` such that
- ` is positive, non-increasing and convex,
- ` is α-Lipschitz on [−R,R],
- ` dominates the hard loss on R.

Let ĥ the classifier previously defined, with kernel k satisfying
k(x ,x)≤ 1,∀x.

With probability 1−e−t , one has

L(ĥ)≤ L`n(f̂ )+
4αRp

n
+C

√
t

2n

where C is a constant.
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Step 1 : connect L(ĥ) and L`n
(
f̂
)

First note that L(ĥ) ≤ L`(f̂ )

≤ L`n
(
f̂
)
+ sup

FR

∣∣∣L`n (f )−L`(f )
∣∣∣

Theorem (McDiarmid)

If g :Rn →R satisfies |g(z1, ...,zi , ...,zn)−g(z1, ...,zi ′ , ...,zn)| ≤ b,

then P
(
g(Z n

1 )> E
[
g(Z n

1 )
]+u

)≤ exp

(
−2u2

nb2

)

Applied to g
(
(Xi ,Yi)

n
1
)= supFR

∣∣L`n (f )−L`(f )
∣∣, one gets

L(ĥ) ≤ L`n
(
f̂
)
+E

[
sup
FR

∣∣∣L`n (f )−L`(f )
∣∣∣]+

√
t

2n
C

with prob. 1−e−t and C = ∣∣`(−R)−`(R)
∣∣
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Step 2 : symmetrization and Rademacher complexity

Let
{
(X ′

1,Y ′
1), ...,(X ′

n,Y ′
n)

}
be a set of independent copies

E

[
sup
FR

∣∣∣L`n (f )−L`(f )
∣∣∣] = E

[
sup
FR

∣∣∣L`n (f )−E′ [L`
′

n (f )
]∣∣∣]

≤ E′E

[
sup
FR

∣∣∣L`n (f )−L`
′

n (f )
∣∣∣]

≤ 1
n
E′E

[
sup
FR

∣∣∣∣∣ n∑
i=1

`(Yi f (Xi))−`(Yi ′ f (Xi ′))

∣∣∣∣∣
]

Let σ1, ...,σn uniform on
{−1,1

}
and independent. Then

E

[
sup
FR

∣∣∣L`n (f )−L`(f )
∣∣∣] ≤ 1

n
E′E

[
Eσ

[
sup
FR

∣∣∣∣∣ n∑
i=1

σi (`(Yi f (Xi))−`(Yi ′ f (Xi ′)))

∣∣∣∣∣
]]

≤ 2
n
E

[
Eσ

[
sup
FR

∣∣∣∣∣ n∑
i=1

σi`(Yi f (Xi))

∣∣∣∣∣
]]
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Step 3 : get rid of loss function and labels

Theorem (Contraction principle)

- Ω : bounded subset of Rn

- ν :R→R, α-Lipschitz, ν(0)= 0

Then Eσ

[
sup
z∈Ω

∣∣∣∣∣ n∑
i=1

σiν(zi)

∣∣∣∣∣
]
≤ 2αEσ

[
sup
z∈Ω

∣∣∣∣∣ n∑
i=1

σizi

∣∣∣∣∣
]

Application : ν= `, zi = yi f (xi). Note that
∣∣f (x)∣∣≤R...

2
n
Eσ

[
sup
FR

∣∣∣∣∣ n∑
i=1

σi`(yi f (xi))

∣∣∣∣∣
]

≤ 4α
n
Eσ

[
sup
FR

∣∣∣∣∣ n∑
i=1

σiyi f (xi)

∣∣∣∣∣
]

≤ 4α
n
Eσ

[
sup
FR

∣∣∣∣∣ n∑
i=1

σi f (xi)

∣∣∣∣∣
]
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Step 4 : bound the expectation over σ’s

Get rid of f : ∀f ∈FR ,∣∣∣∣∣ n∑
i=1

σi f (xi)

∣∣∣∣∣=
∣∣∣∣∣ n∑
i=1

σi
〈
f ,k(xi , ·)

〉
F

∣∣∣∣∣ =
∣∣∣∣∣
〈

f ,
n∑

i=1
σik(xi , ·)

〉
F

∣∣∣∣∣
≤ ∣∣∣∣f ∣∣∣∣F

∣∣∣∣∣
∣∣∣∣∣ n∑
i=1

σik(xi , ·)
∣∣∣∣∣
∣∣∣∣∣
F

≤ R

∣∣∣∣∣
∣∣∣∣∣ n∑
i=1

σik(xi , ·)
∣∣∣∣∣
∣∣∣∣∣
F

⇒ Eσ

[
sup
FR

∣∣∣∣∣ n∑
i=1

σi f (Xi)

∣∣∣∣∣
]

≤ REσ

[∣∣∣∣∣
∣∣∣∣∣ n∑
i=1

σik(xi , ·)
∣∣∣∣∣
∣∣∣∣∣
F

]

= REσ

√√√√ n∑
i=1

n∑
i ′=1

σiσi ′k(xi ,xi ′)


≤ R

√√√√ n∑
i=1

n∑
i ′=1

Eσ [σiσi ′ ]k(xi ,xi ′)≤R
p

n
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Conclusion

A unified framework...
Two algorithms, one strategy : ECRM. Allows for

- the derivation of theoretical guarantees
- common optimization strategies
- application of classical penalties (group/fused lasso, EN,...)

... a very general kernel trick...
- allows for non-linear classification
- makes SVM and LR amenable to structured data
- useful in other application (kPCA, kClustering, kCCA,...)

... and still some specificities
- convex vs strictly convex (uniqueness of the solution, ...)
- regularization paths for the βs

What’s next? HD data vs big data
- primal vs dual
- stochastic gradient descent
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