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High-dimensional data

@ It has now become part of folklore to claim that the 21st century will be the
century of data. Our society invests more and more in the collection and
processing of data of all kinds (big data phenomenon).

o Now, data have then a strong impact on almost every branch of human
activities including science, medicine, business or humanities.

@ In traditional statistics, we assumed we had many observations and a few
well-chosen variables.

@ In modern science, we collect more observations but we also collect radically
larger numbers of variables, which consist in thousands up to millions of
features voraciously recorded on objects or individuals.

@ Such data are said high-dimensional.
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Introduction

Examples of high-dimensional data

o Consumers preferences data: Websites gather informations about browsing
and shopping behaviors of consumers. For example, recommendation systems
collect consumer’s preferences on various products, together with some
personal data (age, sex, location,...) and predict which products could be of
interest for a given consumer.

e Traffic jams: Many cities (for instance Boston) have developed programs, to
improve traffic, based on big data collection (crowdsourced data) and their
analyses.

o Biotech data: Recent technologies enable to acquire high-dimensional data
on single individuals. For example, DNA microarrrays measure the
transcription level of thousands of genes simultaneously.

o Images and videos: Large images or videos are continuously collected all
around the world. Each image is made of thousands up to millions of pixels.
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Characterization and problems of high-dimensional data

@ Previous examples show that we are in the era of massive automatic data
collection.

@ For previous examples, the number of variables or parameters p is much
larger than the number of observations n.

@ Being able to collect a large amount of information on each individual seems
to be good news.

@ Unfortunately the mathematical and statistical reality clashes with this
optimistic statement: Separating the signal from the noise is a very hard task
for high-dimensional data, in full generality impossible.

@ Extracting the "good information” is more than challenging, consisting in
finding a needle in a haystack.

@ This phenomenon is often called the curse of dimensionality, terminology
introduced by Richard Bellman, in 1961.
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Introduction

Curse of dimensionality

The volume V,(r) of a p-dimensional ball of radius r for the euclidian distance

satisfies P
2\ P
Vo) () (o)

So, if (X0);—;., are i.i.d with uniform distribution on the hypercube
[—0.5,0.5], then

P(3ie{1,...,n}: XD e B,(0,r)) nx P(XM € B,(0,r))

<
< nV,(r).

So if n = o(V,(r)~1), then the last probability goes to 0.
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Introduction

Curse of dimensionality

Example: Classical regression problem. Estimation of the conditional
expectation of a random variable. Data consist of n i.i.d. observations
(Y,-,X(’)),-:1 _n with the same distribution as (Y, X) € R x RP. We wish to

estimate the function m where E[Y|X] = m(X). We consider the
Nadaraya-Watson estimate:

_ Y Khl(x — XYY,

7] = - RP
m(X) 27:1 Kh(X _ X(,)) , XE 5

1 X1 X,
KX:*K 7...,p), h: h i=1....
h( ) }::1 hj (hl hp ( J)J 1,...p

and K is a kernel (with at least one vanishing moment), i.e.

. x % 1 X
K(x) = H 1 os505(%), K(x)= (27r1)P/2€_2’ K(x) = \m
= p\Y,

We have to determine the tuning parameter h which allows to select the variables
Y; associated with the "neighbors” of x among the X()’s.
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Curse of dimensionality

We have to determine the tuning parameter h which allows to select the variables
Y; associated with the "neighbors” of x among the X()'s. Two problems:

@ We have no neighbor in high dimensions
@ All the points are at a similar distance one from the others.

lllustration: Assume that coordinates of X are i.i.d. and x = (xg,x1,...,x1),

P
Eflx = X|1] =E | Y Ix—X|| =pxE[lxi — Xi]
j=1

sd([lx = X[[1) = v/ Var ([|x = X][1) = v/p x v/ Var(x — Xi|)

So, any estimator based on a local averaging will fail.
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Curse of dimensionality
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Curse of dimensionality
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Curse of dimensionality
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Curse of dimensionality - Other problems

Other strange phenomena in high dimensions :
@ The multivariate Gaussian standard density is very flat:
sup f(x) = (2rr)~P/?
x€ERP
@ The diagonal of the hypercube [0, 1]? is almost orthogonal to its edges
Other problems :

@ Accumulation of small fluctuations in many directions can produce a large
global fluctuation.

@ An accumulation of rare events may not be rare.

o Computational complexity.
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Introduction

Circumventing the curse of dimensionality

At first sight, the high-dimensionality of the data seems to be good news but as
explained previously, it is a major issue for extracting information. In light of the
few examples described above, the situation may appear hopeless.
o Fortunately, high-dimensional data are not uniformly spread in RP (for
instance, pixel intensities of an image are not purely random and images have
geometrical structures).

e Data are concentrated around low-dimensional structures (many variables
have a negligible or even a null impact)....

@ ... but this low-dimensional structure is much of the time unknown.

The goal of high-dimensional statistics is to identify these structures and to
provide statistical procedures with a low computational complexity.
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Introduction

Take-home message

Whereas classical statistics provide a very rich theory for analyzing data with a
small number p of parameters and a large number n of observations, in many
fields, current data have different characteristics:

@ a huge number p of parameters

@ a sample size n, which is of the same size as p or sometimes much smaller
than p.

The asymptotic classical analysis with p fixed and n going to +o0o does not make
sense anymore. We must change our point of view. We face with the curse of
dimensionality.

Fortunately, the useful information usually concentrates around low-dimensional
structures (that has to be identified), which allows us to circumvent the course of
dimensionality.
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Introduction

Overview of the course

The goal of this course is to present modern statistical tools and some of their
theoretical properties for estimation in the high-dimensional setting, including

@ Wavelets and thresholding rules.
@ Penalized estimators: model selection procedures, Ridge and Lasso estimates.

© Generalizations and variations of the Lasso estimate: Group-Lasso,
Fused-Lasso, elastic-net and Dantzig selectors. Links with Bayesian rules.

@ Statistical properties of Lasso estimators: study in the classical regression
model. Extensions for the generalized linear model.

| shall concentrate on simple settings in order to avoid unessential technical
details.
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What is (unfortunately) not mentioned and notations

Due to lack of time or skill, | won't speak about some important themes
(fortunately, some of them will be dealt with by Franck or Tristan):

© Optimizations aspects

@ Matrix completion

© Testing approaches

@ Graphical models

@ Multivariate methods (sparse PCA, etc.)
@ Classification methods

Notations:

@ n: size of observations.

@ p: dimension of the involved unknown quantity.

@ || -|lg: £g-norm in RP.

@ For short if there is no ambiguity, || - || = || - I|2-

@ For any vector 3, 1Bllo = card{j : B; # 0}.
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@ Introduction
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@ Introduction

© Model selection
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Introduction

@ Introduction

© Model selection

© From Ridge estimate to Lasso estimate
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Introduction

@ Introduction

© Model selection

© From Ridge estimate to Lasso estimate

© Generalized linear models and related models
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Chapter 1: Model selection

Contents of the chapter:
@ Linear regression setting
@ Sparsity and oracle approach
© Model selection procedures
@ Take-home message

© References
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Linear regression setting

Consider the linear regression model

Y = XB* + ¢,

@ Y = (Y))i=1,....n a vector of observations (response variable)
o X = (Xjj)i=1,....n,j=1,...,p @ known n x p-matrix.

@ [* = (Bf)j=1,...,p an unknown vector

@ ¢ = (€j)i=1,...,n the vector of errors. It is assumed that
E[e] =0, Var(e) = o?l,

and o2 is known.

Columns of X, denoted X;, are explanatory variables or predictors.
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Model selection

Linear regression setting

The regression model can be rewritten as

P
Y=Y BX+e
j=1

Several problems can be investigated:

@ The estimation problem: Estimate 8*

@ The prediction problem: Estimate X/3*

@ The selection problem: Determine non-zero coordinates of 3*
Why linear regression?

@ It models various concrete situations

@ It is simple to use from the mathematical point of view

@ It allows to introduce and to present new methodologies
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Model selection

Classical estimation

We naturally estimate 5* by considering the ordinary least squares estimate f3ols
defined by

Aols .
argﬂellgp || ||

If rank(X) = p, then A
BOIS _ (XTX)—IXTY
and . .
E[ﬂds] — B*’ Var(ﬁds) _ Jz(XTX)_l.
Furthermore )
E[l13% - 5|2] = 0% x TH((X"X)7").
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Classical estimation

We have for any matrix A with n columns:

E[||Ae||2} = o2 Tr(AAT)

Some remarks:
@ rank(X) = p implies p < n
o If the predictors are orthonormal

E[I13% - 8] = po?,

which may be large in high dimensions.

Up to now, structural assumptions are very mild. In the sequel, we shall first
consider sparsity assumptions.
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Sparsity

o Loosely speaking, a sparse statistical model is a model in which only a
relatively small number of parameters play an important role.

@ In the regression model,
P
Y=2 BiXte
j=1

we assume that m* the support of 5* is small, with

m*:{je{l,...,p}: BJ*#O}.

Note that m* is unknown.
@ In general, 3°% is not sparse.

@ Model selection is a natural approach to select a good estimator in this
setting. We describe and study this methodology in the oracle approach.
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Oracle approach

@ We now consider the prediction risk and set f* = X* € R"” the unknown
vector of interest. So, we have:

Y=Ff"+e (2.1)
o If m* were known, a natural estimate of f* would be
foe = Nge Y,
with Mg« : R” +— R" the projection matrix on S* and

S* =span(X;: j€ m").

o Note that if € ~ N(0,521,) then - is the maximum likelihood estimate in
the model (2.1) under the constraint that the estimate of f* belongs to S*.

o Of course m* is unknown and f,,« cannot be used.
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Oracle approach

e For any model m C {1,...,p}, we set #, = Mg, Y, with Mg, : R” — R" the
projection matrix on S,, and

Sm =span(Xj: j € m).

With a slight abuse, we also call S, model.

@ Given M, a collection of models, we wish to select M € M such that the risk
of fz is as small as possible.

@ We introduce the oracle model myg as

= i E[fm—f* 2}.
mo = arg min E || I

~

fm, is called the (pseudo) oracle estimate.
@ More precisely, we wish to select m € M such that

E [l — £12] ~ E[Ifm — £I1].
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Oracle approach

Oracle model: .
mp = ar, minE[f —f* 2]
o = arg min E||1fy 7|
Some remarks:

@ m* may be different from mg. We may have f* &€ S, and even
* & UnemSm-

@ The oracle model mg is not random but depends on 3*. So, it cannot be
used in practice.
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Model selection procedure

~

Our approach is based on the minimization of R(f,) on M, with
R(fm) = E[llfn = £17).

The following lemma based on the simple bias-variance decomposition gives an
explicit expression of R(f). We denote

dm = dim(Sy,).

We have:

R(fm) = [|(fn — N, )F*|I* + 0> d.

@ The first term is a bias term which decreases when m increases, whereas the
second term (a variance term) increases when m increases

@ The oracle model myq is the model which achieves the best trade-off between
these two terms.
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Mallows' C
p

~

Mallows’ Recipe: Since we wish to minimize m — R(f,), it's natural to choose

i as the minimizer of an estimate of R(fm). We denote the latter R, that will be
based on ||f,, — Y||? (replacing f* with Y and removing the expectation). The
following lemma gives the last ingredient of the recipe.

We have:

E[nfm - v||2} — R(%,) — o2(2dy — )

Using the lemma, an unbiased estimate of R(f,,) is given by
[ — Y|+ 0*(2dm — n).

It leads to the model selection procedure based on minimization of Mallows'
criterion defined by:

Co(m) = ||fn — Y|? + 20%d,m
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Mallows' C
p

Definition

Mallows’ estimate of f* is f := f,;, with

m= arg mi/r\1/l Co(m),  Cp(m) = ||fm — Y|? + 20%d:m,
me

@ Assumptions are very mild. In particular the Mallows' criterion is
distribution-free. It's a very popular criterion.

@ Only based on unbiased estimation, this approach does not take into account
fluctuations of C,(m) around its expectation. The larger M, the larger the
probability to have minmeaq Co(m) far from minpne s R(Fm) + o2n. In
particular, we may have for some m € M, C,(m) < R(fn) 4+ 2n and

Cp(m) < Cp(m0)7 R(fm) > R(fmo)'

@ The last situation occurs when we have a large number of models for each
dimension. 1 is much larger than mq leading to overfitting. It's the main
drawback of Mallows' C,.
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Model selection

Other popular criteria

When the distribution of observations is known, we can consider AIC and BIC
criteria which are based on the likelihood. For any model m € M, we set L(m) as
the maximum of the log-likelihood on S,,. We still consider

. c
i := arg min C(m),

with
o for the Akaike Information Criterion (AIC)

C(m)=—L(m)+dn
o for the Bayesian Information Criterion (BIC)

log n
2

In the Gaussian setting, AIC and Mallows’ C, are equivalent. The use of BIC
tends to prevent overfitting (larger penalty).

C(m)=—-L(m)+

X dm
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Model selection

Penalization for Gaussian regression

@ We assume

e~ N(0,0%1,).
@ Mallows' approach shows that for ¢, estimation, a criterion of the form
C(m) = ||fm = YI|I* + o*pen(m),

is suitable with pen, called the penalty, satisfying pen(m) > 2d,,.
@ We now investigate good choices of penalties. It has to depend on M.

o Recall our benchmark: The oracle risk R(fy,) with
L . 7 £\ . £ %2
my = arg min R(Fn),  R(Fn) = E[|fn — ]
We wish R(f) &~ R(fm,).
o We have

R(fm) = ||(In — N5 )F*[I? + 0% dpm.
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Penalty
Since for any m € M, C(m) < C(m), we have:
£ = Fall? + 2(e, F* — Fz) + o?pen(R) < ||[F* — full? + 2(e, F* — F) + o?pen(m)
Taking expectation, since pen(m) is deterministic,
R(F) < R(F) +2E (e, f* )] + oPpen(m) + E[2(e, f — ) - o?pen(17)]
—— —_——

i I 1 v

Each term can be analyzed: / is ok.
I = E[<e, Fr - fmﬂ - E[<e, f* s, Y)} - —E[||I'I5me||2} = —02dp < 0.

The function pen(-) has to be large enough so that /V is negligible but small
enough to have .
= o®pen(m) < R(fy).

Then, R .
<
R(f)) < mlg}cvt R(fm) + negl. term.
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Model selection

Analysis of the forth term

Forany 0 < 6 < 1, with 54 = span(S;, £*),
2e,f =) = 2(Ng e f—f)
< 5N, el® + ol F — £
And, with x?(m) := |||_|§m(0'716)||2,
v = E[Q(e,f— *y — Uzpen(rﬁ)}
5 10%E [XQ(m) - 5pen(m)} +6R(F)

5*1021[5{ max {Xz( — dpen(m } + 0R(F
)

5 lo? Z ( { ]—5pen( )—HSR(f)

IN O IA

IA
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Model selection

Penalty
To the collection of models M, we associate (7m)mem such that 0 < 7, < 1 and

Zﬂmzl.

Then, for any constant K > 1, we set
2
pen(m) := K(\/ dm + /=2 Iog(wm)) . (2.2)

= K~1, concentration inequalities lead to

If K> 1, taking e.g. §
IV < C(K)o? + K 1R(f)

o?pen(m) < 2Ko?dy, + 4Ko? log(r,})

n =
2KR(fr) + 4K o2 log(m;)

<

34 /105
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Model selection

Theoretical result

Theorem (Birgé and Massart)

We consider the linear regression model

Y=Ff"+¢€

and assume that ¢ ~ N(0,021,), with 0® known. Given K > 1, we define the
penalty function as in (2.2) and estimate f* with f = fs such that

M =argr m|n {||f — Y||* + o®pen(m )}
Then, there exists Cx > 0 only depending on K such that

E[If - £I7] < Ci min {E[Ifn = £17] + 0% log(my!) + 02}

o If log(m;}) < ad, then f achieves the same risk as the oracle.
@ Mallows’ C, will be suitable if 3K > 1 s.t.

K(Vm +¢m) ~ 2dp.
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Model selection

First illustration with the full collection of models

We first consider the case where M = P({1,...,p}). We can take

(e—=1) dnl(p—dmn)! o—dn
(I—eP) p! '

Tm —

Then
log(7,,') < dim log (:) < dp, log(p)

and "
E[If = £*I12]  tog(p) min E[lfm — ||

@ The log(p)-term is unavoidable

@ We can prove that by taking K < 1, we select a very big model, leading to
overfitting. It's the reason why Mallows’ C,, is not suitable for this case.
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Model selection

Second illustration with a poor collection of models
We now consider the case where M = {{1,...,J}, 1 < J < p}. We can take for

any constant a > 0,
(e*—1)

— _adm
m = (1= eor)
Then
Iog(w,;l) < ad,, + const.
Since .
E[llfn = £12) = 10 = N5, )12 + o2,
we have

E[If = £17] S min E[1fn — ]

@ Under convenient choices of & and K > 1, we have pen(m) ~ 2dp,.
Therefore, Mallows’ C, is suitable for this case.

@ The choice K < 1 leads to overfitting
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Model selection

Pros and cons of model selection

@ Under a convenient choice of penalty (based on concentration inequalities),
the model selection methodology is able to select the "best” predictors to
explain a response variable by only using data.

@ The model selection methodology (due to Birgé and Massart) has been
presented in the Gaussian linear regression setting. But it can be extended to
other settings: for density estimation, Markov models, counting processes,
segmentation, classification, etc.

@ It is based on minimization of a penalized /»>-criterion over a collection of
models. Note that if M = P({1,...,p}), card(M) = 2P. When p is large,
this approach is intractable due to a prohibitive computational complexity
(220 > 109).
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Model selection

The orthogonal case

Assume that the matrix X is orthogonal: X7 X = /,. We have
dm = dim(S,,) = card(m). Consider a penalty proportional to d,:

pen(m) = 2Kd,, log(p).

Then, since . R R
fo=TNs,Y => BX, B :=X"Y
JjEM
we obtain:
mo= arg mln {Hf — Y|? 4 o?*pen(m )}
= argr m|n { 262 + 2Ko2card(m )Iog(p)}
JEM
_ o N 2
= argnryrg/(\/l{ ;(51 2Ko Iog(p))}
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The orthogonal case and M = P({1,...,p})

@ In this case, we have:

mo= {jef...p}: 15> 0v/2KIog(p)}

and

~

p
f=frrx:=) Bl X;
; RNl

Model selection corresponds to hard thresholding and implementation is easy.

o Assume that f* = 0. Consider Mallows’ C,, BIC and hard thresholding
alternatively. The first two are overfitting procedures: if p — 400,

@ with pen(m) = 2d,,, E[card(fivaions)] ~ 0.16p.
@ if n = p and pen(m) = log(n)dm, E[card(rfgic)] ~ 1/%5@)
Q if K> 1, P(fur .k # 0) = o(1)
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Model selection

Take-home message

@ This chapter presents in the Gaussian linear setting the model selection
methodology, which consists in minimizing an ¢y-penalized criterion.

@ Such procedures are very popular in the moderately large dimensions setting
and can be extended to many statistical models.

@ Using concentration inequalities, penalties can be designed to obtain adaptive
and optimal procedures in the oracle setting and to overperform classical
procedures, such as AIC, BIC and Mallows' C,.

@ When p is large and the model collection is wealthy, this approach may be
intractable due to a prohibitive computational complexity. Alternatives have
to be developed in very high dimensions.
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From Ridge estimate to Lasso estimate

Chapter 2: From Ridge estimate to Lasso estimate

@ The Ridge estimate
@ The Bridge estimate
© The Lasso

(a) General study of the Lasso
(b) The orthogonal case
(c) Tuning the Lasso

- Cross-validation
- Degrees of freedom

(d) Generalizations of the Lasso

The Dantzig selector

The " Adaptive” Lasso

The Relaxed Lasso

The Square-root Lasso

The Elastic net

The Fused Lasso

The Group Lasso

The Hierarchical group Lasso
The Bayesian Lasso

(e) Theoretical guarantees

- Support recovery
- Prediction risk bound

© Take-home message
@ References
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Ridge estimates

We still consider the linear regression model
Y = XB" +¢,
with E[e] =0, Var(e) = 02/, and 0 is known. If rank(X) = p, then
Bol — (XTX)1XTy

which satisfies A A
E[Bols] _ B*’ Var(ﬁds) _ Jz(XTX)_l.

E[l13% — 8°|2] = o2 x TH(XTX)7").

In high dimensions, the matrix X" X can be ill-conditioned (i.e. may have small
eigenvalues) leading to coordinates of 3° with large variance. To overcome this
problem while preserving linearity, we modify the OLS estimate and set

Gr%e — (XTX + M) IXTY, A>0
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Ridge estimates

Since .
e — (XTX +ML)7IXTY, A>0,

the tuning parameter A\ balances the bias and variance terms.

[E[B7%] — B*[12] = 28T (XT X + Al,) 23"

p

Aridge Aridge 2
BlI35 B = o)

with (11;)j=1,....p := eigenvalues(X T X).

Pros and cons:
@ We can consider very high dimensions: p > n
o Linearity: Easy to compute for many (?) problems
@ The choice of the regularization parameter \ is sensitive

@ Automatic selection is not possible
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Bridge estimates

For A > 0 and v > 0, we set:

G (B) = 1Y = XBII* + MBI

with
||/3||v:{ 1187, ify >0
YT XYy, iy =0

and

N

Bhq = argﬁnglgp G~ (8). (3.1)

Three interesting cases (A > 0):
Q ~ = 0: model selection
@ v = 2: Ridge estimation
© v = 1: Lasso Estimation
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Bridge estimates

@ Assume that v = 0. Then the bridge estimate exists if X is one-to-one.
@ Assume that v > 0. Then the bridge estimate exists.

@ If 0 <~ <1, then G, , is not convex and it may be very hard to minimize it
in high dimensions.

@ Assume that v = 1. The penalized criterion C, ; is then convex and C ; has
one minimizer if X is one-to-one.

@ Assume that v > 1. The penalized criterion C,  is then strictly convex and
C», has only one minimizer. Almost surely, all coordinates of the bridge
estimate are non-zero.

For v > 1, one-to-one correspondence between the Lagragian problem
Bry = argmin Crq(8),  Gua(B) =Y - XBI2 +AlBl3

and the following constrained problem

ar min Y — X3
g{ﬁGRPr 8115 <t} | |
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From Ridge estimate to Lasso estimate

Bridge estimates

15

1.0

N

0.5

0.0

-1.0 -0.5
1

T T T T T T T
-15 -1.0 -05 0.0 0.5 1.0 15

X
Constraints regions [|3]|7 < 1 for different values of 7. The region is convex if and
only if v > 1.
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Graphical illustration for p = 2

4 1.4
Ty _ _
o We take X X—<1.4 1 )andt—l.

@ Note that
1Y = XB|* = (8= 5%)TXTX(B — B%) +[|Y — XB*||”
and the constrained problem becomes

{(ﬂ _ BOIS)TXTX(ﬂ _ Bo/S)} '

arg min
{BeRre: ||BlI7<t}

@ We compare the Ridge estimate

Aridge

! ‘= arg {(ﬁ _ BOIS)TXTX(ﬁ _ BOIS)}

min
{BeRe: ||8]12<t}
and the Lasso estimate

fplasso . — ar

{(5 _ Bo/S)TXTX(B _ 3015)}

g min
{BeRP: ||Bll1<t}

@ Of course both estimates are close (for same values of t) but, depending on
60’5, Lasso estimate may have null coordinates.

Vincent Rivoirard (Université Paris-Dauphine) Statistics for high-dimensional data 49 / 105



From Ridge estimate to Lasso estimate

Graphical

-2

-4

illustration for p = 2

B=(X"X)XTY
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Graphical illustration for p = 2
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Specific study of the case v = 1 (the Lasso)

The Lasso, proposed by Tibshirani (1996), is the bridge estimate with v = 1:
Rlasso . _ ; _ 2
B = argmin {[IY = XB|* + A8l }

It has two specific properties:
@ It is obtained from the minimization of a convex criterion (so, with low
computational cost)
@ It may provide sparse solutions if the tuning parameter \ (resp. t) is large
(resp. small) enough and allows for automatic selection.

Theorem (Characterization of the Lasso)

A vectorB € RP js a global minimizer of Cy i if and only if B satisfies following
conditions: For any j,

o if Bj #0, 2XT(Y — XPB) = Asign(f3;)
o if B =0, [2XT(Y — XB)| < A

Furthermore, BA is the unique minimizer if Xg is one to one with
&= {j L 2XT (Y = XB)| = A}

4
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Specific study of the case v = 1 (the Lasso)

@ Sketch of the proof:
@ For a convex function f, B is a minimum of f if and only if 0 € 81‘(3), with

of(B):={s R s F(y) > F(B) + (s, = x), Vy}.

Q If f is differentiable at B, of(B) = {Vf(B)}
Q If £(5) = |15l

of(B)={g € R liglls <1, (g, 3) = 1Bl }

o Note that § := {j : Bj %+ O} C &. So if Xz is one to one and Vj ¢ S,
12X (Y — XB)| < A, then we have uniqueness. Indeed, in this case, 5 = €.

o If A and A are two global minimizers of Cy 1, then

XB=xB and Bl =13
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The orthogonal case

Assume that the matrix X is orthogonal: X7 X = I,.

Alasso . _ H _ 2
B = argﬂnghgp{ﬂy XB%+ AllBllh}
p
= argmin ¢ > (87 = 2(X7 )5 + AIi))
j=1

Orthogonality allows for a coordinatewise study of the minimization problem.

Straightforward computations lead to
A A
I _ o T T
B)\aj'so = s|gn(Xj Y) x <|XJ Y| - 2)+
A A
)<J-TY -3 if )(lTY Z >
0 if —3<X'Y<3
Ty a3 XY <)

The LASSO (Least Absolute Shrinkage and Selection Operator) procedure
corresponds to a soft thresholding algorithm.
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The orthogonal case - Comparison

We assume that the matrix X is
orthogonal: XTX = lp. We compare

(with a; =: X/ Y): "= R
@ The OLS estimate: Bj”s = aj D
@ The Ridge estimate (y = 2): -
Aridge -
B =01+N"1y - o
@ The Lasso estimate or v
soft-thresholding rule (v = 1): » 1
A _ A
7 = simn(a x (1ai - 3 ST
N L

@ The Model Selection estimate or
hard-thresholding rule (y = 0):

PRT = a4 % Ly s vy

Comparison of 4 estimates for the
orthogonal case with A = 1.
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Tuning the Lasso - V/-fold Cross-validation

@ We write the model
Yi=x"B+e, i=1,...,n

with x; € RP and ¢; i.i.d. E[¢;] = 0, Var(e;) = o2.
@ For a number V/, we split the training pairs into V parts (or "folds").
Commonly, V =5 or V = 10.

@ V-fold cross-validation considers training on all but the kth part, and then
validating on the kth part, iterating over k =1,..., V.

@ When V = n, we call this leave-one-out cross-validation, because we leave
out one data point at a time.
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Tuning the Lasso - V/-fold Cross-validation

@ Choose V and a discrete set A of possible values for .
@ Split the training set {1,...,n} into V subsets, By, ..., By, of roughly the

same size.

© For each value of A € A, for k =1,...,V, compute the estimate ﬁAf\fk) on
the training set ((x;, Yi)ien, ek and record the total error on the validation
set By:

o 1 T A(=k)2
ex(A) = W(Bk)z (Yi=x"By)"

I‘EBk

@ Compute the average error over all folds,

1 < A
S-Sy 3 T

k=1 i€By

<

@ We choose the value of tuning parameter that minimizes this function CV

on A: - ]
A= argmin CV(A).
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Tuning the Lasso - Degrees of freedom

We write the model

Yi=x!B+e, e,-%./\/'(O,JZ) i=1,...,n.

Definition (Efron (1986))

The degrees of freedom of a function g : R” — R"” with coordinates g; is defined

by 1.
df(g) = = ZCOV(gi(Y)a Yi).

The degrees of freedom may be viewed as the true number of independent pieces
of informations on which an estimate is based. Example with rank(X) = p: We
estimate X/3* with

g(Y)=X(X"X)"1xTy

df(g) =02 Y Elx/ (X"X)'XTex ] =p
i=1

Vincent Rivoirard (Université Paris-Dauphine) Statistics for high-dimensional data 58 / 105



Tuning the Lasso - Degrees of freedom

Efron’s degrees of freedom is the main ingredient to generalize Mallows" C, in
high dimensions:

Proposition

Let 3 an estimate of 8. If
Cp =Y = XB|? — no”® + 20 dAX ),

then we have: .
E[C,] = E[|X5 — XB|]%].

Assume that for any A > 0, we have df an estimate of df(XﬂAA), where BA is the
Lasso estimate associated with A. Then, we can choose \ by minimizing

A | Y = XBa|? + 20°df
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From Ridge estimate to Lasso estimate

Tuning the Lasso - Degrees of freedom

Theorem (Zou, Hastie and Tibshirani (2007))
Assume rank(X) = p. Then, with

Sy = {ji Bx,ﬁéo}7

we have
E[card(5,)] = df(X[y).

Theorem (Tibshirani and Taylor (2012))
With

&= {j: XT(Y = X3\ = A},

we have

E[rank(Xe,)] = df(XBx), E[rank(Xs )] = df(X35)

This gives three possible estimates for df (X35 ).
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From Ridge estimate to Lasso estimate

[llustration on real data

Analysis of the famous " prostate data”, which records the prostate specific
antigen, the cancer volume, the prostate weight, the age, the benign prostatic
hyperplasia amount, the seminal vesicle invasion, the capsular penetration, the
Gleason score, the percentage Gleason scores 4 or 5, for n = 97 patients.

install.packages("ElemStatLearn")

install.packages("glmnet")

library(glmnet)

data("prostate", package = "ElemStatLearn")

Y = prostate$lpsa

X = as.matrix(prostate[,names(prostate)!=c("lpsa","train")])
ridge.out = glmnet(x=X,y=Y,alpha=0)

plot(ridge.out)

lasso.out = glmnet(x=X,y=Y,alpha=1)

plot(lasso.out)

Theses R commands produce a plot of the values of the coordinates of the Ridge
and Lasso estimates when A\ decreases.
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[llustration on real data
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The x-axis corresponds to ||3x]|1. The left-hand side corresponds to A = +oo, the
right-hand side corresponds to A = 0.

Vincent Rivoirard (Université Paris-Dauphine) Statistics for high-dimensional data 62 / 105



From Ridge estimate to Lasso estimate

Generalizations of the Lasso - the Dantzig selector

@ Remember that the Lasso estimate satisfies the constraint
_max 12X (Y — XBE=°)| < A
Ji=1...p

We then introduce the convex set

J

D= {5 €R”:  max 12X (Y — XB)| < /\} ,
=1,....p
which contains 8* with high probability if A is well tuned.

@ Remember also that we investigate sparse vectors where sparsity is measured
by using the ¢1-norm.

@ Therefore, Candes and Tao (2007) have suggested to use the Dantzig selector

ADantzig .
= argmin .
By gBeD 1181

o Note that [|322"&||; < |3%%°||;. Numerical and theoretical performances of
Dantzig and Lasso estimates are very close. In some cases, they may even
coincide.
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Generalization of the Lasso - " Adaptive” Lasso

@ Due its "soft-thresholding nature”, the Lasso estimation of large coefficients
may suffer from a large bias. We can overcome this problem by introducing
data-driven weights.

@ Zou (2006) proposed an adaptive version of the classical Lasso:

P
AZou .__ . o 2 1A,
37 = arg min, 1Y = XBI> + 2> wilBil ¢,

j=1

with
1

VVJ ~ .
Zou

@ The larger \BJ?’S , the smaller w;, which encourages large values for ﬁ/\j .

o Instead of 3°F, other preliminary estimates can be considered.

Vincent Rivoirard (Université Paris-Dauphine) Statistics for high-dimensional data 64 / 105



Generalizations of the Lasso - Relaxed Lasso

@ Instead of introducing weights, Meinshausen (2007) suggests a two-step
procedure:

@ Compute
Alasso . _ 2
By = argmin { 1Y = X8I + Xl }

and set ) .
5>\ = {j 5)\,1'750}.
@ For 6 €[0,1],

A,r\e,/gxed = arg min A {”Y — XB|> + 6)\Hﬂ||1}
BERP, SUPP(B)CSx

e If X is orthogonal,

XTy -2 ifXxTY >3
Bjeed = 0 if —3<X'Y<3
XTY +9 #XTY <-3

@ The value § = 0 is commonly used.
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Generalizations of the Lasso - The square-root Lasso

@ A natural property of the Lasso estimate would be to satisfy for any s > 0
in {|Y —XB|*+ A
argmin {1~ X812 + X1}

a.e. . 7 2
= argmin {[lsY — sXB|” + AsBl1}

o If the tuning parameter is chosen independently of o, the standard deviation
of Y, then the Lasso estimate is not scaled invariant. The estimate

. —1 Y—X 2 )\
argﬂn;glgp{a I BlIZ+ A8l }

is scaled invariant but is based on the knowledge of o.

@ Alternatively, you can consider the square-root Lasso:

i Y - X A
arg min {]| Bl + B}

which also enjoys nice properties.
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From Ridge estimate to Lasso estimate

Generalizations of the Lasso - Elastic net

In the model Y = X3* + ¢, consider

Blasso . 2
= m Y- X + A
Bx arg min, {I Bl 18112}

If we consider X = [X, X,] and if ijfo #£ 0, then any vector (3, such that

) Bege ifj#p
Brj = afisse ifj=p ;

(1-a)bz ifj=p+1
with e € [0, 1], is a solution of

arg min {||Y = X8I+ X8 }

QERP+1

We have an infinite number of solutions.
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Generalizations of the Lasso - Elastic net

@ In practice, predictors are different but they may be strongly correlated. In
this case, the Lasso estimate may hide the relevance of one of them, just
because it is highly correlated to another one. Coefficients of two correlated
predictors should be close.

@ The elastic net procedure proposed by Zou and Hastie (2005) makes a
compromise between Ridge and Lasso penalties: given A; > 0 and A\, > 0,

B, = arg min, {IY = XBI* + MllBll + A201811%} -

The criterion is strictly convex, so there is a unique minimizer.

@ If columns of X are centered and renormalized and if Y is centered, then for
J # k such that 6)\1 oy X ﬂ/\l o,k > 0 then

1Yl .
By — Biimsan| < /2= XX,

e We can improve 6/\1 3, and consider (1 + )\2)6/\1 %
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Generalizations of the Lasso - Fused Lasso

@ For change point detection, for instance, for which coefficients remain
constant over large portions of segments, Tibshirani, Saunders, Rosset, Zhu
and Knight (2005) have introduced the fused Lasso: given A; > 0 and
/\2 >0,

P p
Afused .__ . 2
B =argmin § 1Y = XBIP + A Y 18]+ X 3 18 = By

Jj=1 j=2

@ The first penalty is the familiar Lasso penalty which regularizes the signal.
The second penalty encourages neighboring coefficients to be identical.

@ We can generalize the notion of neighbors from a linear ordering to more
general neighborhoods, for examples adjacent pixels in image. This leads to a

penalty of the form
X Y 18— Byl

J~'
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Generalizations of the Lasso - Group Lasso

@ To select simultaneously a group of variables, Yuan and Lin (2006) suggest to
use the group-Lasso procedure. For this purpose, we assume we are given K
known non-overlapping groups Gi, G, ..., Gk and we set for A > 0,

K
Bg"’“”—argmm {HY XBIP+ 2D 115 ||}

k=1

where 5(k)j = f3j if j € Gk and 0 otherwise.
@ As for the Lasso, the group-Lasso can be characterized: V k,

y Bgroup . Aot
2X (Y = XBErr) = A x ¢ Bg,ou,,u if BESP # 0
Hsz Y Xﬁgroup H < A f/@gmup =0

@ The procedure keeps or discards all the coefficients within a block and can
increase estimation accuracy by using information about coefficients of the
same block.
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From Ridge estimate to Lasso estimate

Generalizations of the Lasso - Hierarchical group Lasso

The contour plots of this penalty

We consider 2 predictors Xj et X. -
function is

Suppose we want Xj to be included in
the model before X,. This hierarchy can
be induced by defining the overlapping
groups: We take Gy = {1,2} et

G, = {2}. This leads to

Boverlap _ arggglgp {HY _ )(B“2 + A (Hﬁlvﬂ2” + |ﬂ2|)}

Theorem (Zhao, Rocha et Yu (2009))

We assume we are given K known groups Gi, Gy, ..., Gk. Let Z; and
T, C{1,...,p} be two subsets of indices. We assume:

Q Foralll< k< K,I C Gy =1, C Gy.
@ There exists ky such that I, C Gy, and I; ¢ Gy,.
Then, almost surely, BIGZ #0=> ,@’g #0.
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Generalizations of the Lasso - The Bayesian Lasso

@ In the Bayesian approach, the parameter is random and we write:
Y|8,0% ~ N(XB,0%l,)

e Park and Casella (2008) suggest to consider a Laplace distribution for f:

2T A A
5|/\7UN£[1 {%EXP(— J|ﬁj|)] .

Then, the posterior density is

1 A
o< exp (=55 1Y = X617 - 2161

and the posterior mode coincides with the Lasso estimate with smoothing
parameter o .

@ The posterior distribution provides more than point estimates since it
provides the entire posterior distribution.

@ The procedure is tuned by including priors for o and .

@ Most of Lasso-type procedures have a Bayesian interpretation.
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Geometric constraints area

Exercice : Connect
each methodology
to its associated
geometric
constraints area.

@ Lasso
@ Elastic net
© Group-Lasso

@ Overlap
group-Lasso

B
A B
B
Bs
B s
8
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Theoretical guarantees - Support recovery

Question: Are the non-zero entries of the Lasso estimate 3125 in the same
positions as the true regression vector 5*7 We set

S*::{j: 5}‘;&0}7 §)\::{j: Bﬁ\aj-s";éO}

We can identify conditions under which S, =5

Theorem

We assume that for some v > 0, K > 0 and cpin > 0,
max [(XE Xs-) IXE Xl < 1,
Jjgs*
j:r?apoXjH <K, eig(XdXs+) > Cmin-

Then, if X > BK‘TT VIBP - \yith probability larger than 1 — p=#,

& * Alasso * 4o —
NS [ —/3||OOSA<F+II(X5T*X5*) 1||oo>
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From Ridge estimate to Lasso estimate

Theoretical guarantees - Prediction bounds

Theorem (Bunea et al. (2007))

Let us consider A > 3 maxj=1,..p |(XTe)j|. For any B € RP, let

Ixv|?
k(B) == —
B) = i T

C(B) :={v € RP: 20||v||1,supp(8) > IIl1,5upp(8)c }-
Then, if k() > 0,

A . 32X%)|8lo
XB25° — XB*||? < inf {3X = XFFB o= =0
| X Bx Bl < ot | X8 — XB*|| +(8)

@ Deriving A such that the first bound is satisfied with high probability is easy
by using concentration inequalities.

@ The Restricted Eigenvalues Condition expresses the lack of orthogonality of
columns of X. Milder conditions can be used (see Negahban et al. (2012) or
Jiang et al. (2017))
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Theoretical guarantees - Prediction bounds

@ From the previous theorem, we can deduce estimation bounds for ¢, and /¢
norms for estimating sparse vectors 5* (see Jiang et al. (2017)) :

1852 — 57117 < A%1187lo

1855 = B*ll S AllB*llo

@ The proof of the Theorem is based on the following lemma.

Let A > 3max;=1. . |(XTe)i| and B € RP. Then,
ABE=° — Bll1,suppisye < 3IXB — XB*|I2 + 5M||BE= - 5

|1,Supp(5)

IXBE0 = X517 < X8 — XB7I + 2A 55 — Bll1,supe(s)

@ Better constants can be obtained via a more involved proof.

Vincent Rivoirard (Université Paris-Dauphine) Statistics for high-dimensional data 76 / 105



From Ridge estimate to Lasso estimate

Take-home message

@ To overcome prohibitive computational complexity of model selection, convex
critera can be considered leading, in particular, to Lasso-type estimates.

@ By doing so, we introduce some bias but reduce the variance of predicted
values. Moreover, we can identify a small number of predictors that have the
strongest effects and then makes interpretation easier for the practitioner.

@ By varying the basic Lasso ¢;-penalty, we can reduce problems encountered
by the standard Lasso or incorporate some prior knowledge about the model.

@ In the linear regression setting, these estimates, which can be easily
computed, are very popular for high dimensional statistics. They achieve nice
theoretical and numerical properties.

@ Even if some standard recipes can be used to tune the Lasso, its calibration
remains an important open problem.
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Generalized linear models and related models

Chapter 3: Generalized linear Models and related models

@ In the last chapter, we considered estimation in the classical Gaussian linear
model with a special emphasis on the Lasso estimate. We studied variations
of the classical Lasso penalty.

@ In this chapter, we generalize the previous setting by varying the loss function.

@ Contents of the chapter: Among GLM, we shall lay special emphasis on

© The linear logistic model
@ The Cox Proportional Hazards model
© The Poisson model

The Poisson model is exemplified according to 3 illustrations:

a) Variable selection
b) Poisson inverse problem
c) Functional Poisson regression
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Generalized linear models and related models

Introduction

o Generalized Linear Models (McCullagh and Nelder (1989)) describe the
response variable using a member of the exponential family, which includes
the Bernoulli, Poisson and Gaussian as particular cases.

o For Generalized Linear Models (GLM), a transformation of the mean of the
response variable is approximated by linear combinations of predictors: We
assume that there exist a function g and 5* € RP such that for any
i=1,...,n

g(E[Yi]) ZB i»

where the Y;'s are coordinates of the response vector assumed to be
independent.

@ We discuss two approaches based on minimizing penalized criteria. The
criterion will be either the least squares criterion or the opposite of the
log-likelihood (they coincide for the Gaussian case). The penalty will be a
Lasso-type penalty.
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First example: Logistic regression

@ We consider the case where Y; € {0,1}. Linear logistic regression models
E[Y;] =P(Yi =1) by

ezj"’—l 18'*Xij

== s s (R ZB*X”

i.e. g is the logit function: g(x) = log (ﬁ) . The log-likelihood is a
concave function:

3

P
Yi Zﬁfxij — log (1 + X B,-*X,-,)
i=1 j=1

@ lIdeal for binary classification problems. Very popular in many fields.
@ Classical Lasso estimate (Tibshirani (1996)):

stso = argﬁng}gp {=L(B) + A||B]l1}
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First example: Logistic regression

o Group-Lasso estimate (Meier et al. (2008)): given K known non-overlapping
groups Gy, Gy, ..., Gk, we set for A > 0,

K
geroup . _ ind—
peroee = arg min { LB)+AY IIB(k)II} :
k=1
where 5(k)j = B, if j € G and 0 otherwise.
@ These estimates are consistent under mild assumptions.
@ Convexity allows for deriving fast coordinate gradient descent algorithms.
@ The previous approach can be extended for K > 2 outputs:
ezf:l ﬁ(*k)jxff

P(Y, = k) = k=1,
( ) SK e -1 BloyXi

K.

Note that this model is over-parametrized and (Bz‘k)j + ¢j)«,j and (6E(k)j)k7f
give the same model for any ¢; € R.

Vincent Rivoirard (Université Paris-Dauphine) Statistics for high-dimensional data 84 / 105



Generalized linear models and related models

Second example: Cox model

@ We consider the usual setup of survival analysis and in particular
right-censoring models that are very popular in biomedical problems.

@ For each patient, we consider its lifetime T (with density f) that can be
censored. We denote by C the independent censoring time. We face with
censoring when, for instance, the patient drops out of a hospital study: the
time of death is not observed, but we know that the patient was still alive
when he left the study.

@ So, we observe (Z, §), with

Z=min{T,C} and §=17<c.

o A key quantity is the survival function defined by S(t) = P(T > t), the
probability of surviving beyond the time t. We denote by h the common
hazard rate of T:

P(T € (t,t T>t f(t
)i tim BT E (24T >0) (1)
e—0 € S(t)
It corresponds to the instantaneous probability of death at time t, given
survival up till t.
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Generalized linear models and related models

Second example: Cox model

@ We consider n patients and, for each patient i/, we consider its lifetime T;.
We denote by C; the independent censoring time.

o We observe (Z;, §;), with
Z,' = min{T,-, C,} and (;,' = lTiSCi'

We assume that the vectors (T;, C;)1<i<, are independent.
@ We also observe for each patient, realizations of p predictors (for instance,
the measure of p genes expression).
@ For Cox regression:
@ Given the vector of predictors (Xjj)j=1,...,, associated with patient /, the basic

assumption is that any two patients have hazard functions whose ratio is
constant (w.r.t t), so

hO(t) = ho(t)pi-
@ It is assumed that there exists 8* € R” such that

pi = exp (iﬂfxf'f) >0 = hO(t) = ho(t) exp (iﬂfx"f)'
j=1

j=t
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Generalized linear models and related models

Second example: Cox model

@ To estimate 5* in high dimensions, we penalize the (concave) log-likelihood
function whose expression is given by

=30 (Y —roe( Y en(35%)
i=1 j=1 k: Z>Z; j=1

We have assumed that there are no ties (survival times are unique).
@ For A >0, we set

Blasso  .__ ; _
px=e = argmin {—L(5) + AllB]l1}-

@ Note that the baseline function hg does not play any role and we only
investigate influence of predictors.

@ See Tibshirani (1997) for a concrete study.
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Generalized linear models and related models

Third example: Poisson regression

@ When the response variable is nonnegative and represents a count, the
Poisson distribution is extensively used.

@ Poisson models are often used to model death rates.

o lllustration 1: Variable selection. Similarly, we write:

log (E[Y}]) Zﬁ*XU
i.e. g(x)=log(x) in the GLM setting. With u; = E[Y}], since
K
Y; ~ Poisson(p;) < P(Y; = k) = emmibi g 0,1,2,...

k!’
assuming that the Y;'s are independent, the log-likelihood is

£(B) = Z v ijﬂjx,-,- ~exp (iﬁjxg)}

and for A > 0, we set again
Alasso .
= —L A .
5 arg min {—L(5) + B}
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Generalized linear models and related models

Poisson inverse problem

Illustration 2: Poisson inverse problem

@ We observe a potentially random matrix A = (ax )k, € R7? and
conditionally on A, we observe

Z|A ~ Poisson(AB"),

where Z € R”, 8* € RY is sparse and the elements of Z are independent.
The aim is to recover 3*.

@ The matrix A corresponds to a sensing matrix which linearly projects 5* into
another space before we collect Poisson observations.

@ Example: Photon-limited compressive imaging
A widely-studied compressed sensing measurement matrix is the Bernoulli
ensemble, in which each element of A is drawn iid from a Bernoulli(q)
distribution for g € (0,1). (Typically, g = 1/2) The celebrated Rice
single-pixel camera (Duarte et al. (2008)) uses exactly this model to position
the micromirror array for each projective measurement.
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Generalized linear models and related models

Poisson inverse problem

@ Remember the RE assumption for the matrix A: For any § € RP,

| Av||?

= > 0.
vec(8) ||v]?

But since elements of A are nonnegative, we cannot rely on the RE
assumption that expresses that AT A is not far from Ip.

@ In many settings, there is a proxy operator, denoted X, which is amenable to
sparse inverse problems and is a simple linear transformation of the original
operator A. A complementary linear transformation may then be applied to Z
to generate proxy observations Y, and we use X and Y.

@ Example: Photon-limited compressive imaging:
A q1nx11;X1

x= Vnal—q) +/na(l—q)

= E[X"X] = I,
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Generalized linear models and related models

Poisson inverse problem

@ Standard Lasso:
As.d. ._ : _ 2
Bet = argmin {||Y = XB|* + A8}

@ Weighted Lasso:

P
Aw.l. . 2
= Y- X A
p arg min {II A"+ ;Zl kﬂkl}
@ Weights have to satisfy

BI(XT(Y = XB*))| < A(resp. \), fork=1,...,p. (4.1)

The role of the weights is twofold:
- control of the random fluctuations of X7 Y around its mean
- compensate for the ill-posedness due to X. lll-posedness is strengthened by
the heteroscedasticity of the Poisson noise.

@ Example: Photon-limited compressive imaging : if

1 n . )
=7~ Zlnx 5 E[X Y - X =0
(n—1) nq(l_q)( ; ¢ 1) X ( B
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L Genenlized lincarmodels and related models |
Poisson inverse problem
e Jiang et al. (2017) proved that, for photon-limited compressive imaging, the

RE assumption is satisfied with ming () > 0. If 3* is s-sparse, under
suitable conditions on s, if (4.1) is satisfied, then with large probability,

P
1 = B1IE S 22, 18" = B2 S D" Mgy 0.
k=1

@ We have to choose weights as small as possible such that (4.1) is satisfied.

@ Still for photon-limited compressive imaging, assume

ng? log p\ /2
sK—— and g> () .
log p n

If g is small and s is large, 3%/ achieves better rates since

”Bs.l. _ ﬂ*H2 5 5”6*”1 |ng’ ”BW‘I. _ ﬂ*”2 5 |0ngﬂ*H1 (5+ 1) .
qn n q
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Functional Poisson regression

Illustration 3: Functional Poisson regression

@ We consider the functional Poisson regression model, with n observed counts
Y; modeled by
Y; ~ Poisson(fo(X;)), X; €[0,1].
The X;'s are naturally ordered (times or positions)
e Example (lvanoff et al. (2016)) :

Grey bars indicate the number of reads that match genomic positions (x-axis,
in MegaBases). The red line corresponds to the estimated intensity function.
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Generalized linear models and related models

Functional Poisson regression

@ In the model
Y; ~ Poisson(fo(X;)), Xi €]0,1]

the goal is to estimate the function fy.

@ Let f a candidate estimator of fy decomposed on a functional dictionary with
p elements denoted T = {p;}j=1,...p

@ f is assumed to be positive, so we set

log(f Z Bi¢j, = (B))j=1

@ We enrich the standard basis approach: We assume that log(fy) is well
approximated by a sparse linear combination of T.
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Generalized linear models and related models

Functional Poisson regression

@ The basis approach is designed to
catch specific features of the signal
(p=n).

o If many features are present
simultaneously?

@ Consider overcomplete dictionaries

(p>n). 2
@ Typical dictionaries: Histograms,
Daubechies wavelets, Fourier, 2

°

200 400 600 800 1000

@ How to select the dictionary
elements?
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Generalized linear models and related models

Functional Poisson regression

@ The basis approach is designed to
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Functional Poisson regression

@ We consider a likelihood-based penalized criterion to select 5. Let
Xij = ¢;j(Xi). Then, the log-likelihood is, as previously,

£ =330

e Two different ways of penalizing —£(3) are proposed:
@ Standard Lasso: Given positive weights (););,

B—argmm{f +Z)\|,BJ}

@ Group-Lasso: We partition the set of indices {1,..., p} into K non-empty
groups: {1,...,p} =G UG U---U Gg.

K
o
et s= argguin { = £09) + 3 MMz}

where the X{'s are positive weights and g, stands for the sub-vector of 3
with elements indexed by the elements of Gy.
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Generalized linear models and related models

Functional Poisson regression

For any j, we choose a data-driven value for \; as small as possible so that with
high probability, for any j € {1,..., p},

[(XT(Y —=E[Y]D);l < Ay
This leads to involved formula.

Theorem (lvanoff et al. (2016))

Let v > 0 be a constant. Define V; = 37, ©F(Xi)Yi and

V=V + \/27 log pV; max 2?(X;) + 37 log p max p?(X;).

Let |
., rlogp
Aj =\ 2ylog pV; + —== max|p;(Xi)],
then 3
P(IXT(Y ~EDD)I > ¥) < =
Vincent Rivoirard (Université Paris-Dauphine) Statistics for high-dimensional data

97 / 105



Generalized linear models and related models

Functional Poisson regression

o For the group-Lasso, we choose the weights A as small as possible so that
with high probability, for any k € {1,..., K},

IX(Y —E[YDI <X

@ This is the analog of standard Lasso weights but with absolute values
replaced by £>-norms. Formula are much more involved but derived weights
are nevertheless data-driven.

@ We show that the associated Lasso/Group Lasso procedures are theoretically
optimal (oracle inequalities for the Kullback divergence).

@ With a theoretical form for the weights, much computing power is spared.
See Ivanoff et al. (2016) for more details.
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Generalized linear models and related models

Functional Poisson regression

We considered the classical Donoho & Johnstone functions (Blocks, bumps,
doppler, heavisine).

The intensity function f, is set such that (with o € {1,...,7})

fo = aexp go

Observations are sampled on a fixed regular grid (n = 21°) with
Yi ~ P(f(X)).
Use Daubechies basis, Haar basis and Fourier as elements of the dictionary.

Check the normalized reconstruction error:

If —fl3

16113

@ Compete with the Haar-Fisz transform and cross-validation.

MSE =
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G alized linear models and related models

Reconstruction errors

Vincent Rivoira

mse

blocks bumps
Qi
S5
b\i\ f
2 : B : i s
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doppler § heavi
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Q
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Estimated intensity functions (Lasso)

blocks bumps
0.00 02 050 07 10 000 0z 050 07 00
doppler heavi
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Estimated intensity functions (group-Lasso)

blocks bumps

0.00 0.25 0.50 0.75 1.0 0.00 025 0.50 075 00

doppler heavi

— lasso.exact
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—f0
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Choosing the best dictionary by cross-validation

MSE

MSE

Statistics for high-dimensional data
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Take-home message

@ Methodologies proposed to linear regression models can be adapted to more
intricate models, such as Generalized Linear Models or related models.

@ Alternatively to the /p-criterion, we can use the likelihood-based criterion. In
the last case, most of the times, the opposite of the log-likelihood, when
convex, is penalized.

@ For most of GLM, the noise level is not constant. Heteroscedasticity has to
be taken into account to calibrate Lasso-type procedures.

@ The last point is even more crucial for inverse problems.
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Generalized linear models and related models
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