Empirical properties of the Lasso by simulations Part 1

Franck Picard*

*Laboratoire de Biométrie et Biologie Évolutive, Univ. Lyon 1

ECAS, High Dimensional Statistics Course, October 2017

Objectives

- Study empirical properties of the Lasso using simulations
- Learn how to set up numerical simulations, often needed when using or developing methods
- Simulations are essential:
 - *i*) study the properties of a method in a controlled numerical environment,
 - *ii*) assess the robustness to hypothesis,
 - iii) fairly compare methods

When (can) should we use the Lasso ? Is it the "best" method ? A "better" method ?

Numerical simulations in a controlled environment

- What are the "empirical properties" that we want to study ?
 - \rightarrow Estimation quality,
 - \rightarrow Prediction accuracy
 - $\rightarrow\,$ Model selection accuracy
- What is a controlled environment ?
 - $\rightarrow\,$ List hypothesis on which the method is built
 - \rightarrow Ex: distribution, dimension, dependencies
 - $\rightarrow~{\rm Turn}$ the buttons using an experimental design

Practice, Part 1

- Generate simulated data
- Occupie the Lasso using glmnet
- **3** Assess the performance of the Lasso
- Set up an experimental design for simulations
- **6** Run first simulations and interpret the results

Simulations set up () Simulation of observations

• We consider the Gaussian regression model such that

$$Y_i = x_i^T \beta^* + \varepsilon_i, \ \varepsilon_i \sim \mathcal{N}(0, \sigma^2),$$

- $Y \in \mathbb{R}^n$, et $\beta^* \in \mathbb{R}^p$ with p_0 non null elements.
- J_0 : the set of non null positions in β^* :

$$J_0 = \{j \in \{1, ..., p\}, \beta_j^* \neq 0\}$$

• For the sake of simplicity, only one distinct non null value in β^* :

$$\beta^* = \beta_0^* \times (1, \ldots, 1, 0, \ldots 0).$$

• We consider independent covariates with variance σ_X^2

The Lasso estimator in practice with glmnet glmnet package page

- By Friedman, Hastie, Tibshirani and Simon (Stanford University)
- · Gaussian regression, generalized linear models and cox models
- Lasso ($\alpha = 1$), Ridge Regression ($\alpha = 0$), Elastic Net ($\alpha \in]0,1[$)

$$\widehat{\beta}_{\lambda} = \min_{\beta_0,\beta} \frac{1}{N} \sum_{i=1}^{N} w_i l(y_i, \beta_0 + \beta^T x_i) + \lambda \left[(1-\alpha) ||\beta||_2^2 / 2 + \alpha ||\beta||_1 \right],$$

- λ values are chosen within a sequence $[\lambda_{\min}, \lambda_{\max}]$
- λ_{\max} : the smallest λ above which $\hat{\beta}_{\lambda} = 0_p$
- λ will be chosen by cross-validation

2) Computing the Lasso with glmnet

Assessing the performance of the Lasso • 3) Quality of estimation

- Estimation : Bias and Mean Square Error $\mathbb{E}\left[\widehat{\beta}_{\lambda}\right]$, $\mathbb{E}\left[(\widehat{\beta}_{\lambda} \beta^*)^2\right]$
- Model Selection : using binary rule
 - a "positive" coefficient is a non-null coefficient
 - a "negative" coefficient is a null coefficient
 - criteria based on J_0 and $\widehat{J_0}$

• Prediction
$$\mathbb{E}\left(\|Y_0 - X\widehat{eta}_{\lambda}\|^2\right)$$
, with Y_0 a new observation

Computing Bias and Variance

- if nbsimul simulations are performed, with new observations $Y^{(h)}$ and a new estimator $\hat{\beta}_{\lambda}^{(h)}$
- Bias and Mean Square Error are estimated by:

$$\widehat{\mathsf{B}} = \frac{1}{\mathsf{nbsimul}} \sum_{h=1}^{\mathsf{nbsimul}} \sum_{j=1}^{p} \left(\widehat{\beta}_{j,\lambda^{(h)}} - \beta_{j}^{*}\right)$$
$$\widehat{\mathsf{MSE}} = \frac{1}{\mathsf{nbsimul}} \sum_{h=1}^{\mathsf{nbsimul}} \sum_{j=1}^{p} \left(\widehat{\beta}_{j,\lambda^{(h)}} - \beta_{j}^{*}\right)^{2}$$

Model selection (+ 4) Quality of selection

- Estimated dimension: $|\widehat{J}_0|$
- Accuracy: proportion of correctly selected coefficients

$$\frac{|J_0 \cap \widehat{J_0}| + |J_0^c \cap \widehat{J_0^c}|}{p}$$

• Sensitivity: proportion of true positives (selected) among positives

$$\frac{|J_0 \cap \widehat{J_0}|}{|J_0 \cap \widehat{J_0}| + |J_0 \cap \widehat{J_0^c}|}$$

• **Specificity**: proportion of true negatives (non selected) among negatives

$$\frac{|J_0^c \cap \widehat{J}_0^c|}{|J_0^c \cap \widehat{J}_0^c| + |J_0^c \cap \widehat{J}_0|}$$

Prediction Error (> 5) Quality of prediction

- In practice there is no "new" observation, so we need to use cross-validation
- K-fold CV: randomly split {1,..., n} into K independent samples split(sample(n), seq(1,n, by=K))
- Run the Lasso on the subsample: $\widehat{\beta}_{\lambda}^{(-k)}$
- Assess the prediction error using the data that were not used for estimation Y^k

Influencing Factors (> 5) Running first simulations

- n: to study the asymptotic / non asymptotic frameworks
- p: to study high dimension or low-dimension performance

 \rightarrow We fix *n* and modify the *n*/*p* ratio

- p_0 : the sparsity of β^* , that is unknown in practice
- β^* and σ to assess the impact of the signal to noise ratio $SNR = \frac{\mathbb{E}_X \left(\mathbb{E}(Y_i | \mathbf{x}_i)^2 \right)}{\mathbb{E}_X \left(\mathbb{V}(Y_i | \mathbf{x}_i) \right)} = \left(\frac{\sigma_X}{\sigma_{\varepsilon}} \beta_0^* \right)^2 p_0.$

Consider Low/High SNR with growing dimension p, p_0 fixed

Estimation quality

The quality of estimation decreases when p increases

Shrinkage

Shrinkage (λ) increases when p increases

Model selection and accuracy

The Lasso over-estimates the dimension of the model when λ is calibrated by cross validation. The overall accuracy of selection is excellent (when there is some signal)

Sensitivity and Specificity

The sensitivity of detection (with signal) decreases when p increases (false positives issue). The overall specificity is excellent

Prediction and Time of execution

The prediction error increases with p as well as the computational complexity (which depends on the optimization algorithm)

Conclusion Part 1

- The performance of the Lasso are "good" when p < n
- The bias should be corrected for interpretation purposes
- Model selection could be also improved
- The quality of the detection is good (Acc, Sens, Spe)
- Prediction should be used cautiously, regarding p

 $\star\,$ The Lasso, the "best" ? What about competing methods ?

 $\star\,$ All results depend on the calibration of λ