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Practice, Part 2

@® Compete the Lasso with other selection methods
® Modify the Lasso: adaptive lasso and group lasso

©® Compare performance in low/high dimension
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First

Practice 1

competitors

OLS (negative control): no selection. Use slight ridge regularization
for high dimensional cases

— How does the Lasso compete with the "worst” method ?

Oracle (positive control): knows the true null and non-null
positions. Perform OLS on Jy.

— How does the Lasso compete with the "best” method 7

Stepwise: variable selection based on an iterative algorithm (¢p)

— What is the gain of using the Lasso (¢1) compared with ¢y
selection 7


http://pbil.univ-lyon1.fr/members/fpicard/TP-lasso-2017-part2.html

Modifications of the Lasso: the adaptive Lasso

e Two-step procedure to account for bias and to perform a
component-wise selection.

o First estimate Bin;t, using the Lasso or Ridge regression

e Construct weights such that w; = @,in;t, and solve
= avaming | L1y - xaiE Y0 sy
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o If Bj’;nit is big, the penalty \/|w;| will be small, hence a reduced
shrinkage for 3;
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http://pbil.univ-lyon1.fr/members/fpicard/TP-lasso-2017-part2.html

The Group Lasso

When covariates can be grouped to be shrunk/selected

Prior information that can be put in a structured penalty

K
~ . 1
k=1 JEGK

One could consider a group-wise calibration of A

e Requires some prior knowledge
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http://pbil.univ-lyon1.fr/members/fpicard/TP-lasso-2017-part2.html

Estimation quality: Bias
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The Lasso is more biased than other methods but the the adaptive
version corrects the bias.
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Estimation quality: MSE
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Performing no selection explodes the MSE !
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Estimation quality: MSE-bis
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Stepwise precision not robust to increase in p. Adaptivity increases

precision.
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Estimation quality: Model Selection
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The Lasso is more conservative when signal is low but overestimates the
dimension when there is signal. The adaptive lasso is accurate for model
selection
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Estimation quality: Accuracy
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Accuracies are comparable between variable selection methods
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Estimation quality: Sensitivity
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The Lasso is more conservative (less sensitive)...
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Estimation quality: Specificity
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...with comparable specificities
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Estimation quality: Prediction Error
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Prediction errors are comparable (lasso/stepwise) when there is some
signal. The adaptive lasso is more accurate in prediction
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Estimation quality: Time of execution
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The complexity of the stepwise method is prohibited for large datasets !
Be cautious when comparing execution time (depends on
implementation)
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What about high dimensional models ?

e We explored only situations when n < p, what about n > p 7

e The situation becomes complex because the information is no longer
contained in the SNR, but also in a mix between n, p and pgy

e In the context of linear regression, M. Wainwright introduced the

notion of rescaled sample size ——"*—
po log(p—po)

e Question : what would it take to recover the support of 3 in terms
of rescaled sample size ?

e S.(p) is the vector of signs of 3 such that:

+1 if5; >0
Se(Bi)=4¢—-1 ifBi<0
0 if 3i =0
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https://people.eecs.berkeley.edu/~wainwrig/Papers/Wai09_Sharp_Journal.pdf

Results on signed support
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M. Wainwright shows the existence of two constants that depend on
Y =V(X), 0 < 6y(X) <6,(X) < oo such that for a given value of
the lasso regularization hyperparameter

\ :\/202 log(po) log(p — po)
n n

if n/(2po(log(p — po))) > 0u(¥) then it is always possible to find a
value of A such that the lasso has a unique solution 8 with

P{S4+(5*) = S4(B)} tending to 1.
if n/(2po(log(p — po))) < 8¢(X), then whatever the value of A > 0,
no solution of the lasso will recover the signed support of 5%,

P{S+(8*) = S+(B)} tends to 0.
if £ =1/, then 6,(1) = 6,(/) = 1.
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Rescaled Sample size and Accuracy
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http://pbil.univ-lyon1.fr/members/fpicard/TP-lasso-2017-part2.html

Rescaled Sample size and Sensitivity
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Rescaled Sample size and Specificity
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Conclusions

e Quite complex to compare methods based on multiple criteria :
model selection, selection accuracy, prediction, time of execution

Overall, the adaptive Lasso seems to perform well on all criteria.
Simple to implement

All results highlight the importance of calibration in practice

Performance in high dimension depend on a mix between p, pg, n
and SNR
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