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Practice, Part 2

1 Compete the Lasso with other selection methods

2 Modify the Lasso: adaptive lasso and group lasso

3 Compare performance in low/high dimension
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First competitors Competitors

• OLS (negative control): no selection. Use slight ridge regularization
for high dimensional cases

→ How does the Lasso compete with the ”worst” method ?

• Oracle (positive control): knows the true null and non-null
positions. Perform OLS on J0.

→ How does the Lasso compete with the ”best” method ?

• Stepwise: variable selection based on an iterative algorithm (`0)

→ What is the gain of using the Lasso (`1) compared with `0
selection ?
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http://pbil.univ-lyon1.fr/members/fpicard/TP-lasso-2017-part2.html


Modifications of the Lasso: the adaptive Lasso Competitors

• Two-step procedure to account for bias and to perform a
component-wise selection.

• First estimate β̂init, using the Lasso or Ridge regression

• Construct weights such that wj = β̂j ,init, and solve

β̂λ = Argminβ

1

n
‖Y − Xβ‖22 +

p∑
j=1

λ

|wj |
|βj |

 .

• If β̂j ,init is big, the penalty λ/|wj | will be small, hence a reduced
shrinkage for βj
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http://pbil.univ-lyon1.fr/members/fpicard/TP-lasso-2017-part2.html


The Group Lasso Competitors

• When covariates can be grouped to be shrunk/selected

• Prior information that can be put in a structured penalty

β̂λ = Argminβ

1

n
‖Y − Xβ‖22 + λ

K∑
k=1

√
nk

∑
j∈Gk

β2j

 .

• One could consider a group-wise calibration of λ

• Requires some prior knowledge
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Estimation quality: Bias
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The Lasso is more biased than other methods but the the adaptive
version corrects the bias.

Practice 1 6/20



Estimation quality: MSE
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Performing no selection explodes the MSE !
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Estimation quality: MSE-bis
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Stepwise precision not robust to increase in p. Adaptivity increases
precision.
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Estimation quality: Model Selection
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The Lasso is more conservative when signal is low but overestimates the
dimension when there is signal. The adaptive lasso is accurate for model
selection
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Estimation quality: Accuracy
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Accuracies are comparable between variable selection methods
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Estimation quality: Sensitivity
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The Lasso is more conservative (less sensitive)...
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Estimation quality: Specificity
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...with comparable specificities
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Estimation quality: Prediction Error

● ●
●

●
●

● ●
●

●
●● ●

●

●
●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●
● ●

●
●

●
●

●●

●

●
●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

● ● ●
●

●●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

snr=0.1 snr=1 snr=10

25 50 75 100 25 50 75 100 25 50 75 100

0

10

20

30

p

pr
ed

.e
rr

●

●

●

●

●

●

lasso
adalasso
grplasso
stepwise
oracle
mco

Prediction errors are comparable (lasso/stepwise) when there is some
signal. The adaptive lasso is more accurate in prediction
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Estimation quality: Time of execution
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The complexity of the stepwise method is prohibited for large datasets !
Be cautious when comparing execution time (depends on
implementation)
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What about high dimensional models ?

• We explored only situations when n ≤ p, what about n > p ?

• The situation becomes complex because the information is no longer
contained in the SNR, but also in a mix between n, p and p0

• In the context of linear regression, M. Wainwright introduced the
notion of rescaled sample size n

p0 log(p−p0)
• Question : what would it take to recover the support of β in terms

of rescaled sample size ?

• S±(β) is the vector of signs of β such that:

S±(βi ) =


+1 if βi > 0

−1 if βi < 0

0 if βi = 0
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https://people.eecs.berkeley.edu/~wainwrig/Papers/Wai09_Sharp_Journal.pdf


Results on signed support

• M. Wainwright shows the existence of two constants that depend on
Σ = V(X ), 0 < θ`(Σ) ≤ θu(Σ) <∞ such that for a given value of
the lasso regularization hyperparameter

λn =

√
2σ2 log(p0) log(p − p0)

n

• if n/(2p0(log(p − p0))) > θu(Σ) then it is always possible to find a
value of λ such that the lasso has a unique solution β̂ with
P{S±(β∗) = S±(β̂)} tending to 1.

• if n/(2p0(log(p − p0))) < θ`(Σ), then whatever the value of λ > 0,
no solution of the lasso will recover the signed support of β∗,
P{S±(β∗) = S±(β̂)} tends to 0.

• if Σ = I , then θ`(I ) = θu(I ) = 1.

Practice 1 16/20



Rescaled Sample size and Accuracy Results on Support Accuracy
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Rescaled Sample size and Sensitivity
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Rescaled Sample size and Specificity
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Conclusions

• Quite complex to compare methods based on multiple criteria :
model selection, selection accuracy, prediction, time of execution

• Overall, the adaptive Lasso seems to perform well on all criteria.
Simple to implement

• All results highlight the importance of calibration in practice

• Performance in high dimension depend on a mix between p, p0, n
and SNR
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