

Application of the Lasso on genomic data

Part 3

Franck Picard*

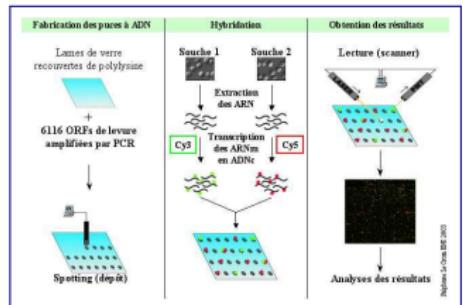
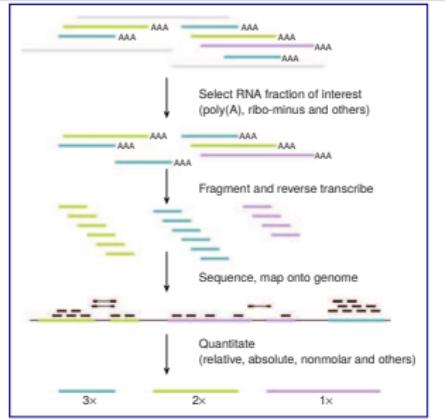
**Laboratoire de Biométrie et Biologie Évolutive, Univ. Lyon 1*

ECAS, High Dimensional Statistics Course, October 2017

Genomics and high dimensional statistics

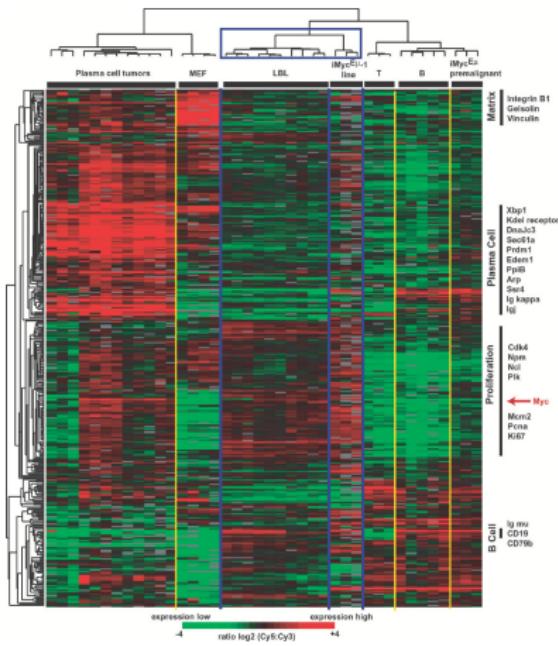
- 1990-2000: DNA microarrays
- 2000-: massive parallel sequencing:
RNA-Seq, chIP-Seq
- NGS : next generation sequencing

Genome wide molecular portraits of cells



The high throughput point of view

- Before high throughput technologies, gene expression was quantified gene by gene
- High throughput technologies completely changed the perspectives of biologists
- In one experiment, one has access of the measurements of all transcripts in a cell (tissue)



Structure of datasets

	statut	exon ₁	exon ₂	...	exon _p	Age	Sexe	Glycemia
$i = 1$	0	10000	50		0	38	F	0.8
$i = 2$	1	10000	30		1	15	M	0.2
\vdots								
$i = N$	1	20000	25		3	90	F	1.5

For each individual

- Status (discrete/continuous)
- gene expression measurements (counts ou continuous)
- Clinical data

Goal

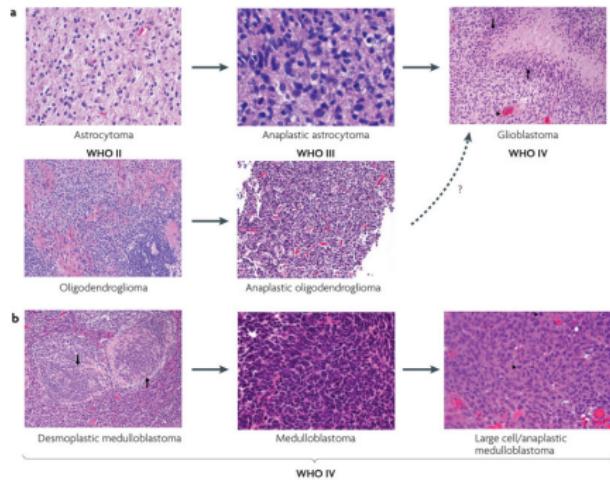
Explain the variations of a given response with gene expression measurements.

Example of statistical tasks

- Experimental Design
- Differential Analysis (multiple testing)
- Unsupervised Classification (clustering)
- Phenotype prediction (supervised)

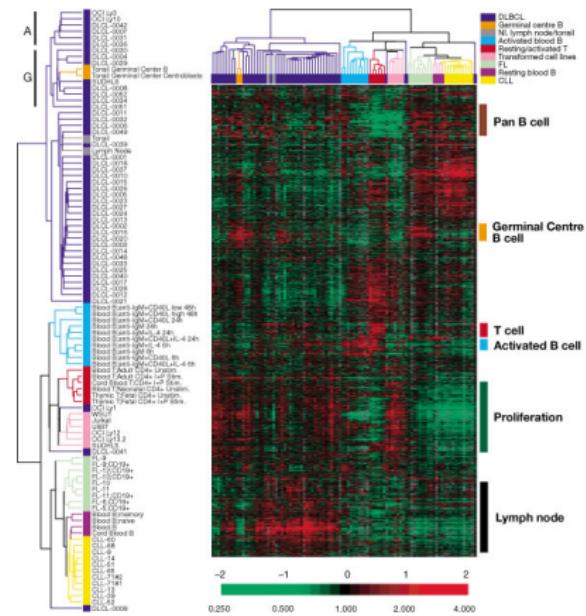
Standard statistical tasks but need to be revisited to account for high dimension

New classifications and personalized medicine



Nature Reviews | Cancer

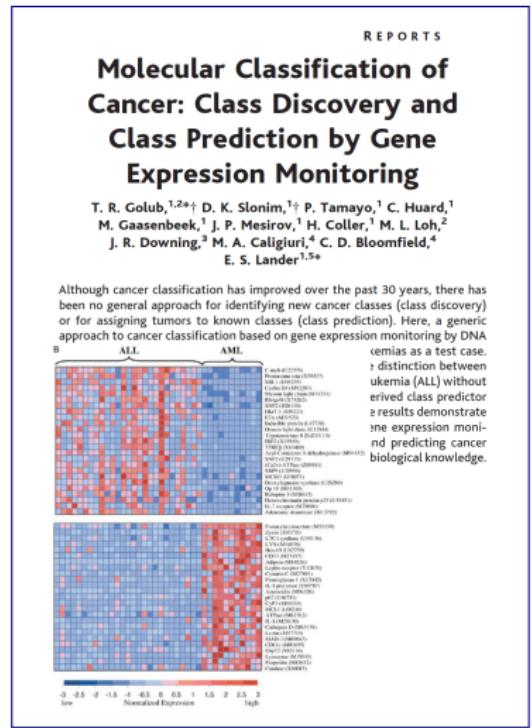
Classification based on histological data



Classification on molecular data

Towards new predictions ?

- In 1999 an article proposes to predict the molecular status of leukemia patients using genomic signatures
- The number of individuals is 38 for 6817 genes !
- Methodological developments for genomic signatures and prediction



Data set: Breast Cancer Relapse

- level expression of 54613 genes for 294 patients affected by breast cancer.
- Y : relapse after 5 years (binary)
- 214 patients without relapse and 80 with a relapse.
- Preselection of 5000 genes
- What is the (ada)Lasso estimation of this data, estimation ? Prediction

► Lasso on genomic data

 Open

ONCOGENOMICS
A refined molecular taxonomy of breast cancer

M Guedj^{1,3}, L Marisa^{1,5}, A de Reynies^{1,5}, B Orsetti^{2,3}, R Schiappa⁴, F Bibeau⁴, G MacGrogan⁵, F Lerebours⁶, P Finetti⁷, M Longy⁸, P Bertheau⁹, F Bertrand¹⁰, F Bonnet¹¹, AL Martin¹², JP Feugeas^{9,13,17}, I Biéche¹⁴, J Lehmann-Che^{10,11,12}, R Lidereau¹², D Birnbaum¹³, F Bertucci¹⁷, H de Thé^{1,6,8,11,12,13} and C Theillet^{2,3,14,15}

¹Ligue Nationale Contre le Cancer, Cartes d'Identité des Tumeurs program, Paris, France; ²IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France; ³CRCL Val d'Aurelle Paul Lavaugie, Montpellier, France; ⁴Department of Pathology, Institut Curie, Paris, France; ⁵INSERM U955, Institut Curie-Hôpital Centre René Huguenin, Paris, France; ⁶Université Victor Segalen Bordeaux 2, Bordeaux, France; ⁷Oncogenetics laboratory, INSERM U735, Institut Curie-Hôpital Centre René Huguenin, St Cloud, France; ⁸Department of Molecular Oncology, CCRM, Centre de Recherche en Cancérologie de Marseille, Institut Paoli Calmettes, Marseille, France; ⁹Hôpital St Louis, APHP, Department of Pathology, University Paris, Denis Diderot, Paris, France; ¹⁰Université Paris Descartes, Paris, France; ¹¹Hôpital Saint-Louis, APHP, Paris, France; ¹²Hôpital Saint-Louis, APHP, Paris, France; ¹³INSERM UMR 9407/212, Paris, France; ¹⁴Department of Hematology, Institut Curie, Paris, France; ¹⁵INSERM U896, CRCL Val d'Aurelle-Paul Lavaugie, Montpellier, France and ¹⁶Université Montpellier 1, Montpellier, France

ENOMICS

The current histological breast cancer classification is often but imprecise. Several molecular classifications of breast cancers based on expression profiling have been proposed as alternatives. However, their reliability and clinical utility have been repeatedly questioned, notably because most of them were derived from relatively small numbers of tumors and were not compared with the outcomes of 537 breast tumors using three unsupervised classification methods. A core subset of 355 tumors was assigned to six clusters by all three methods. These six prognostic factors or therapeutical targets in breast cancer.

Oncoogene (2012) 31, 1196–1206 doi:10.1038/onc.2011.301; published online 25 July 2011

Keywords: breast cancer; molecular classification; taxonomy; transcriptome; CGH-array, outcome

(Sparse) PCA to visualize the data

- $\mathbf{X}_{[n \times p]}$ measurements of p genes over n individuals (centered)
- Find a K dimensional subspace to represent the data
- Define $\mathbf{U}_{n \times K}$ the coordinates of the individuals in the new space
- Define $\mathbf{V}_{p \times K}$ the coordinates of the variables in the new space (loadings)

Approximate $\mathbf{X} \simeq \mathbf{UV}'$ by linear projection

Principal components

- \mathbf{t}_k is a linear combination of the observed variables

$$\mathbf{t}_k = \mathbf{X}\mathbf{w}_k$$

- $\mathbf{w}_k \in \mathbb{R}^p$: contributions of the variables to the component
- The objective function is the empirical variance of the components $\widehat{\mathbb{V}}(\mathbf{t}_k)$ (under orthogonality constraints)

$$\widehat{\mathbf{w}}_k = \arg \max_{\mathbf{w}_k \in \mathbb{R}^p} \{ (\mathbf{w}_k' \mathbf{X})' \mathbf{X} \mathbf{w}_k \}$$

- The solution is explicit and is given by the K eigen vectors of the empirical variance of \mathbf{X} (centered)

Sparse PCA

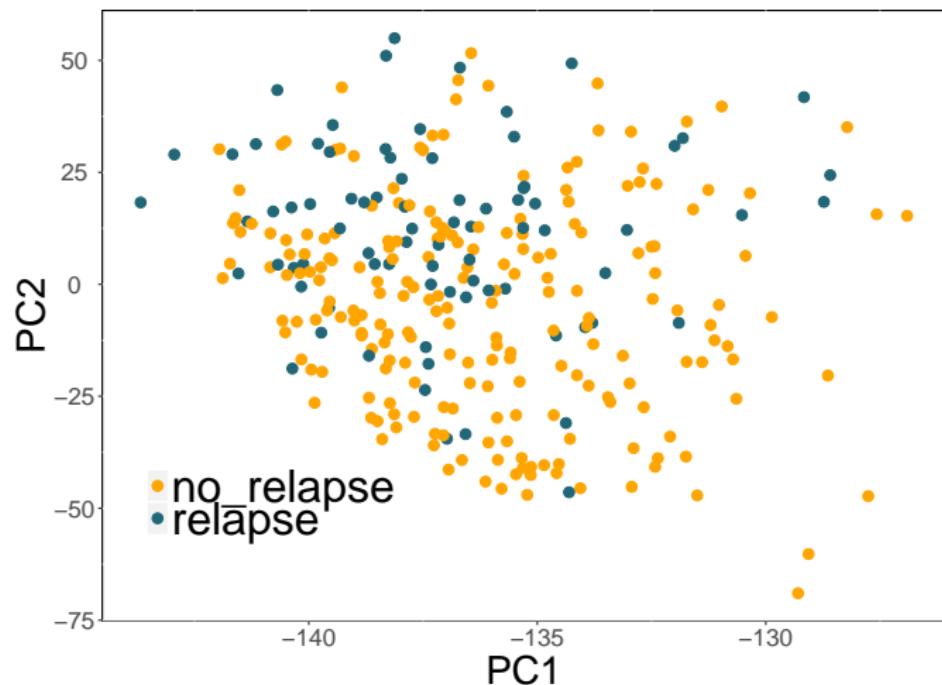
▶ Sparse PCA coding

- Some variables may contribute poorly to components (Ex of Sparse PCA paper)
- \mathbf{w}_k are assumed to be sparse

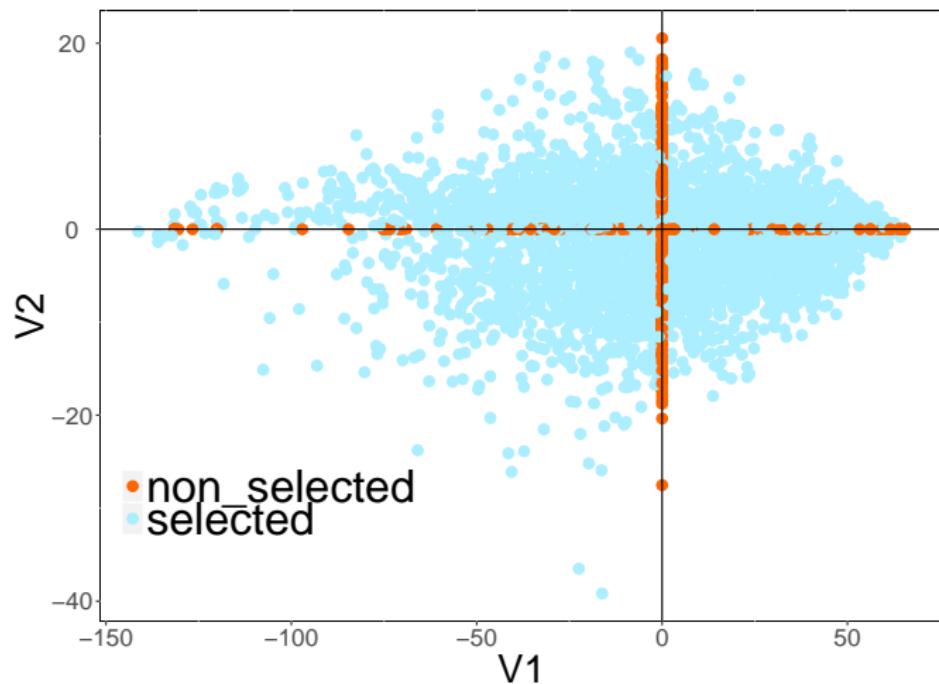
$$\hat{\mathbf{w}}_k(\lambda) = \arg \max_{\mathbf{w}_k \in \mathbb{R}^p} \{ (\mathbf{w}_k' \mathbf{X})' \mathbf{X} \mathbf{w}_k - \lambda \sum_k \|\mathbf{w}_k\|_1 \}$$

- Also known as sparse coding or sparse matrix factorization
- Need to calibrate the hyperparameter by cross validation

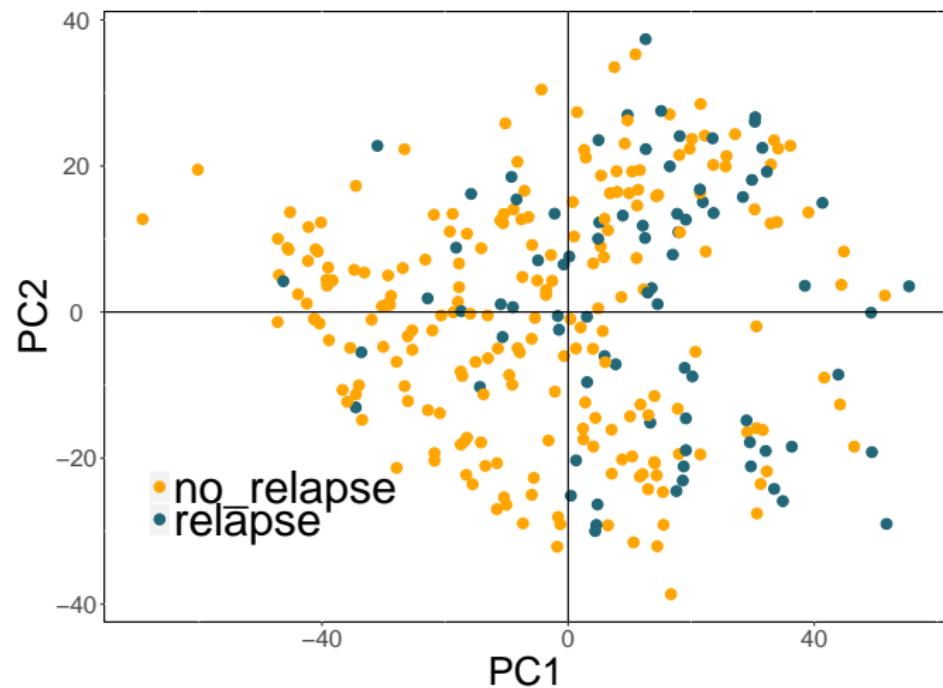
(Sparse) PCA to visualize the individuals



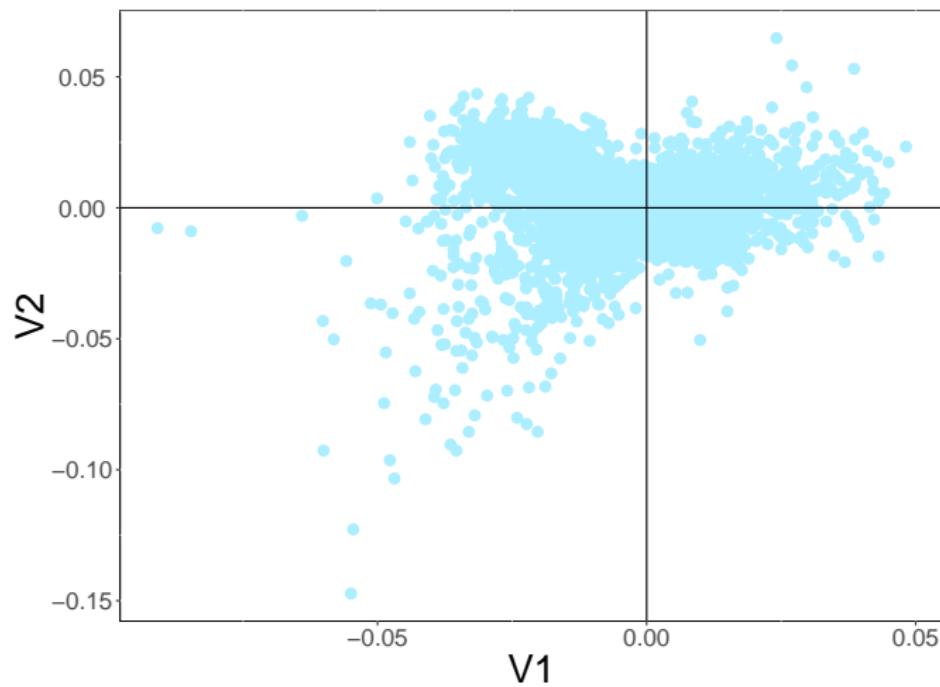
(Sparse) PCA to visualize the variables



(Sparse) PCA to visualize the individuals



(Sparse) PCA to visualize the variables



(Sparse) PLS for supervised dimension reduction

► Sparse PLS coding

- What if there is a response vector \mathbf{Y} ?
- Instead of reduction dimension based on $\widehat{\mathbb{V}}(\mathbf{t}_k)$, use $\widehat{\text{Cov}}(\mathbf{t}_k, \mathbf{Y})$

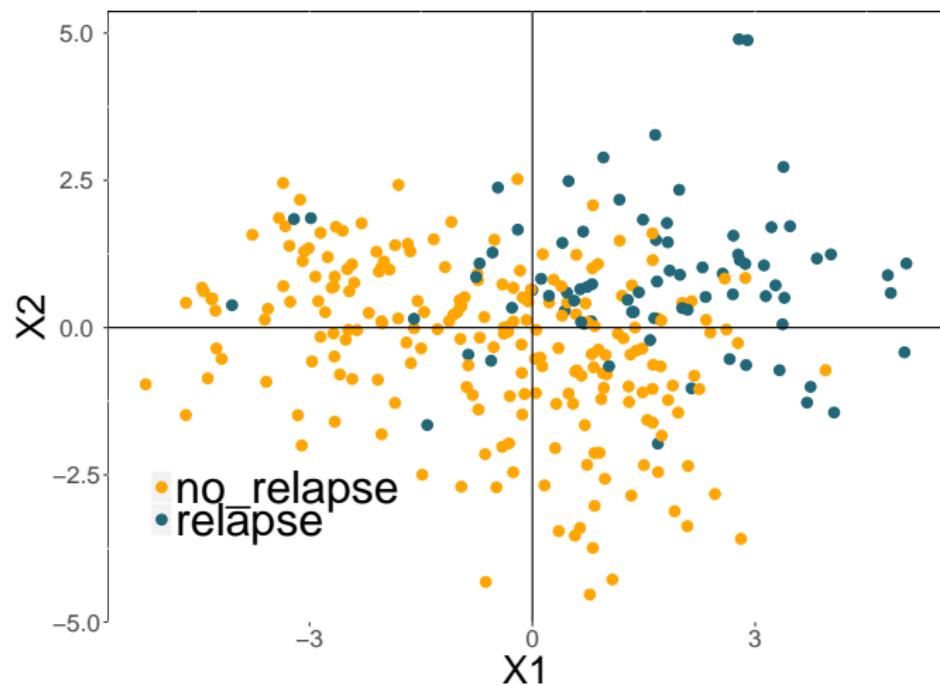
$$\widehat{\mathbf{w}}_k(\lambda) = \arg \max_{\mathbf{w}_k \in \mathbb{R}^p, \|\mathbf{w}_k\|_2^2=1} \{(\mathbf{w}_k \mathbf{X})' \mathbf{Y} - \lambda \sum_k \|\mathbf{w}_k\|_1\}$$

- Can be reformulated as a regression problem: $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{E}$
- Considering $\mathbf{T} = \mathbf{X}\mathbf{W}$ the matrix of principal components, PLS performs a regression of \mathbf{Y} on \mathbf{T}

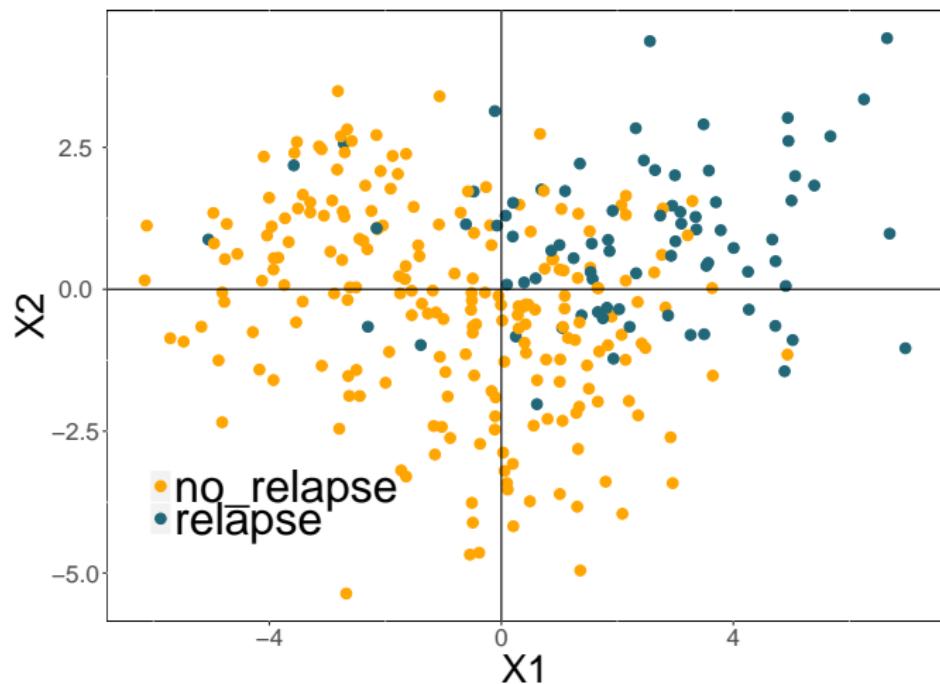
$$\mathbf{Y} = \mathbf{T}\boldsymbol{\gamma} + \widetilde{\mathbf{E}}, \text{ with } \widehat{\boldsymbol{\beta}} = \mathbf{W}\widehat{\boldsymbol{\gamma}}$$

- Can be adapted to logistic regression (\mathbf{Y} binary, tricky computations, *sparse logistic PLS paper*).

(Sparse) PLS to visualize the individuals



(Sparse) PLS to visualize the individuals



(Sparse) PLS to visualize the variables

