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SUMMARY

We present a penalized matrix decomposition (PMD), a new framework for computing a rank-K
approximation for a matrix. We approximate the matrix X as X̂ = ∑K

k=1 dkukvT
k , where dk , uk , and

vk minimize the squared Frobenius norm of X − X̂, subject to penalties on uk and vk . This results in a
regularized version of the singular value decomposition. Of particular interest is the use of L1-penalties
on uk and vk , which yields a decomposition of X using sparse vectors. We show that when the PMD is
applied using an L1-penalty on vk but not on uk , a method for sparse principal components results. In
fact, this yields an efficient algorithm for the “SCoTLASS” proposal (Jolliffe and others 2003) for obtain-
ing sparse principal components. This method is demonstrated on a publicly available gene expression
data set. We also establish connections between the SCoTLASS method for sparse principal component
analysis and the method of Zou and others (2006). In addition, we show that when the PMD is applied to a
cross-products matrix, it results in a method for penalized canonical correlation analysis (CCA). We apply
this penalized CCA method to simulated data and to a genomic data set consisting of gene expression and
DNA copy number measurements on the same set of samples.
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1. INTRODUCTION

Consider a matrix X with n rows and p columns. In this paper, we present a new method for computing a
rank-K approximation for X:

X̂ =
K∑

k=1

dkukvT
k , (1.1)

where uk and vk are unit vectors in Rn and Rp, respectively, and dk are nonnegative constants. We
estimate uk and vk subject to a penalty on their elements; as a result, we call this the “penalized matrix
decomposition” (PMD) of X.

In this paper, we will show that this decomposition has many uses:

1. Applying PMD to a data matrix can yield interpretable factors that provide insight into the data.

2. Applying PMD to a data matrix with L1-constraints on the columns but not the rows yields an
efficient algorithm for the SCoTLASS method for finding sparse principal components. This is
similar to a method of Shen and Huang (2008).

3. Applying PMD to a cross-product matrix yields a new method for penalized CCA.

The main area of application in this paper relates to (3) above. In recent years, it has become increas-
ingly common for biologists to perform 2 different assays on the same set of samples. For instance, both
gene expression and DNA copy number measurements often are available on a set of patient samples. In
this situation, an integrative analysis of both the gene expression and the copy number data is desired.
If X and Y are n × p and n × q matrices with standardized columns, then PMD applied to the matrix
of cross-products XT Y results in an efficient method for performing penalized CCA. This method can
be applied to gene expression and copy number data in order to identify sets of genes that are correlated
with regions of copy number change. We will demonstrate the use of our penalized CCA method for this
purpose on a publicly available breast cancer data set.

In Section 2, we present the PMD. We show that the PMD can be used to identify shared regions of
gain and loss in simulated DNA copy number data. In Section 3, we use the PMD to arrive at an efficient
algorithm for finding sparse principal components, and we use PMD to unify preexisting methods for
sparse principal component analysis (PCA). In Section 4, we extend the PMD framework in order to
develop a method for penalized CCA, and we demonstrate its use on a breast cancer data set consisting of
both gene expression and DNA copy number measurements on the same set of patients. Section 5 contains
the discussion.

2. THE PMD

2.1 General form of PMD

Let X denote an n × p matrix of data with rank K � min(n, p). Without loss of generality, assume that
the overall mean of X is 0. The singular value decomposition (SVD) of the data can be written as follows:

X = UDVT , UT U = In, VT V = Ip, d1 � d2 � · · · � dK > 0. (2.1)

Let uk denote column k of U, let vk denote column k of V, and note that dk denotes the kth diagonal
element of the diagonal matrix D. Then, it is a well-known fact (see e.g. Eckart and Young, 1936) that for
any r � K ,

r∑
k=1

dkukvT
k = arg min

X̂∈M(r)
‖X − X̂‖2

F , (2.2)
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where M(r) is the set of rank-r n × p matrices and ‖·‖2
F indicates the squared Frobenius norm (the sum

of squared elements of the matrix). In other words, the first r components of the SVD give the best rank-r
approximation to a matrix, in the sense of the Frobenius norm.

In this paper, we develop generalizations of this decomposition by imposing additional constraints on
the elements of U and V. We start with a rank-1 approximation.

Consider the following optimization problem:

minimized,u,v
1

2
‖X − duvT ‖2

F subject to ‖u‖2
2 = 1, ‖v‖2

2 = 1, P1(u) � c1, P2(v) � c2, d � 0.

(2.3)
Here, P1 and P2 are convex penalty functions, which can take on a variety of forms. Useful examples are

• lasso: P1(u) = ∑n
i=1 |ui | and

• fused lasso: P1(u) = ∑n
i=1 |ui | + λ

∑n
i=2 |ui − ui−1|, where λ > 0

Only certain ranges of c1 and c2 will lead to feasible solutions, as discussed in Section 2.3.
(
Note that

throughout this paper, the notation ‖u‖p indicates the L p-norm of the vector u, i.e.
( ∑

i u p
i

) 1
p .

)
We now

derive a more convenient form for this criterion.
The following decomposition holds.

THEOREM 2.1 Let U and V be n × K and p × K orthogonal matrices and D a diagonal matrix with
diagonal elements dk . Then,

1

2
‖X − UDVT ‖2

F = 1

2
‖X‖2

F −
K∑

k=1

uT
k Xvkdk + 1

2

K∑
k=1

d2
k . (2.4)

The theorem’s proof is given in the Appendix. Hence, using the case K = 1, we have that the values
of u and v that solve (2.3) also solve the following problem:

maximizeu,vuT Xv subject to ‖u‖2
2 = 1, ‖v‖2

2 = 1, P1(u) � c1, P2(v) � c2, (2.5)

and the value of d solving (2.3) is uT Xv. The objective function uT Xv in (2.5) is bilinear in u and v:
that is, with u fixed, it is linear in v, and vice versa. In fact, with v fixed, the criterion in (2.5) takes the
following form:

maximizeuuT Xv subject to P1(u) � c1, ‖u‖2
2 = 1. (2.6)

This criterion is not convex due to the L2-equality penalty on u.
We can finesse this as follows. We define the (rank-1) PMD by

Rank-1 PMD: maximizeu,vuT Xv subject to ‖u‖2
2 � 1, ‖v‖2

2 � 1, P1(u) � c1, P2(v) � c2. (2.7)

With v fixed, this criterion takes the form

maximizeuuT Xv subject to P1(u) � c1, ‖u‖2
2 � 1, (2.8)

which is convex. This means that (2.7) is biconvex, and this suggests an iterative algorithm for optimizing
it. Moreover, it turns out that the solution to (2.8) also satisfies ‖u‖2

2 = 1, provided that c1 is chosen so
that (for fixed v) the u that maximizes

uT Xv subject to P1(u) � c1 (2.9)
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has L2-norm greater than or equal to 1. This follows from the Karush–Kuhn–Tucker conditions in convex
optimization (see, e.g. Boyd and Vandenberghe, 2004). Therefore, for c1 chosen appropriately, the solution
to (2.8) solves (2.6).

The following iterative algorithm is used to optimize the criterion for the rank-1 PMD.

Algorithm 1: Computation of single-factor PMD model

1. Initialize v to have L2-norm 1.
2. Iterate until convergence:

(a) u ← arg maxu uT Xv subject to P1(u) � c1 and ‖u‖2
2 � 1.

(b) v ← arg maxv uT Xv subject to P2(v) � c2 and ‖v‖2
2 � 1.

3. d ← uT Xv.

In Section 2.2, we present an algorithm for obtaining multiple-factor solutions for the PMD. When P1 and
P2 both are L1-penalties, maximizations in Steps 2(a) and 2(b) are simple. This is explained in Algorithm
3 in Section 2.3.

It can be seen that without the P1- and P2-constraints, the algorithm above leads to the usual rank-1
SVD. Starting with v(0), one can show that at the end of iteration i ,

v(i) = (XT X)i v(0)

‖(XT X)i v(0)‖2
. (2.10)

This is the well-known “power method” for computing the largest eigenvector of XT X, which is the
leading singular vector of X.

In practice, we suggest using the first right singular vector of X as the initial value v. In general,
Algorithm 1 does not necessarily converge to a global optimum for (2.7); however, our empirical studies
indicate that the algorithm does converge to interpretable factors for appropriate choices of the penalty
terms. Note that each iteration of Step 2 in Algorithm 1 results in a decrease in the objective in (2.7).

The PMD is similar to a method of Shen and Huang (2008) for identifying sparse principal compo-
nents; we will elaborate on the relationship between the 2 methods in Section 3.

2.2 PMD for multiple factors

In order to obtain multiple factors of the PMD, we minimize the single-factor criterion (2.7) repeatedly,
each time using as the X matrix the residuals obtained by subtracting from the data matrix the previous
factors found. The algorithm is as follows.

Algorithm 2: Computation of K factors of PMD

1. Let X1 ← X.
2. For k ∈ 1, . . . , K :

(a) Find uk , vk , and dk by applying the single-factor PMD algorithm (Algorithm 1) to data Xk .

(b) Xk+1 ← Xk − dkukvT
k .

Without the P1- and P2-penalty constraints, it can be shown that the K -factor PMD algorithm leads to
the rank-K SVD of X. In particular, the successive solutions are orthogonal. This can be seen since the
solutions uk and vk are in the column and row spaces of Xk , which has been orthogonalized with respect
to u j , v j for j ∈ 1, . . . , k − 1. With P1 and/or P2 present, the solutions are no longer in the column and
row spaces, and so the orthogonality does not hold. In Section 3.2, we discuss an alternative multifactor
approach, in the setting where PMD is specialized to sparse principal components.
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2.3 Forms of PMD of special interest

We are most interested in 2 specific forms of the PMD, which we call the “PMD(L1, L1)” and “PMD(L1,
FL)” methods. The PMD(L1, L1) criterion is as follows:

maximizeu,vuT Xv subject to ‖u‖2
2 � 1, ‖v‖2

2 � 1, ‖u‖1 � c1, ‖v‖1 � c2. (2.11)

This method results in factors u and v that are sparse for c1 and c2 chosen appropriately. As shown in
Figure 1, we restrict c1 and c2 to the ranges 1 � c1 �

√
n and 1 � c2 �

√
p.

Let S denote the soft thresholding operator; that is, S(a, c) = sgn(a)(|a| − c)+, where c > 0 is a
constant and where x+ is defined to equal x if x > 0 and 0 if x � 0. We have the following lemma.

LEMMA 2.2 Consider the optimization problem

maximizeuuT a subject to ‖u‖2
2 � 1, ‖u‖1 � c. (2.12)

The solution satisfies u = S(a,�)
‖S(a,�)‖2

, with � = 0 if this results in ‖u‖1 � c; otherwise, � is chosen so
that ‖u‖1 = c.

The proof is given in the Appendix. We solve the PMD criterion in (2.11) using Algorithm 1, with
Steps 2(a) and 2(b) adjusted as follows.

Algorithm 3: Computation of single-factor PMD(L1, L1) model

1. Initialize v to have L2-norm 1.
2. Iterate until convergence:

(a) u ← S(Xv,�1)‖S(Xv,�1)‖2
, where �1 = 0 if this results in ‖u‖1 � c1; otherwise, �1 is chosen to be a

positive constant such that ‖u‖1 = c1.

Fig. 1. A graphical representation of the L1- and L2-constraints on u in the PMD(L1, L1) criterion. The constraints

are as follows: ‖u‖2
2 � 1 and ‖u‖1 � c. Here, u is two-dimensional, and the grey lines indicate the coordinate axes

u1 and u2. Left: the L2-constraint is the solid circle. For both the L1- and L2-constraints to be active, c must be
between 1 and

√
2. The constraints ‖u‖1 = 1 and ‖u‖1 = √

2 are shown using dashed lines. Right: The L2- and
L1-constraints on u are shown for some c between 1 and

√
2. Small circles indicate the points where both the L1-

and the L2-constraints are active. The solid arcs indicate the solutions that occur when �1 = 0 in Algorithm 3. The
figure shows that in 2D, the points where both the L1- and L2-constraints are active do not have either u1 or u2 equal
to 0.
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(b) v ← S(XT u,�2)
‖S(XT u,�2)‖2

, where �2 = 0 if this results in ‖v‖1 � c2; otherwise, �2 is chosen to be
a positive constant such that ‖v‖1 = c2.

3. d ← uT Xv.

If one desires that u and v be equally sparse, one can simply fix a constant c and set c1 = c
√

n, c2 = c
√

p.
For each update of u and v, �1 and �2 are chosen by a binary search.

Figure 1 shows a graphical representation of the L1- and L2-constraints on u that are present in
the PMD(L1, L1) criterion: namely, ‖u‖2

2 � 1 and ‖u‖1 � c1. From the figure, it is clear that in
two dimensions, the intersection of the L1- and L2-constraints results in both u1 and u2 nonzero. How-
ever, when n = 2, the dimension of u, is at least 3, then the right panel of Figure 1 can be thought of as
the hyperplane {ui = 0, ∀ i > 2}. In this case, the small circles indicate regions where both constraints
are active and the solution is sparse (since ui = 0 for i > 2).

The PMD(L1, FL) criterion is as follows (where “FL” stands for the “fused lasso” penalty, proposed
in Tibshirani and others, 2005):

maximizeu,vuT Xv subject to ‖u‖2
2 � 1, ‖u‖1 � c1, ‖v‖2

2 � 1,
∑

j

|v j | + λ
∑

j

|v j − v j−1| � c2.

(2.13)
This method results in u sparse and v sparse and somewhat smooth (depending on the value of λ � 0).
However, for simplicity, rather than solving (2.13), we solve a slightly different criterion which results
from using the Lagrange form, rather than the bound form, of the constraints on v:

minimizeu,v−uT Xv+ 1

2
vT v+λ1

∑
j

|v j |+λ2

∑
j

|v j −v j−1| subject to ‖u‖2
2 � 1, ‖u‖1 � c. (2.14)

We can solve this by replacing Steps 2(a) and 2(b) in Algorithm 1 with the appropriate updates:

Algorithm 4: Computation of single-factor PMD(L1, FL) model

1. Initialize v to have L2-norm 1.
2. Iterate until convergence:

(a) u ← S(Xv,�)
‖S(Xv,�)‖2

, where � = 0 if this results in ‖u‖1 � c; otherwise, � is chosen to be a
positive constant such that ‖u‖1 = c.

(b) v ← arg minv
{ 1

2‖XT u − v‖2 + λ1
∑

j |v j | + λ2
∑

j |v j − v j−1|
}
.

3. d ← uT Xv.

Step 2(b) can be performed using fast software implementing fused lasso regression, as described in
Friedman and others (2007), Tibshirani and Wang (2008), and Hoefling (2009).

2.4 PMD for missing data and choice of c1 and c2

The algorithm for computing the PMD works even in the case of missing data. When some elements of the
data matrix X are missing, those elements can simply be excluded from all computations. Let C denote
the set of indices of nonmissing elements in X. The criterion is as follows:

maximizeu,v

∑
(i, j)∈C

Xi j uiv j subject to ‖u‖2
2 � 1, ‖v‖2

2 � 1, P1(u) � c1, P2(v) � c2. (2.15)

The PMD can therefore be used as a method for missing data imputation. This is related to SVD-based
data imputation methods proposed in the literature (see, e.g. Troyanskaya and others, 2001).
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The possibility of computing the PMD in the presence of missing data leads to a simple and automated
method for the selection of the constants c1 and c2 in the PMD criterion. We can treat c1 and c2 as
tuning parameters and can take an approach similar to cross-validation in order to select their values. For
simplicity, we demonstrate this method for the rank-1 case here.

Algorithm 5: Selection of tuning parameters for PMD

1. From the original data matrix X, construct 10 data matrices X1, . . . , X10, each of which is missing
a nonoverlapping one-tenth of the elements of X, sampled at random from the rows and columns.

2. For each candidate value of c1 and c2:

(a) For i ∈ 1, . . . , 10:

i) Fit the PMD to Xi with tuning parameters c1 and c2 and calculate X̂i = duvT , the
resulting estimate of Xi .

ii) Record the mean squared error of the estimate X̂i . This mean squared error is obtained
by computing the mean of the squared differences between elements of X and the
corresponding elements of X̂i , where the mean is taken only over elements that are
missing from Xi .

(b) Record the average mean squared error across X1, . . . , X10 for tuning parameters c1 and c2.

3. The optimal values of c1 and c2 are those which correspond to the lowest mean squared error.

Note that in Step 1 of this method, we construct each Xi by randomly removing scattered elements of
the matrix X. That is, we are not removing entire rows of X or entire columns of X, but rather individual
elements of the data matrix. Similar approaches are taken in Wold (1978) and Owen and Perry (2009).

Though c1 and c2 can always be chosen as described above, for certain applications cross-validation
may not be necessary. If the PMD is applied to a data set as a descriptive method, in order to obtain an
intuitive understanding of the data, then one might simply fix c1 and c2 based on some other criterion. For
instance, one could select small values of c1 and c2 in order to obtain factors that have a desirable level of
sparsity.

2.5 Relationship between PMD and other matrix decompositions

In the statistical and machine learning literature, a number of matrix decompositions have been developed.
We present some of these decompositions here, as they are related to the PMD. The best known of these
decompositions is the SVD, which takes the form of (2.1). The SVD has a number of interesting properties,
but the vectors uk and vk of the SVD have (in general) no nonzero elements, and the elements may be
positive or negative. These qualities result in vectors uk and vk that are often not interpretable.

Lee and Seung (1999, 2001) developed the nonnegative matrix factorization (NNMF) in order to
improve upon the interpretability of the SVD. The matrix X is approximated as

X ≈
K∑

k=1

ukvT
k , (2.16)

where the elements of uk and vk are constrained to be nonnegative. The factors uk and vk can be inter-
pretable: the authors apply the NNMF to a database of faces and show that the resulting factors represent
facial features. The SVD does not result in interpretable facial features.

Hoyer (2002, 2004) presents the nonnegative sparse coding (NNSC), an extension of the NNMF that
results in nonnegative vectors vk and uk , one or both of which may be sparse. Sparsity is achieved using an
L1-penalty. Since NNSC enforces a nonnegativity constraint, the resulting vectors can be quite different
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from those obtained via PMD; moreover, the iterative algorithm for finding the NNSC vectors is not
guaranteed to decrease the objective at each step.

Lazzeroni and Owen (2002) present the plaid model, which (in the simplest case) takes the form of
(1.1). They seek dk , uk , vk that minimize

∑
i, j

(
Xi j −

K∑
k=1

dkuikv jk

)2

subject to uik ∈ {0, 1}, v jk ∈ {0, 1}. (2.17)

Though the plaid model provides interpretable layers, it has the drawback that the criterion cannot be
optimized exactly due to the nonconvex form of the constraints on uk and vk .

2.6 An example: PMD for DNA copy number data

We now consider a simple example involving comparative genomic hybridization (CGH) data, which
measures DNA copy number changes along a chromosome in cancer samples. It is known that some
cancers are characterized by contiguous regions of chromosomal gain or loss. For this reason, the fused
lasso criterion has been proposed as a way to denoise CGH data for a single sample (Tibshirani and Wang
2008):

β̂ = arg min
β

⎧⎨
⎩1

2

p∑
j=1

(y j − β j )
2 + λ1

∑
j

|β j | + λ2

∑
j

|β j − β j−1|
⎫⎬
⎭ . (2.18)

In (2.18), y is a vector of length p corresponding to measured log copy number gain/loss, ordered along
the chromosome, and β̂ is a smoothed estimate of the copy number. Note that λ1, λ2 � 0.

Now, suppose that multiple CGH samples are available. We expect some patterns of gain and loss to be
shared between some of the samples, and we wish to identify those patterns and samples. Let X denote the
data matrix; the n rows denote the samples and the p columns correspond to (ordered) CGH spots. In this
case, the use of PMD(L1, FL) is appropriate because we wish to encourage sparsity in u (corresponding
to a subset of samples) and sparsity and smoothness in v (corresponding to chromosomal regions). The
use of PMD(L1, FL) in this context is related to ongoing work by Nowak and others (2009). One could
apply PMD(L1, FL) to all chromosomes together (making sure that smoothness in the fused lasso penalty
is not required between chromosomes) or one could apply PMD(L1, FL) to each chromosome separately.

We demonstrate this method on a simple simulated example. We simulate 12 samples, each of which
consists of copy number measurements on 1000 spots on a single chromosome. Five of the 12 samples
contain a region of gain from spots 100–500. In Figure 2, we compare the results of PMD(L1, L1) to
PMD(L1, FL). It is clear that the latter method precisely uncovers the region of gain and the set of samples
in which that gained region is present. Simulation details are given in the Appendix (Section A.3).

3. SPARSE PCA VIA PMD

3.1 Three methods for sparse PCA

Here, we begin with an n × p data matrix X, with centered columns. Several methods have been proposed
for estimating sparse principal components, based on either the maximum variance property of principal
components or the regression/reconstruction error property. In this section, we present 2 existing methods
for sparse PCA from the literature, as well as a new method based on the PMD. We will then go on to
show that these 3 methods are closely related to each other. We will use the connection between PMD and
one of the other methods to develop a fast algorithm for what was previously a computationally difficult
formulation for sparse PCA.
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Fig. 2. Simulated CGH data. Top: results of PMD(L1, FL); middle: results of PMD(L1, L1); bottom: generative
model. PMD(L1, FL) successfully identifies both the region of gain and the subset of samples for which that region
is present.

The 3 methods for sparse PCA are as follows:

1. SPCA: Zou and others (2006) exploit the regression/reconstruction error property of principal
components in order to obtain sparse principal components. For a single component, their sparse
principal components analysis (SPCA) technique solves

minimizeθ,v‖X − XvθT ‖2
F + λ1‖v‖2

2 + λ2‖v‖1 subject to ‖θ‖2 = 1, (3.1)

where λ1, λ2 � 0 and v and θ are p-vectors. The criterion can equivalently be written with an
inequality L2 bound on θ , in which case it is biconvex in θ and v.

2. SCoTLASS: The SCoTLASS procedure of Jolliffe and others (2003) uses the maximal variance
characterization for principal components. The first sparse principal component solves the problem

maximizevvT XT Xv subject to ‖v‖2
2 � 1, ‖v‖1 � c, (3.2)

and subsequent components solve the same problem with the additional constraint that they must
be orthogonal to the previous components. This problem is not convex, since a convex objective
must be maximized, and the computations are difficult. Trendafilov and Jolliffe (2006) provide a
projected gradient algorithm for optimizing (3.2). We will show that this criterion can be optimized
much more simply by direct application of Algorithm 3 in Section 2.3.

3. SPC: We propose a new method for sparse PCA. Consider the PMD criterion with P2(v) = ‖v‖1,
and no P1-constraint on u. We call this criterion PMD(·, L1), and it can be written as follows:

maximizeu,vuT Xv subject to ‖v‖1 � c2, ‖u‖2
2 � 1, ‖v‖2

2 � 1. (3.3)
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The algorithm for PMD(·, L1) is obtained by replacing Step 2(a) of Algorithm 3 (the single-factor
PMD(L1, L1) algorithm) with the simpler update u ← Xv

‖Xv‖2
. We will refer to this as “sparse

principal components,” or SPC.

Now, consider the SPC criterion in (3.3). It is easily shown that if v is fixed and we seek u to maximize
(3.3), then the optimal u will be Xv

‖Xv‖2
. Therefore, v that maximizes (3.3) also maximizes

vT XT Xv subject to ‖v‖1 � c2, ‖v‖2 � 1. (3.4)

We recognize (3.4) as the SCoTLASS criterion (3.2). Now, since we have a fast iterative algorithm for
solving (3.3), this means that we have also developed a fast method to maximize the SCoTLASS criterion.
We can extend SPC to find the first K sparse principal components, as in Algorithm 2. Note, however,
that only the first component is the solution to the SCoTLASS criterion (since we are not enforcing the
constraint that component vk be orthogonal to components v1, . . . , vk−1).

It is also not hard to show that PMD applied to a covariance matrix with symmetric L1-penalties on
the rows and columns, as follows,

arg max
u,v

uT XT Xv subject to ‖u‖2
2 � 1, ‖u‖1 � c, ‖v‖2

2 � 1, ‖v‖1 � c, (3.5)

results in solutions u = v. (This follows from the Cauchy–Schwarz inequality applied to vectors Xv and
Xu.) As a result, these solutions solve the SCoTLASS criterion as well. This also means that SPC can
be performed using the covariance matrix instead of the raw data in cases where this is more convenient
(e.g. if n 	 p or if the raw data are unavailable).

We have shown that the SPC criterion is equivalent to the SCoTLASS criterion for one component
and that the fast algorithm for the former can be used to maximize the latter. It turns out that there also is a
connection between the SPCA criterion and the SPC criterion. Consider a modified version of the SPCA
criterion (3.1) that uses the bound form, rather than the Lagrange form, of the constraints on v:

minimizeθ,v‖X − XvθT ‖2
F subject to ‖v‖2

2 � 1, ‖v‖1 � c, ‖θ‖2
2 = 1. (3.6)

With ‖θ‖2
2 = 1, we have

‖X − XvθT ‖2
F = tr((X − XvθT )T (X − XvθT ))

= tr(XT X) − 2tr(θvT XT X) + tr(θvT XT XvθT )

= tr(XT X) − 2vT XT Xθ + vT XT Xv. (3.7)

So solving (3.6) is equivalent to

maximizeθ,v{2vT XT Xθ − vT XT Xv} subject to ‖θ‖2
2 = 1, ‖v‖2

2 � 1, ‖v‖1 � c (3.8)

or equivalently

2vT XT Xθ − vT XT Xv subject to ‖θ‖2
2 � 1, ‖v‖2

2 � 1, ‖v‖1 � c. (3.9)

Now, suppose we add an additional constraint to (3.6): that is, let us require also that ‖θ‖1 � c.
We maximize

2vT XT Xθ − vT XT Xv subject to ‖v‖2
2 � 1, ‖v‖1 � c, ‖θ‖2

2 � 1, ‖θ‖1 � c (3.10)
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with respect to θ and v. Note that for any vectors w and z, ‖z − w‖2
2 � 0. This means that wT w �

2wT z − zT z. Let w = Xv and z = Xθ ; it follows that θT XT Xθ � 2vT XT Xθ − vT XT Xv. So (3.10) is
maximized when v = θ ; that is, v that maximizes (3.10) also maximizes

vT XT Xv subject to ‖v‖2
2 � 1, ‖v‖1 � c, (3.11)

which of course is simply the SCoTLASS criterion (3.2) again. Therefore, we have shown that if a
symmetric L1-constraint on θ is added to the bound form of the SPCA criterion, then the SCoTLASS
criterion results. From this argument, it is also clear that the solution to the bound form of SPCA will give
lower reconstruction error (defined as ‖X − XvθT ‖2

F ) than the solution to the SCoTLASS criterion.
We compare the proportion of variance explained by SPC and SPCA on a publicly available gene

expression data set from http://icbp.lbl.gov/breastcancer/, and described in Chin and others (2006), con-
sisting of 19 672 gene expression measurements on 89 samples. (For consistency with Section 4.3, we use
the subset of the samples for which both gene expression and CGH measurements are available.) For com-
putational reasons, we use only the subset of the data consisting of the 5% of genes with highest variance.
We compute the first 25 sparse principal components for SPC using the constraint on v that results in an
average of 195 genes with nonzero elements per sparse component. We then perform SPCA on the same
data, using tuning parameters such that each loading has the same number of nonzero elements obtained
using the SPC method. Figure 3 shows the proportion of variance explained by the first k sparse principal
components, defined as tr(XT

k Xk), where Xk = XVk(VT
k Vk)

−1VT
k and where Vk is the matrix that has

the first k sparse principal components as its columns. (This definition is proposed in Shen and Huang,
2008.) SPC results in a substantially greater proportion of variance explained, as expected.

Our extension of PMD to the problem of identifying sparse principal components is closely related
to the SPCA method of Shen and Huang (2008). They present a method for identifying sparse principal
components via a regularized low-rank matrix approximation, as follows:

minimizeu,v‖X − uvT ‖2
F + Pλ(v) subject to ‖u‖2 = 1. (3.12)

Fig. 3. Breast cancer gene expression data: a greater proportion of variance is explained when SPC is used to obtain the
sparse principal components, rather than SPCA. Multiple SPC components were obtained as described in Algorithm 2.
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Then, v∗ = v
‖v‖2

is the first sparse principal component of their method. They present a number of forms
for Pλ(v), including Pλ(v) = ‖v‖1. This is very close in spirit to PMD(·, L1), and in fact the algorithm
is almost the same. Since Shen and Huang (2008) use the Lagrange form of the constraint on v, their
formulation does not solve the SCoTLASS criterion. Our method unifies the regularized low-rank matrix
approximation approach of Shen and Huang (2008) with the maximum variance criterion of Jolliffe
and others (2003) and the SPCA method of Zou and others (2006).

To summarize, in our view, the SCoTLASS criterion (3.2) is the simplest, most natural way to define
the notion of sparse principal components. Unfortunately, the criterion is difficult to optimize. Our SPC
criterion (3.3) recasts this problem as a biconvex one, leading to an extremely simple algorithm for the
solution of the first SCoTLASS component. Furthermore, the SPCA criterion (3.1) is somewhat complex.
But we have shown that when a natural symmetric constraint is added to the SPCA criterion (3.1), it is
also equivalent to (3.2) and (3.3). Taken as a whole, these arguments point to the SPC criterion (3.3) as
the criterion of choice for this problem, at least for a single component.

3.2 Another option for SPC with multiple factors

As mentioned in Section 3.1, the first sparse principal component of our SPC method optimizes the
SCoTLASS criterion. But subsequent sparse principal components obtained using SPC do not, since we
do not enforce that vk be orthogonal to v1, . . . , vk−1. It is not obvious that SPC can be extended to achieve
orthogonality among subsequent vi s, or even that orthogonality is desirable. However, SPC can be easily
extended to give something similar to orthogonality.

Consider the criterion for the first factor of SPC, given in (3.3). One could extend to multiple factors
as proposed in Algorithm 2. (This was done in Figure 3.) Alternatively, one could obtain multiple factors
uk, vk by optimizing the following criterion, for k > 1:

maximizeuk ,vk uT
k Xvk subject to ‖vk‖1 � c2, ‖uk‖2

2 � 1, ‖vk‖2
2 � 1, uk ⊥ u1, . . . , uk−1. (3.13)

With uk fixed, one can solve (3.13) for vk easily, as has been done throughout this paper (e.g. Step 2(b) of
Algorithm 3). With vk fixed, the problem is as follows: we must find uk that maximizes

uT
k Xvk subject to ‖uk‖2

2 � 1, uk ⊥ u1, . . . , uk−1. (3.14)

Let U⊥
k−1 denote an orthogonal basis that is orthogonal to Uk−1, the matrix with columns u1, . . . , uk−1.

It follows that uk is in the column space of U⊥
k−1, and so can be written as uk = U⊥

k−1θ . Note also that
‖uk‖2 = ‖θ‖2. So (3.14) is equivalent to solving

θT U⊥
k−1

T
Xvk subject to ‖θ‖2

2 � 1, (3.15)

and so we find that the optimal θ is

θ = U⊥
k−1

T
Xvk

‖U⊥
k−1

T
Xvk‖2

. (3.16)

Therefore, the value of uk that solves (3.14) is

uk = U⊥
k−1U⊥

k−1
T

Xvk

‖U⊥
k−1

T
Xvk‖2

= (I − Uk−1Uk−1
T )Xvk

‖U⊥
k−1

T
Xvk‖2

. (3.17)

So we can use this update step for uk to develop an iterative algorithm to find multiple factors for (3.3), the
single-factor SPC criterion, that yields orthogonal uks. Though we have not guaranteed that the vks will
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be exactly orthogonal, they are unlikely to be very correlated since the different vks each are associated
with orthogonal uks. Based on our initial investigation, this appears to be a promising path for obtaining
multiple sparse principal components.

4. PENALIZED CCA VIA PMD

4.1 PMD and other approaches to penalized CCA

Suppose that we have n observations on p + q variables and that the variables are naturally partitioned
into 2 sets of size p and q. Let X denote the n × p matrix that is comprised of the first set of variables, and
let Y denote the n × q matrix that is comprised of the remaining variables; assume that the columns of
X and Y have been centered and scaled. CCA, developed by Hotelling (1936), involves finding u, v that
maximize cor(Xu, Yv)—that is, that solve

maximizeu,vuT XT Yv subject to uT XT Xu � 1, vT XT Xv � 1. (4.1)

There is a closed-form solution for u and v that involves the eigenvectors of some function of the covari-
ance matrices of X and Y. We call u and v the canonical variates.

CCA results in vectors u, v that are not sparse, and these vectors are not unique if p or q exceeds n. In
certain applications, especially if p or q is large, one might be interested in finding a linear combination
of the variables in X and Y that has large correlation but is also sparse in the variables used.

One way to obtain penalized canonical variates would simply be to include penalties in (4.1):

maximizeu,vuT XT Yv subject to uT XT Xu � 1, vT XT Xv � 1, P1(u) � c1, P2(v) � c2. (4.2)

It has been shown that in other high-dimensional problems, treating the covariance matrix as diagonal can
yield good results (see, e.g. Dudoit and others, 2001; Tibshirani and others, 2003). For this reason, rather
than using (4.2) as our penalized CCA criterion, we substitute in the identity matrix I for XT X and YT Y;
this gives what could be called “diagonal penalized CCA”:

maximizeu,vuT XT Yv subject to ‖u‖2
2 � 1, ‖v‖2

2 � 1, P1(u) � c1, P2(v) � c2. (4.3)

Of course, this criterion is simply (2.7) with X replaced with XT Y; it can be solved with Algorithm 1. But
in practice, it can be solved more efficiently, without computation of XT Y. To compute multiple canonical
variates, we use Algorithm 2. Following the notation of Section 2.3, we refer to this method as PMD(A, B)
if A is the penalty on u and B is the penalty on v.

PMD(L1, L1) yields sparse vectors u and v for c1 and c2 sufficiently small. Waaijenborg and others
(2008) also present a sparse CCA method, and their algorithm for finding the sparse canonical variates is
quite similar to PMD(L1, L1). However, they arrive at their algorithm in a circuitous way, as an approx-
imation to the elastic net, and they do not state the exact criterion that they are solving. Moreover, their
method involves the Lagrange form rather than the bound form of the L1-constraints on u and v; as a
result, it yields a different solution. Parkhomenko and others (2007) and Wiesel and others (2008) present
sparse CCA algorithms that lack exact criteria and biconvexity, respectively. Our method for sparse CCA
is very closely related to the method of Parkhomenko and others (2009), which we encountered after our
paper was submitted.

When L1-penalties are used for both P1 and P2, then the values of c1 and c2 can be chosen by
cross-validation, where c1 and c2 are chosen using a grid search to maximize (across the cross-validation
folds) the quantity cor(Xu, Yv), where u and v are computed on a training set and X and Y constitute an
independent test set. Alternatively, values of c1 and c2 can simply be chosen to result in desired amounts
of sparsity of u and v.
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4.2 Sparse CCA applied to simulated data

We demonstrate the PMD(L1, L1) method on a simple simulated example. In this simulation, p, q > n,
so classical CCA cannot be used. There are 2 sparse latent factors that generate X and Y; the factors are
orthogonal to each other. Results can be seen in Figure 4. For comparison, we also computed the SVD
of XT Y. Compared to the SVD, PMD(L1, L1) does fairly well at identifying linear combinations of the
underlying factors. Details of the simulation are given in Section A.4 of the Appendix.

4.3 Application of penalized CCA to genomic data

In genomic research, it is becoming increasingly common for researchers to use multiple assays in order to
characterize a single set of samples. For instance, gene expression measurements and DNA copy number
data might be available on the same set of tissue samples. The patients might also be genotyped. Examples
of studies that combine gene expression and copy number and/or single-nucleotide polymorphism (SNP)
data include Hyman and others (2002), Pollack and others (2002), Morley and others (2004), and Stranger
and others (2005, 2007). While much research has gone into developing methods for the identification of
genes and SNPs that are associated with an outcome based on a single gene expression or SNP data set,
the question of how to combine the results of multiple assays in order to perform inference across the data
sets has not been thoroughly investigated.

If both gene expression data and genotype data are available on the same set of samples, then a natural
question is to identify sets of genes that are correlated with sets of SNPs. Both Parkhomenko and others
(2007, 2009) and Waaijenborg and others (2008) demonstrate the use of sparse CCA for this purpose.
Similarly, if CGH and gene expression data both are available for a set of cancer samples, then one might
wish to identify a set of genes that have expression that is correlated with a set of chromosomal gains or
losses.

Fig. 4. The efficacy of PMD(L1, L1) is demonstrated using a simulation in which X is generated from 2 sparse
latent factors, called u1 and u2, and Y is generated from 2 sparse latent factors, called v1 and v2. The PMD(L1, L1)
method identifies linear combinations of these sparse factors. Details of the simulation are given in Section A.4 of the
Appendix.
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In the case of gene expression and CGH data, it makes sense to perform penalized CCA with an
L1-penalty on the canonical variate corresponding to genes and a fused lasso penalty on the canonical
variate corresponding to copy number—in other words, we might use PMD(L1, FL). There are 2 ways
that this could be done. Penalized CCA could be applied using all available gene expression data and copy
number data on all chromosomes (being sure that the fused lasso smoothness penalty is not applied be-
tween chromosomes). Alternatively, one could perform penalized CCA once per chromosome, each time
using copy number data on that chromosome and all the available gene expression data. (The expression
data are not restricted to a particular chromosome.) We choose to pursue this latter approach.

We examine the performance of PMD(L1, FL) on the breast cancer data set publicly available at
http://icbp.lbl.gov/breastcancer/ and described in Chin and others (2006). In addition to the gene expres-
sion data described earlier, CGH measurements are also available on the same set of 89 samples. There
are p = 19 672 gene expression measurements and q = 2149 CGH measurements. For convenience and
interpretability of the results, we ran PMD(L1, FL) using values of the tuning parameters that resulted in a
list of approximately 25 nonzero genes per chromosome (i.e. 25 nonzero elements of u) and very smooth
and somewhat sparse v. Since we performed PMD(L1, FL) once for each of the 23 chromosomes, we
obtained 23 v vectors. The 23 vs are shown in the left panel of Figure 5. Nonzero us and vs were found
for all chromosomes except for chromosome 2. It is clear that PMD(L1, FL) resulted in both sparsity and
smoothness of the v vectors.

The genes corresponding to nonzero weights in each u vector can also be examined. Consider Table 1,
which shows the genes that had nonzero weights when sparse CCA was run using the CGH spots on
chromosome 1 and all the available genes. Notably, only genes located on chromosome 1 were given
nonzero weights. This is intuitive: a copy number change on chromosome 1 should be correlated with
expression changes in the genes that were amplified or deleted. Similar results were seen when PMD(L1,
FL) was run using the CGH spots on other chromosomes. If one is interested only in discovering genes

Fig. 5. PMD(L1, FL) was performed for the breast cancer data set. Left: for each chromosome, the weights of v
obtained using PMD(L1, FL) are shown. All the v weights shown are positive, but the results would not be affected
by flipping the signs of both v and u. On chromosome 2, v has no nonzero elements. Right: for each chromosome, u
and v were computed on a training set consisting of 3/4 of the samples, and cor(Xu, Yv) is plotted, where X and Y
are the training (dashed) and test (solid) data.
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Table 1. PMD(L1, FL) was performed using the CGH spots on chromosome 1 and gene expression mea-
surements on all chromosomes. The genes corresponding to nonzero elements of u are shown. Notably, all
the genes with nonzero ui s are located on chromosome 1. Similar results hold for the other chromosomes

i Gene Chromosome ui

1 Jumping translocation break point 1 0.039
2 Translocated promoter region (to activated MET oncogene) 1 0.153
3 Glyceronephosphate O-acyltransferase 1 0.255
4 NADH dehydrogenase (ubiquinone) Fe-S protein 2 1 0.265
5 Nucleoporin 133kD 1 0.007
6 Geranylgeranyl diphosphate synthase 1 1 0.131
7 Rab3 GTPase-activating protein, noncatalytic subunit (150 kD) 1 0.283
8 Peroxisomal biogenesis factor 11B 1 0.154
9 Phosphatidylinositol glycan, class C 1 0.124

10 Tubulin-specific chaperone e 1 0.069
11 Protoporphyrinogen oxidase 1 0.052
12 Tuftelin 1 1 0.037
13 Papillary renal cell carcinoma (translocation associated) 1 0.055
14 Splicing factor 3b, subunit 4, 49 kD 1 0.469
15 UDP-Gal:betaGlcNAc beta 1,4- galactosyltransferase 1 0.27
16 Hypothetical protein FLJ12671 1 0.229
17 Hypothetical protein HSPC155 1 0.168
18 Mitochondrial ribosomal protein L24 1 0.195
19 HSPC003 protein 1 0.391
20 Hypothetical protein FLJ10876 1 0.091
21 CGI-78 protein 1 0.154
22 Chromosome 1 open reading frame 27 1 0.133
23 Hypothetical protein My014 1 0.278

not on chromosome k that are correlated with copy number change on chromosome k, then one could
perform PMD(L1, FL) using the CGH spots on chromosome k and only genes that are not on chromo-
some k.

In order to assess whether PMD(L1, FL) is capturing real structure in the breast cancer data, we
computed p-values for the penalized canonical variates. For each chromosome, a p-value for the penalized
canonical variates was computed as follows:

1. Let u, v denote the penalized canonical variates found for this chromosome, and record
c = cor(Xu, Yv).

2. For i ∈ 1, . . . , B, permute the samples in X to obtain X∗; then, compute u∗ and v∗, the penalized
canonical variates based on data (X∗, Y). Record ci = cor(X∗u∗, Yv∗).

3. The p-value is given by 1
B

∑B
i=1 1|ci |�|c|.

With the exception of chromosome 2, all p-values were significant.
In order to further assess the penalized canonical variates that we obtained, we used a training set/test

set approach, as follows:

1. We repeatedly divided the 89 samples into a training set (Xtr, Ytr) containing 3/4 of the samples,
and a test set (Xte, Yte) containing the remaining samples.

2. Penalized CCA was performed on the training set to obtain the vectors utr and vtr.
3. cor(Xtrutr, Ytrvtr) and cor(Xteutr, Ytevtr) were computed.
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The right panel of Figure 5 shows the average values of cor(Xtrutr, Ytrvtr) and cor(Xteutr, Ytevtr) for each
chromosome. Even on the test set, quite high correlations result for most chromosomes. In the absence of
signal, the average value of cor(Xteutr, Ytevtr) would be 0.

5. DISCUSSION

We have developed a method for finding a PMD in an efficient manner. This decomposition builds upon
a variety of existing matrix decompositions, such as the SVD, the NNMF (Lee and Seung, 1999, 2001),
and the plaid model (Lazzeroni and Owen, 2002). We are most interested in obtaining a decomposi-
tion made up of sparse vectors. To do this, we use an L1-penalty on the rows and columns of our
decomposition. We also explore the use of an L1-penalty on the rows and a fused lasso penalty on the
columns; this is appropriate if the samples correspond to DNA copy number, ordered by chromosomal
location. We exploit the biconvex nature of the PMD criterion in order to minimize it via an alternating
algorithm.

We have applied the PMD to give attractive solutions to 2 additional problems: sparse PCA and sparse
CCA. We used the resulting sparse CCA method to identify the sets of genes that are correlated with
regions of DNA copy number change using a data set consisting of DNA copy number change and gene
expression measurements on the same set of samples. In addition, we have established connections be-
tween 3 different methods for obtaining sparse principal components.

An R package implementing these methods, called PMA (for penalized multivariate analysis) is avail-
able on CRAN.
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APPENDIX

A.1 Proof of Theorem 2.1

Let uk and vk denote column k of U and V, respectively. We prove the theorem by expanding out the
squared Frobenius norm and rearranging terms:

‖X − UDVT ‖2
F = tr((X − UDVT )T (X − UDVT ))

= −2tr(VDUT X) + tr(VDUT UDVT ) + ‖X‖2
F

=
K∑

k=1

d2
k − 2tr(DUT XV) + ‖X‖2

F
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=
K∑

k=1

d2
k − 2

K∑
k=1

dkuT
k Xvk + ‖X‖2

F . (A.1)

A.2 Proof of Lemma 2.2

We seek u that minimizes
−uT a subject to ‖u‖2

2 � 1, ‖u‖1 � c1. (A.2)

First, we rewrite the criterion using Lagrange multipliers:

−uT a + λ‖u‖2
2 + �‖u‖1, (A.3)

and we differentiate, set the derivative to 0, and solve for u:

0 = −a + 2λu + ��, (A.4)

where �i = sgn(ui ) if ui �= 0; otherwise, �i ∈ [−1, 1]. The Karush–Kuhn–Tucker conditions for opti-
mality consist of (A.4), along with λ(‖u‖2

2 − 1) = 0 and �(‖u‖1 − c1) = 0. Now if λ > 0, we have

u = S(a, �)

2λ
. (A.5)

In general, we have either λ = 0 (if this results in a feasible solution) or λ must be chosen such that
‖u‖2 = 1. So we see that

u = S(a,�)

‖S(a,�)‖2
. (A.6)

Again by the Karush–Kuhn–Tucker conditions, either � = 0 (if this results in a feasible solution) or �
must be chosen such that ‖u‖1 = c1. So, � = 0 if this results in ‖u‖1 � c1; otherwise, we choose � such
that ‖u‖1 = c1. This completes the proof of the Lemma.

A.3 Simulation details for Figure 2

Let X be a 12 × 1000 matrix of data. The elements of X are generated as follows:

1. For i ∈ 1, . . . , 5 and j ∈ 100, . . . , 500, Xi j ∼ N (1, 1).

2. Otherwise, Xi j ∼ N (0, 1).

In other words, the first 5 patients have a region of gain between positions 100 and 500.

A.4 Simulation details for Figure 4

We generate matrices X and Y, with n = 50 and p = 100.

1. Let u1 be a vector of length p, with 20 1s, 20 −1s, and 60 0s.

2. Let u2 be a vector of length p, with 10 −1s, 10 1s, 10 −1s, 10 1s, and 60 0s.

3. Let v1 be a vector of length p, with 60 0s, 20 −1s, and 20 1s.

4. Let v2 be a vector of length p, with 60 0s, 10 1s, 10 −1s, 10 1s, and 10 −1s.

5. Let w1 and w2 be orthonormal vectors of length n.

6. Generate the data matrices as follows: Xi j ∼ N (w1i u1 j + w2i u2 j , 0.32) and Yi j ∼ N (w1iv1 j +
w2iv2 j , 0.32).
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