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a b s t r a c t

We study the property of the Fused Lasso Signal Approximator (FLSA) for estimating
a blocky signal sequence with additive noise. We transform the FLSA to an ordinary
Lasso problem, and find that in general the resulting design matrix does not satisfy the
irrepresentable condition that is known as an almost necessary and sufficient condition
for exact pattern recovery. We give necessary and sufficient conditions on the expected
signal pattern such that the irrepresentable condition holds in the transformed Lasso
problem. However, these conditions turn out to be very restrictive. We apply the newly
developed preconditioning method — Puffer Transformation (Jia and Rohe, 2015) to the
transformed Lasso and call the new procedure the preconditioned fused Lasso. We give non-
asymptotic results for this method, showing that as long as the signal-to-noise ratio is not
too small, our preconditioned fused Lasso estimator always recovers the correct pattern
with high probability. Theoretical results give insight into what controls the ability of
recovering the pattern — it is the noise level instead of the length of the signal sequence.
Simulations further confirm our theorems and visualize the significant improvement of the
preconditioned fused Lasso estimator over the vanilla FLSA in exact pattern recovery.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Assume we have a sequence of signals (y1, y2, . . . , yn) and it follows the additive model

yi = µ∗

i + ϵi, i = 1, 2, . . . , n, (1)

where Y = (y1, . . . , yn)T ∈ Rn is the observed signal vector, µ∗
= (µ1, . . . , µn)

T
∈ Rn the expected signal vector, and

ϵ = (ϵ1, . . . , ϵn)
T the white noise such that ϵ1, . . . , ϵn are assumed to be i.i.d. Gaussian random variables with mean 0 and

variance σ 2. The model is assumed to be blocky in the sense that the signals come in blocks and have only a few change-
points. To be exact, there exists a partition of {1, 2, . . . , n} = ∪

J
j=1{Lj, Lj + 1, . . . ,Uj} with L1 = 1,UJ = n,Uj ≥ Lj, Lj+1
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Fig. 1. This figure is from Tibshirani and Wang (2008). The fused Lasso is applied to some CGH data. The data are shown in the left panel, and the solid
line in the right panel represents the estimated signals by the fused Lasso. The horizontal line is for y = 0.

= Uj + 1, and the following stepwise function holds:

µ∗

i =

J
j=1

ν∗

j 1Lj≤i≤Uj ,

with ν∗

j , Lj,Uj fixed but unknown. We also assume that the vector ν = (ν1, ν2, . . . , νJ) is sparse, meaning that only a few of
νj’s are nonzeros. We point out that the Gaussian noise is not necessary, but we still use it to get insight of the fused Lasso.
The variance σ 2 of ϵi is themeasure of noise level and does not have to be a constant here. Inmany cases, each observation of
yi can be an average of multiple measurements and so σ 2 decreases when the number of measurements increases. Rinaldo
(2009) considers the model when σ 2

= σ 2
0 /n, where σ0 is a constant. We do not make this specific assumption in the

development of our theory.
Featured by blockiness and sparseness, this model has many applications. For example, in tumor studies, based on the

Comparative Genomic Hybridization (CGH) data, it can be used to automatically detect the gains and losses in DNA copies
by taking the ‘‘signal’’ above as the log-ratio between the number of DNA copies in tumor cells and that in reference cells
(Tibshirani and Wang, 2008). For more applications, see Tibshirani and Taylor (2011), Friedman et al. (2007) and Hoefling
(2010).

One way to estimate the unknown parameters is via the Fused Lasso Signal Approximator (FLSA) defined as follows
(Tibshirani et al., 2004; Friedman et al., 2007):

µ̂(λ1, λ2) = argmin
µ

1
2
∥Y − µ∥

2
2 + λ1∥µ∥1 + λ2∥µ∥TV , (2)

where ∥µ∥1 =
n

i=1 |µi|, ∥µ∥
2
2 =

n
i=1 µ2

i and ∥µ∥TV =
n−1

i=1 |µi+1 − µi|. The L1-norm regularization controls the
sparsity (number of zeros) and the total variation seminorm (∥µ∥TV ) regularization controls the blockiness (number of
blocks or partitions).

Fig. 1 gives some CGH data, a typical example of signals with such features and a proper FLSA estimate on the data. More
details and examples can be seen in Tibshirani and Wang (2008).

One important question for the FLSA is how good the estimator defined in Eq. (2) is. We analyze in this paper if the FLSA
can recover the ‘‘stepwise pattern’’ or not. We also try to answer the following question: what do we do if the FLSA does
not recover the ‘‘stepwise pattern’’? To measure how good an estimator is, we introduce the following definition of Pattern
Recovery.

Definition 1 (Pattern Recovery). An FLSA solution µ̂(λ1n, λ2n) recovers the signal pattern if and only if there exist λ1n and
λ2n, such that

sign(µ̂i+1(λ1n, λ2n) − µ̂i(λ1n, λ2n)) = sign(µ∗

i+1 − µ∗

i ), i = 1, . . . , n − 1. (3)

We use µ̂ =js µ
∗ to shortly denote (3) (js is the acronym for jump sign). The FLSA with the property of pattern recovery

means that it can be used to identify both the groups and the jump directions (up or down) between groups.
The concept of pattern recovery of the FLSA is very similar to the sign recovery of the Lasso (Zhao and Yu, 2006). In fact,

we will see in Section 2 that the pattern recovery property of the FLSA is equivalent to the sign recovery property of the
Lasso after transformation.

For observation pairs (xi, yi), i = 1, 2, . . . , nwith xi ∈ Rp and yi ∈ R, the Lasso estimator is defined as follows (Tibshirani,
1996):

β̂(λ) = argmin
β

1
2

n
i=1

(yi − xTi β)2 + λ∥β∥1,
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or equivalently, in the matrix form,

β̂(λ) = argmin
β

1
2
∥Y − Xβ∥

2
+ λ∥β∥1, (4)

where Y = (y1, . . . , yn)T ∈ Rn and X ∈ Rn×p with xTi as its ith row. We use Xj to denote the jth column of X . Lasso
is a regularized method that gives sparse solutions. The L1 term in the objective function makes the solution sparse. For
different purposes, other loss functions could be used. Xu et al. (2015) used Cauchy loss in the objective function to get
robust estimators. For matrix parameters, nuclear norm and its variations could be used to get low rank estimators (Cai
et al., 2010; Xu et al., 2014).

Sign recovery of the Lasso is defined as follows.

Definition 2 (Sign Recovery (Zhao and Yu, 2006)). Suppose that data (X, Y ) follow a linear model: Y = Xβ∗
+ ϵ, where

Y = (y1, . . . , yn)T , X ∈ Rn×p with xTi as its ith row, β∗
∈ Rp×1 and ϵ = (ϵ1, . . . , ϵn)

T
∈ Rn×1 with E(ϵi) = 0. A Lasso

estimator β̂(λn) has the sign recovery property if and only if there exists λn such that

sign(β̂j(λn)) = sign(β∗

j ), j = 1, . . . , p. (5)

We will use β̂ =s β
∗ to shortly denote this property. In particular, this property, if satisfied, means that the Lasso selects

the correct set of predictors. Asymptotically, we say the Lasso estimator β̂(λn) is sign consistent if there exists a sequence
of λn such that P(β̂(λn) =s β) → 1, as the sample size n → ∞.

A rich theoretical literature has studied the consistency of the Lasso, highlighting several potential pitfalls (Knight and
Fu, 2000; Fan and Li, 2001; Greenshtein and Ritov, 2004; Donoho et al., 2006; Meinshausen and Bühlmann, 2006; Tropp,
2006; Zhao and Yu, 2006; Zhang and Huang, 2008; Wainwright, 2009). The sign consistency of the Lasso requires the
irrepresentable condition, a stringent assumption on the design matrix (Zhao and Yu, 2006). Now it is well understood
that if the design matrix violates the irrepresentable condition, the Lasso will perform poorly in sign recovery, even with
increased sample size.

The analyses of the FLSA are fairly recent. Tibshirani and Taylor (2011) consider the FLSA as a special case of the
generalized Lasso problem and give the boundary lemma, a remarkable property of the FLSA saying that along the solution
path, the coordinates on the boundary will always stay on the boundary as λ decreases. Rinaldo (2009) considers the sign
consistency of the FLSA and proposes the adaptive fused Lasso. It shows that under some conditions, the FLSA can be
consistent in both block reconstruction andmodel selection. The fused Lasso applied to general graphs, called the edge Lasso,
is considered in Sharpnack et al. (2012). The ability of exact pattern recovery depends heavily on the structural properties
of the graph. In particular, the author mentions the sign inconsistency of the 1D fused Lasso, the FLSA here, but does not
attempt at addressing this issue.

There is a very close connection between the fused Lasso and change point estimation. In Harchaoui and Lévy-Leduc
(2008) and Harchaoui and Lévy-Leduc (2010), the authors study the change point estimation problem using the total
variation penalty, which is the fused Lasso when λ1 is taken as 0. Harchaoui and Lévy-Leduc (2010) have a very nice result
for consistency on the estimation of the signal mean. They also point out that the total variation penalized least squares
cannot consistently estimate the locations of change points. Instead, they show that under a few regularity conditions, the
estimated locations of the change points are close to the true locations. In this paper, we give deeper analysis of the total
variation penalized least squares. We give a necessary and sufficient condition on consistently recovering the piecewise
constant pattern, which is also called consistent recovery of change points.

We borrow analytical tools used to study the LASSO in the paper. There are several differences between the fused Lasso
and Lasso that should be highlighted, though the former can be transformed to the latter by reparametrization. First, though
could be seen as a specific kind of Lasso problem under reparametrization, the recovery of piecewise constant signals,
or detection of multiple change points itself is an important class of problems and has very wide applications. So it is
worthwhile to gain more insight into this problem beyond general Lasso’s and to consider fast and consistent algorithms as
we do here. Second, the analysis of sign consistency is different than classic Lasso problems in that the attempt to transform
to Lasso introduces an intercept term that is not penalized as other coefficients. The intercept can be replaced by the mean
of observations, however, extra care should be taken before directly applying the Lasso theories. We adapt the argument for
standard Lasso to general noise structures other than independent noise.

In this paper, we not only study the sign recovery of the FLSA using the irrepresentable condition for the Lasso, but more
importantly, by preconditioning the design matrix, our newly proposed method significantly improves the performance of
pattern recovery. For preparation, we first prove that even for the linear model with correlated noise, the irrepresentable
condition is still necessary for sign consistency. We then analyze the design matrix in the transformed Lasso problem. We
give necessary and sufficient condition such that the design matrix in the transformed Lasso problem complies with the
irrepresentable condition. We show that, only for a special class of models (with special designed stepwise function on
µ∗

i ), the irrepresentable condition holds. For other signal patterns, the irrepresentable condition does not hold and thus the
FLSA may fail to keep consistent. A recent paper ‘‘Preconditioning to comply with the irrepresentable condition’’ by Jia and
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Rohe (2015) suggests a Puffer Transformation that will improve the Lasso and make the Lasso estimator sign consistent
under some mild conditions. We apply this technique, propose the preconditioned fused Lasso and show that it significantly
improves the FLSA and recovers the signal pattern with high probability. We also point out that we did not fully solve the
change point estimation problem. Our results show that if the signal is strong and the noise is small, then no matter what
the pattern is, the preconditioned fused Lasso gives consistent estimation of the change point locations. In change point
literature, people also study some special patterns — say when the block size is big enough. With more information on the
signal pattern, one may have stronger results. This is now out of our research scope and will be our further study. In this
paper, we try to understand the fused Lasso (equivalently the total variation penalized least squares) for one dimensional
signals.

The rest of the paper is organized as follows. In Section 2, we establish connection between the FLSA and a Lasso problem
via proper transformation. Section 3 discusseswhen the FLSA can recover the signal pattern andwhen it cannot. In Section 4,
we propose a new algorithm called the preconditioned fused Lasso that improves the FLSA by using the preconditioning
technique. We show that for a wide range of designs of the stepwise function on µ∗, this algorithm can recover the
signal pattern with high probability. In Section 5, simulations are implemented to compare the performances between the
preconditioned fused Lasso and the vanilla FLSA. Section 6 concludes the paper. The proofs are given in the Appendix.

2. The FLSA and the Lasso

In this section, we transform the FLSA problem into a Lasso problem by change of variables. Define the soft thresholding
function SHλ(x) as

SHλ(x) =

x + λ x < −λ
0 −λ ≤ x ≤ λ
x − λ x > λ.

Let µ̂(λ1, λ2) be the fused Lasso estimator defined in (2). We have the following result.

Lemma 1 (Friedman et al., 2007).

µ̂(λ1, λ2) = SHλ1(µ̂(0, λ2)).

From Lemma 1, to study the properties of µ̂(λ1, λ2), we can set λ1 = 0 first. Since pattern recovery is our main concern
here, we only consider the case λ1 = 0 in this paper. When λ1 = 0, we can solve the FLSA by change of variables. Let
θ1 = µ1, θi = µi − µi−1, i = 2, . . . , n, or in the matrix form, µ = Aθ , where A ∈ Rn×n is the lower triangular matrix
with nonzero elements equal to one. So by using θ instead ofµ, we have an equivalent solution of µ̂(0, λ2) via the following
θ̂ (λ2):

θ̂ (λ2) = argmin
θ

1
2
∥Y − Aθ∥

2
2 + λ2∥θ̃∥1, (6)

where θ̃ = (θ2, θ3, . . . , θn)
T

∈ Rn−1. Once we obtain θ̂ (λ2), we have µ̂(0, λ2) = Aθ̂ (λ2). With the special form of the design
matrix A, (6) is a Lasso problem with intercept. In fact, (6) can be rewritten as

θ̂ (λ2) = argmin
(θ1,θ̃ )

1
2
∥Y − 1 · θ1 − X θ̃∥

2
2 + λ2∥θ̃∥1 (7)

where 1 = (1, . . . , 1)T ∈ Rn, θ̃ = (θ2, . . . , θn)
T and X = (xij) ∈ Rn×(n−1):

xij =


1 i > j
0 i ≤ j.

Define the centered version of X ∈ Rn×(n−1) and Y ∈ Rn as follows:

X̃ = [X1 − X̄1, . . . , Xn−1 − X̄n−1] and Ỹ = Y − Ȳ , (8)

where ū is the vector with all elements equal to the average of u. It is easy to see that (7) is equivalent to the following
standard Lasso problem without intercept:

ˆ̃
θ(λ2) = argmin

θ̃

1
2
∥Ỹ − X̃ θ̃∥

2
2 + λ2∥θ̃∥1, and θ̂1(λ2) = Ȳ − X̄ ˆ̃

θ(λ2). (9)

Define θ∗
= A−1µ∗; that is, θ∗

1 = µ∗

1, θ
∗

i = µ∗

i − µ∗

i−1, i = 2, . . . , n. Let θ̃∗
= (θ∗

2 , θ∗

3 , . . . , θ∗
n )T ∈ Rn−1. Since the

observation Y = (y1, . . . , yn) follows the model defined in (1), we have that (X, Y ) satisfies the linear model:

Y = Aθ∗
+ ϵ = θ∗

1 + X θ̃∗
+ ϵ,
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where X is defined at (2). Thus the centered version of (X, Y ) satisfies the following linear model:

Ỹ = X̃ θ̃∗
+ ϵ̃, (10)

where ϵ̃ = ϵ − ϵ̄, the centered version. Now we see that ˆ̃
θ(λ2) defined in (9) has the sign recovery property if and only if

ˆ̃
θ(λ2) =s θ̃

∗. By the relationship between µ and θ (µ = Aθ),
ˆ̃
θ(λ2) =s θ̃

∗ is equivalent to µ̂(0, λ2) =js µ
∗. In other words,

the pattern recovery property of the FLSA is equivalent to the sign recovery of the corresponding Lasso estimator.

Property 1. The pattern recovery of the FLSA µ̂(0, λ2) defined in (2) is equivalent to the sign consistency of the Lasso estimator
ˆ̃
θ(λ2) defined in (9).

Note that the main purpose of the change of variables here is for theoretical analysis rather than computational
considerations. Although there are many efficient algorithms for the Lasso such as LARS and coordinate descent, it is
not recommended in practice to solve the FLSA by transforming to the Lasso and then applying these algorithms. The
transformation makes the design matrix in (9) dense and is computationally unfavorable. Instead, Friedman et al. (2007)
develop specialized algorithm for the FLSA based on the coordinate-wise descent. Hoefling (2010) proposes the path
algorithm and extends that tomore general fused Lasso problems. In our theoretical analysis, however, such transformation
helps since we can use well understood techniques for the Lasso to analyze the properties of the FLSA.

3. The transformed Lasso

From the above argument, the study of the FLSA is reduced to analyzing the Lasso problem defined in (9). It is now well
understood that in a standard linear regression problem the Lasso is sign consistent when the design matrix satisfies some
stringent conditions. One such condition is the irrepresentable condition (Zhao and Yu, 2006) defined as follows:

Definition 3 (Irrepresentable Condition). Suppose that data (X, Y ) follows a linear model: Y = Xβ∗
+ ϵ, where Y =

(y1, . . . , yn)T , X ∈ Rn×p, β∗
∈ Rp×1 and ϵ = (ϵ1, . . . , ϵn)

T
∈ Rn×1 with E(ϵi) = 0. The design matrix X satisfies the

Irrepresentable Condition for β∗ with support S = {j : β∗

j ≠ 0} if, for some η ∈ (0, 1],XT
ScXS


XT
S XS

−1
sign(β∗

S )


∞

≤ 1 − η, (11)

where for a vector x, ∥x∥∞ = maxi |xi|, and for T ⊂ {1, . . . , p} with |T | = t , XT ∈ Rn×t is a matrix which contains the
columns of X indexed by T .

The irrepresentable condition is a key condition for the Lasso’s sign consistency. A lot of researchers noticed that the
irrepresentable condition is a necessary condition for the Lasso’s sign consistency (Zhao and Yu, 2006; Wainwright, 2009;
Jia et al., 2013). We also state this conclusion under a more general linear model with correlated noise terms.

Theorem 1. Suppose that data (X, Y ) follows a linearmodel Y = Xβ∗
+ϵ, withGaussian noise ϵ ∼ N(0, Σϵ). The irrepresentable

condition (11) is necessary for the sign consistency of the Lasso. In other words, ifXT
ScXS


XT
S XS

−1
sign(β∗

S )


∞

≥ 1, (12)

we have

P(β̂(λ) =s β
∗) ≤

1
2
.

The proof of Theorem 1 is postponed to Appendix. This theorem says if the irrepresentable condition does not hold, it is
very likely that the Lasso cannot correctly recover the signs of the coefficients.

With the above theorem, we come back to the transformed Lasso problem defined in (9) and examine if the
irrepresentable condition holds or not in this case. Recall that for the Lasso problem induced from the FLSA, we have the
design matrix

X̃ = [X1 − X̄1, . . . , Xn−1 − X̄n−1].

Let S = {j : θ̃∗

j ≠ 0} denote the index set of the relevant variables in the true model. Then (11) can be written asX̃j
T
X̃S(X̃S

T
X̃S)

−1sign(θ̃∗)

 < 1, ∀j ∉ S.

This is equivalent to

|b̂Tj sign(θ̃
∗)| < 1, ∀j ∉ S,
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where b̂j ∈ R|S| is the OLS estimate of bj in the following linear regression equation:

X̃j = bjT X̃S + ϵ. (13)

Since X̃ is the centered version of X , it can be easily shown that b̂j is also the OLS estimate of bj in the following linear
regression equation:

Xj = b0 + bjTXS + ϵ, (14)

where b0 ∈ R is the intercept term. Recall the irrepresentable condition defined in (11):XT
ScXS


XT
S XS

−1
sign(β∗

S )


∞

≤ 1 − η.

Wecan thus find all the signal patterns in (1) such that the irrepresentable conditionholds for the corresponding transformed
Lasso.

Theorem 2. Assume y = (y1, . . . , yn) satisfies model (1), the collection of the indices of jump points are S = {j1, j2, . . . , js}with
jk(1 ≤ k ≤ s) increasing. Formally, S = {j : µ∗

j ≠ µ∗

j−1, j = 2, . . . , n}. Then the irrepresentable condition (11) holds for the
transformed Lasso if and only if one of the following two conditions holds.

(1) The jump points are consecutive. That is, s = 1 or

max
1≤k<s

(jk+1 − jk) = 1.

(2) If there exists one group of data points (with more than 1 point) between some two consecutive jump points and these data
points have the same expected signal strength, then the two jumps are of different directions (up or down). Formally, let jk
and jk+1 be two jump points and µ∗

jk
= · · · = µ∗

jk+1−1, then (µ∗

jk
− µ∗

jk−1)(µ
∗

jk+1
− µ∗

jk+1−1) < 0.

The proof is given in the Appendix. Theorem 2 implies that only a few configurations of µ∗ can make the transformed
Lasso comply with the irrepresentable condition. In applications, most signal patterns do not satisfy either of the two
conditions in Theorem 2. Harchaoui and Lévy-Leduc (2010) also provide a result considering the irrepresentable condition.
They show that the irrepresentable condition never holds for a slightlymodified total variation penalty. Note that the penalty
term for original total variation penalty term is

p
i=2 |βi+1 − βi|, while Harchaoui and Lévy-Leduc (2010) give a result for a

slightly different penalty
p

i=2[|βi+1 − βi|] + β1. With the small modification, the result is also different.
We noticed that Rinaldo (2009) gave a result (Theorem 2.3 on page 2930) saying that under some regularity conditions,

the fused Lasso consistently recovers the signal pattern. This is a contradiction with Theorem 2, since those regularity
conditions only depend on the signal strengths, the number of blocks and the minimal size of the blocks. Because these
conditions do not guarantee the irrepresentable condition, that result missed this irrepresentable condition.

For sign recovery defined in (5), Jia and Rohe (2015) proposed a Puffer Transformation that preconditions the design
matrix in order to comply with the irrepresentable condition. The connection between sign recovery and pattern recovery
defined in (3) enables us to apply the same technique and thus improve the performance over the vanilla FLSA in pattern
recovery.

4. Preconditioned fused Lasso with puffer transformation

Jia and Rohe (2015) introduce the Puffer Transformation to the Lasso when the design matrix does not satisfy the irrep-
resentable condition. They showed that when n ≥ p, even if the Lasso is not sign consistent, after the Puffer Transformation,
the Lasso is sign consistent under some mild conditions.

We assume that the design matrix X ∈ Rn×p has rank d = min{n, p}. By the singular value decomposition, there exist
matrices U ∈ Rn×d and V ∈ Rp×d with UTU = V TV = Id and a diagonal matrix D ∈ Rd×d such that X = UDV ′. Define the
Puffer Transformation (Jia and Rohe, 2015),

Fn×n = UD−1UT . (15)

The preconditioned design matrix FX has the same singular vectors as X . However, all of the nonzero singular values of FX
are set to unity: FX = UV ′. When n ≥ p, the columns of FX are orthonormal. When n ≤ p, the rows of FX are orthonormal.
Jia and Rohe (2015) have a non-asymptotic result for the Lasso on (FX, FY ) stated in Theorem 4 in the Appendix. We see
that with the Puffer Transformation, the Lasso does not need the irrepresentable condition any more.

As shown previously, the FLSA can be transformed to a standard Lasso problem. We have already shown that for
most configurations of µ∗, the design matrix X̃ does not satisfy the irrepresentable condition. Now we turn to the Puffer
Transformation and obtain a concrete non-asymptotic result for the preconditioned fused Lasso.
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Theorem 3. Assume y = (y1, . . . , yn) satisfies model (1). X̃ and Ỹ are defined in (8). Let θ∗
= A−1µ∗ (equivalently,

θ∗

1 = µ∗

1, θ
∗

i = µ∗

i − µ∗

i−1, i = 2, . . . , n), where A is defined to be the lower triangular matrix with nonzero elements equal
to one. Let θ̃∗

∈ Rn−1
= (θ∗

2 , θ∗

3 , . . . , θ∗
n )T . Define the singular value decomposition of X̃ as X̃ = UDV T . Denote the Puffer

Transformation by F = UD−1UT . Let Z = F X̃ and a = F Ỹ . Define

β̃(λ) = argmin
b

1
2
∥a − Zb∥2

2 + λ∥b∥1. (16)

If minj≥2,θ∗
j ≠0 |θ∗

j | ≥ 2λ, then

P

β̃(λ) =s θ̃

∗


≥ 1 − 2n exp

−

λ2

8σ 2


.

The proof is given in the Appendix. By the relationship between θ∗ and µ∗, if β̃(λ) — the estimate of θ̃∗ has the sign
recovery property, then the estimate of µ∗ defined as follows has the property of pattern recovery.

µ̂∗
= Aθ̂∗ (17)

with

θ̂∗
= [θ̂1, β̃(λ)] and θ̂1 = Ȳ − X̄ β̃(λ).

Theorem 3 shows that the pattern recovery of the preconditioned fused Lasso depends on the signal jump strength
(minj≥2,θ∗

j ≠0 |θ∗

j |) and the noise level σ 2. To get a pattern-consistent estimate, we need σ small enough andminj≥2,θ∗
j ≠0 |θ∗

j |

big enough. To think about the small σ 2 issue, we can treat each yi as an average of multiple Gaussian measurements. If the

number of measurements ism, then σ 2
=

σ 2
0
m with some constant σ 2

0 . Ifm ≫ log(n), we can find a very small λ to make the
estimator defined in (17) have the pattern recovery property. One choice of λ is such that λ2

=
log(n+1)

√
m . For this choice of λ,

the probability of µ̂∗
=js µ

∗ is greater than 1 − 2 exp


−[

√
m

8σ 2
0

− 1] log(n + 1)

, which goes to 1 as n goes to ∞.

5. Numerical examples

We use several examples to illustrate our theory. Recall the model is set to be

yi = µ∗

i + ϵi,

where the errors ϵi’s are i.i.d. Gaussian variables with mean 0 and standard deviation σ . In the following simulations, the
length of the signal is set to be 430, not for others, but is just the same as the signal length in the example in Rinaldo (2009)
and more convenient for comparison. µ∗

i will be specified case by case, reflecting the characteristics of the signal pattern.
σ will generally vary between 0.05 and 0.5 to illustrate the recovery ability as a function of the noise level. Here are some
implementation details of the two procedures.
FLSA When calculating the FLSA solution, we use a path algorithm proposed by Hoefling (2010) which is very efficient
to give the entire solution path of the FLSA. An R package (‘‘flsa’’) for this algorithm is available in http://cran.r-
project.org/web/packages/flsa/index.html. In fact, the entire solution path is piecewise linear in λ. ‘‘flsa’’ only stores the
λ’s corresponding to the breakpoints at which the directions of the linear function change.
Preconditioned fused LassoWe calculate the solution defined in (16). After the SVD and the Puffer Transformation, the task
becomes much easier. It suffices to do soft-thresholding to obtain the entire solution path. This is because

ZTZ = XT F T FX = (VDUT )(UD−1UT )(UD−1UT )(UDV T ) = In
and the property of the Lasso allows us to solve it directly by soft-thresholding (Tibshirani, 1996):

b̂(λ) = SHλ(ZTa).

Obviously, b̂(λ) is piecewise linear in λ and the breakpoints are λi = |ZTa|(i), i = 1, 2, . . . , n, where x(i) denotes the ith
largest value in vector x and n is the dimension of the vector ZTa.

By a little further algebra analysis, we see that the Preconditioned Fused Lasso estimator can be calculated via soft
thresholding of the successive differences of the observed signals. This is because

ZTa = X̃T F T F Ỹ = (X̃T X̃)−1X̃T Ỹ = argmin
θ

∥Ỹ − X̃θ∥2

= argmin
θ

∥Y − Xθ − θ1∥2 =


argmin

θ
∥Y − Aθ∥2


[2:n]

=

A−1Y


[2:n] ,

http://cran.r-project.org/web/packages/flsa/index.html
http://cran.r-project.org/web/packages/flsa/index.html
http://cran.r-project.org/web/packages/flsa/index.html
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where A ∈ Rn×n is the lower triangularmatrix with nonzero elements equal to one, and x[2:n] stands for the vector consisting
of the 2nd to nth elements of x. So b̂i(λ) = SHλ(Yi+1 − Yi), i = 1, 2, . . . , n − 1.

Despite equivalence to this simplified thresholding algorithm, we point out that the preconditioned fused Lasso can
be extended easily to more general settings. For example, suppose we would like to recover the blocks in an unknown
coefficient sequence by solving

β̂ = argmin
β

∥y − Xβ∥
2
2 + λ

n−1
i=1

|βi+1 − βi|. (18)

We can do the transformation β = Aγ , where A is the same as in (6). The objective can again be transformed to a Lasso-
type, only no penalty on γ1. Then we can apply the preconditioned technique, in particular the Puffer Transformation as
in Theorem 3, to the response y and the new matrix XA after reparametrization, and solve resulting problem. We do a few
experiments for this problem and report one simulated result at the end of this section.

There are many criteria for comparison. In the context of exact pattern recovery, our principle is to check the solution
path and see if there is a solution that has exactly the same jump points as the true signals.

For each σ selected, we draw 1000 sample sequences and define PFLSA and PPCD FL to be the proportion of samples that the
recovered blocks (jump points) exactly match the true blocks (jump points) by using the FLSA and using the preconditioned
fused Lasso, respectively.

We will demonstrate that when irrepresentable condition holds, FLSA can recover the true blocks with high probability;
when irrepresentable condition does not hold, FLSA performs poorly, and for this case Puffer Transformation helps a lot.

5.1. The irrepresentable condition holds

We give specific examples of the signal patterns such that the irrepresentable condition of the transformed Lasso holds
and thus the FLSA can recover the pattern undermild conditions. Theorem2provides the necessary and sufficient conditions
for irrepresentable condition. Since the second condition in Theorem 2 is more commonly met, we focus on the signals that
satisfy this condition in the following.

We used two examples to show that when signal pattern follows the second condition in Theorem 2, both FLSA and
preconditioned FLSA can recover the signal pattern when noise is small. The sample data and results are shown in Fig. 2. The
top row gives the expected signal (plotted in lines) and the sampled noisy data (plotted in dots). The two signal patterns
are slightly different — the left one is more regular in the sense that the block size is almost the same. It is not clear when
transformed FLSA is better than vanilla FLSA when irrepresentable condition holds. But when irrepresentable condition
does not hold, which happens more likely than it holds, preconditioned FLSA definitely outperforms the vanilla FLSA. We
demonstrate this in the next subsection.

5.2. The irrepresentable condition fails

When the irrepresentable condition does not hold, the FLSA cannot reliably recover the exact pattern. We analyze in
more detail the numerical performances of the two procedures.

We use the same example as in Rinaldo (2009) except for larger noise (σ = 0.25 here). Recall that the signal pattern is
set to be

µ∗

i =



0, 1 ≤ i ≤ 100
−2, 101 ≤ i ≤ 110
−0.1, 111 ≤ i ≤ 210
2, 211 ≤ i ≤ 220
0.1, 221 ≤ i ≤ 320
−2, 321 ≤ i ≤ 330
0, 331 ≤ i ≤ 430.

Fig. 3 shows the sample data and true signals.
We apply the FLSA and the preconditioned fused Lasso to this sample data and compare the recovery performances. Fig. 4

plots two solutions by different selection of tuning parameter. The solution in the left plot is the one with tuning parameter
selected by recovering the same number of blocks as that of µ∗, the true signals; Right panel plots the FLSA solution (in red
lines) with tuning parameter selected by minimizing the ℓ2 error between µ̂∗ and µ∗. Fig. 4 shows that the FLSA cannot
locate the jump points correctly and the right subfigure illustrates that a good estimate under the Euclidean norm is not
reliable in exact pattern recovery. In sharp contrast, the preconditioned fused Lasso applied shown in Fig. 5 precisely locates
all the jump points and recovers the pattern.

Note that the reported preconditioned FLSA estimate in Fig. 5 is very biased from the expected value. There is a tradeoff
between the unbiasedness and the quality of pattern recovery. One possible solution for the unbiasedness is via a two-stage
estimator — for the first stage the signal patten is recovered and for the second stage an unbiased estimate is obtained.
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Fig. 2. Signal patterns and recovery performances. The first row presents the true signals (lines) and the sample data (points) under noise level σ = 0.25.
The second row shows the recovery performancesmeasured by the approximate probability of exact pattern recoverywhen the variance of noise increases.
Each point is estimated with 1000 randomly generated datasets.

Fig. 3. Sample data (points) and the expected signals (lines) at σ = 0.25.
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Fig. 4. FLSA solutions. Left panel: the FLSA solution(in red lines) with tuning parameter selected by recovering the same number of blocks as that of µ∗ ,
the true signals; Right panel: the FLSA solution (in red lines) with tuning parameter selected by minimizing the ℓ2 error between µ̂∗ and µ∗ . The black
lines are the expected signal sequences.

Fig. 5. The preconditioned fused Lasso solutions. Left: a sample solution of the preconditioned fused Lasso. Right: the estimated probability of pattern
recovery under different noise levels for the preconditioned fused Lasso. Each point is estimated with 1000 randomly generated datasets.

We further compare the recovery performances under different noise levels. We draw 1000 random sample sequences
and compare the approximate exact recovery probability. Fig. 5 visualizes the result.

The FLSA can hardly recover the signal pattern exactly even when the noise level is as small as σ = 0.05. This is
supported by the theory above. In contrast, the preconditioned fused Lasso has fairly satisfactory recovery performance till
σ = 0.25.

5.3. Extensions

Finally, we provide one simulation result for the problem of

min
β

∥Y − Xβ∥
2
2 + λ∥β∥TV .

In this simulation study, we choose each row of X i.i.d. from N(0, Σ), where Σij = 0.4, for i ≠ j and Σii = 1. We have
a design matrix X ∈ Rn×p with n = 200 and p = 100. We take β to have the pattern of piecewise constant. The true
coefficients are plotted in Fig. 6 (left). Y is designed as Xβ +ϵ, where ϵ ∼ N(0, σ 2). We vary σ from 0.25 to 5.We apply both
preconditionedmethod (denoted as PCFL) and the onewithout preconditioning (denoted as FLSA). For each noise level σ , we
do 500 repetitions and then we calculate the proportion of successful cases when one method could recover the piecewise
pattern of the coefficients. The results are plotted in Fig. 6 (right), from which we see the necessity of preconditioning.
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Fig. 6. True coefficients (left) and recovery performances (right). Recovery performance is measured by the approximate probability of exact pattern
recovery. Each point is estimated with 500 randomly generated datasets.

6. Conclusions and discussions

In this paper we providedmore understanding of the FLSA and shed some light on the insight into the FLSA. The FLSA can
be transformed to a standard Lasso problem. The sign recovery of the transformed Lasso problem is equivalent to the pattern
recovery of the FLSA problem. Theoretical analysis showed that the transformed Lasso problem is not sign consistent inmost
situations. So the FLSA might also meet this consistency problem when it is used to recover signal patterns. To overcome
such problem, we introduced the preconditioned fused Lasso. We gave non-asymptotic results on the preconditioned fused
Lasso. The result implies that when the signal-to-noise ratio is not so small, the preconditioned fused Lasso can recover the
signal patternwith high probability. Through simulation studies,we also found that the FLSA, if the irrepresentable condition
holds, is only more apt at recovering regular signals while our preconditioned fused Lasso is more robust to various kinds
of signals. Some attempts also imply that the preconditioned fused Lasso does not work so well if all the signals are equally
weak.

A good pattern recovery will facilitate many things afterwards. The preconditioned fused Lasso is reliable for pattern
recovery, and so it can be incorporated into other processes — such as the recovery of sparsity.
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Appendix

We prove the theorems in the appendix.

A.1. Proof of Theorem 1

We first give a well-known result that makes sure the Lasso exactly recovers the sparse pattern of β∗, that is β̂(λ) =s β
∗.

The following Lemma gives necessary and sufficient conditions for sign(β̂(λ)) = sign(β∗), which follows from the KKT
conditions. The proof of this lemma can be found in Wainwright (2009).

Lemma 2. For the linear model Y = Xβ∗
+ ϵ, assume that the matrix XT

S XS is invertible. Then for any given λ > 0 and any
noise term ϵ ∈ Rn, there exists a Lasso estimate β̂(λ) described in (4) which satisfies β̂(λ) =s β

∗, if and only if the following two
conditions holdXT

ScXS(XT
S XS)

−1 
XT
S ϵ − λsign(β∗

S )

− XT

Sc ϵ
 ≤ λ, (19)

sign

β∗

S + (XT
S XS)

−1 
XT
S ϵ − λsign(β∗

S )


= sign(β∗

S ), (20)

where the vector inequality and equality are taken elementwise. Moreover, if the inequality (19) holds strictly, then

β̂ = (β̂(1), 0)

is the unique optimal solution to the Lasso problem in Eq. (4), where

β̂(1)
= β∗

S + (XT
S XS)

−1 
XT
S ϵ − λsign(β∗)


. (21)

Remark. As in Wainwright (2009), we state an equivalent condition for (19). Define
−→
b = sign(β∗

S ),
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and define

Vj = XT
j


XS(XT

S XS)
−1λ

−→
b −


XS(XT

S XS)
−1XT

S − I

ϵ


.

By rearranging terms, it is easy to see that (19) holds if and only if

M(V ) =


max
j∈Sc

|Vj| ≤ λ


(22)

holds.

With Lemma 2 and the above comments, now we prove Theorem 1. Without loss of generality, assume for some j ∈ Sc
and ζ ≥ 0,

XT
j XS


XS

TXS
−1 −→

b = 1 + ζ .

Then

Vj = λ(1 + ζ ) + Ṽj,

where Ṽj = −XT
j [XS


XS

TXS
−1 XS

T
− I] ϵ

n is a Gaussian random variable with mean 0, so P(Ṽj > 0) =
1
2 . Therefore,

P(Vj > λ) ≥
1
2

and the equality holds when ζ = 0. This implies that for any λ, Condition (19) (a necessary condition) is violated with
probability greater than 1/2.

In the proof of Theorem 1, we need an algebra result as follows.

Lemma 3. For k ≥ 3, a1, . . . , ak ∈ R and are not equal to each other. A = (aij)k×k, with aij = aℓ where ℓ = max{i, j}. That is,

A =


a1 a2

... ak

a2 a2
...

...

· · · · · · ·
...

ak · · · · · · ak

 .

Then the inverse of A

(A)−1
=



r11 r12
r21 r22 r23

r32 r33 r34
. . .

. . .
. . .

rk−1,k−2 rk−1,k−1 rk−1,k
rk,k−1 rk,k


where

rij =



1
a1 − a2

i = j = 1

−
1

aj−1 − aj
i = j − 1

−
1

aj − aj+1
i = j + 1

aj−1 − aj+1

(aj−1 − aj)(aj − aj+1)
1 < i = j < k

ak−1

(ak−1 − ak)(ak)
i = j = k

0 otherwise.
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Proof. This lemma can be directly verified via the following equations:
i

ajirij = 1 and


i

aℓirij = 0, ℓ ≠ j.

We first verify


i ajirij = 1, for all j.
When j = 1,

i

a1iri1 = a1r11 + a2r21 = a1 ·
1

a1 − a2
+ a2 ·

−1
a1 − a2

= 1.

When 1 < j < k,
i

ajirij = aj,j−1rj−1,j + aj,jrj,j + aj,j+1rj+1,j

= aj ·
−1

aj−1 − aj
+ aj ·

aj−1 − aj+1

(aj−1 − aj)(aj − aj+1)
+ aj+1 ·

−1
aj − aj+1

= 1.

When j = k,
i

ajirij = ak,k−1rk−1,k + ak,krk,k

= ak ·
−1

ak−1 − ak
+ ak ·

ak−1

(ak−1 − ak)ak
= 1.

We next verify


i aℓirij = 0 for all ℓ ≠ j. We only verify the general case when there are three elements in one column
of A−1. The other verifications are the same.


i aℓirij = aℓ,j−1rj−1,j + aℓ,jrj,j + aℓ,j+1rj+1,j. Since ℓ ≠ j, there are only two

situations we need to consider. (1) ℓ ≤ j − 1 and (2) ℓ ≥ j + 1.
When ℓ ≤ j − 1,

i

aℓirij = aℓ,j−1rj−1,j + aℓ,jrj,j + aℓ,j+1rj+1,j

= aj−1rj−1,j + ajrj,j + aj+1rj+1,j

= 0.

When ℓ ≥ j + 1,
i

aℓirij = aℓ,j−1rj−1,j + aℓ,jrj,j + aℓ,j+1rj+1,j

= aℓrj−1,j + aℓrj,j + aℓrj+1,j

= aℓ ·


−1

aj−1 − aj
+

aj−1 − aj+1

(aj−1 − aj)(aj − aj+1)
+

−1
aj − aj+1


= 0. �

A.2. Proof of Theorem 2

Proof. Note that the OLS estimate of the coefficients in the linear regression equation (14) is
b̂0
b̂j


= (ZS TZS)−1ZS TXj, (23)

where ZS =

1n XS


and b̂j ∈ Rs. We first attempt to find the necessary and sufficient condition such that ∥b̂j∥1 < 1 for

all j, which is a stronger condition for (11) to hold.
We know that ZT

S ZS = (tkℓ) ∈ R(s+1)×(s+1) with

tkℓ = n − max{jk−1, jℓ−1}.
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where we assume j0 = 0. According to a linear algebra result stated in Lemma 3 in the Appendix, the inverse of this matrix
is a tridiagonal matrix:

(ZT
S ZS)

−1
=



r11 r12
r21 r22 r23

r32 r33 r34
. . .

. . .
. . .

rs,s−1 rs,s rs,s+1
rs+1,s rs+1,s+1


where

rkℓ =



1
j1

k = ℓ = 1

−
1

jℓ−1 − jℓ−2
k = ℓ − 1

−
1

jℓ − jℓ−1
k = ℓ + 1

jℓ − jℓ−2

(jℓ−1 − jℓ−2)(jℓ − jℓ−1)
1 < k = ℓ < s + 1

n − js−1

(js − js−1)(n − js)
k = ℓ = s + 1

0 otherwise.

Denote v =


b̂0
b̂j


= (ZS TZS)−1ZS TXj. There are three pattern types that we need to consider.

(i) If there exists 1 ≤ k < s such that jk+1 − jk ≥ 2, then for any j with jk < j < jk+1,

ZS TXj = (n − j, n − j, . . . , n − j  
k+1

, n − jk+1, n − jk+2, . . . , n − js)T .

We have

v =


0, . . . , 0,

jk+1 − j
jk+1 − jk

, −
jk+1 − j
jk+1 − jk

+ 1, 0, . . . , 0
T

.

Hence,

∥b̂j∥1 =

 jk+1 − j
jk+1 − jk

 +

 −
jk+1 − j
jk+1 − jk

+ 1
 = 1, since jk < j < jk+1. (24)

(ii) If j < j1,

ZS TXj = (n − j, n − j1, n − j2, . . . , n − js)T .

We have

v =


1 −

j
j1

,
j
j1

, 0, . . . , 0
T

.

Hence, ∥b̂j∥1 = |
j
j1
| < 1.

(iii) If j > js,

ZS TXj = (n − j, . . . , n − j  
s+1

)T .

We have

v =


0, . . . , 0,

n − j
n − js

T
.

Hence, ∥b̂j∥1 = |
n−j
n−js

| < 1.
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These three cases for the position of j ∈ Sc show that as long as j is not between two jump points, ∥b̂j∥1 < 1. Otherwise
∥b̂j∥1 = 1. So

s = 1 or max
1≤k<s

(jk+1 − jk) = 1

is necessary and sufficient for all ∥b̂j∥1 < 1, j ∈ Sc .
If the above condition does not hold, that is, there are at least two jump points and all the jump points are not consecutive

in indices, the irrepresentable condition (11) holds if and only if for each k such that jk+1 − jk ≥ 2, θ̃∗

k and θ̃∗

k+1 have different
signs. By the definition of θ̃ , we see that (µ∗

jk
− µ∗

jk−1)(µ
∗

jk+1
− µ∗

jk+1−1) < 0 is equivalent to θ̃∗

k and θ̃∗

k+1 having different
signs. �

A.3. Proof of Theorem 3

To prove the non-asymptotic result for the preconditioned fused Lasso, we first state a general result for the Lasso that
will be the main ingredient of our proof.

Theorem 4 (Jia and Rohe, 2015). Suppose that data (X, Y ) follows a linear model Y = Xβ∗
+ ϵ, where Y = (y1, . . . , yn)T ∈

Rn×1, X ∈ Rn×p with xTi as its ith row, β∗
∈ Rp×1 and ϵ = (ϵ1, . . . , ϵn)

T
∈ Rn×1 with ϵ ∼ N(0, σ 2In). Define the singular

value decomposition of X as X = UDV ′. Suppose that n ≥ p and X has rank p. Let Λmin(X) be the minimal eigenvalue of the
matrix X and Cmin = Λmin(XT

S XS), where S is the same as that in Definition 3. We further assume that the minimal eigenvalue
Λmin(

1
nX

′X) ≥ C̃min > 0. Define the Puffer Transformation, F = UD−1UT . Let Z = FX and a = FY . Define

β̃(λ) = argmin
b

1
2
∥a − Zb∥2

2 + λ∥b∥1.

If minj∈S |β∗

j | ≥ 2λ, then with probability greater than

1 − 2p exp


−

nλ2C̃min

2σ 2


(25)

β̃(λ) =s β
∗.

The proof can be found in Jia and Rohe (2015). From the proof we see that the assumption that ϵ ∼ N(0, σ 2In) can be
relaxed to ϵ ∼ N(0, Σ)withmaxi Σii ≤ σ 2. Note that in Theorem 4, the minimum singular value of the designmatrix plays
a critical role. The following lemma addresses this issue for the special design matrix of the preconditioned fused Lasso.

Lemma 4. X̃ ∈ Rn×(n−1) is defined in (8). Let σj(·) denote the jth largest singular value of a matrix. Then

σ1(X̃) ≥ σ2(X̃) ≥ · · · ≥ σn−1(X̃) ≥ 0.5.

To prove Lemma 4, we need the following two results.

Lemma 5. Let X ∈ Rn×n be a lower triangular matrix with elements 1 on and below the diagonals and 0 in other places.

Xij =


1 i ≥ j
0 i < j.

The minimal singular value is greater or equal to 0.5.

Proof. Let X = (aij) ∈ Rn×n be the matrix satisfying the condition of the lemma. Note that the singular values of this matrix
X are the non-negative square roots of the eigenvalues of XTX . Hence it suffices to show that all the eigenvalues of XTX are
greater or equal to 0.25.

The explicit expression of Cn = XTX = (cij) ∈ Rn×n is

cij = n + 1 − max{i, j}.

By Lemma 3, we have

C−1
n =



1 −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 2

 .
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Then for any vector u ∈ Rn×1,

uTC−1
n u = u2

1 +

n
i=2

(2u2
i ) − 2

n−1
i=1

uiui+1

≤ 2
n

i=1

u2
i − 2

n−1
i=1

uiui+1

≤ 2
n

i=1

u2
i + 2

n−1
i=1

|uiui+1|.

By the fact that
n−1

i=1 |uiui+1| ≤
1
2

n−1
i=1 (u2

i + u2
i+1) ≤

n
i=1 u

2
i , we have

uTC−1
n u ≤ 4

n
i=1

u2
i ,

which implies that the eigenvalues of C−1
n are less or equal to 4 and thus the eigenvalues of Cn are all greater or equal to

0.25. �

The following lemma states the relationship between eigenvalues of second moments for centered and non-centered
data. Let X ∈ Rn×p be a data matrix. Define the (empirical) covariance matrix of X to be

S =
X ′
cXc

n
,

where Xc is the centered version of X with the jth column of Xc be Xj − X̄j. Let the second moments of the dataset X be

T =
X ′X
n

.

Then the eigenvalues of S and T have the following property.

Lemma 6 (Cadima and Jolliffe, 2009). Let S be the covariance matrix for a given dataset, and T its corresponding matrix of non-
central second moments. Let λj(·) be the jth largest eigenvalue of a matrix. Then

λj+1(T ) ≤ λj(S) ≤ λj(T ).

Lemma 6 can be found on page 5 in Cadima and Jolliffe (2009).
With the results from Lemmas 5 and 6, we now prove Lemma 4.

Proof. Let X ∈ Rn×n be a lower triangular matrix with elements 1 on and below the diagonals and 0 in other places.

Xij =


1 i ≥ j
0 i < j.

Let σj(·) denote the jth largest singular value of a matrix. By Lemma 5, the smallest singular value is not less than 0.5, that is
σj(X) ≥ 0.5, ∀j = 1, . . . , n. Now let Xc be the centered version of X , then Xc = [0, X̃], where 0 is a column vector with all
elements 0, and X̃ ∈ Rn×(n−1) as defined in Eq. (8). Let σj(·) denote the jth largest singular value of a matrix. By Lemma 6,
we have

σj+1(X) ≤ σj(Xc) ≤ σj(X), ∀j = 1, 2, . . . , n − 1.

In particular, take j = n−1 in the above inequalities and we have σn−1(Xc) ≥ σn(X) ≥ 0.5. Since Xc is singular, the minimal
singular value σn(Xc) = 0. Therefore,

σn−1(X̃) = σn−1(Xc) ≥ 0.5. �

With the above tools, we can now prove Theorem 3.

Proof. By (10),

Ỹ = X̃ θ̃∗
+ ϵ̃,

where ϵ̃ = ϵ − ϵ̄ with E(ϵ̃) = 0 and

var(ϵ̃i) = var(ϵi − ϵ̄) =
n − 1
n

σ 2
≤ σ 2.
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According to the comments below Theorem 4, we can apply Theorem 4 to have a lower bound on P(β̃(λ) =s θ̃
∗). Let

s1 ≤ s2 ≤ · · · ≤ sn be the singular values of X̃ . From Lemma 4 in the Appendix, s1 ≥ 0.5. So Λmin(
1
n X̃

′X̃) =
s21
n ≥

1
4n .

Put C̃min =
1
4n in expression (25) and note that X̃ has n − 1 columns, we have

P(β̃(λ) =s θ̃
∗) ≥ 1 − 2(n − 1) exp


−

λ2

8σ 2


≥ 1 − 2n exp


−

λ2

8σ 2


. �
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