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On the convergence of the iterates of “FISTA”.

A. Chambolle and Ch. Dossal

September 2014

Abstract

We discuss here the convergence of the iterates of the “FISTA” algo-
rithm, which is an accelerated algorithm proposed by Beck and Teboulle for
minimizing the sum F = f + g of two convex, l.s.c. and proper functions,
such that one is differentiable with Lipschitz gradient, and the proximity
operator of the second is easy to compute. It builds a sequence of iterates
(xn)n∈N for which F (xn) − F (x∗) 6 O(1/n2). However the convergence of
these iterates (xn)n∈N is not obvious. We show here that with a small mod-
ification, we can ensure the same decay of the energy as well as the (weak)
convergence of the iterates to a minimizer.

Introduction

Let H be a Hilbert space and f and g two convex, l.s.c functions from H to
R∪{+∞} such that f is differentiable with L-Lipschitz continuous gradient,
and g is “simple”, meaning that its “proximal map”

x 7→ arg min
y∈H

g(y) +
‖x− y‖

2τ

2

can be easily computed. We consider the following minimization problem

min
x∈H

F (x) := f(x) + g(x) (1)

and we assume that this problem has at least a solution (and possibly an
infinite set of solutions).

Among the many algorithms which exist to tackle such problems, the
proximal splitting algorithms, which perform alternating descents in f and
in g, are frequently used, because of their simplicity and relatively small
per-iteration complexity. One can mention the Forward-Backward (FB)
splitting, the Douglas-Rachford splitting, the ADMM (alternating direction
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method of multipliers),1 which all have been proved to be efficient in many
imaging problem such as denoising, inpainting, deconvolution, color trans-
fert and many others.

This work focuses on the so-called “Fast Iterative Soft Thresholding Al-
gorithm” (FISTA) which is an accelerated variant of the Forward-Backward
algorithm proposed by Beck and Teboulle [2], built upon ideas of Nes-
terov [12] and Güler [7].

The FB is a descent algorithm which defines a sequence (xn)n∈N by
performing an explicit descent in f and implicit in g. It is then shown that
there exist C > 0, such that for all n ∈ N F (xn) − F (x∗) 6 C

n where x∗ is
a minimizer of F . Moreover the sequence (xn)n∈N weakly converges in H.
See for instance [14] or [2] for a simple derivation of this rate.

The sequence (xn)n∈N defined by the accelerated variant “FISTA” [2]
satisfies, on the other hand, F (xn)− F (x∗) 6 C′

n2 for a suitable real number
C ′, however no convergence of (xn)n∈N has been proved so far.

The FISTA algorithm is based on a simple over-relaxation step with
varying parameter, and several choices of parameters yield roughly the same
rate of convergence. This paper provides complementary results on the
convergence of F (xn)−F (x∗) for some “good” choices of these parameters,
for which the weak convergence of the iterates can also be proved.

In the next section, we introduce a few definitions and our main notation.
In a second part, the main result on the convergence of FISTA is recalled,
and we give new results on the convergence of the values of F (xn), for other
over-relaxation sequences. In the third part we show the convergence of the
iterates. This part is strongly inspired from a recent paper of Pock and
Lorenz [9], inspired by works of Alvarez and Attouch [1] and Moufadi and
Oliny [10]. The last part is focused on numerical experiments.

1 Notation and definitions

In the following x∗ denotes a solution of (1), even if this solution is not
unique the value F (x∗) is uniquely defined.

A key tool of FISTA is the proximal map. To any proper, convex and
l.s.c function h is associated the proximal map Proxh which is a function
from H to H defined by

Proxh(x) = arg min
y∈H

h(y) +
1

2
‖x− y‖2 .

This function is uniquely defined and generalizes the projection on a closed
convex set to convex functions.

1See for instance [4, 8, 5, 6, 3].
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In the sequel, γ denotes a non negative real number such that γ ≤ 1
L

where L is the Lipschitz constant of ∇f and T the mapping from H to H
defined by

T (x) := Proxγg(x− γ∇f(x)),

The idea of FB is to apply this mapping from any x0 ∈ H using Krasnosel’ski
Mann iterations to get a weak convergence to a minimizer x∗ of F . The
idea of FISTA is to apply this mapping using a suitable extragradient rule
to accelerate the convergence.

FISTA is defined by a sequence (tn)n∈N of real numbers greater than 1
and a point x0 ∈ H. Let (tn)n∈N∗ be a sequence of non negative real numbers
and x0 ∈ H, the sequences (xn)n∈N, (yn)n∈N and (un)n∈N and (yn)n∈N are
defined by y0 = u0 = x0 and for all n > 1,

xn = T (yn−1) (2)

yn =

(
1− 1

tn+1

)
xn +

1

tn+1
un (3)

un = xn−1 + tn(xn − xn−1). (4)

The point yn may also be defined from points xn and xn−1 by

yn = xn + αn(xn − xn−1) with αn :=
tn − 1

tn+1
(5)

For suitable choices of (tn)n∈N∗ the sequence (F (xn))n∈N converge to F (x∗),
i.e the sequence (wn)n∈N, defined as follows,

wn := F (xn)− F (x∗) (6)

tends to 0 when n goes to infinity.
Several proofs use bounds on the local variation of the sequence (xn)n∈N,

which we will denote (δn)n∈N: variation :

δn :=
1

2
‖xn − xn−1‖22 (7)

The sequence (vn)n∈N denoting the distance between un and a fixed mini-
mizer x∗ of F will also be useful:

vn :=
1

2
‖un − x∗‖22 . (8)

To complete this part devoted to our notation, we define a sequence (ρn)n∈N,
associated to (tn)n∈N∗ , whose positivity will ensure the convergence of the
FISTA iterations:

ρn := t2n−1 − t2n + tn. (9)
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2 Some results on the FISTA method

The main result of [2] is the following Theorem :

Theorem 1 ([2, Thm. 4.1]). For any x0 ∈ H, if the sequence (tn)n∈N∗

satisfies
∀n > 2 t2n − tn 6 t2n−1 (10)

and t1 = 1, if γ 6 1
L then the sequence (xn)n∈N satisfies for all n ∈ N

wn 6
1

2γt2n
‖x0 − x∗‖22 (11)

for any minimizer x∗ of F .

Condition (10) can also be stated using the sequence (ρn)n∈N: ∀n >
2, ρn > 0.

The sequence defined by t1 = 1 and

∀n ∈ N∗ tn+1 =

√
t2n +

1

4
+

1

2
(12)

achieves the equality in (10).Also, it turns out that the sequence (tn)n∈N
defined by tn = n+1

2 satisfies condition (10). But more generally, for any
a > 2 the sequence (tn)n∈N defined by tn = n+a−1

a satisfies (10). Indeed,

ρn =
1

a2
((n+a−2)2−(n+a−1)2+a(n+a−1)) =

1

a2
((a−2)n+a2−3a+3) > 0.

(13)
An induction proves that any sequence satisfying (10) (hence an inequality
in (12)) and t1 = 1 satisfies tn > n. Hence for any sequence defined above,
Theorem 1 ensures that

∀n ∈ N wn 6
C

n2
(14)

where C depends on the exact choice of the sequence (tn)n∈N.
A priori, the best constant “C” in this bound C

n2 will be reached if the
sequence (tn)n∈N is the one achieving the equality in (10), given by (12),
ensuring the highest value of tn. This is the choice in [2], and it turns out
that it is nearly optimal (since for any n there exists a problem which has
lower bound of the same order, see [11, 13]). We will soon see, however,
that not achieving this equality may have some advantages.

This first Theorem can easily be made more precise, as follows:

Theorem 2. If the sequence (tn)n∈N satisfies (10) and t1 = 1, if γ 6 1
L

then for any N > 2,

t2N+1wN+1 +

N∑
n=1

ρn+1wn 6
v0 − vN+1

γ
. (15)
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Using the several choices of sequence (tn)n∈N described above, Theorem 2
ensures the same decay for wn (wn 6 C

n2 ) as the previous. But using (13),
we readily see that for a “good” choice of the sequence (tn)n∈N∗ , one obtains
the following corollary:

Corollary 1. Let a > 2 and for n > 1, tn = n+a−1
a . Then the sequence

(nwn)∈N belongs to `1(N). In particular, lim infn→∞ n
2 log nwn = 0.

The classical choice (12) for the sequence (tn)n∈N∗ may yield the best
rate of convergence for the objective, but other sequences can give better
global properties of the sequence (nwn)n∈N. (also notice that the other
classical choice corresponding to a = 2 will not ensure this summability.)
An important remark, here, is that this result is not in contradiction with
the lower bounds of Nemirovski and Yudin (see [11, 13]). Indeed, they show
that for any integer n0 one can build a specific problem for which one will
have, after n0 iterations, n0wn0 ≥ C/n0, however this does not mean that
the sequence (nwn)n is not eventually summable.

Proof of Theorem 2 The proof is similar to the one of Theorem 1 in [2],
however for the ease of the reader we will sketch it here. A first (standard)
technical descent Lemma is useful:

Lemma 1. Let γ ∈]0, 1
L ], where L is the Lipschitz constant of ∇f , x̄ ∈ H

and x̂ = T x̄. Then

∀x ∈ H F (x̂) +
‖x̂− x‖2

2γ
6 F (x) +

‖x− x̄‖2

2γ
(16)

Proof. Many proofs exist of this result, we give an elementary one which is
inspired from [16]. By definition of the proximal map, x̂ is the minimizer of
the 1

γ -strongly convex function

z 7−→ g(z) + f(x̄) + 〈∇f(x̄), z − x̄〉+
1

2γ
‖z − x̄‖2

hence for all z ∈ H

g(x̂) + f(x̄) + 〈∇f(x̄), x̂− x̄〉+
‖x̄− x̂‖2

2γ
+
‖z − x̂‖2

2γ

6 g(z) + f(x̄) + 〈∇f(x̄), z − x̄〉+
‖z − x̄‖2

2γ
.

Since γ ≤ 1/L, it follows

g(x̂) + f(x̂) +
1

2γ
‖z − x̂‖2 6 g(z) + f(x̄) + 〈∇f(x̄), z − x̄〉+

1

2γ
‖z − x̄‖2 .

By convexity, f(x̄) + 〈∇f(x̄), z− x̄〉 6 f(z). We deduce that (16) holds and
the Lemma is proved.
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Proof of Theorem 2. Applying this Lemma to x̄ = yn, x̂ = xn+1 and x =
(1− 1

tn+1
)xn + 1

tn+1
x∗, we find

F (xn+1) +

∥∥∥ 1
tn+1

un+1 − 1
tn+1

x∗
∥∥∥2
2

2γ

6 F

(
(1− 1

tn+1
)xn +

1

tn+1
x∗
)

+

∥∥∥ 1
tn+1

x∗ − 1
tn+1

un

∥∥∥2
2

2γ

Using the convexity of F it follows

F (xn+1)− F (x∗)−
(

1− 1

tn+1

)
(F (xn)− F (x∗))

6
‖un − x∗‖22

2γt2n+1

−
‖un+1 − x∗‖22

2γt2n+1

Using definitions of wn and vn this inequality can be stated

t2n+1wn+1 − (t2n+1 − tn+1)wn 6
vn − vn+1

γ
(17)

Summing these inequalities from n = 1 to n = N leads to

t2N+1wN+1 +

N∑
n=1

ρn+1wn 6
v0 − vN+1

γ
. (18)

which ends the proof of Theorem 2.

We can deduce another useful corollary:

Corollary 2. Let a > 2 and for n > 1, tn = n+a−1
a . Then the sequence

(nδn)∈N belongs to `1(N), in particular lim infn→∞ n
2 log nδn = 0. In addi-

tion, there exists C > 0 such that for all n ∈ N∗, δn 6 C
n2 .

This results which is a consequence of Corollary 1 is the key to prove the
convergence of the sequence (xn)n∈N.

Proof. Applying Lemma 1 to x̄ = yn = xn + αn(xn − xn−1), and x = xn
leads to

F (xn+1) +
‖xn − xn+1‖2

2γ
6 F (xn) +

α2
n ‖xn − xn−1‖

2

2γ

which can be written with definitions of wn and δn

δn+1 − α2
nδn 6 γ(wn − wn+1)
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If tn = n+a−1
a , αn = tn−1

tn+1
= n−1

n+a .

Multiplying this inequality by (n + a)2 and summing from n = 1 to
n = N leads to

N∑
n=1

(n+ a)2(δn+1 − α2
nδn) 6 γ

N∑
n=1

(n+ a)2(wn − wn+1),

which gives

(N + a)2δN+1 +
N∑
n=2

((n+ a− 1)2 − (n+ a)2α2
n)δn 6

γ

(
(a+ 1)2w1 − (N + a)2wN+1 +

N∑
n=2

(
(n+ a)2 − (n+ a− 1)2

)
wn

)

that is

(N + a)2δN+1 +
N∑
n=2

a(2n− 2 + a)δn

6 γ

(
(a+ 1)2w1 − (N + a)2wN+1 +

N∑
n=2

(2n+ 2a− 1)wn

)

By Corollary 1 and since we have assumed a > 2, the right part of the
inequality is uniformly bounded independently of N , which ensures that the
sequence (nδn)n∈N belongs to `1(N). It also follows that N2δN+1 is globally
bounded.

3 Convergence of the iterates of FISTA

In this section, we show the following Theorem

Theorem 3. Let a > 2 be a positive real number, and for all n ∈ N let
tn = n+a−1

a . Then the sequence (xn)n∈N given by FISTA weakly converges
to a minimizer of F .

The proof of the theorem follows the ideas of Pock and Lorenz, in the
proof of Theorem 1 in [9]—see also [1]. The two main differences between
our setting and the setting of [9] are:

1. We do not assume the existence of α < 1 such that ∀n > 1, αn 6 α;

2. The sequence (δn)n∈N produced by FISTA, with a good choice of the
sequence (tn), has stronger properties than in [9].

7



It turns out that Corollary 2 is crucial, while classical bounds on δn which
only show the existence of a constant C > 0 such that δn 6 C

n2 are not
sufficient.

Before giving the complete proof of this result, several remarks can be
done.

1. From Corollary 2 it follows that the sequence (n(xn+1 − xn))n∈N is
bounded, moreover from (18) it follows that the sequence (vn)n∈N de-
fined in (8) is also bounded (hence (un)n∈N). These two facts imply
that the sequence ((xn)n∈N) is bounded, hence weakly sequentially
compact.

2. Assume we have a subsequence which weakly converges to a x̃ ∈ H,
xν ⇀ x̃: then since the sequence (δn)n∈N tends to 0, yν ⇀ x̃ which
shows that x̃ is a fixed point of the nonexpansive operator T . Hence
it is a minimizer of F .

If we are able to prove that the sequence ‖xn − x∗‖ has a limit for any
minimizer x∗ of F , Theorem 3 will follow, from points 1. and 2. above and
the observation that if xν ⇀ x̃ and xν′ ⇀ x̃′, then using limν ‖xν − x̃‖2 =
limν′ ‖xν′ − x̃‖2 and the same equality with x̃′, it follows ‖x̃− x̃′‖2 = 0 (this
is Opial’s Theorem [15]). Before proving Theorem 3, let us establish the
following estimate.

Lemma 2. For all j > 1, let us define

βj,k =

k∏
l=j

αl =

k∏
l=j

l − 1

l + a
,

for all k > j, and βj,k = 1 for k < j. (Observe that since α1 = 0, ∀k >
1, β1,k = 0.) Then, we have for all j

+∞∑
k=j

βj,k 6
j + 5

2
. (19)

Proof. Since a ≥ 2,

βj,k 6
k∏
l=j

l − 1

l + 2
.

Hence, for all j > 2 and for all k > 1, βj,k 6 1, while if k − j > 2,

βj,k 6

(
j + 1

k

)3

.
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It follows that for all j > 2,

+∞∑
k=j

βj,k 6 2 +
+∞∑
k=j+2

βj,k 6 2 +
+∞∑
k=j+2

(
j + 1

k

)3

6 2 + (j + 1)3
+∞∑
k=j+2

1

k3

6 2 + (j + 1)3
∫ +∞

t=j+1

dt

t3
6 2 + (j + 1)3

1

2(j + 1)2
.

Estimate (19) follows.

Proof of Theorem 3. Let us define

Φn =
1

2
‖xn − x∗‖22 and Γn =

1

2
‖xn+1 − yn‖22

From the identity

〈a− b, a− c〉 =
1

2
‖a− b‖22 +

1

2
‖a− c‖22 −

1

2
‖b− c‖22 (20)

we have by using the definition of yn

Φn−Φn+1 = δn+1 + 〈yn−xn+1, xn+1−x∗〉−αn〈xn−xn−1, xn+1−x∗〉 (21)

Then, using the monoticity of ∂g, we deduce that for any zn+1 ∈ ∂g(xn+1)
and for any z∗ ∈ ∂g(x∗)

〈γzn+1 − γz∗, xn+1 − x∗〉 > 0

By definition of x∗, −∇(f(x∗)) ∈ ∂g(x∗) and yn − xn+1 − γ∇f(yn) ∈
γ∂g(xn+1).

It follows

〈yn − xn+1 − γ∇f(yn) + γ∇f(x∗), xn+1 − x∗〉 > 0

〈yn − xn+1, xn+1 − x∗〉+ γ〈∇f(x∗)−∇f(yn), xn+1 − x∗〉 > 0

Combining with (21) we obtain

Φn−Φn+1 > δn+1+γ〈∇f(yn)−∇f(x∗), xn+1−x∗〉−αn〈xn−xn−1, xn+1−x∗〉.
(22)

From the co-coercivity of ∇f , we have

〈∇f(yn)−∇f(x∗), xn+1 − x∗〉
= 〈∇f(yn)−∇f(x∗), xn+1 − yn + yn − x∗〉

>
1

L
‖∇f(yn)−∇f(x∗)‖22 + 〈∇f(yn)−∇f(x∗), xn+1 − yn〉

>
1

L
‖∇f(yn)−∇f(x∗)‖22 −

1

L
‖∇f(yn)−∇f(x∗)‖22 −

L

2
Γn

> −L
2

Γn.
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Substituting back into (22), we get

Φn − Φn+1 > δn+1 −
γL

2
Γn − αn〈xn − xn−1, xn+1 − x∗〉,

and invoking (20) it follows that

Φn+1 − Φn − αn(Φn − Φn−1) 6− δn+1 +
γL

2
Γn

+ αn(δn + 〈xn − xn−1, xn+1 − xn〉)

= −Γn +
γL

2
Γn + (αn + α2

n)δn,

where we have used the fact that

δn+1 − αn〈xn − xn−1, xn+1 − xn〉 = α2
n

‖xn − xn−1‖
2

2

− ‖xn+1 − yn‖
2

2

.

Using αn+α2
n

2 6 αn we obtain

Φn+1 − Φn − αn(Φn − Φn−1) 6 −
(

1− γL

2

)
Γn + 2αnδn (23)

with 1− γL
2 > 0.

Now defining θn = max(0,Φn − Φn−1) we obtain

θn+1 6 αn(θn + 2δn) (24)

Applying recursively (24) it follows that for all n > 2 (α1 = 0, and in
particular θ1, θ2 = 0).

θn+1 6 2

n∑
j=2

 n∏
l=j

αl

 δj = 2

n∑
j=2

βj,nδj . (25)

Hence (using (19)),

+∞∑
n=2

θn 6 2
+∞∑
n=1

n∑
j=2

βj,nδj

6 2
∞∑
j=2

δj

∞∑
n=j

βj,n

6 2

∞∑
j=1

δj
j + 5

2
.

From Corollary 2 the right side of the last inequality is finite if a > 2,
therefore the sequence (θn)n∈N belongs to `1(N).
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The end of the proof follows Lorenz and Pock [9]. We set sn = Φn −∑n
i=1 θi and since Φn > 0 and

∑n
i=1 θi is bounded independently of n, we

see that sn is bounded from below. 0n the other hand

sn+1 = Φn+1 − θn −
n∑
i=1

θn 6 Φn+1 − Φn+1 + Φn −
n∑
i=1

θi = sn

and hence (sn)n∈N is a non-decreasing sequence and thus is convergent. This
implies that Φn is convergent, which concludes the proof of Theorem 3.

4 Numerical Experiments

In the previous parts, it was shown that non classical choices of the sequence
(tn)n∈N ensure weak convergence of iterates (xn)n∈N and good properties for
the sequence (F (xn)−F (x∗))n∈N . On three examples, inpainting, deblurring
and denoising, we compare several choices of parameters.

For each example the 4 following sequences are tested :

• t1 = 1 and ∀n ∈ N, tn+1 =
√
t2n + 1

4 + 1
2 ,

• tn = n+a+1
a ,∀n ∈ N with a = 2, 3 and 4.

For each problem, at each iteration n, the values ‖xn − xn−1‖22 and F (xn)−
F (x∗) are computed. Since F (x∗) can not be exactly computed, the value
F (x∗) is estimated by the the minimum of the values computed on 2000
iterations for the four methods. The plot of these two quantities is thus
given from n = 1 to n = 1800.

Inpainting Let us consider here a degraded image y0 = Mx0 where x0

is an unkown source image and M a mask operator. In our example 50% of
the pixels are removed. We estimate the image x0 from y0 by minimizing

F (x) =
1

2

∥∥y0 −Mx
∥∥2
2

+ λ ‖Tx‖1 (26)

where λ is a small positive parameter and T an orthogonal (Daubechies)
wavelet transform.

Considering f(x) = 1
2

∥∥y0 −Mx
∥∥2
2

and g(x) = λ ‖Tx‖1, FISTA may be
applied to minimize F .
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Left: the masked image y0. Right: an image x̂ estimated minimizing F
with FISTA.2

Left: values of F (xn)− F (x∗). Right: values of ‖xn − xn−1‖22.
Blue dot line classical FISTA, red dashed-dot line a = 2, black solid line

a = 3 and magenta dashed line a = 4.

On this example, the choices a = 3 or a = 4 seems better than classical
choices after 100 iterations. One can notice that classical FISTA is better
for a small number of iterations.

Deblurring In this second example y0 = h ? x0 +n is the noisy image of
a blurred images x0, where h is a gaussian filter and n is a random gaussian
noise. The image x0 can be estimated minimizing

F (x) =
1

2

∥∥y0 − h ? x∥∥2
2

+ λ ‖Tx‖1 (27)

where λ is a small positive real number whose value depends on the noise
level and T is an orthogonal (Daubechies) wavelet transform.

Considering f(x) = 1
2

∥∥y0 − h ? x∥∥2
2

and g(x) = λ ‖Tx‖1, FISTA may be
applied to minimize F .

2The images provided by the 4 versions of FISTA look very similar, the difference appears in
the values of the variation of functionnal F through the iterations.
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Left: the blurred image y0. Right: an image x̂ estimated minimizing F
with FISTA.

Left: values of F (xn)− F (x∗). Right: values of ‖xn − xn−1‖22.
Blue dot line classical FISTA, red dashed-dot line a = 2, black solid line

a = 3 and magenta dashed line a = 4.

On this example, the choices of the classical FISTA seems better after 200
iterations, but the decreasing of δn seems still better for a = 3 and a = 4.

TV denoising Let us consider now a noisy image y0 = x0 + n. The
image x0 may be estimated from y0 minimizing

F (x) =
1

2

∥∥y0 − x∥∥2
2

+ λ ‖∇x‖1 (28)

where ∇x is the gradient of the image x and ‖∇x‖1 is the isotropic `1-norm
of the gradient. This regularization is also called Total Variation (TV)
regularization. The proximal map of the function x 7→ ‖∇x‖1 does not have
a close form and FISTA is difficult to use directly here. Nevertheless, by
duality, this minimization problem is equivalent to minimize

G(p) =
1

2

∥∥y0 + div p
∥∥2
2

+ i‖·‖∞6λ(p) (29)

where iC denotes the function such that iC(x) = 0 if x ∈ C and iC(x) = +∞
if x /∈ C and where x 7→ − div x is the divergence operator, conjugate of
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the gradient ∇.
These two problems are equivalent and for any solution p∗ of the second
minimization problem, y0 + div p∗ is a solution of the first minimization
problem.

This second problem can be solved using FISTA since the gradient of
p 7→ 1

2 ‖y + div p‖22 is Lipschitz and the proximal map of p 7→ i‖·‖+∞6λ(p) is
a simple projection.

Left: noisy image y0. Right: the image x̂ estimated minimizing F with
FISTA.

Left: values of G(pn)−G(p∗). Right: values of ‖pn − pn−1‖22.
Blue dot line classical FISTA, red dashed-dot line a = 2, black solid line

a = 3 and magenta dashed line a = 4.

On this example, the different choices of parameters seem to be equivalent.
These three examples shows that choosing a priori a sequence (tn)n∈N

for FISTA is difficult and that for a given problem, it would be useful to test
various options. Sometimes the classical parameters proposed by Beck and
Teboulle are better to get a faster minimization, sometimes the use of a = 3
or a = 4 is better. But on the three examples the norm of the variation δn
is smaller for a = 3 or a = 4 than a = 2 or the classical FISTA, which may
indicate that the convergence of the iterates is faster.
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