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ABSTRACT

Motivation: DNA methylation is a molecular modification of DNA
that plays crucial roles in regulation of gene expression. Particularly,
CpG rich regions are frequently hypermethylated in cancer tissues,
but not methylated in normal tissues. However, there are not many
methodological literatures of case-control association studies for
high-dimensional DNA methylation data, compared with those of
microarray gene expression. One key feature of DNA methylation
data is a grouped structure among CpG sites from a gene that are
possibly highly correlated. In this article, we proposed a penalized
logistic regression model for correlated DNA methylation CpG sites
within genes from high-dimensional array data. Our regularization
procedure is based on a combination of the /; penalty and squared
I, penalty on degree-scaled differences of coefficients of CpG sites
within one gene, so it induces both sparsity and smoothness with
respect to the correlated regression coefficients. We combined the
penalized procedure with a stability selection procedure such that
a selection probability of each regression coefficient was provided
which helps us make a stable and confident selection of methylation
CpG sites that are possibly truly associated with the outcome.
Results: Using simulation studies we demonstrated that the
proposed procedure outperforms existing main-stream regularization
methods such as lasso and elastic-net when data is correlated within
a group. We also applied our method to identify important CpG sites
and corresponding genes for ovarian cancer from over 20 000 CpGs
generated from lllumina Infinium HumanMethylation27K Beadchip.
Some genes identified are potentially associated with cancers.
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1 INTRODUCTION

DNA methylation, which is the addition of a methyl group to
the 5" position of cytosine in the context of a CpG dinucleotide,
is a molecular modification of DNA that plays crucial roles in
regulation of gene expression. Particularly, CpG rich regions are
frequently hypermethylated in cancer tissues, but not methylated in
normal tissues. Tremendous amounts of DNA methylation data have
recently been generated from high-throughput DNA methylation
platforms. For example, the Illumina GoldenGate array, the [llumina
Infinium HumanMethylation27K array and the most recent [llumina

*To whom correspondence should be addressed.

Infinium HumanMethylation450K array are popularly used. These
platforms are based on genotying bisulfite converted DNA. The
results of the array, the methylation status of the interrogated CpG
site are a sequence of B-values, one for each locus, calculated as the

average of approximately 30 replicates of the quantity (Bibikova
etal., iEZ Eia),

p= max(M,0)
" max(U,0)+max(M,0)+100°

where U is the fluorescent signal from an unmethylated allele on
a single bead, and M is that from a methylated allele. A maximum
between signal intensity and O is chosen to compensate for negative
signals due to background subtraction. The constant 100 is to
regularize B-values where both M and U values are small. This
B-value ranges continuously from 0 (unmethylated) to 1 (completely
methylated) and reflects the methylation level of each CpG site.
Many researchers have applied statistical classification methods
to select differently methylated loci (Houseman er all, 2008;
|Ku_an_¢LaL], |2Qlﬂ; Ejggmnw, |2£)M). Statistical approaches
developed for gene expression data may not be applied directly
to methylation data since many genes are methylated, while only
a few genes are differently expressed. However, disease related
CpG regions should still be sparse, in which case the problem is
equivalent to identify a few relevant genes from high-dimensional
gene expression data. Compared with the case-control studies of
gene expression data, there are currently not many methodological
developments for methylation data. m ) has recently
proposed a likelihood-based uniform-normal mixture model to
select differently methylated loci between case and control groups.
One difference of methylation data from gene expression is that
the former ranges between O and 1. But, this is not an issue in
regression frameworks. Another key feature of DNA methylation
data that has not been fully utilized is the group structure within
a gene. With the Illumina HumanMethylation27K array, there are
about 1-22 CpG sites per gene where methylation levels of CpG
sites within a gene are usually correlated. Unlike genotype data
with single nucleotide polymorphisms (SNPs), g-values € (0,1) are
continuous thus correlations among them can be observed more
precisely. Note that although CpG sites within a gene are correlated,
some CpG sites might be neutral while some CpG sites might be
causal. Therefore, considering these features of DNA methylation
data, in this article we proposed a penalized logistic regression model
for correlated CpG sites within a gene as predictors of a disease
status. The proposed method can select CpG sites individually that
associated with a disease while grouping effects are encouraged.
The penalized logistic regression has been recently used to
select SNPs or genes associated with a disease in high-dimensional
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data settings. It has great advantage in performing consistent variable
selection even when the number of predictors are much larger than
number of samples, a typical setting in genetics and genomics.
Hierarchically penalized selection method was first proposed by
[Breheny and Huang (2009). They developed a selection procedure
taking into account both between-group and within-group features
along with different penalties. m ) evaluated the
performance of lasso penalized logistic regression in case-control
disease gene mapping with SNP data‘m ) proposed a
model that uses the mixture of group and lasso penalties in logistic
regression to identify common and rare variants in genome-wide
association studies (GWAS). Their approaches basically combine
the /; norm penalty of M ) and the /» norm group
penalty of m M). These penalties induce the overall
sparsity and group sparsity, respectively. Consequently, predictors
with stronger effects on responses are more likely to be selected
into the model. However, none of the methods above are designed
to encourage selection effects for highly correlated predictors.

For the analysis of correlated microarray gene expression data,
several variable selection methods have been developed in the past
decade. The fused lasso (Libshirani ez afl, 2009) imposes the
penalty on the absolute differences of the regression coefficients
in order to account for some smoothness of the coefficients. The
elastic-net (Enet) procedure (IZQu_and_H_as_tj_d, |2£)Qj), which is a
compromise between a ridge regression penalty and a lasso penalty,
encourages a grouping effect of highly correlated variables. When
genetic network information such as a genetic pathway is available,
ILiandId (]2&0_8, |2m_d) proposed a graph-constrained regularization
procedure. In their method, a Laplacian matrix representing a graph
structure was imposed on a ridge-regression penalty of the Enet
procedure such that linked genes have a smoothness penalty on
their regression coefficients. The authors demonstrated that when the
information of gene networks is incorporated into the regularization
procedure, it can select more relevant genes than the lasso and Enet
procedures.

Motivated by the graph-constrained procedure by m
m, M), we extended it to the logistic regression model
for the analysis of case-control DNA methylation data, where
our Laplacian matrix represents CpG sites clustered within genes.
The rest of this article is organized as follows. In Section 2, we
described our statistical model and regularization procedure for
grouped and correlated predictors (CpG sites) together with the
computational algorithm and the stability selection procedure. We
then presented the simulation results in Section 3, where existing
main-stream variable selection methods were compared with the
proposed method when predictors within a group are correlated.
Section 4 analyzed a real DNA methylation data in a case-control
study of ovarian cancer. Finally, we gave a brief discussion of the
method and future research in Section 5.

2 METHODS

2.1 Penalized logistic regression

Let us denote the methylation S-values of the i-th individual by x;=
(X1 ,...,xip)T, i=1,...,n, and p is the total number of CpG sites considered
in the analysis. The penalized logistic regression is defined as

1 n
== lyi log p(xi) +(1 =i log(1—p(xp)]+ P(©), Q)

i=1

where P(0) is a penalty function, and the response y; is O for controls and 1
for cases. The probability that the i-th individual is a case based on his/her
DNA methylation information is denoted as

exp(fo +xiT€)
pxi)=—"—"T7—.
1 +exp(6o+x; 0)
The intercept parameter 6y and regression coefficients 6 = (6, ...,91,)T can

be estimated by minimizing the objective function ().

In the work of m , M), the p-dimensional Laplacian
matrix L={[,,} was used to represent a graph structure when the network
information of predictors is provided. It is defined as

1 if u=vandd,#0
L= —(dud,,)_% if u and v are linked with each other
0 otherwise,

where d,, is the total number of links of the u-th predictor, and it is often
called a degree of the vertex u in graph theory. Their penalty function is

P@)=n11011 +220TLO

P L 0 0, \? 2
=2 16;] 4+ A < “ V)
DD DI CE -

u=1u~v

where ||-||1 is a/; norm, and u~ v indicates the index set of all linked variables
to the u-th predictor. The tuning parameters A; and A, control the amount of
regularization for sparsity and smoothness, respectively. When 1, =0, this
penalty simply reduces to the lasso ,@), and if the Laplacian
matrix L is replaced by an identity matrix /, the penalty becomes the Enet
penalty m, m). Also, the estimates of ridge regression for
logistic regression can be obtained when A1 =0 and L=1.

This penalty is defined as a combination of the /; penalty and squared
I penalty on degree-scaled differences of coefficients between linked
predictors. It induces both sparsity and smoothness with respect to the
correlated or linked structure of the regression coefficients.

(]m, M) have shown that a desirable grouping effect can be reached
by specifying links among regression coefficients in the model. However,
their approach is limited to the ordinary regression model.

Here we extended it to the penalized logistic regression for the analysis of
case-control methylation data. First, we need to specify a network structure
that describes correlation patterns for methylation measures of CpG sites
within a gene. There are two networks prevalently used in graph theory that
fit our situation, namely, the ring network and the fully connected (F.con)
network. Figure [[] depicts these network topologies in the scenario when
there are 6 genes and each of which consists of 1, 2, 3, 4, 6 and 9 CpG
sites. In the ring network, we assumed that the first and last CpG sites from
a gene are connected with each other so that all CpG sites within the same
gene have the same number of links. In contrast, a F.con network assumes
that all CpG sites within the same gene are connected with each other. In
the penalized regression model, both networks specify a group structure of
predictors so that the coefficients of correlated predictors within the same
group can shrink toward each other, allowing them to borrow information

° o—o0
o o—o
o o—0 g © o—0o ©
® o— o © o —%9
o oo o O-—0o
o o o ° o o o o
o 0o
. o ©° » o )
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o ooo o ¥

Fig. 1. The ring network (left) and F.con network (right) are shown when
there are 6 genes each of which consists of 1, 2, 3, 4, 6 and 9 CpG sites.
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from each other. Unlike the group penalized method of M),
our model still performs individual selection, so neutral CpG sites within
significant genes are not forced to remain in the final model.

To compare the biological basis of the ring and the F.con networks,
although it depends on the underlying true correlation patterns of CpG sites
within genes, the later might be more appropriate for DNA methylation data
since one CpG site might be correlated with the rest sites within the same
gene. The ring network assumes correlation of just flanking sites except for
the first and last sites. Note that the link between the first and the last sites
in the ring network is less possible biologically but is imposed to apply the
ring network. In terms of variable selection, the ring network will induce
a mild groping effect on a large group since the number of links per CpG
site is fixed at 2 for all genes that have >2 CpG sites. In contrast, the total
number of links per CpG site in the F.con network model is increased by the
number of CpG sites within a gene. So, the fully connected network usually
produces a strong grouping effect since variables with more links are more
likely to be selected in the network-based regularization procedure. This is
also discussed by M). If all CpG sites in a gene are true signals,
the F.con network are desirable. But, if there are both neutral sites and causal
sites in a gene, the ring network might be preferable to weaken the grouping
effect. However, in simulation study and real data application we showed
that the selection results using the two networks are almost identical. Also
note that the Laplacian matrix in our model @) has the form of a blockwise
diagonal matrix for both network models.

2.2 Computational algorithms

Li and Li has applied the coordinate descent algorithm of Friedman
et al. lE; Ei;) to obtain the minimizer of the function (I) when a response
variable follows a Gaussian distribution. But this cannot be directly applied to
the logistic regression. Moreover, recent publication o )
has drastically improved the computational efficiency, and a R package
glmnet was developed for the Enet regularization procedure of the logistic
regression. Since the Enet method simply replaces the Laplacian matrix by
an identity matrix in the penalty function @), we could impose the Laplacian
matrix in the glmnet code and be benefited from the efficient computation
algorithm already implemented. In this section, we briefly explained how the
Enet procedure and our method differ in terms of algorithm.

Let us denote the negative log likelihood function of the logistic regression
model by —(6y,6), which is equivalent to the first term of the function ().
Our objective function is then

0(60,0)=—1(60,0)+P(9), 3)
where
0, \?
P(O)=h o; La- 4
©)= aZI I+ 54 a)X;Z(f M) @
and
A=Aq 425 d —_ M
=A1+2A2 an _mA

As 1(60,0) is approximated by a second-order Taylor series expansion at
current estimates (8,60*), the function @) can be re-written as

1 n
Q*(00,0)==- ) wizi—60—x/6)’ +P(O),
i=1

where
=05 +x] 0" +w (i —p* (),
wi=p*(x)(1=p*(x;)),
P =1—[1+exp(@; +xTo")17 .
We refer the readers to[Friedman ef all M) for the details of this derivation.

Next, we can compute the gradient at 6, =6, while the other estimates 6f
for all v#u are fixed. By setting the gradient to 0 and solve for 6,, we can
get the current estimate of 6, using the following formula,

§ (n T =5+ @), he)
S wid, + (1 —a)

*__
eu -

i

where Zf-u) =65+ itu iy Oj* ,

guw=y_ W ®)

u~v
and S(z,y) is a soft thresholding operator with value

—y ifz>0and y <|[z]
sign(z)(|zl—y) =1 z+y ifz<Oand y <[z
0 otherwise.

If the u-th predictor is a unique member of a group, i.e. no links to any other
predictors, the function g(u) in @ is equal to 0. If all predictors are isolated,
the penalty function @ is reduced to

PO)= AaZ\HH— A(l—a)ZGM,

i=1 u=1

and thus g(u)=0forallu=1,...,p. In this case the solution becomes exactly
the same as that of the Enet procedure. In other words, we only need to include
the term A(1 —a)g(u) in the formula of the Enet when we create a group of
CpG sites by genes.

2.3 Selection probabilities

In our penalty function @) we have two tuning parameters to be selected. The
parameter « € (0, 1) induces the model to have the estimates between ridge
(¢ =0) and lasso (¢ =1). As « increases from 0 to 1, the sparsity solution
to (@) is obtained for each A, but the model near o =1 becomes indifferent
to correlated predictors. The Enet procedure usually uses a small value of
o to overcome collinearity problems in regressions with high-dimensional
predictors. However, results of variable selection are very similar with a
small perturbation of «. In contrast, the tuning parameter A forces the model
to select more variables as A decreases with a fixed «. Since the value of A
directly determines the total number of relevant predictors, the choice of A
is crucial in variable selection problems.

Cross-validation (CV) is commonly used to find the optimal value of X in
variable selection literatures, although it is known that for high-dimensional
data CV generally selects too many variables including some truly unrelated
variables. [Meinshausen and Biihlmant M) in their recent work proposed
to compute selection probabilities for all variables, and to include only
the variables with high selection probabilities in the model. Their method
is based on resampling, and provides a more stable selection for high-
dimensional data compared with CV. Recently,m M)
have applied it to select relevant SNPs in GWAS. We employed their method
to determine important CpG sites in our regularization procedure.

Let us denote A as a regularization parameter space, e.g. A € A. Let Iy be
the k-th random subsample of {1,...,n} of size |n/2] without replacement,
where |x] is the largest integer not greater than x. The selection probability
of the u-th predictor is then defined as

1 .
P(u)=max — #{k <K :0* (i
SP(u) max {k<K:0,)#0},

where 91} (Ix) is the estimator of 6, using a regularization procedure based on
the subsample I given A, and K is the total number of resampling. Then, the
variables whose selection probabilities are greater than some cutoff value,
say 7, are selected in the model. According to [Meinshausen and Biihlmand
M), selection results do not rely much on the choice of A, and tend to
be very similar with different values of the cutoff 7. They also provided
the formula to select both A and 7 so that the expected number of falsely
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selected variables can be controlled when the exchangeability assumption
of predictors are met. However, this assumption is a weaker version of
independence and is hard to be satisfied with highly correlated genomic
data. We thus focused on identifying the CpG sites which have high selection
probabilities in the analysis of methylation data.

2.4 Adaptive regularization procedure

Li and Li M) have pointed out that their procedure does not perform
well when two predictors that are linked with each other are negatively
correlated with the response because in this situation the corresponding
regression coefficients have different signs, so they are not expected to be
locally smooth. Their solution to this problem is to estimate the signs of
coefficients first, and refit the model with the estimated signs. This change
only affects the Laplacian matrix of the penalty function, so we can simply
modify it in the following way,

1 if u=vandd,#0
L= —susv(dudv)*% if u and v are linked each other
0 otherwise,

where s, is the estimated sign of the u-th predictor, which can be obtained
by ordinary regression estimates when p <n, and ridge estimates for p >n.
Then, the function g(u) in &) should be updated in the formula,

w Z Susy0;
guw)= .
= dudy

[Liand 14 M) have demonstrated that this adaptive regularization
procedure leads to improved estimates and selection results compared with
the ordinary procedure in their simulation studies. Therefore, we also have
included the sign estimates in our regularized estimates for both simulation
studies and the real data application.

3 SIMULATION STUDIES

We conducted some simulation studies to compare the performance
of our proposed method to existing main-stream regularization
procedures. In our simulation models, we have 600 genes which
consist of 1-9 CpG sites such that 100 genes have 1 CpG site, 150
genes have 2 CpG sites and each 50 genes of the others have 3-9
CpG sites, respectively. Therefore, a total of 2500 CpG sites were
simulated.

To mimic real DNA methylation data, we need to generate group
correlated variables within the [0, 1] range. To do so, we employed
the inverse logit transformation of multivariate normal random
variables. Thus, the methylation B-values of the g-th gene for the
i-th individual is calculated as

explig)

Xjo=———, and t; ,~+/SN, ,2),
i.g l—i—exp(t,',g) i.g \[ pg(ﬂ )

where s is a scale parameter and pg is the size of the g-th gene,
i.e. 1 <pg<9. In this study, we set u=(—0.1,...,—0.1)T and s=4
so that the distribution of the methylation values have an enriched
‘0’ (unmethylated) and enriched ‘1’ (completely methylated) as
previously observed m, ).

Next, we specified the true regression coefficients 6 similar as Li
and Li (IEH ;I) Let us first denote the coefficients of the g-th gene by
Q(g) =(91’g, ...,ng,g)T. Since 600 genes have 1 to 9 CpG sites, we
grouped the genes by the number of CpG sites. For example, the first
gene group has only one CpG site, and the second group has only
two CpG sites, and so on. Then, we selected one gene from each of

the 9 different gene groups, which leads to a total of 45 CpG sites.
We denoted the regression coefficients of these 45 CpG sites as

3

O g =(—1PT— forallk=1,...,p,,
Pg

forg=1,...,9 and referred them as CpG set-1. Similarly, we selected

another nine genes from each of the nine different gene groups, and

denoted their coefficients as

1)
Ok,g=(=1)%
¢ Vg

, forallk=1,..., f%L

where [x7] is the smallest integer not less than x. We referred them as
CpG set-2. All the other 8’s are set to 0. Therefore, in all simulation
settings, all CpG sites in CpG set-1 are disease related sites, while
only half of the CpG sites in CpG set-2 are disease related sites.
Thus, there are a total of 70 disease related CpG sites out of 2500
total CpG sites in the simulation models.

Finally, the corresponding responses y; was simulated according
to a Bernoulli distribution with the following model-based
probabilities,

exp(x;-re)

yi ~Bernoulli (p(x;)), TrexpT6)’
1

pxp)=

where xi:(xiT,l""’xng)T and 0:(95),...,9(200))T. For each
simulation set, samples were generated until we have 200 cases. We
then randomly selected 200 controls from the control pool already
generated.

We considered nine different simulation models, differing the
strength of the true signals § and the covariance matrix ¥ within

genes. First, three models are defined in the following way,
(1) §=1, and =y, =pl“~I
(2) §=2, and %, = v~
3) §=2,and X,,=p for u7#v and ¥, =1 for u=v,

where the correlation of the first two models is AR(1), and the
third model has compound symmetric correlation structure. We then
simulated the data with different correlation coefficient p =0.2,0.5
and 0.7 for all three models. For each model we repeated simulations
100 times, and selection probabilities for each simulation set was
computed based on 100 resamplings.

We compared the performance of the proposed ring and F.con
network-based method to that of the group MCP (gMCP) procedure
using the R package grpreg ,|2mq>, the lasso
and Enet procedures using glmnet ,M). Figurel]
shows the box plots of averaged selection probabilities of 70 true
signals in 9 different simulation models. It appears that the lasso
has the lowest selection probabilities, and the Enet and our methods
have similar selection probabilities through all simulation models.
The selection probabilities of gMCP are slightly lower than that
of the Enet but much higher than that of the lasso. However, the
model with the highest selection probabilities does not always lead
to the best model, when the model might have selected too many
false positives if the selection probabilities of the disease unrelated
predictors are also high. Thus, we computed both true positive rates
and false positive rates of each procedure while varying the cutoff
7 of selection probabilities from O to 1.

1371

2102 ‘€ AInC U0 SHND-1SIN| 1 /BI0'S [eUINO IO IX0"SO ITeWIo U I01G)//:01Y WO | papeo lumoQ


http://bioinformatics.oxfordjournals.org/

H.Sun and S.Wang

- |A B c 3
: 1 TG - B F
Jovirs| cae8| gogd
;888 2ET BT
2 B T -
H = 2
O-D E F -

0.9

0.6

b4 ee e

-
o3---+
-~
e
+--3-4

0.3
L
|u|]j {ec o o
"ﬂ]"‘ 00 0o
+
-3
[ -
+
---4
3

Selection probabilities

" ogan| go0o| gond@

[ 1B

E P T
L @ @*

.
N SR

T T T T T T T T T T T T T T T
Lasso Enet Fcon  Lasso Enet F.con Lasso Enet F.con
gMCP Ring gMCP Ring gMCP Ring

Fig. 2. The averaged selection probabilities of 70 true signals via Lasso,
gMCP, Enet, and the ring and F.con network-based procedures are present.
The signal strength is set at §=1 in A-C, and §=2 in D-J. The AR(1)
covariance is used in A-F, and the compound symmetric correlation for
G-J. The correlation is set at p=0.2 for A, D and G, p=0.5 for B, E and
H, and p=0.7 for the others.

Table 1. The area under the averaged ROC curves of Lasso, gMCP, Enet,
and the ring and F.con network-based procedures along with the different
signal strength §, covariance ¥ and correlation coefficient p

) z P ‘ Lasso eMCP Enet Ring F.con

I AR(l) 0.2 | 0.6896 0.6980 0.7000 0.7472  0.7470
1 AR(l) 05 | 07707 0.7963 0.8019 0.8538  0.8562
1 AR(l) 0.7 | 0.8202 0.8632 0.8728 0.9083  0.9127
2 AR(l) 0.2 | 07943 0.8012 0.8023 0.8574 0.8582
2 AR(l) 0.5 | 0.8619 0.8831 0.8862 0.9310 0.9321]
2 AR(l) 0.7 | 09037 09360 0.9410 0.9655 0.9669
2 cs? 02 | 0.8468 0.8592 0.8615 09113 09124
2 CS 0.5 | 09010 0.9279 0.9328 0.9583 0.9587
2 CS 0.7 | 09088 0.9490 0.9549 0.9700 0.9707

2Compound symmetry covariance.

The averaged receiver operating characteristic (ROC) curves of
selection results of the procedures are given in Supplementary
Materials (Fig. S1). The corresponding area under the ROC curves
(AUC) are shown in Table[] It is obvious that our proposed network-
based methods outperform other procedures in all simulation
scenarios. Surprisingly, both versions of the proposed network-
based methods (Ring and F.con) have very similar AUCs and
almost identical ROC curves in all simulation models. This may
suggest that the penalty of misidentifying correlation structures
of CpG sites within a gene is negligible, but instead the group
selection effects of clustering CpG sites is strong enough to
enhance overall selection performance and overwhelm the others.

>
40 60 80

Frequency

20

Frequency
40 60

20

correlation

Fig. 3. The histograms of maximum sample correlation between CpG sites
within 6936 genes for (A) pre-treatment case and healthy control group
combined, and (B) post-treatment case and healthy control group combined

The null simulation (with § =0) were also conducted for these five
procedures for validation. The results are provided in Supplementary
Materials (Figs S2 and S3), where averaged selection probabilities
over 100 simulation replications are displayed for all 2500 CpG
sites. It can be seen that all procedures produced roughly uniform
selection probabilities across all CpG sites. Note that the comparison
of selection probabilities across the five procedures in the null
simulation is not meaningful, but we should compare selection
probabilities across CpG sites.

Since the lasso procedure handles neither group structure nor
correlated predictors, their selection performance is always poor
for group correlated predictors. The gMCP is better than the lasso
as it specifies grouped variables but does not differentiate their
correlations. In contrast, the Enet is designed to have grouping
effects for correlated predictors without specifying defined groups.
Only our proposed methods account for both group structure and
correlated variables thus lead to a superior selection performance
over the other regularization procedures.

4 DATA ANALYSIS

We applied our proposed method to select differentially methylated
CpG sites between ovarian cancer cases and healthy controls
using the DNA methylation data generated from Illumina Infinium
HumanMethylation27K Beadchip (t[esghf_n_dmif_maﬂ, |2£)_1ﬂ).
The data is available at the NCBI Gene Expression Omnibus
(http://www.ncbi.nlm.nih.gov/geo/).
We first performed the quality control procedure of the
methylation data similar as [Teschendorff er glf 201d) and Mand
), which include the removal of samples with either a low
BS conversion efficiency or low CpG coverage. We also left out
CpG sites with any missing B-values. Since our procedure assumes
that every CpG site belongs to a single gene, CpG sites without
corresponding gene information were removed. We ended up with
20461 CpG sites from 12 770 genes where we have 152 controls, 119
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Table 2. The CpG sites and corresponding genes with top 20 selection probabilities identified by Enet, and the ring and F.con network-based
procedures from the comparison between pre-treatment cases and normal controls

Enet Ring F.con
Prob TIImnID Gene Prob IlmnID Gene Prob TIlmnID Gene

1 0.990 cg11009736 (MARCO)* 0.980 ¢g20792833 (PTPRCAP)?* 0.980 cg20792833 (PTPRCAP)?
2 0.990 cg04988978 (MPO)* 0.925 cg04988978 (MPO)* 0.925 cg04988978 (MPO)*

3 0.985 cg20792833 (PTPRCAP)? 0.895 cg09964921 (KCNEI)* 0.895 cg09964921 (KCNEI)*
4 0.950 ¢g09964921 (KCNE1)* 0.890 cg11009736 (MARCO)* 0.890 cg11009736 (MARCO)*
5 0.920 cg06521852 (HRIHFB2122)* 0.810 cgl4360917 (SP2)* 0.810 cgl4360917 (SP2)*

6 0.920 cg00134539 (UBASH3A)? 0.790 cg06521852 (HRIHFB2122)* 0.795 cg03801286 (KCNEI)
7 0.890 cgl4360917 (SP2)* 0.790 cg03801286 (KCNEI) 0.790 cg06521852 (HRIHFB2122)?
8 0.885 cg21932814 (CSTA) 0.790 cg21517055 (MGC11271)* 0.790 cg21517055 (MGC11271)*
9 0.885 cg00974864 (FCGR3B) 0.745 ¢g00201234 (FBLN2)* 0.745 cg00201234 (FBLN2)?
10 0.885 cg21517055 (MGC11271)* 0.740 cg00134539 (UBASH3A)? 0.740 cg00134539 (UBASH3A)*
11 0.885 cg02374486 (PRF1) 0.730 cg15616083 (KCNQ2) 0.730 cgl5616083 (KCNQ2)
12 0.885 ¢g20070090 (S100A8) 0.725 cg27303882 (PAGE2) 0.725 cg27303882 (PAGE2)
13 0.845 cg27067618 (CYP4F3) 0.720 ¢g05294455 (MYL4)* 0.715 cg05294455 (MYL4)?
14 0.845 cg04353769 (MS4A6A) 0.690 cgl1412582 (HERC2) 0.685 cg13626881 (ADORAI)
15 0.830 cg02240622 (PLCB2) 0.680 cg13626881 (ADORAL) 0.685 cgl1412582 (HERC2)
16 0.830 cg06196379 (TREM1) 0.680 cg01405107 (HOXBS) 0.680 cg01405107 (HOXBS)
17 0.825 cg21126943 (CEACAMO6) 0.670 cg04398282 (BRDG1) 0.665 cg10494770 (IGLL1)

18 0.820 cg00201234 (FBLN2)? 0.670 €g24993443 (SNRPN) 0.665 €g24993443 (SNRPN)
19 0.820 cg27461196 (FXYDI1) 0.665 cg10494770 (IGLL1) 0.660 cg04398282 (BRDG1)
20 0.815 cg05294455 (MYLA4)* 0.650 cg27067618 (CYP4F3) 0.650 cg06409153 (ABCAS5)
20 - - - - - - 0.650 cg27067618 (CYP4F3)

AIndicates the overlapped genes in the top 20 lists of all 5 procedures.

pre-treatment cases, and 123 post-treatment cases. We chose to work
with more homogenous comparisons by separating pre-treatment
and post-treatment cases. Among 12770 genes, 5834 genes have
one CpG site, and 6744 genes have two CpG sites. Only 169 genes
include 3 to 9 CpG sites, and 23 genes have 10 to 22 CpG sites.

Next, we investigated the sample correlations between CpG sites
of 6936 genes that have at least 2 CpG sites. The first comparisons
is between 152 controls and 119 pre-treatment cases, and second
comparison is between 152 controls and 123 post-treatment cases.
The sample correlation matrix was computed gene by gene. We took
the maximum correlation from all pairwise correlations among CpG
sites on genes with >2 CpG sites and plotted the histograms of these
correlations over 6936 genes for comparisons (Fig. B)). Although
the distributions of the correlations are quite different between two
comparisons, it is clear that methylation B-values within genes
are highly correlated. The correlation histograms of separate pre-
treatment cases, post-treatment cases, and controls are also given in
Supplementary Materials (Fig. S4).

To identify the important CpG sites and corresponding genes
for ovarian cancer, we applied the proposed two versions of the
regularization procedures (Ring and F.con) and three existing ones
(Lasso, gMCP and Enet). The selection results of the pre-treatment
and post-treatment comparisons are reported in Tables B and [3]
respectively. In each table, the CpG sites and genes with top 20
highest selection probabilities for the Enet, the ring and F.con
network-based procedures were listed. The selection results of Lasso
and gMCP are given in Supplementary Materials (Tables S1 and S2).
The selection probabilities of each procedure were computed based
on 200 resampled subsets of individuals.

It appears that although the five procedures selected somewhat
different CpG sites in their top 20 list, around 10 CpG sites
overlapped. It is also expected that the ring and F.con network-based
methods identified almost the same lists of CpG sites as simulation
studies suggested. In Table 2] when comparing pre-treatment cases
and controls, gene HOXBS, which was selected by the proposed
procedure was previously identified to be differentially methylated
between liver cancer tumor tissues and adjacent normal tissues (Shen
etal ,IEIii i]), but Enet failed to select HOXBS into its top 20 list. The

ene MPO is known to be related to lung cancer risk (Em,
) and all procedures identified one CpG site from this gene. In
Table Bl when comparing post-treatment cases and controls, DNA
methylation level of the gene EGF was previously reported to be
related to head and neck cancer m ) and EGF was
identified by all five procedures. Gene TNFAIP8, which is known
to act as a negative mediator of apoptosis and may play a role in
tumor progression (http://www.ncbi.nlm.nih.gov/gene/25816) was
only selected by the proposed procedures but not the Enet procedure.

5 DISCUSSION

In this article, we proposed a penalized logistic regression model
for correlated predictors within a group and applied it to high-
dimensional methylation data. In simulation studies we have
demonstrated that the proposed procedure outperforms existing
main-stream regularization methods such as lasso and Enet when
data is correlated within a group. We also identified important
CpG sites and corresponding genes for ovarian cancer from over
20000 CpGs using the Illumina Infinium Human Methylation27K

1373

2102 ‘€ AInC U0 SHND-1SIN| 1 /BI0'S [eUINO IO IX0"SO ITeWIo U I01G)//:01Y WO | papeo lumoQ


http://bioinformatics.oxfordjournals.org/

H.Sun and S.Wang

Table 3. The CpG sites and corresponding genes with top 20 selection probabilities identified by Enet, and the ring and F.con
network-based procedures from the comparison between post-treatment cases and normal controls

Enet Ring F.con
Prob TImnID Gene Prob IlmnID Gene Prob TIlmnID Gene

1 1.000  ¢g23580000 (ADCY7) 1.000  cg06653796 (LIME1)* 1.000  ¢cg06653796 (LIME1)*
2 1.000  cg06653796 (LIME1)* 1.000  cgl10986043 (TCAP)* 1.000  cgl10986043 (TCAP)*

3 1.000  cgl10986043 (TCAP)* 0.975 ¢g23580000 (ADCY7) 0.975 ¢g23580000 (ADCY7)
4 0.980  cgl3379236 (EGF)* 0.950  cgl3379236 (EGF)? 0.955 cgl13379236 (EGF)?

5 0.980  cg03547797 (GAS2)? 0.940  cg03547797 (GAS2)? 0.940  ¢cg03547797 (GAS2)?

6 0970  cg05135288 (RHOT2)* 0.935 cg05135288 (RHOT2)* 0.935 cg05135288 (RHOT2)*
7 0.965 ¢g20357806 (PPBP)* 0.870  cgl12006284 (WT1)* 0.870  ¢cgl12006284 (WT1)?

8 0.965 cg12006284 (WT1)* 0.865 ¢g20357806 (PPBP)* 0.860  ¢g20357806 (PPBP)*

9 0.905 cg21640749 (CD300LF)* 0.840  cg24335895 (COX7AT1)? 0.840  ¢cg24335895 (COX7AT1)?
10 0900  cgl2243271 (CFI) 0.810  cg21640749 (CD300LF)* 0.815 cg21640749 (CD300LF)*
11 0.890  cg09626634 (EBI2) 0.805 cg12243271 (CFI) 0.815 cgl12243271 (CFI)

12 0.885 ¢g22988566 (WFDC10B) 0.800  cgl9573166  (SLC22A17)  0.805 cg10467098 (Bles03)?
13 0.880  cg24335895 (COX7A1)? 0.795 cg10467098 (Bles03)? 0.800  cgl9573166 (SLC22A17)
14 0880 cgl9573166 (SLC22A17) 0.785 cg15096140 (MYOIB)* 0.785 cg15096140 (MYOIB)*
15 0.875 cg15096140 (MYOI1B)* 0.760  cg05767404 (Clorf150) 0.760  cg05767404 (Clorf150)
16  0.850  cgl3745870 (SPATA12) 0.760  ¢g23506842 (PTPN7) 0.755 cg05004940 (C200rf195)
17 0.850  cg00134539 (UBASH3A) 0.755 cg05004940 (C200rf195) 0.755 cg23506842 (PTPN7)
18 0.840  cgl6853982 (ACTN2) 0.750  cgl3745870 (SPATA12) 0.750  cgl3745870 (SPATA12)
19 0.840  cgl0467098 (Bles03)? 0.735 cg13247990 (MLCK) 0.735 cg09626634 (EBI2)
20  0.835 cg13247990 (MLCK) 0.735 ¢g23917399 (TNFAIPS) 0.735 cg13247990 (MLCK)
20 - - - - - — 0.735 cg23917399 (TNFAIPS)

Indicates the overlapped genes in the top 20 lists of all 5 procedures.

Beadchip. Some genes in our findings are known to be associated
with other types of cancers.

Since we mainly focused on identifying most likely associated
CpG sites through selection probabilities, we did not discuss
about estimation performance of our proposed method. In the case
that prediction is desirable, we strongly recommend to reobtain
unpenalized likelihood estimates based on selected predictors. This
unpenalized MLE is often adopted for better prediction ,
2008; Wu et atl, 2009).

Our proposed selection method provides a way to potentially
better select CpG sites that are truly related to the outcomes among
tens of thousands of CpG sites who are correlated within genes.
However, underlying true correlation structure of methylation data
is much more complicated than what we assumed. Particularly,
genes from a pathway may also be correlated with each other
(]Z.hang_anﬂj_emanﬂ, |2m)_d). To incorporate a prior knowledge of
genetic pathways may further improve the selection accuracy. We
are currently pursuing the usage of genetic pathways information
for the DNA methylation data analysis.
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