
High dimensional statistics for genomic data

Laurent Jacob

February 27, 2017

L. Jacob High dimensional statistics February 27, 2017 1 / 28



Summary of the previous class

Overfitting, bias/variance tradeoff, structural risk minimization.
Two antagonistic sources of error. Needs to be dealt with carefuly.
Penalized risk minimization.
Ridge penalty: properties, ridge regression, SVM.
Fundamentals of constrained optimization.

You now know one regression algorithm, one classification algorithm and
why they make sense.

L. Jacob High dimensional statistics February 27, 2017 2 / 28



Outline

1 Relationship to ML estimation.
2 Validation.
3 Unsupervised learning.
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Relationship to maximum likelihood estimation
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Relationship to maximum likelihood estimation

Until now we discussed risk minimization without involving
probabilistic models for the data.
This discussion and the related penalized methods are however related
to methods based on the likelihood of data under some model.
Given a model p(D|θ) of data D, for example

y = θ̄>x + ε,

where ε is endowed with some distribution, it is common to estimate θ
by the value which maximizes the likelihood of the data under the
model:

θ̂ = argmax
θ

p(D|θ).

(popularized by R. A. Fisher at the beginning of the 20th century).
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Relationship to maximum likelihood estimation

The maximum likelihood estimator has a few desirable asymptotic
properties under some regularity conditions:

Consistency : θ̂MLE → θ̄ as n increases,
Asymptotic normality,
Efficiency (asymptotic minimal variance).

Can be biased though.
Can behave poorly when p/n is not small enough.
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Relationship to maximum likelihood estimation

In practice, it is often easier to minimize the negative log likelihood:

θ̂ = argmin
θ
− log p(D|θ).

We recover an empirical risk minimization problem, where the loss
function is defined by L(D, θ)

∆
= − log p(D|θ).

Exercise : which loss function − log p(D|θ) corresponds to the
negative log likelihood of the model:

y = θ̂>x + ε, ε ∼ N (0, σ2)?

Why use the log?
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Relationship to maximum likelihood estimation

In Bayesian statistics, we define a prior distribution p(θ) over the
parameter θ.
By the Bayes rule, we can then define a posterior distribution p(θ|D)
of θ :

p(θ|D) =
p(D|θ)p(θ)

p(D)
∝ p(D|θ)p(θ),

We can then estimate θ by maximizing its posterior likelihood (MAP):

θ̂MAP = argmax
θ

p(θ|D)
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Relationship to maximum likelihood estimation

Maximizing the posterior likelihood yields

θ̂MAP = argmax
θ

p(θ|D) = argmin
θ
− log p(θ|D)

= argmin
θ
− log (p(D|θ)p(θ))

= argmin
θ
− log p(D|θ)− log p(θ).

We recover a penalized empirical risk minimization problem, where
Ω(θ) = − log p(θ).
Exercise : what penalty do we get using the prior

θ ∼ N (0, σ2),

and which prior would lead to the `1 penalty?
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Bayesian statistics

In a purely Bayesian statistical framework, we would not look for the
single value maximizing the posterior likelihood but rather consider
distributions (over θ, over θ>x ...).
This paradigm requires to know how to sample from the posterior
distribution.
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Relationship to maximum likelihood estimation

Minimization of the penalized empirical risk can therefore be derived
in the framework of likelihood maximization.
Not necessary. Some loss functions (SVM) do not correspond to a
negative log likelihood.
Giving ourselves a model allows some type of theoretical analysis of
our estimators: bias, variance, consistency...
These analyses allow to understand the behavior of the estimators and
to compare them, at the expense of some generality.
This is useful, but it is important to keep in mind the sensitivity of the
analysis to the assumptions made by the model, and the fact that in
reality, the data was not generated by a model.
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Penalized empirical risk minimization: summary

Penalized empirical risk minimization allows us to implement the
idea of structural risk minimization.
Lots of penalties have been proposed, leading to various types of
regularity for the estimators.
Ideally, a good penalty corresponds to a prior for the estimator: we
assume there exists a low risk function with this type of regularity.
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Part IV

Validation

L. Jacob High dimensional statistics February 27, 2017 13 / 28



Reminder: structural risk minimization

1 Define nested function sets of increasing complexity.
2 Minimize the empirical risk over each family.
3 Choose the solution giving the best generalization

performances.

Best generalization means lowest (population) risk

R(f ) =

∫
X×Y

L(y , f (x))dP = E[L(y , f (x))].

But the very reason we need all this is that we don’t have access to R!
We need to estimate it as well.
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Validation/Hold out procedure

Split available data into training and test sets.

Formally:

R̂HO
(
f̂ ;Dn; I (t)

)
=

1
nv

∑
i∈D(v)

n

L
(
yi , f̂D(t)

n
(xi )
)
.

Dn: full set of n available data points. I (t): subset of indices used for
training. D(t)

n (resp. D(v)
n ): set of data points restricted to training

indices (resp. its complement).
f̂ denotes the learning algorithm whose risk we want to estimate. f̂

D
(t)
n

is the function learnt by applying this algorithm to training data D
(t)
n .
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Cross validation

Idea: averaging several hold out estimators of the risk corresponding
to different data splits:

. . .

Formally:

R̂CV
(
f̂ ;Dn;

(
I

(t)
j

)
1≤j≤B

)
=

1
B

B∑
j=1

R̂HO
(
f̂ ;Dn; I

(t)
j

)
,

where I
(t)
1 , . . . , I

(t)
B are non-empty proper subsets of {1, . . . , n}.
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Cross validation procedures

CV estimators differ in how they define I
(t)
1 , . . . , I

(t)
B .

Most common: V-fold CV. Partition Dn into V sets of approximately
equal cardinality n

V .
Leave-one-out CV: V-fold with V = n.
Monte-Carlo CV, leave-p-out CV...
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Bias of the hold out estimator

Hold out estimator: because training and validation samples are
independent,

EDn∼P

[
R̂HO

(
f̂ ;Dn; I (t)

)]
=

1
nv

∑
i∈D(v)

n

E
(xi ,yi )∪D

(t)
n ∼P

[
L
(
yi , f̂D(t)

n
(xi )
)]

= E
(x ,y)∪D(t)

n ∼P

[
L
(
y , f̂

D
(t)
n

(x)
)]

= E
D

(t)
n ∼P

[
E(x ,y)∼P

[
L
(
y , f̂

D
(t)
n

(x)
)]]

= E
D

(t)
n ∼P

[
R
(
f̂
D

(t)
n

)]
.

Does not depend on D
(v)
n .

Only makes sense because L
(
yi , f̂D(t)

n
(xi )
)
are i.i.d objects when

(xi , yi ) are independent of f̂
D

(t)
n
.
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Bias of cross validation estimators

For any cross validation estimator such that
∣∣∣I (t)
j

∣∣∣ = nt ,

EDn∼P

[
R̂CV

(
f̂ ;Dn; I (t)

)]
= E

D
(t)
n ∼P

[
R
(
f̂
D

(t)
n

)]
.

The bias of such a CV estimator is therefore the difference between
the risk expected using n and nt training samples:

Bias
(
R̂CV

)
= E

D
(t)
n ∼P

[
R
(
f̂
D

(t)
n

)]
− EDn∼P

[
R
(
f̂Dn

)]
.

Usually non-negative (if f̂ is a smart rule, i.e., if its risk is a decreasing
function of the size of the training set).
More precise results for specific f̂ and cross-validation estimators.
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Bias of cross validation estimators

(from The Elements of Statistical Learning)
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Variance of cross validation estimators

All CV estimators with training sets of the same size nt have the same
bias. Difference of behavior explained by variances.
For the hold out estimator,

VarDn

[
R̂HO

(
f̂ ;Dn; I (t)

)]
=

1
nv

E
D

(t)
n

[
Var(x ,y)

(
L(y , f̂

D
(t)
n

(x))
)]

+ Var
D

(t)
n

[
R
(
f̂
D

(t)
n

)]
.

First term: sensitivity of the error to a change of the validation
sample. Also decreases in nv (for fixed nt).
Second term: sensitivity of the risk to a change of the training set.
Depends on stability of f̂ .
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Variance of cross validation estimators

No general result for CV.
Less variable CV depends on framework (classification, regression,
density estimation, model selection...).
Factors of variability: nv , nt ,B and stability of the algorithm.
What should I do: no general answer, but it is standard to do 5 or
10 fold CV. Sometimes leave-one-out, but it is more expensive and
known to often have large variance.
More detailed answers in A survey of cross-validation procedures for
model selection by S. Arlot and A. Celisse (from which this section is
largely inspired).
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Conditional vs expected prediction error

There are actually two related quantities we could want to estimate:

RDn

∆
= E(x ,y)∼P

[
L(y , f̂Dn(x))|Dn

]
R

∆
= EDn,(x ,y)∼P

[
L(y , f̂Dn(x))

]
= EDn∼P [RDn ] .

Both can be useful depending on the context:
1 are you always going to use this particular Dn

2 or are you more interested in assessing the average performance of f̂ ?

CV empirically known to do a better job at estimating R than RDn .
Actually hard to estimate RDn without using additional data. Keep
that in mind if your objective is 1!
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Model selection vs assessment

Cross validation was historically first used for model assessment:
estimate the generalization error of a given algorithm f̂ .

There are lots of methods to solve the same inference problem. Most
of them have options/hyperparameters (e.g., penalized empirical risk
minimization).
We also need a tool for model selection: choose best method or best
class of hypothesis for a particular problem.
Cross validation is commonly used for model selection as well.
However, some care is necessary when doing both (which is often the
case).
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An example: selection bias in gene extraction

2002 paper by C. Ambroise and G. McLachlan: Selection bias in gene
extraction on the basis of microarray gene-expression data.
At the time, several paper using microarrays for cancer diagnosis
claimed 0% generalization error estimated by cross validation:

Xiong et al.(2001), Mol Genet Metab, Feature (Gene) Selection in
Gene Expression-Based Tumor Classification.
Zhang et al. (2001), Proc Natl Acad Sci USA, Recursive partitioning
for tumor classification with gene expression microarray data.
Guyon et al. (2002), Mach Learn, Gene Selection for Cancer
Classification using Support Vector Machines.
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An example: selection bias in gene extraction

General procedure was:
1 Select a few genes which are good predictors over all samples.
2 Perform cross validation to estimate the generalization error of a

method using these genes.

Exercise: What is wrong with this procedure? What should be done
instead

The samples used to estimate the generalization error were used to
select predictive genes.
The predictive genes are optimal for the samples used to estimate the
generalization error, which leads to an over-optimistic assessment
regarding what will happen for actually new samples.
Picking a gene set is model selection, computing the generalization
error of the estimator built over these genes is model assessment.
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Model selection vs assessment

Same thing goes for selecting a regularization parameter or a method:
cross-validation error over Dn gives you an estimate of your best
option (model selection), but it doesn’t tell you how your best
option will perform on new data (model assessment).

[Exercise:] what would be an acceptable procedure to select a
regularization parameter and estimate the resulting generalization
error using a dataset Dn?

Train/Validation/Test split.
Double cross-validation.
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Model selection vs assessment

Principle: the data you use to estimate the generalization error of an
algorithm cannot be used in any way to build the estimator. But it is
easy to get confused, and difficult to strictly follow this principle when
data is scarce.

Maybe even more important than choosing best type of CV. Still
results in many mistakes today.
Other frequent source of mistakes in CV: duplicate/non i.i.d. samples.
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