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Summary of the previous class

Relationship to ML estimation.
Validation.
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Outline

1 Non-parametric methods:
Kernel methods.
Deep learning.

2 Unsupervised learning.
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Part IV

Non-parametric methods
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Parametric vs non parametric

Methods presented so far are linear, parametric (but ridge penalized
techniques can be kernelized).
Some techniques (nonparametric) intend to make fewer assumptions:
often means that the estimators we consider are not expressed as a
parametric function of the descriptors.
Sometimes used to say that we are not relying on a parameterized
family of probability distribution. But SVM would fall in this category.
Actually hard to draw a clear line between parametric and
nonparametric:

It is difficult to give a precise definition of nonparametric
inference, and if I did venture to give one, no doubt I would
be barraged with dissenting opinion.

L. Wasserman, All of Nonparametric Statistics
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Parametric vs non parametric

Risk of confusion between "fewer assumptions" and "assumptions
which are not clearly formulated".
What matters is how we control the complexity of the family of
functions we consider.
Nonparametric techniques correspond to particular types regularity, it
is useful to try and understand what this type is.
Often corresponds to functions which can be written as a parametric
function of the training set, or some nonlinear dictionary.
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Kernel methods (adapted from JP Vert)
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Representation by pairwise comparisons

All supervised learning algorithms we have seen rely on some vector
representation of the samples as vectors.
Finding such a description is not always simple:

Which descriptors (think of the protein or molecule examples in the
introduction).
Too many descriptors make the algorithms untractable.
A choice of descriptor does not necessarily make the classes linearly
separable.

Positive definite kernels address these issues in some cases.
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Representation by pairwise comparisons
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Idea
Define a “comparison function”: K : X × X 7→ R.
Represent a set of n data points D = {x1, x2, . . . , xn} by the n × n
matrix:

[K]ij := K (xi , xj) .
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Positive Definite (p.d.) Kernels

We will restrict ourselves to a particular class of pairwise comparison
functions:

Definition
A positive definite (p.d.) kernel on a set X is a function
K : X × X → R that is symmetric:

∀
(
x, x′

)
∈ X 2, K

(
x, x′

)
= K

(
x′, x

)
,

and which satisfies, for all N ∈ N, (x1, x2, . . . , xN) ∈ XN and
(a1, a2, . . . , aN) ∈ RN :

N∑
i=1

N∑
j=1

aiajK (xi , xj) ≥ 0.
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Similarity matrices of p.d. kernels

Remarks
Equivalently, a kernel K is p.d. if and only if, for any N ∈ N and any
set of points (x1, x2, . . . , xN) ∈ XN , the similarity matrix
[K]ij := K (xi , xj) is positive semidefinite.
Kernel methods are algorithms that take such matrices as input.
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The simplest p.d. kernel, for vectors

Lemma
Let X = Rd . The function K : X 2 7→ R defined by:

∀
(
x, x′

)
∈ X 2, K

(
x, x′

)
=
〈
x, x′

〉
Rd

is p.d. (it is often called the linear kernel).

Proof:
〈x, x′〉Rd = 〈x′, x〉Rd∑N

i=1
∑N

j=1 aiaj 〈xi , xj〉Rd = ‖
∑N

i=1 aixi ‖2Rd ≥ 0
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A more ambitious p.d. kernel

φ
X F

Lemma
Let X be any set, and Φ : X 7→ Rd . Then, the function K : X 2 7→ R
defined as follows is p.d.:

∀
(
x, x′

)
∈ X 2, K

(
x, x′

)
=
〈
Φ (x) ,Φ

(
x′
)〉

Rd .

Proof:
〈Φ (x) ,Φ (x′)〉Rd = 〈Φ (x′) ,Φ (x)〉Rd∑N

i=1
∑N

j=1 aiaj 〈Φ (xi ) ,Φ (xj)〉Rd = ‖
∑N

i=1 aiΦ (xi ) ‖2Rd ≥ 0
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Example: polynomial kernel

2R

x1

x2

x1

x2

2

For x = (x1, x2)> ∈ R2, let Φ(x) = (x21 ,
√
2x1x2, x22 ) ∈ R3:

K (x, x′) = x21x
′2
1 + 2x1x2x ′1x

′
2 + x22x

′2
2

=
(
x1x
′
1 + x2x

′
2
)2

=
〈
x, x′

〉2
R2 .
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Conversely: Kernels as inner products

Theorem (Aronszajn, 1950)
K is a p.d. kernel on the set X if and only if there exists a Hilbert
space H and a mapping

Φ : X 7→ H

such that, for any x, x′ in X :

K
(
x, x′

)
=
〈
Φ (x) ,Φ

(
x′
)〉
H .

φ
X F
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Kernels on strings: substring indexation

How can we build kernel on non-vectorial objects like strings?

An approach
Index the feature space by fixed-length strings, i.e.,

Φ (x) = (Φu (x))u∈Ak

where Φu (x) can be:
the number of occurrences of u in x (without gaps) : spectrum
kernel (Leslie et al., 2002)
the number of occurrences of u in x up to m mismatches (without
gaps) : mismatch kernel (Leslie et al., 2004)
the number of occurrences of u in x allowing gaps, with a weight
decaying exponentially with the number of gaps : substring kernel
(Lohdi et al., 2002)
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Example: spectrum kernel (1/2)

Kernel definition
The 3-spectrum of

x = CGGSLIAMMWFGV

is:
(CGG,GGS,GSL,SLI,LIA,IAM,AMM,MMW,MWF,WFG,FGV) .

Let Φu (x) denote the number of occurrences of u in x. The
k-spectrum kernel is:

K
(
x, x′

)
:=
∑
u∈Ak

Φu (x) Φu

(
x′
)
.
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Example: spectrum kernel (2/2)

Implementation

The computation of the kernel is formally a sum over |A|k terms, but
at most | x | − k + 1 terms are non-zero in Φ (x) =⇒ Computation
in O (| x |+ | x′ |) with pre-indexation of the strings.
Fast classification of a sequence x in O (| x |):

f (x) = w · Φ (x) =
∑
u

wuΦu (x) =

| x |−k+1∑
i=1

wxi ...xi+k−1 .

Remarks
Work with any string (natural language, time series...)
Fast and scalable, a good default method for string classification.
Variants allow matching of k-mers up to m mismatches.
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The kernel trick: motivation

Choosing a p.d. kernel K on a set X amounts to embedding the
data in a Hilbert space: there exists a Hilbert space H and a
mapping Φ : X 7→ H such that, for all x, x′ ∈ X ,

∀
(
x, x′

)
∈ X 2, K

(
x, x′

)
=
〈
Φ (x) ,Φ

(
x′
)〉
H .

However this mapping might not be explicitly given, nor convenient
to work with in practice (e.g., large or even infinite dimensions).
A solution is to work implicitly in the feature space!

φ
X F
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The kernel trick

Proposition
Any algorithm to process finite-dimensional vectors that can be expressed
only in terms of pairwise inner products can be applied to potentially
infinite-dimensional vectors in the feature space of a p.d. kernel by
replacing each inner product evaluation by a kernel evaluation.

Remarks:
The proof of this proposition is trivial, because the kernel is exactly
the inner product in the feature space.
This trick has huge practical applications.
Vectors in the feature space are only manipulated implicitly, through
pairwise inner products.
Applies to ridge regression, SVM, k-means, PCA and many more
classical methods.
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Representation by pairwise comparisons

Which descriptors (think of the protein or molecule examples in the
introduction).
In some cases, it is easier to build a kernel than an individual
description.
Too many descriptors make the algorithms untractable.
N2 scaling whatever the underlying RKHS dimension. Can be
further reduced using approximations.
A choice of descriptor does not necessarily make the classes linearly
separable.
Introduce non-linearity by just changing the kernel.
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Deep learning (adapted from J. Mairal)
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A quick zoom on feed forward neural networks

Each neuron computes a linear combination of its inputs, then applies
a non-linearity.
Weights of the linear combination are optimized by backpropagation.
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A quick zoom on feed forward neural networks

The goal is to learn a prediction function f : Rp → R given labeled
training data (xi , yi )i=1,...,n with xi in Rp, and yi in R:

min
f ∈F

1
n

n∑
i=1

L(yi , f (xi ))︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(f )︸ ︷︷ ︸
regularization

.

What is specific to multilayer neural networks?
The “neural network” space F is explicitly parametrized by:

f (x) = σk(Akσk−1(Ak−1 . . . σ2(A2σ1(A1x)) . . .)).

Finding the optimal A1,A2, . . . ,Ak yields a non-convex optimization
problem in huge dimension.
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A quick zoom on convolutional neural networks

Figure: Picture from Le Cun et al., 1998

CNNs perform “simple” operations such as convolutions, pointwise
non-linearities and subsampling.
for most successful applications of CNNs, training is supervised.
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A quick zoom on convolutional neural networks

Figure: Picture from Yann LeCun’s tutorial, based on Zeiler and Fergus, 2014.

Technically learning weight of linear functions.
In practice, leads to learning sets of relevant features from the input.
In particular, captures compositional structures in images and provides
some invariance.
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A quick zoom on convolutional neural networks

Recent success in computer vision because of large amount of
available data and computing power (neither was true 10 years ago).
Large amount of data calls for complex sets of function (remember the
first class). CNNs provide such sets F .
Computing power makes it possible to solve

min
f ∈F

1
n

n∑
i=1

L(yi , f (xi ))︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(f )︸ ︷︷ ︸
regularization

.
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CNNs in computational biology

Two key points for CNNs to perform well:
Large amount of training data. Not true for many problems in biology.
Relevant features for problem at hand. Makes sense for computer
vision, translation to biology is not straighforward.

Figure: DeepBind filter, adapted from Angermueller et al., 2016.
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K nearest neighbors
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k nearest neighbors

Old (50’s), simple to understand and to implement technique: assign
the label given by majority vote of the nearest neighbors.
More formally:

f (x) = sign

(
n∑

i=1

yi1xi∈Vk (x)/k

)
,

where Vk(x) is the set of k closest training points to x and binary
classes are encoded by −1 and 1.
Straightforward generalization to regression.
Often a good baseline in practice.
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k nearest neighbors

k controls the regularity of the resulting classification function:
Small k lead to very adjusted functions
Larger k lead to smoother functions (lower variance, higher bias).

(from S. Fortmann-Roe’s webpage)
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k nearest neighbors

k controls the regularity of the resulting classification function:
Small k lead to very adjusted functions
Larger k lead to smoother functions (lower variance, higher bias).

1-nn decision
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k nearest neighbors

k controls the regularity of the resulting classification function:
Small k lead to very adjusted functions
Larger k lead to smoother functions (lower variance, higher bias).

5-nn decision
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k nearest neighbors

k controls the regularity of the resulting classification function:
Small k lead to very adjusted functions
Larger k lead to smoother functions (lower variance, higher bias).

10-nn decision
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k nearest neighbors

k controls the regularity of the resulting classification function:
Small k lead to very adjusted functions
Larger k lead to smoother functions (lower variance, higher bias).

100-nn decision
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Computational aspect

"Lazy" learning: no training phase required.
Classifying a new point can be expensive when n grows.
Three classes of solutions: fast exact algorithm, approximate
algorithm, probably approximate algorithms.
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Link to previous (parametric) techniques

Representer theorem (simplified): given a training sample
(xi , yi )i=1,...,n ∈ Rp × R, an arbitrary empirical loss function R and a
strictly monotonically increasing real valued function g , any β∗

verifying
β∗ = argmin

β∈Rp

(
R((xi , yi , β

>xi )) + g(‖β‖)
)

admits a representation of the form β∗ =
∑n

i=1 αixi , αi ∈ R.
Consequence: for ridge linear regression, logistic regression and SVM,
decision function is f (x) =

∑n
i=1 αix

>
i x .

Can also be thought of like a vote, weighted by Euclidean distances of
training points with tested point.
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Universal consistency

More general definition of consistency: an estimator is consistent if
the expectation of its risk converges to the Bayes risk:

ERn → R∗ as n→∞,

where Rn is the risk of an estimator based on n i.i.d samples.
An estimator is universally consistent if it is consistent for any
distribution of (X ,Y ).
Stone’s theorem: gives sufficient conditions for rules of the form∑n

i=1 yiwi (x) where the wi (x) are non-negative weights and sum to
one to be universally consistent.
knn satisfies these conditions for k →∞ and k/n→ 0.
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Nadaraya-Watson method

More generally, other weighting schemes for the vote (rather than
discontinuous membership to k nearest neighbors) are possible.
Nadaraya-Watson:

f (x) =

∑n
i=1 yiKλ(x , xi )∑n
i=1 Kλ(x , xi )

,

where Kλ(x , xi ) = K
(
|x−xi |
λ

)
is a kernel function measuring how

close x and xi are.
Examples of kernels:

(from The Elements of Statistical Learning)

Also universally consistent (using Stone’s theorem).
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Part V

Unsupervised estimation and matrix
decomposition
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Back to one of our introductive examples

Gene expression clustering

(from C. Perou’s website)

Are there groups of breast tumors with similar gene expression profile?
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K-means

(From the Matlab website)

The informal objective of clustering is to identify groups of samples
such that samples within each group are close and samples across
groups are far away.
The k-means algorithm aims at minimizing

∑n
i=1 ‖xi − vc(i)‖2, where

c(i) is the cluster (group) to which xi is assigned and the vj are the
cluster centers.
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K-means

Algorithm :
Choose k points xi as cluster centers.
Iterate :

1 Given the cluster centers, assign each xi to the cluster c whose center
vc is the closest.

2 Given the assignments for xi , each cluster center is the mean of its
points: vc =

∑
i :c(i)=c xi .
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K-means

The minimized objective
∑n

i=1 ‖xi − vc(i)‖2 also writes:

min
U∈{0,1}n×k ,V∈Rp×k

‖X − UV>‖2F ,
k∑

j=1

uij = 1∀i = 1, . . . , n,

where X ∈ Rn×p is the matrix whose rows are the xi .
This algorithm can be thought of as a constrained likelihood
maximization for some model. [Exercise:] which one?

xi ∼ N (Ui ,.V
>, σ2I ).

This point of view highlights some implicit hypotheses made when
using this algorithm for clustering. [Exercise:] which ones?

L. Jacob High dimensional statistics February 28, 2017 40 / 48



K-means

The minimized objective
∑n

i=1 ‖xi − vc(i)‖2 also writes:

min
U∈{0,1}n×k ,V∈Rp×k

‖X − UV>‖2F ,
k∑

j=1

uij = 1∀i = 1, . . . , n,

where X ∈ Rn×p is the matrix whose rows are the xi .
This algorithm can be thought of as a constrained likelihood
maximization for some model. [Exercise:] which one?

xi ∼ N (Ui ,.V
>, σ2I ).

This point of view highlights some implicit hypotheses made when
using this algorithm for clustering. [Exercise:] which ones?

L. Jacob High dimensional statistics February 28, 2017 40 / 48



K-means

The minimized objective
∑n

i=1 ‖xi − vc(i)‖2 also writes:

min
U∈{0,1}n×k ,V∈Rp×k

‖X − UV>‖2F ,
k∑

j=1

uij = 1∀i = 1, . . . , n, (1)

where X ∈ Rn×p is the matrix whose rows are the xi .
[Exercise :] Is (1) convex? What are the consequences on the result
of the k-means algorithm?
There exist plenty of other clustering algorithms, notably hierarchical
ones.
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Principal components analysis

(figure by T. Jehan)

We want to build a small number of axes retaining the largest amount
of variance.
Other way of decomposing the variance than clustering (continuous vs
discrete factors).
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Principal components analysis

Algorithm :
Formally, the axis yielding the highest empirical variance for the
projected xi is:

max
v∈Rp , ‖v‖=1

V̂ar(Xv) ∝ max
v∈Rp , ‖v‖=1

(
Xv − 1(Xv)

)> (
Xv − 1(Xv)

)
(2)

= max
v∈Rp , ‖v‖=1

v>X>Xv (3)

= max
v∈Rp , ‖v‖=1

rank(X )∑
l=1

e2l

(
v>ql

)2
= [Exercise],

(4)

where X = PEQ> is the singular value decomposition of X and where
we assumed the columns of X were centered.

We can then look for other direction of high variance, orthogonal to
the previous ones. Following the same reasoning, the solutions are
given by the eigen vectors of X>X .
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Principal component analysis

Proposition
For any matrix X ∈ Rn×p,

argmin
rank(A)≤k

‖X − A‖2F = PkEkQ
>
k ,

where PEQ> is the singular value decomposition of X , Pk and Qk the
restrictions of P and Q to their k first columns and Ek the restriction of E
to its k first rows and columns.

This is a results by Eckart and Young (1936).
Atypical point: this is a non convex problem but for which we can
characterize a global minimum.
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Principal component analysis

min
rank(A)≤k

‖X − A‖2F

also writes

min
U∈Rn×k ,V∈Rp×k

‖X − UV>‖2F , U>U = I ,V>V diagonal.

PCA can also be thought of as a matrix decomposition problem (the
solution to both problems is the same).
The minimized objective is the same as the one minimized by
k-means, but the constraints are different.
Here again, PCA can be thought of as a constrained maximization of
the likelihood of a linear Gaussian model.
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Penalized matrix decomposition

min
U∈Rn×k ,V∈Rp×k

‖X − UV>‖2F , U ∈MU ,V ∈MV .

Once the problem is cast in this general framework, it becomes natural to
introduce penalized extensions:

Sparse dictionary learning : sparse U. Each sample is explained by a
small number of axes.
Sparse PCA : sparse V . Each axis is a combination of a small number
of original variables.

(from F. Bach’s slides)
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Penalized matrix decomposition

min
U∈Rn×k ,V∈Rp×k

‖X − UV>‖2F , U ∈MU ,V ∈MV .

Other extensions :
Non-negative matrix factorization (NMF).
Structured penalties.

Algorithms :
Convex relaxations (Bach et al., 2008).
Iterative optimization over U and V .
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Penalized matrix decomposition

Points we did not touch:
Other methods: ICA, CCA.
Non linear, non parametric methods. Possible to adapt linear methods
using positive definite kernels.
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