Uncovering structure in biological networks
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Abstract: The Erdds-Renyi model of a network is simple and possesses many explicit
expressions for average and asymptotic properties, butdsdot fit well to real-word
networks. The vertices of these networks are often stredttur prior unknown groups
(functionally related proteins or social communities) witifferent connectivity proper-
ties. We define a generalisation of the &drenyi model called ERMG for Eds$-Renyi
Mixtures for Graphs. This new model is based on mixtureitigtions. We give some of

its properties, an algorithm to estimate its parameters apgly this method to uncover
the modular structure of a network of enzymatic reactions.
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1 Introduction

The Erdds-Rényi model of a network is one of the oldest aest Btudied models and possesses
many explicit expressions for average and asymptotic ptiegesuch as subgraphs, degree distribu-
tion, connectedness and clustering coefficient. Howevierthieoretical model does not fit well to
real-world, social, biological or Internet networks. Feample the empirical degree distribution may
be very different from the Poisson distribution which is ifa@ by this model. Moreover empirical
clustering coefficients of real networks are generally Bighan the value given by this model. Some
generalisations of the Erdts-Rényi model have been tigcarade in order to correct these short-
comings. For a review of these works see Albert and BargB86i2) or Newman (2003). Besides,
a special attention has been paid recently to the study dddiaal networks (see Alm and Arkin
(2002) or Arita (2004)). One of the limits for these studigghat no existing network model seems
to be completely satisfying to capture their structure.

One research direction is to incorporate clustering in tlogleh Assortative mixing or mixing
patterns (see Newman and Girvan (2003) and (2004)) postiliat the vertices may be classified into
groups with different connectivity properties. The keynedmt is the mixing matrix which specifies
the probability of connection between two groups. Newma&908} gives some theoretical properties
of such networks and an algorithm similar to Metropolis-titasfor simulating networks for a given
mixing matrix. The inference of the mixing parameters is@@asy if groups can be defined using
external information such as language, race or age. Howheeinference is more difficult when
groups and mixing parameters have to be inferred when theorletopology is the only available
information. A first step is the greedy optimisation algamit proposed by Newman (2004). In this
article we propose a new statistical method to infer thetetirgy of vertices and the parameters of the



mixing model using a maximum-likelihood approach baseq anl the network topology. We then
apply this method to a network representing the small médemetabolism oEscherichia coli

2 Mixture model for the degrees

NoTATIONS. In this article, we consider an undirected graph withertices and define the variable
X;; which indicates that verticesand;j are connected:

Xz'j = le' = H{’L — ]},

wherel{ A} equals to one ifd is true, and to zero otherwise. Furthermore, we assume thatntex
is connected to itself, meaning th&t; = 0. In the following we note; the degree of vertex i.e.
the number of edges connecting it to the graph:

Ki=> X

J#

ERDOS-RENYI MODEL. This model assumes that edges are independent and octuth@isame
probability p:

In this model, the degree of each vertex has a Binomial Higidn, which is approximately Poisson
for largen and smallp. Noting A\ = (n — 1)p we have:

K; ~B(n—1,p) = P(\). @

'SCALE-FREE NETWORK. In many practical situations, the Erdos-Rényi modehsuout to fit the
data poorly, mainly because the distribution of the degredar from the Poisson distribution (1).
The scale-free (or Zipf) distribution has been intensivedgd as an alternative. The Zipf probability
distribution function (pdf) is

Pr{K; = k} = c(p)k~ "V, 2)

wherek is any positive integerp is positive,c(p) = 3, k=@t = 1/¢(p + 1) and¢(p + 1) is
Riemann’s zeta function. Nevertheless, we will show in Becé that this distribution may have a
poor fit on real datasets as well.

First of all, it is important to notice that the Zipf distrition is used to model the tail of the degree dis-
tribution. Consequently it is often better suited for thiettean for the whole distribution. In particular
this distribution has a null probability fér = 0 whereas some vertices may be unconnected in prac-
tice. Moreover the lack-of-fit of the Erdds-Rényi modelyni®e simply due to some heterogeneities
between vertices, some being more connected than othemplesvay to model this phenomenon

is to consider that the degree distribution is a mixture aé&m distributions.

MIXTURE MODEL. In the mixture framework we suppose that vertices are sired into() groups,
and that there exists a sequence of independent hidderblesr{eZ;, } which indicate the label of
vertices. We notey, the prior probability for vertex; to belong to groug, such that:

ag = Pr{Z;,; = 1} = Pr{i € ¢}, with Zaq =1
q

Remark:In the following, we will use two equivalent notationsZ;, = 1} or {i € ¢} to indicate that
vertex: belongs to group.



We suppose that the conditional distribution of the deggeeRoisson distributionk;|{i € ¢} ~
P(Aq)- Then the distribution of the degrees is a mixture of Poisssimilbutions such that:

Q 67,\(,)\1;
Pr{K; =k} = ZaqT. (3)
q=1 )

Remark:Because vertices are connected between them, degreed ardapendent from each other.
However, in the standard situation wherés large and where thi,s are small with respect te, the
dependency between the degrees is weak.

In Section 6 we will show that this model fits well to severatadsets. Nevertheless, we claim
that modelling the distribution of the degrees providetelinformation about the topology of the
graph. Indeed, this model only deals with the degrees ofcest but not explicitly with the proba-
bility for two given vertices to be connected. However, thserved number of connections between
vertices from different groups may reveal some interestinderlying structure, such as preferential
connections between groups. The mixture model for degseestiprecise enough to describe such a
phenomenon. This motivates the definition of an explicittom& model for edges.

3 Erdos-Rényi mixture for graphs
3.1 General model

We now propose a mixture model which explicitly describes Way edges connect vertices, ac-
counting for some heterogeneity among vertices. In theviefig, we denote this model ERMG for
Erdds-Rényi Mixture for Graphs.

The ERMG model supposes that vertices are spreadjmfimups withprior probabilities{a;, ... ag}.
In the following, we use the same indicator variab{e, } defined in section 2. Then we denotg
the probability for a vertex from grougp to be connected with a vertex from grodpBecause the
graph is undirected, these probabilities must be symmsaiib that:

ag = Pr{Z;; = 1} = Pr{i € ¢}, with Zaq =1
q

Then we denoter,, the probability for a vertex from groupto be connected with a vertex from
group/. Because the graph is undirected, these probabilities Ineusymmetric such that:

Tge = Tygq-
We also suppose that edggk;; } are conditionally independent given the groups of verticasd ;:

Xij ’ {Z €q,j € g} ~ B(Td'qg).

The main difference with Model (3) is that the ERMG model dilgdeals with edges. More than
describing the clustered structure of vertices, our modstdbes the topology of the network using
the connectivity matridT = (7).



3.2 Examples

In this section we aim at showing that the ERMG model can bd ts@eneralise many particular
structures of random graphs. Table 1 presents some typitabrk configurations. The first one is
the Erdds-Rényi model. We present here some more saiedi ones.

RANDOM GRAPHS WITH ARBITRARY DEGREE DISTRIBUTIONS The Erdds-Rényi random graph
model is a poor approximation of real-world networks whosgrde distribution is highly skewed.
A random network having the same degree distribution asni@rical one can be built as fol-
lows: 1n partial edges (with only one starting vertex and no finalesdrare randomly chosen
from the empirical degree distribution and 2. these paetilgles are randomly joined by pairs to
form complete edges (see Molloy and Reed (1995)). A perioataigorithm is also proposed in
Shen-Orret al. (2002). This model assumes that the connectivity betweervestices is propor-
tional to the degree of each vertex so it coincides with tidefrendent case of the ERMG model
presented in Section 4.4.

SCALE FREE NETWORK The scale-free network proposed by Barabasi and Alb&Aq)Lis a par-
ticular case of random graphs with arbitrary distributida.this extent, we can propose an anal-
ogous model in the ERMG framework. Suppose that the incoméantices join the network in
groups of respective sizea, (¢ = 1..Q, na; being the number of original vertices). Assum-
ing that the elements of a new group connect preferentialthe elements of the oldest groups:
g1 > Tg2 > -+ > Tqq—1, We get the same kind of structure as the scale-free model.

AFFILIATION NETWORK. An affiliation network or bipartite graph, is a social netkn which ac-
tors are joined by a common participation in social everdmanies boards or scientists’ coau-
thorship of papers. All the vertices participating to thensagroup are connected. This model has
been studied by Newmaeat al. (2002). This type of network may be modelled by an ERMG with
ones in the diagonal dff.

STAR PATTERN. Many biological networks contain star pattering, many vertices connected to the
same vertex and only to it, see the interaction networg.aferevisiaén Zhanget al. (2005) for
instance. This type of pattern may be modelled by an ERMG @itha-diagonal ones ifi .

4 Some properties of the ERMG model

4.1 Distribution of the degrees

Proposition 1. Given the label of a vertex, the conditional distributiontlod degree of this vertex is
Binomial (approximately Poissonk; | {i € ¢} ~ B(n — 1,7,) = P()\y), Wherew, = >, cymg
and )\, = (n — 1)7,.

Proof. Conditionally to the belonging of vertices to groups, edgasnecting vertex belonging to
groupgq are independent. The conditional connection probabity i

Pri{i —»jliceqy =) Pr{icjlicqjel}Pr{j el =) amy =T,
l

The result follows



Table 1.Some typical network configurations and their formulatiothe framework of the ERMG model

Description Network Q I Clustering
coef.
Random 1 p »
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4.2 Between-group connectivity

Definition 1. The connectivity between grog@and/ is the number of edges connecting a vertex from
groupgq to a vertex from groug. A, = . > .. ZiqZju Xi;. Agq IS actually the within-connectivity
of groupg.

j>1

Proposition 2. The expected connectivity between groumd/ is: E(Ay ) = n(n — 1)agoumy /2.

Proof. According to Definition 14, is the sum oven(n — 1)/2 terms. Conditionally td Z;, Z;, =
1}, X;; is a Bernoulli variable with parametert,. ThusE(Z;, Z;0X;;) = E(ZiqZje)mqe. The Z;S
are independent, so we hali€Z;, Z;,) = a,0y. The result followsHll

4.3 Clustering coefficient.

This coefficient is supposed to measure the aggregativd tem graph. Since no probabilistic mod-
elling is usually available, this coefficient is empirigatlefined in most cases. Albert and Barabasi
(2002) propose the following definition of the empirical stiering coefficient for vertex: C; =

V. /[Ki(K; —1)/2] , whereV; is the number of edges between the neighbours of vertey =
ZM X X1 Xir/2, whose minimum value i® and maximum value equals;(K; — 1)/2 for a
clique. A first estimator of this empirical clustering coeiffint is usually defined as the mean of the
CiS:E: Zz CZ/TL

Denoting V the 'triangle’ configuration(i < j < k < i) andV the 'V’ configuration (j; <

i < k) for any (i, j, k) uniformly chosen in{1,...,n}, the definition ofC' can be rephrased as
¢ =Pr{V | V}. BecauséV is a particular case d&f, we have:

c=Pr{VNV}/ Pr{V} =Pr{V}/Pr{V}. (4)



This property suggests another estimatemoposed by Newmaet al.(2002):¢ =3, V; />, Vi,
whereV; is the number oVs ini: V; = Zj>k7(j’k#i X;j Xik. In the following we propose a proba-
bilistic definition of this coefficient.

Definition 2. The clustering coefficient is the probability for two veeig and & connected to a third
vertexi, to be connected, witf, j, k) uniformly chosen i{1,...,n}

C = Pr{Xinijki =1 ’ XZJsz = 1}

Proposition 3. In the ERMG model, the clustering coefficient is

C = E QgOpOm T T am T em E AgOpOm T ¢ Tgm
q7Z7m q,Z,m

Proof. For any triplet(:, j, k), we have

Pr{V} = Z aqoyonm Pr{X;; XX =1]i€q,jelkem},= Z Qg OO T g T g T, -

q,l,m q,l,m

The same reasoning can be applie®t§V} recalling that the everl in (4, j, k) means that the top
of V isi. The result is then an application of (4.

4.4 Independent model

The model presented in Section 2 can be rephrased as an imgeperersion of the ERMG model.
Indeed the absence of preferential connection betweempgmarresponds to the case where

Tqe = TigTe- (5)

The properties of the independent model are as follows.
DISTRIBUTION OF DEGREES The conditional distribution of the degrees is Poissom\parameter
Aq such that:

Ag = (n— 1)ngn, (6)
wherer = 3, ayne, SO\, is directly proportional tay,.

BETWEEN GROUP CONNECTIVITY We get :E(Ay) = n(n — 1)(aqnq)(aene)/2, so the rows and
columns of matrixA = (A4),c must all have the same profile. We will see in Section 6 that the
observed number of connections between groups may be quifi®in expected values.

CLUSTERING COEFFICIENT )
2 —2
q

For the standard Erdos-Rényi modé) & 1, oy = 1,7 = n = /p), we get the known result:
—d 2

c=1m /771 =D

Considering the independent case presented in Figure lawith oy = 1/2 anda = 0.9, b = 0.1,

we getc = (0.92 + 0.12)? ~ 0.67. The corresponding Erdos-Rényi model witk= (a1a + azb)? =

1/4 would lead to a strong underestimationaddincec = p = 0.25.



4.5 Likelihoods

In order to define the likelihood of the ERMG model, we use thmglete-data framework defined
by Dempsteet al. (1977). Let us denotd’ the set of all edgesY = {X;;}; j=1.,, andZ the set of
all indicator variables for verticesE = {Z;,}9=1"%.

i=1n

Proposition 4. The complete-data log-likelihood is

log L(X, Z) ZZZlqlogaq—i—ZZZZ qZjelog b(Xij; ).

) q j>i ¥

Proof. This is a direct consequence of the decompositignC (X', Z) = log L(Z) + log L(X | Z)
whereb(z; 1) = 7%(1 — 7). 1

The log-likelihood of the observed data is obtained by sungrtiie complete-data log-likelihood
over all the possible values of the unobserved varialet)nfortunately, it seems that no simple
form of this function can be derived. Then we define the cionlil expectation of the complete-data
log-likelihood such that:

Q(X) = E{log L(X, 2)|X} = ZZqulogaq—i—ZZZZ@mglogb Xijimge), (7

) q J>t
where
Tig = Pr{Ziy=1|X} = E(Zjg|X), ®)
Hiqu = PI‘{Ziqug =1 | X} = E(Ziqug | X)

This log-likelihood involves the joinposteriorprobability for vertices and; to belong to groups
g and/. Clearly, we have fof andj:

> Tig=1, Og="0jig, DY bijg=1 )
q g ¢

5 Estimation

In this section we propose an (approximate) E-M algorithradiimate the parameters of the ERMG
model by maximum likelihood. Since the EM algorithm uses hifgglen structure of the data, it is
crucial to determine the dependency among observed andrhiddiables.

Since the data under study are represented as a graph, th&ERdMel may look like a hidden
Markov Field model. However, it is important to note thatsitriot. The main reason for this is that
when using a hidden Markov model the topology of the graptdeiée be known, whereas it is
precisely the random object under study in the ERMG framkwor

5.1 Dependency graph.

The X;;s are independent conditionally to thg,s, but are marginally dependent. For estimation pur-
poses, it is important to know *r{Z;, = 1 | X'} is equal toPr{Z;, = 1 | A;}, where&; is the set of

all possible edges connectirigX; is often called the set of neighbours of vertein the following,

we give a counter example to show that the notion of neightmmd can not be used in the ERMG



framework.

Assume that the vertices are divided in two groups, whoseedivity matrix is diagonal with
w11 = landmyy = a and0 < a < 1. Let us consider 3 vertices j, k with X;; = X;; = 1.
The verticesi andj are in the same group because no connection is possible dretweetices per-
taining to two different groups. The same is true for vegicendk. Therefore the three vertices are in
the same group and we haWe{Z;; =1 | &j, X} > 0if X, =1andPr{Z; =1 | &}, X} =0

if X1 = 0. ThereforePr{Z;, = 1 | X'} depends on all the network and not only on edges connecting
to the vertex.

This counter example clearly shows that no neighbourhoodeaconsidered in the ERMG frame-
work since unconnected vertices provide as much informat®connected vertices. This is why the
likelihood can not be simplified for computation.

5.2 Approximate E step

The most difficult part of the estimation algorithm is theccation of ther;,s andd; ;,,s. Because of
the strong dependency between edges, thesteriorprobabilities seem very difficult to derive. We
propose a two step approximation.

APPROXIMATE JOINT DISTRIBUTION In the first step, we approximate the joint distribution tod t
ZiqS by the product of their respective conditional distribng given the other coordinates. Denoting
Zi={Zp,...Zig}and2' = Z \ Z;, we set

Pr{Z | x} ~ [ Pr{2i | X, 2}. (10)

)

These approximate distributions can be calculated thanttgetfollowing proposition.
Proposition 5. Denoting N, = Z#Z_ Zjm and Ciy, = > 1 Zim Xk, We have

Pr{Z; =1 X, 2"} x oy Hb(CZ-m;an,wqm).
m

PREDICTING LABEL VARIABLES. Approximation (10) can not be used as such sifi¢és unknown
and has to be predicted. The second step of the approximiatioence to fix allZ;;s (j # i) to

their conditional expectationijg = 7j¢. The posterior probabilities;; must therefore satisfy the fix
point relation:7;, = Pr{Z;,, = 1 | X, Z'}. The,, are obtained by iterating the equation given in
Proposition 5 until convergence. According to approximat{10), we then get;;,¢ = 7iqTje-

5.3 Mstep

At this step, we maximise the functiad(X’) given in (7) subject t@q a, = 1. We get

Gg =D Fa/n T =)D bijarXi /Z > Bijat -
1 7 J % J



5.4 Choice of the number of groups

Our purpose here is not to derive a specific criterion to $ehec number of groups in the ERMG
model. This problem seems difficult to tackle, especiallgause the log-likelihood of the observed
datalog £(X') is not calculable.

We propose a heuristic criterion inspired from the IntegslaCompleted Likelihood (ICL, Biernacki
et al. (2000)). The ICL criterion uses the same penalty as BIC, pplies it to the complete-data log-
likelihood, which is the only likelihood we can calculatethiis case. The first term of (7) deals with
Q proportionsw,s and involves: data. The second term deals wiQ + 1) /2 probabilitiesr,,s and
involvesn(n — 1)/2 terms. Hence the Fisher information matrix derived fr@ft) is proportional
to n for the oy, while it is proportional tav(n — 1)/2 for the mys.

We therefore propose the following heuristic criterion:

—2Q(X) + (@ — 1) logn + [Q(Q + 1)/2]log[n(n — 1)/2]. (11)

6 Application to biological networks

The motivation for applying this methodology to biologicatworks is twofold: (1) obtain a more
realistic random graph model for further work on the ovgrresentation of network motifs (Shen-Orr
et al. (2002)) and reaction motifs (Lacroit al. (2005)); (2) study the properties of such graples
seto get insight on the modular structure of biological netkgor

In this section, we will show that the ERMG model is more tadithan other models for describ-
ing the degree distribution and the clustering coefficidra metabolic network. We also show that
the groups identified by the method can be given a biologiczdning. We apply the methodology
developed in this paper to the metabolic network of the bagte Escherichia coliAlthough the
method is generic and could be applied to other types of bicéd networks (such as protein inter-
action networks or transcriptional networks), we chosersi focus on metabolic networks because
the data is more complete and reliable. In this networkjaestare chemical reactions. Two reactions
are connected if they share a primary compound. For eackioraa distinction is made between
its primary compounds (main substrate and product) aneédsrslary compounds (cofactors). Only
primary compounds are responsible for edges. Importahtysame compound may be considered as
primary with respect to one reaction and secondary withagsip another reaction. This method is
an alternative way to deal with the known bias introduced lguitous compounds (such as water)
which artefactually connect a large number of reaction&@42004)). Finally, since the information
on the reversibility of reactions does not seem to be estadddi (contradictions may be found within a
same database), we chose to consider the general case Wheaetions are reversible. The data we
used was downloaded froht t p: / / bi ocyc. or g/ . The resulting graph is made up of= 605
vertices and the total number of edges is 1782.

6.1 Fit of the empirical distribution of the degrees

ZIPF DISTRIBUTION. Many papers claim that the Zipf pdf (2) fits well the degrebgraphs, but these
claims are rarely based on statistical criteria. Genemally a log-log plot is given. If we consider the
log-log plot on our data (Fig. 1), we can see that a linear fitsdoot work for low degreeg(g.< 4).

In order to see how the Zipf pdf fits to the tail of the empiridédtribution, we compute the usual
chi-square statistics for different thresholds. The mimmchi-square estimate pfis computed for
each threshold (see Table 2).

We can see that the fit is not good even for the tail distriloutioth a high value of the threshold.



One can say that the Zipf distribution is only a rough appr@tion of the true one. It is often better
suited for the tail than for the whole distribution. Notettttze fit seems better for the tail because we
have less data when the threshold increases, so that the pbéie chi-square test is down-sized.
We would like to have a model which is well suited for the whaistribution of degrees.

.
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Figure 1. Fit of the Zipf (top) and Poisson mixture wit) = 21 groups (bottom) pdf td. coli data. Left:
log-log plot. Center: PP plots (top: threshold-lo — and 6—v —). Right: histogram of degrees with adjusted
distributions (top: same thresholds).

Table 2. Fit of the power law and Poisson mixture: Chi-square stafisiegree of freedom angtvalue for
several thresholds.

Power law Poisson mixture

Threshold n p + 1 x? stat. df p-value x?2 stat. df p-value
593 - - - - 67.25 297 10—°

549 1.79 96.22 3210~° 585 28610 %
399 1.93 75.83 3110°¢ 323 27 0.22
315 2.08 59.70 300.001 30.6 26 0.24
252 2.19 53.07 290.004 27.0 25 0.36
200 2.24 52.37 280.003 27.0 24 0.30
172 2.37 45.44 270.014 25.0 23 0.35

O WNEO

PoissON MIXTURE Using a mixture of Poisson distributions, we obtain theriégented in the bot-
tom of Fig. 1. The BIC criterion selects three groups witlpeedive proportionsy, = 8.9%,19.7%
and71.3% and mean degrees, = 21.5,9.1, 3.0. Chi-square fit statistics are given in Table 2.
Observe that the same values of the parameters of the midistrébution have been used for all
threshold values. One can see that the fit is better than toktfie power law. The lack of fit for the
two first lines is due to an unexpectedly high number of vegtiwith two connections: 12 vertices
have no connection, 44 have one connection and 150 have twactions.



6.2 Erdos-Rényi mixture modelling

NUMBER OF GROUPS AND PARAMETER ESTIMATESUSsing the heuristic criterion defined in (11), we
select() = 21 groups. Table 3 gives the estimates of proportiepsnd connection probabilities,,.
Among the first 20 groups, 8 are actually cliqueg,(= 1) and 6 have within probability connectivity
greater than 0.5. We also see that the clique structuregiyramcreases the mean degrig of its
elements. More generally, in this example, it turns out thatwithin connection probabilities,, are
always maximal, although the modelling does not requirg. tBimulation studies (not shown) prove
that it is not an artefact of the method, which can detect agwith no within connection.

The interpretation for the cliques (and pseudo-cliquestraightforward, each of them corre-

sponds to a single compound involved in all the reactionshefdgroup. Examples of compounds
responsible for cliques include chorismate, pyruvatespaatate, L-glutamate, D-glyceraldehyde-3-
phosphate and ATP. This illustrates an already establistmdt: the structure of a metabolic network
is mainly due to the presence of a few metabolites, called jldonget al. (2000)). These metabo-
lites constitute branching points around which metabddithvays are organised. The originality in
our case comes from the initial removal of secondary meitgisdrom our dataset which ensures that
we identify meaningful hubs, that is, metabolites thatlyef@rm the backbone of the network.
Interestingly, a single hub may be “split” into two groupsday method. Indeed, the connection prob-
ability between groups 1 and 16 is 1, so these 2 groups actoatistitute a clique together which
again corresponds to a single compound (pyruvate). Howthay are separated in two sub-cliques
because of their very different connectivities with reaieti of groups 7 and 10. This distinction is
due to the use of two other compounds involved in most reastd groups 1 and 7 (C02) and 1 and
10 (acetylCoA) but not of group 16. The identification of gpdliinside the pyruvate clique outlines
the particular role played by this molecule in metabolishis Indeed known to be a branching point
between central metabolic pathways (glycolysys, TCA cyfelamentation) and is found here to be a
connector of connectors.
Complementary analysis of the groups show that they gatemtions that participate in the same
class of metabolic pathways. For instance, group 1 correlpto the generation of precursor metabo-
lites, group 2 and 3 correspond to amino-acid biosynthasidgroup 4 to cofactor biosynthesis. This
indicates that the groups found by our method are coherdatrims of biological processes.

Table 3. Parameter estimates of the ERMG model wjih= 21 groups (values smaller than .5 % are masked
for readability).

a(%) 0.7 1.0 1.2 1.3 1.3 1.5 1.5 1.6 1.8 1.8 2.0 2.1 2.3 2.6 2.7 2.8 3.0 3.0 3.3 5.8 56.8
100 64 11 43 2 100
100

100 4 7 1 1
71
100 28 1 18 16
28 100 6
64 58 10 4 7 5 5
63 5 3
11 10 65 1 2 2
43 1 4 67 1
™ 62 7 4
(%) 4 7 5 28 5 5
2 7 5 1 5 100 1
6 7 25
1 40

100 18 5

16 19

Ag 33 7 9 6 17 13 12 7 10 10 10 8 17 6 7 25 21 5 6 5 3




BETWEEN GROUP CONNECTIVITY AND CLUSTERING COEFFICIENTThe graph showing 1782 edges
connecting 605 vertices is of course unreadable. Figure&pts the graph as a dot-plot where a dot
at rows and columnj indicates that the edge— j is present. To emphasise the connections between
the different groups, we reordered the vertices within geoThe limits between groups are obtained
using a maximum a posteriori (MAP) classification of versiche vertex is classified into groug

for which 7;, is maximal.

The bottom plot in Figure 2 gives the estimafeabteriorprobabilitiest;,. We see that the first groups
are quite well defined. The last one (21) has more fuzzy lirtits actually made of isolated reactions
having not much in common.

Finally, we also compare the expected clustering coefficigiven in Proposition 3 with the observed
one. The expected value f = 21 groups is 0.544, while the observed one is 0.626. The ERMG
model therefore slightly underestimates this coefficiént.the same dataset, the Erdds-Rényi model
would givec = 7 = 0.0098.

We conclude that the ERMG model provides a random graph mebih seems to be well
adapted to capture the structure of a biological networks Tirst application of our model to a
biological network is promising in the sense that the growpsfind are relevant (coherent sets of
reactions gathered around central compounds). Futurargsdirections include the study of proba-
bilistic properties of the ERMG model (diameter, probaypifor a subgraph to be connected) which
would give a strong statistical basis to the study of logaicitiral properties.
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Figure 2. Left: Dot plot representation of the graph after classifarabf the vertices into the 21 groups. Right:
Posterior probabilities;, .
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