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Abstract: The Erd̈os-Ŕenyi model of a network is simple and possesses many explicit
expressions for average and asymptotic properties, but it does not fit well to real-word
networks. The vertices of these networks are often structured in prior unknown groups
(functionally related proteins or social communities) with different connectivity proper-
ties. We define a generalisation of the Erdös-Ŕenyi model called ERMG for Erdös-Ŕenyi
Mixtures for Graphs. This new model is based on mixture distributions. We give some of
its properties, an algorithm to estimate its parameters andapply this method to uncover
the modular structure of a network of enzymatic reactions.
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1 Introduction

The Erdös-Rényi model of a network is one of the oldest and best studied models and possesses
many explicit expressions for average and asymptotic properties such as subgraphs, degree distribu-
tion, connectedness and clustering coefficient. However this theoretical model does not fit well to
real-world, social, biological or Internet networks. For example the empirical degree distribution may
be very different from the Poisson distribution which is implied by this model. Moreover empirical
clustering coefficients of real networks are generally higher than the value given by this model. Some
generalisations of the Erdös-Rényi model have been recently made in order to correct these short-
comings. For a review of these works see Albert and Barabási(2002) or Newman (2003). Besides,
a special attention has been paid recently to the study of biological networks (see Alm and Arkin
(2002) or Arita (2004)). One of the limits for these studies is that no existing network model seems
to be completely satisfying to capture their structure.

One research direction is to incorporate clustering in the model. Assortative mixing or mixing
patterns (see Newman and Girvan (2003) and (2004)) postulate that the vertices may be classified into
groups with different connectivity properties. The key element is the mixing matrix which specifies
the probability of connection between two groups. Newman (2003) gives some theoretical properties
of such networks and an algorithm similar to Metropolis-Hasting for simulating networks for a given
mixing matrix. The inference of the mixing parameters is quite easy if groups can be defined using
external information such as language, race or age. Howeverthe inference is more difficult when
groups and mixing parameters have to be inferred when the network topology is the only available
information. A first step is the greedy optimisation algorithm proposed by Newman (2004). In this
article we propose a new statistical method to infer the clustering of vertices and the parameters of the



mixing model using a maximum-likelihood approach based only on the network topology. We then
apply this method to a network representing the small molecule metabolism ofEscherichia coli.

2 Mixture model for the degrees

NOTATIONS. In this article, we consider an undirected graph withn vertices and define the variable
Xij which indicates that verticesi andj are connected:

Xij = Xji = I{i ↔ j},

whereI{A} equals to one ifA is true, and to zero otherwise. Furthermore, we assume that no vertex
is connected to itself, meaning thatXii = 0. In the following we noteKi the degree of vertexi, i.e.
the number of edges connecting it to the graph:

Ki =
∑

j 6=i

Xij .

ERDÖS-RÉNYI MODEL. This model assumes that edges are independent and occur with the same
probabilityp:

{Xij} i.i.d., Xij ∼ B(p).

In this model, the degree of each vertex has a Binomial distribution, which is approximately Poisson
for largen and smallp. Notingλ = (n − 1)p we have:

Ki ∼ B(n − 1, p) ≈ P(λ). (1)

’SCALE-FREE’ NETWORK. In many practical situations, the Erdös-Rényi model turns out to fit the
data poorly, mainly because the distribution of the degreesis far from the Poisson distribution (1).
The scale-free (or Zipf) distribution has been intensivelyused as an alternative. The Zipf probability
distribution function (pdf) is

Pr{Ki = k} = c(ρ)k−(ρ+1), (2)

wherek is any positive integer,ρ is positive,c(ρ) =
∑

k≥1 k−(ρ+1) = 1/ζ(ρ + 1) andζ(ρ + 1) is
Riemann’s zeta function. Nevertheless, we will show in Section 6 that this distribution may have a
poor fit on real datasets as well.
First of all, it is important to notice that the Zipf distribution is used to model the tail of the degree dis-
tribution. Consequently it is often better suited for the tail than for the whole distribution. In particular
this distribution has a null probability fork = 0 whereas some vertices may be unconnected in prac-
tice. Moreover the lack-of-fit of the Erdös-Rényi model may be simply due to some heterogeneities
between vertices, some being more connected than others. A simple way to model this phenomenon
is to consider that the degree distribution is a mixture of Poisson distributions.

M IXTURE MODEL. In the mixture framework we suppose that vertices are structured intoQ groups,
and that there exists a sequence of independent hidden variables{Ziq} which indicate the label of
vertices. We noteαq theprior probability for vertexi to belong to groupq, such that:

αq = Pr{Ziq = 1} = Pr{i ∈ q}, with
∑

q

αq = 1.

Remark:In the following, we will use two equivalent notations:{Ziq = 1} or {i ∈ q} to indicate that
vertexi belongs to groupq.



We suppose that the conditional distribution of the degree is a Poisson distribution :Ki|{i ∈ q} ∼
P(λq). Then the distribution of the degrees is a mixture of Poisson distributions such that:

Pr{Ki = k} =

Q∑

q=1

αq

e−λqλk
q

k!
. (3)

Remark:Because vertices are connected between them, degrees are not independent from each other.
However, in the standard situation wheren is large and where theλqs are small with respect ton, the
dependency between the degrees is weak.

In Section 6 we will show that this model fits well to several data sets. Nevertheless, we claim
that modelling the distribution of the degrees provides little information about the topology of the
graph. Indeed, this model only deals with the degrees of vertices, but not explicitly with the proba-
bility for two given vertices to be connected. However, the observed number of connections between
vertices from different groups may reveal some interestingunderlying structure, such as preferential
connections between groups. The mixture model for degrees is not precise enough to describe such a
phenomenon. This motivates the definition of an explicit mixture model for edges.

3 Erdös-Rényi mixture for graphs

3.1 General model

We now propose a mixture model which explicitly describes the way edges connect vertices, ac-
counting for some heterogeneity among vertices. In the following, we denote this model ERMG for
Erdös-Rényi Mixture for Graphs.
The ERMG model supposes that vertices are spread intoQ groups withprior probabilities{α1, . . . αQ}.
In the following, we use the same indicator variables{Ziq} defined in section 2. Then we denoteπqℓ

the probability for a vertex from groupq to be connected with a vertex from groupℓ. Because the
graph is undirected, these probabilities must be symmetricsuch that:

αq = Pr{Ziq = 1} = Pr{i ∈ q}, with
∑

q

αq = 1.

Then we denoteπqℓ the probability for a vertex from groupq to be connected with a vertex from
groupℓ. Because the graph is undirected, these probabilities mustbe symmetric such that:

πqℓ = πℓq.

We also suppose that edges{Xij} are conditionally independent given the groups of verticesi andj:

Xij | {i ∈ q, j ∈ ℓ} ∼ B(πqℓ).

The main difference with Model (3) is that the ERMG model directly deals with edges. More than
describing the clustered structure of vertices, our model describes the topology of the network using
the connectivity matrixΠ = (πqℓ).



3.2 Examples

In this section we aim at showing that the ERMG model can be used to generalise many particular
structures of random graphs. Table 1 presents some typical network configurations. The first one is
the Erdös-Rényi model. We present here some more sophisticated ones.

RANDOM GRAPHS WITH ARBITRARY DEGREE DISTRIBUTIONS. The Erdös-Rényi random graph
model is a poor approximation of real-world networks whose degree distribution is highly skewed.
A random network having the same degree distribution as the empirical one can be built as fol-
lows: 1.n partial edges (with only one starting vertex and no final vertex) are randomly chosen
from the empirical degree distribution and 2. these partialedges are randomly joined by pairs to
form complete edges (see Molloy and Reed (1995)). A permutation algorithm is also proposed in
Shen-Orret al. (2002). This model assumes that the connectivity between two vertices is propor-
tional to the degree of each vertex so it coincides with the independent case of the ERMG model
presented in Section 4.4.

SCALE FREE NETWORK. The scale-free network proposed by Barabási and Albert (1999) is a par-
ticular case of random graphs with arbitrary distribution.To this extent, we can propose an anal-
ogous model in the ERMG framework. Suppose that the incomingvertices join the network in
groups of respective sizenαq (q = 1..Q, nα1 being the number of original vertices). Assum-
ing that the elements of a new group connect preferentially to the elements of the oldest groups:
πq,1 ≥ πq,2 ≥ · · · ≥ πq,q−1, we get the same kind of structure as the scale-free model.

AFFILIATION NETWORK. An affiliation network or bipartite graph, is a social network in which ac-
tors are joined by a common participation in social events, companies boards or scientists’ coau-
thorship of papers. All the vertices participating to the same group are connected. This model has
been studied by Newmanet al. (2002). This type of network may be modelled by an ERMG with
ones in the diagonal ofΠ .

STAR PATTERN. Many biological networks contain star patterns,i.e. many vertices connected to the
same vertex and only to it, see the interaction network ofS. cerevisiaein Zhanget al. (2005) for
instance. This type of pattern may be modelled by an ERMG withextra-diagonal ones inΠ .

4 Some properties of the ERMG model

4.1 Distribution of the degrees

Proposition 1. Given the label of a vertex, the conditional distribution ofthe degree of this vertex is
Binomial (approximately Poisson):Ki | {i ∈ q} ∼ B(n − 1, πq) ≈ P(λq), whereπq =

∑
ℓ αℓπqℓ

andλq = (n − 1)πq.

Proof. Conditionally to the belonging of vertices to groups, edgesconnecting vertexi belonging to
groupq are independent. The conditional connection probability is:

Pr{i ↔ j | i ∈ q} =
∑

ℓ

Pr{i ↔ j | i ∈ q, j ∈ ℓ}Pr{j ∈ ℓ} =
∑

αℓπqℓ = πq.

The result follows.�



Table 1.Some typical network configurations and their formulation in the framework of the ERMG model

Description Network Q Π
Clustering
coef.

Random 1 p p

Product con-
nectivity (ar-
bitrary degree
distribution)

2

(
a2 ab
ab b2

)
(a2 + b2)2

(a + b)2

Stars 4





0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0



 0

Clusters
(affiliation
networks)

2

(
1 ε
ε 1

)
1 + 3ε2

(1 + ε)2

4.2 Between-group connectivity

Definition 1. The connectivity between groupq andℓ is the number of edges connecting a vertex from
groupq to a vertex from groupℓ. Aqℓ =

∑
i

∑
j>i ZiqZjℓXij. Aqq is actually the within-connectivity

of groupq.

Proposition 2. The expected connectivity between groupq andℓ is: E(Aqℓ) = n(n − 1)αqαℓπqℓ/2.

Proof. According to Definition 1,Aqℓ is the sum overn(n− 1)/2 terms. Conditionally to{ZiqZjℓ =
1}, Xij is a Bernoulli variable with parameterπqℓ. ThusE (ZiqZjℓXij) = E (ZiqZjℓ)πqℓ. TheZiqs
are independent, so we haveE (ZiqZjℓ) = αqαℓ. The result follows.�
4.3 Clustering coefficient.

This coefficient is supposed to measure the aggregative trend of a graph. Since no probabilistic mod-
elling is usually available, this coefficient is empirically defined in most cases. Albert and Barabási
(2002) propose the following definition of the empirical clustering coefficient for vertexi: Ci =
∇i /[Ki(Ki − 1)/2] , where∇i is the number of edges between the neighbours of vertexi: ∇i =∑

j,k XijXjkXik/2, whose minimum value is0 and maximum value equalsKi(Ki − 1)/2 for a
clique. A first estimator of this empirical clustering coefficient is usually defined as the mean of the
Cis: ĉ =

∑
i Ci/n.

Denoting∇ the ’triangle’ configuration(i ↔ j ↔ k ↔ i) and V the ’V’ configuration (j ↔
i ↔ k) for any (i, j, k) uniformly chosen in{1, . . . , n}, the definition ofC can be rephrased as
c = Pr{∇ | V}. Because∇ is a particular case ofV, we have:

c = Pr{∇ ∩ V}/Pr{V} = Pr{∇}/Pr{V}. (4)



This property suggests another estimate ofc proposed by Newmanet al.(2002):ĉ′ = 3
∑

i ∇i /
∑

i Vi ,
whereVi is the number ofVs in i: Vi =

∑
j>k,(j,k)6=i XijXik. In the following we propose a proba-

bilistic definition of this coefficient.

Definition 2. The clustering coefficient is the probability for two verticesj andk connected to a third
vertexi, to be connected, with(i, j, k) uniformly chosen in{1, . . . , n}

c = Pr{XijXjkXki = 1 | XijXik = 1}.

Proposition 3. In the ERMG model, the clustering coefficient is

c =
∑

q,ℓ,m

αqαℓαmπqℓπqmπℓm

/
∑

q,ℓ,m

αqαℓαmπqℓπqm

Proof. For any triplet(i, j, k), we have

Pr{∇} =
∑

q,l,m

αqαℓαm Pr{XijXjkXki = 1 | i ∈ q, j ∈ ℓ, k ∈ m},=
∑

q,l,m

αqαℓαmπqℓπqmπℓm.

The same reasoning can be applied toPr{V} recalling that the eventV in (i, j, k) means that the top
of V is i. The result is then an application of (4).�
4.4 Independent model

The model presented in Section 2 can be rephrased as an independent version of the ERMG model.
Indeed the absence of preferential connection between groups corresponds to the case where

πqℓ = ηqηℓ. (5)

The properties of the independent model are as follows.

DISTRIBUTION OF DEGREES. The conditional distribution of the degrees is Poisson with parameter
λq such that:

λq = (n − 1)ηqη, (6)

whereη =
∑

ℓ αℓηℓ, soλq is directly proportional toηq.

BETWEEN GROUP CONNECTIVITY. We get :E (Aqℓ) = n(n − 1)(αqηq)(αℓηℓ)/2, so the rows and
columns of matrixA = (Aqℓ)q,ℓ must all have the same profile. We will see in Section 6 that the
observed number of connections between groups may be quite far from expected values.

CLUSTERING COEFFICIENT

c =

(
∑

q

αqη
2
q

)2 /
η2 .

For the standard Erdös-Rényi model (Q = 1, α1 = 1, η = η1 =
√

p), we get the known result:
c = η4

1/η
2
1 = p.

Considering the independent case presented in Figure 1 withα1 = α2 = 1/2 anda = 0.9, b = 0.1,
we getc = (0.92 + 0.12)2 ≃ 0.67. The corresponding Erdös-Rényi model withp = (α1a + α2b)

2 =
1/4 would lead to a strong underestimation ofc sincec = p = 0.25.



4.5 Likelihoods

In order to define the likelihood of the ERMG model, we use the complete-data framework defined
by Dempsteret al. (1977). Let us denoteX the set of all edges:X = {Xij}i,j=1..n, andZ the set of
all indicator variables for vertices:Z = {Ziq}q=1,Q

i=1,n .

Proposition 4. The complete-data log-likelihood is

logL(X ,Z) =
∑

i

∑

q

Ziq log αq +
∑

i

∑

q

∑

j>i

∑

ℓ

ZiqZjℓ log b(Xij ;πqℓ).

Proof. This is a direct consequence of the decompositionlogL(X ,Z) = logL(Z) + logL(X | Z)
whereb(x;π) = πx(1 − π)1−x.�

The log-likelihood of the observed data is obtained by summing the complete-data log-likelihood
over all the possible values of the unobserved variablesZ. Unfortunately, it seems that no simple
form of this function can be derived. Then we define the conditional expectation of the complete-data
log-likelihood such that:

Q(X ) = E {logL(X ,Z)|X} =
∑

i

∑

q

τiq log αq +
∑

i

∑

q

∑

j>i

∑

ℓ

θijqℓ log b(Xij ;πqℓ), (7)

where

τiq = Pr{Ziq = 1 | X} = E(Ziq | X ),
θijqℓ = Pr{ZiqZjℓ = 1 | X} = E (ZiqZjℓ | X ).

(8)

This log-likelihood involves the jointposteriorprobability for verticesi andj to belong to groups
q andℓ. Clearly, we have fori andj:

∑

q

τiq = 1, θijqℓ = θjiℓq,
∑

q

∑

ℓ

θijqℓ = 1. (9)

5 Estimation

In this section we propose an (approximate) E-M algorithm toestimate the parameters of the ERMG
model by maximum likelihood. Since the EM algorithm uses thehidden structure of the data, it is
crucial to determine the dependency among observed and hidden variables.
Since the data under study are represented as a graph, the ERMG model may look like a hidden
Markov Field model. However, it is important to note that it is not. The main reason for this is that
when using a hidden Markov model the topology of the graph needs to be known, whereas it is
precisely the random object under study in the ERMG framework.

5.1 Dependency graph.

TheXijs are independent conditionally to theZiqs, but are marginally dependent. For estimation pur-
poses, it is important to know ifPr{Ziq = 1 | X} is equal toPr{Ziq = 1 | Xi}, whereXi is the set of
all possible edges connectingi. Xi is often called the set of neighbours of vertexi. In the following,
we give a counter example to show that the notion of neighbourhood can not be used in the ERMG



framework.
Assume that the vertices are divided in two groups, whose connectivity matrix is diagonal with
π11 = 1 andπ22 = a and0 < a < 1. Let us consider 3 verticesi, j, k with Xij = Xik = 1.
The verticesi andj are in the same group because no connection is possible between vertices per-
taining to two different groups. The same is true for vertices i andk. Therefore the three vertices are in
the same group and we havePr{Zi1 = 1 | Xi,Xjk} > 0 if Xjk = 1 andPr{Zi1 = 1 | Xi,Xjk} = 0
if Xjk = 0. ThereforePr{Ziq = 1 | X} depends on all the network and not only on edges connecting
to the vertexi.
This counter example clearly shows that no neighbourhood can be considered in the ERMG frame-
work since unconnected vertices provide as much information as connected vertices. This is why the
likelihood can not be simplified for computation.

5.2 Approximate E step

The most difficult part of the estimation algorithm is the calculation of theτiℓs andθijqℓs. Because of
the strong dependency between edges, theseposteriorprobabilities seem very difficult to derive. We
propose a two step approximation.

APPROXIMATE JOINT DISTRIBUTION. In the first step, we approximate the joint distribution of the
Ziqs by the product of their respective conditional distributions given the other coordinates. Denoting
Zi = {Zi1, . . . ZiQ} andZi = Z \ Zi, we set

Pr{Z | X} ≃
∏

i

Pr{Zi | X ,Zi}. (10)

These approximate distributions can be calculated thanks to the following proposition.

Proposition 5. DenotingN i
m =

∑
j 6=i Zjm andCim =

∑
k ZkmXik, we have

Pr{Ziq = 1 | X ,Zi} ∝ αq

∏

m

b(Cim;N i
m, πqm).

PREDICTING LABEL VARIABLES. Approximation (10) can not be used as such sinceZ i is unknown
and has to be predicted. The second step of the approximationis hence to fix allZjℓs (j 6= i) to
their conditional expectations:̂Zjℓ = τjℓ. The posterior probabilitiesτiq must therefore satisfy the fix
point relation:τ̂iq = Pr{Ziq = 1 | X , Ẑi}. The τ̂iq are obtained by iterating the equation given in
Proposition 5 until convergence. According to approximation (10), we then get̂θijqℓ = τ̂iqτ̂jℓ.

5.3 M step

At this step, we maximise the functionQ(X ) given in (7) subject to
∑

q αq = 1. We get

α̂q =
∑

i

τ̂iq/n, π̂qℓ =
∑

i

∑

j

θ̂ijqℓXij

/
∑

i

∑

j

θ̂ijqℓ .



5.4 Choice of the number of groups

Our purpose here is not to derive a specific criterion to select the number of groups in the ERMG
model. This problem seems difficult to tackle, especially because the log-likelihood of the observed
datalogL(X ) is not calculable.
We propose a heuristic criterion inspired from the Integrated Completed Likelihood (ICL, Biernacki
et al. (2000)). The ICL criterion uses the same penalty as BIC, but applies it to the complete-data log-
likelihood, which is the only likelihood we can calculate inthis case. The first term of (7) deals with
Q proportionsαqs and involvesn data. The second term deals withQ(Q+1)/2 probabilitiesπqℓs and
involvesn(n − 1)/2 terms. Hence the Fisher information matrix derived fromQ(X ) is proportional
to n for theαqs, while it is proportional ton(n − 1)/2 for theπqℓs.
We therefore propose the following heuristic criterion:

−2Q(X ) + (Q − 1) log n + [Q(Q + 1)/2] log[n(n − 1)/2]. (11)

6 Application to biological networks

The motivation for applying this methodology to biologicalnetworks is twofold: (1) obtain a more
realistic random graph model for further work on the over-representation of network motifs (Shen-Orr
et al. (2002)) and reaction motifs (Lacroixet al. (2005)); (2) study the properties of such graphsper
seto get insight on the modular structure of biological networks.
In this section, we will show that the ERMG model is more realistic than other models for describ-
ing the degree distribution and the clustering coefficient of a metabolic network. We also show that
the groups identified by the method can be given a biological meaning. We apply the methodology
developed in this paper to the metabolic network of the bacterium Escherichia coli. Although the
method is generic and could be applied to other types of biological networks (such as protein inter-
action networks or transcriptional networks), we chose to first focus on metabolic networks because
the data is more complete and reliable. In this network, vertices are chemical reactions. Two reactions
are connected if they share a primary compound. For each reaction, a distinction is made between
its primary compounds (main substrate and product) and its secondary compounds (cofactors). Only
primary compounds are responsible for edges. Importantly,the same compound may be considered as
primary with respect to one reaction and secondary with respect to another reaction. This method is
an alternative way to deal with the known bias introduced by ubiquitous compounds (such as water)
which artefactually connect a large number of reactions (Arita (2004)). Finally, since the information
on the reversibility of reactions does not seem to be established (contradictions may be found within a
same database), we chose to consider the general case where all reactions are reversible. The data we
used was downloaded fromhttp://biocyc.org/. The resulting graph is made up ofn = 605
vertices and the total number of edges is 1782.

6.1 Fit of the empirical distribution of the degrees

ZIPF DISTRIBUTION. Many papers claim that the Zipf pdf (2) fits well the degrees of graphs, but these
claims are rarely based on statistical criteria. Generallyonly a log-log plot is given. If we consider the
log-log plot on our data (Fig. 1), we can see that a linear fit does not work for low degrees (e.g.< 4).
In order to see how the Zipf pdf fits to the tail of the empiricaldistribution, we compute the usual
chi-square statistics for different thresholds. The minimum chi-square estimate ofρ is computed for
each threshold (see Table 2).
We can see that the fit is not good even for the tail distribution with a high value of the threshold.



One can say that the Zipf distribution is only a rough approximation of the true one. It is often better
suited for the tail than for the whole distribution. Note that the fit seems better for the tail because we
have less data when the threshold increases, so that the power of the chi-square test is down-sized.
We would like to have a model which is well suited for the wholedistribution of degrees.
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Figure 1. Fit of the Zipf (top) and Poisson mixture withQ = 21 groups (bottom) pdf toE. coli data. Left:
log-log plot. Center: PP plots (top: threshold 1− ◦ − and 6−O−). Right: histogram of degrees with adjusted
distributions (top: same thresholds).

Table 2. Fit of the power law and Poisson mixture: Chi-square statistic, degree of freedom andp-value for
several thresholds.

Power law Poisson mixture
Threshold n ρ + 1 χ2 stat. df p-value χ2 stat. df p-value

0 593 - - - - 67.25 297 10−5

1 549 1.79 96.22 322 10−9 58.5 286 10−4

2 399 1.93 75.83 311 10−6 32.3 27 0.22
3 315 2.08 59.70 300.001 30.6 26 0.24
4 252 2.19 53.07 290.004 27.0 25 0.36
5 200 2.24 52.37 280.003 27.0 24 0.30
6 172 2.37 45.44 270.014 25.0 23 0.35

POISSON MIXTURE. Using a mixture of Poisson distributions, we obtain the fit presented in the bot-
tom of Fig. 1. The BIC criterion selects three groups with respective proportionsαq = 8.9%, 19.7%
and71.3% and mean degreesλq = 21.5, 9.1, 3.0. Chi-square fit statistics are given in Table 2.
Observe that the same values of the parameters of the mixturedistribution have been used for all
threshold values. One can see that the fit is better than the fitof the power law. The lack of fit for the
two first lines is due to an unexpectedly high number of vertices with two connections: 12 vertices
have no connection, 44 have one connection and 150 have two connections.



6.2 Erdös-Ŕenyi mixture modelling

NUMBER OF GROUPS AND PARAMETER ESTIMATES. Using the heuristic criterion defined in (11), we
selectQ = 21 groups. Table 3 gives the estimates of proportionsαq and connection probabilitiesπqℓ.
Among the first 20 groups, 8 are actually cliques (πqq = 1) and 6 have within probability connectivity
greater than 0.5. We also see that the clique structure strongly increases the mean degreeλq of its
elements. More generally, in this example, it turns out thatthe within connection probabilitiesπqq are
always maximal, although the modelling does not require this. Simulation studies (not shown) prove
that it is not an artefact of the method, which can detect a group with no within connection.

The interpretation for the cliques (and pseudo-cliques) isstraightforward, each of them corre-
sponds to a single compound involved in all the reactions of the group. Examples of compounds
responsible for cliques include chorismate, pyruvate, L-aspartate, L-glutamate, D-glyceraldehyde-3-
phosphate and ATP. This illustrates an already establishedresult: the structure of a metabolic network
is mainly due to the presence of a few metabolites, called hubs (Jeonget al. (2000)). These metabo-
lites constitute branching points around which metabolic pathways are organised. The originality in
our case comes from the initial removal of secondary metabolites from our dataset which ensures that
we identify meaningful hubs, that is, metabolites that really form the backbone of the network.
Interestingly, a single hub may be “split” into two groups byour method. Indeed, the connection prob-
ability between groups 1 and 16 is 1, so these 2 groups actually constitute a clique together which
again corresponds to a single compound (pyruvate). However, they are separated in two sub-cliques
because of their very different connectivities with reactions of groups 7 and 10. This distinction is
due to the use of two other compounds involved in most reactions of groups 1 and 7 (C02) and 1 and
10 (acetylCoA) but not of group 16. The identification of group 1 inside the pyruvate clique outlines
the particular role played by this molecule in metabolism. It is indeed known to be a branching point
between central metabolic pathways (glycolysys, TCA cycle, fermentation) and is found here to be a
connector of connectors.
Complementary analysis of the groups show that they gather reactions that participate in the same
class of metabolic pathways. For instance, group 1 corresponds to the generation of precursor metabo-
lites, group 2 and 3 correspond to amino-acid biosynthesis,and group 4 to cofactor biosynthesis. This
indicates that the groups found by our method are coherent interms of biological processes.

Table 3. Parameter estimates of the ERMG model withQ = 21 groups (values smaller than .5 % are masked
for readability).

α(%) 0.7 1.0 1.2 1.3 1.3 1.5 1.5 1.6 1.8 1.8 2.0 2.1 2.3 2.6 2.7 2.8 3.0 3.0 3.3 5.8 56.8
100 64 11 43 2 100

100
100 4 7 1 1

71
100 28 1 18 16
28 100 6

64 58 10 4 7 5 5
63 5 3

11 10 65 1 2 2
43 1 4 67 1

π 62 7 4
(%) 4 7 5 28 5 5

2 7 5 1 5 100 1
6 7 25

1 40
100 18 5 1 5 1 100

2 4 100 6
1 3 2 21

16 19
6 11

1
λq 33 7 9 6 17 13 12 7 10 10 10 8 17 6 7 25 21 5 6 5 3



BETWEEN GROUP CONNECTIVITY AND CLUSTERING COEFFICIENT. The graph showing 1782 edges
connecting 605 vertices is of course unreadable. Figure 2 presents the graph as a dot-plot where a dot
at rowi and columnj indicates that the edgei ↔ j is present. To emphasise the connections between
the different groups, we reordered the vertices within groups. The limits between groups are obtained
using a maximum a posteriori (MAP) classification of vertices: the vertexi is classified into groupq
for which τ̂iq is maximal.
The bottom plot in Figure 2 gives the estimatedposteriorprobabilitiesτ̂iq. We see that the first groups
are quite well defined. The last one (21) has more fuzzy limits: it is actually made of isolated reactions
having not much in common.
Finally, we also compare the expected clustering coefficient c given in Proposition 3 with the observed
one. The expected value forQ = 21 groups is 0.544, while the observed one is 0.626. The ERMG
model therefore slightly underestimates this coefficient.On the same dataset, the Erdös-Rényi model
would giveĉ = π̂ = 0.0098.

We conclude that the ERMG model provides a random graph modelwhich seems to be well
adapted to capture the structure of a biological network. This first application of our model to a
biological network is promising in the sense that the groupswe find are relevant (coherent sets of
reactions gathered around central compounds). Future research directions include the study of proba-
bilistic properties of the ERMG model (diameter, probability for a subgraph to be connected) which
would give a strong statistical basis to the study of local structural properties.
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Figure 2.Left: Dot plot representation of the graph after classification of the vertices into the 21 groups. Right:
Posterior probabilitiesτiq .
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