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The Erdös-Rényi model of a network is simple and possesses many explicit expressions for average and asymptotic properties [1], but it
does not fit well to real-world networks. The vertices of these networks are often structured in prior unknown classes (functionally related
proteins or social communities) with different connectivity properties. We define a generalization of the Erdös-Rényi model called ERMG
for Erdös-Rényi Mixtures for Graphs. This new model is based on mixture distributions. We give some of its properties, an algorithm to
estimate its parameters and a statistical criterion to select the number of classes. This method is applied to uncover the structure of social
and biological networks.

Model
Let X be the adjacency matrix of a random graph such that {Xij = 1} if vertices {i} and {j} are connected.
We suppose that nodes are spread amongQ hidden classes, with prior probabilityα = (α1, . . . , αQ). These
classes are used to model the heterogeneity of connectivity which is observed in real complex networks.
We introduce a sequence of hidden independent variables Z = (Ziq) such that {Ziq = 1} if vertex {i} is in
class q. These variables are independent and distributed according to a multinomial distribution:

[Zi1, . . . , ZiQ] ∼M(1;α1, . . . , αQ).

Then we define the conditional distribution of Xij given the class of the vertices. For this purpose we
introduce the connectivity matrix π = (πql) such that:

Xij|{i ∈ q, j ∈ l} ∼ B(πql).

ERMG : Erdös-Rényi Mixture for Graphs

Properties
Degree distribution.
In the ERMG model, the degree distribution is a mixture of binomial distributions approximated by a mix-
ture of Poisson, such that:

Pr (Ki = k) =
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q=1
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−λq
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,

with λq = (n − 1)π̄q and π̄q =
∑
l αlπql. An interesting feature of ERMG is that classes can also be

interpreted in terms of their average degree of connection with parameter λq.

Clustering Coefficient.
This coefficient (c) is supposed to measure the aggregative trend of a graph. The clustering coefficient has
a probabilistic definition: it is the probability for two vertices {j} and {k} connected to a third vertex {i},
to be connected, with (i, j, k) uniformly chosen in {1, . . . , n}3: c = Pr{XijXjkXki = 1 | XijXik = 1}.
Under the ER model, this probability equals p. In the ERMG model, the clustering coefficient is:

c =
∑

q,l,m

αqαlαmπqlπqmπlm

/∑
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Parameter estimation and model selection
We propose to estimate the parameters of ERMG by maximizing the likelihood Pr(X) undirectly, using the
conditional expectation of the complete-data log-likelihood defined as:

Q(X) = E [log Pr(X,Z)|X] .

However, Pr(Z|X) is unknown but can be approximated by R[Z], such that KL(R[Z],Pr(Z|X)) is mini-
mal. The principle of variational method is to optimize an approximation of Pr(X) noted J (R[Z]) which
depends onR such that:

J (R[Z]) = log Pr(X)−KL(R[Z],Pr(Z|X)).

-J (R[Z]) has a unique maximum atR[Z] = Pr(Z|X),
- In practice, J (R[Z]) is maximized over a limited set of distributions, and we choose the multinomial

distribution logR[Z] =
∑
i log h(Zi; τi), where τi is called the variational parameter.

Iterative algorithm.
(h) Optimizing J (R[Z]) with respect toR[Z] leads to a fixed point equation:

τ̃iq = Pr{Ziq = 1|X, Z̃i}.

(h+1) Optimizing J (R[Z]) with respect to (α,π):

α̃q =
∑

i

τ̃iq/n, π̃ql =
∑

ij

τ̃iqτ̃jlXij/
∑

ij

τ̃iqτ̃jl.

A statistical criterion to select the number of classes.
We derive a statistical criterion to select the number of classes in a Bayesian setting. This criterion is based
on the penalization of the integrated complete-data likelihood :

log Pr(X,Z|mQ) =

∫

Θ
log Pr(X,Z|θ,mQ)g(θ|mQ)dθ.

This quantity can be split into two terms [2], log Pr(X|Z,mQ) and log Pr(Z|mQ) which can be calculated
separately. This leads to an integrated classification criterion (ICL) for ERMG such that:

ICL(mQ) = max
θ

log Pr(X, Z̃|θ,mQ)− Q(Q + 1)

4
log

n(n− 1)

2
− Q− 1

2
log(n).

Applications
Social Network
This network represents the connections between 34 members of a karate club over a period of two years.
During the course of the study, the administrator and the instructor disagreed, which resulted in a split
of the club members into 2 distinct clubs [3]. There are 4 real classes of vertices in Zachary’s network :
two classes of leaders (vertices {1, 2, 3}, and vertices {33, 34} respectively), and two classes of members
differentially associated with classes of leaders. ERMG allows us to uncover this structure perfectly.

Empirical
πql 1 2 3 4

1 1 0.53 0.15 0.17
2 0.14 0 0.04
3 0.08 0.75
4 1

α 0.088 0.382 0.470 0.058

ERMG
πql 1 2 3 4

1 1 0.53 0.16 0.16
2 0.12 0 0.07
3 0.08 0.73
4 1

α 0.089 0.368 0.484 0.058
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Zachary’s karate club network.

Biological Network
This network represents the metabolic network of E. Coli (from http://www.biocyc.org/) which has n = 605
vertices (reactions) and 1 782 edges. 2 reactions {i} and {j} are connected if the product of {i} is the sub-
strate of {j} (cofactors excluded). A compound (chorismate, pyruvate, ATP, etc) can be associated to each
group. The structure of the metabolic network is governed by the compounds. The ERMG model splits
reactions which use Pyruvate according to their connection with other sets of reactions involving CO2 and
Acetyl-Coenzyme A.

πql Pyr. CO2 A.CoA Pyr.
Pyr. 1.0
CO2 .11 .65
A.CoA .43 .67
Pyr. 1.0 .01 1.0

Estimated connectivity matrix
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