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Abstract. Microarray-CGH experiments are used to detect and map chromosomal
imbalances, by hybridizing targets of genomic DNA from a test and a reference
sample to sequences immobilized on a slide. A CGH profile can be viewed as a
succession of segments that represent homogeneous regions in the genome whose
representative sequences (or BACs) share the same relative copy number on average.
Segmentation methods constitute a natural framework for the analysis, but they do
not assess a biological status to the detected segments. We propose a new model
for this segmentation-clustering problem, combining a segmentation model with a
mixture model. We present an hybrid algorithm to estimate the parameters of the
model by maximum likelihood. This algorithm is based on dynamic programming
and on the EM algorithm. We also propose to adaptively estimate the number of
segments when the number of clusters is fixed. An example of our procedure is
presented, based on publicly available data sets.
Keywords: Segmentation methods, Mixture Models, Dynamic Programming, EM
algorithm, Model Selection.

Introduction

Chromosomal aberrations often occur in solid tumors: tumor suppressor
genes may be inactivated by physical deletion, and oncogenes activated via
duplication in the genome. The purpose of array-based Comparative Ge-
nomic Hybridization (array CGH) is to detect and map chromosomal aber-
rations, on a genomic scale, in a single experiment. Since chromosomal copy
numbers can not be measured directly, two samples of genomic DNA (re-
ferred as the reference and the test DNA) are differentially labelled with
fluorescent dyes and competitively hybridized to known mapped sequences
(referred as BACs) that are immobilized on a slide. Subsequently, the ratio
of the intensities of the two fluorochromes is computed and a CGH profile
is constituted for each chromosome when the log2 of fluorescence ratios are
ranked and plotted according to the physical position of their corresponding
BACs on the genome.

Each profile can be viewed as a succession of ’segments’ that represent
homogeneous regions in the genome whose BACs share the same relative
copy number on average. Array CGH data are normalized with a median
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set to log2(ratio)= 0 for regions of no change, segments with positive means
represent duplicated regions in the test sample genome, and segments with
negative means represent deleted regions. It has to be noted that even if the
underlying biological process is discrete (counting of relative copy numbers
of DNA sequences), the signal under study is viewed as being continuous,
because the quantification is based on fluorescence measurements, and be-
cause the possible values for chromosomal copy numbers in the test sample
may vary considerably, especially in the case of clinical tumor samples that
present mixtures of tissues of different natures.

Segmentation methods seem to be a natural framework to handle the
spatial coherence on the genome that is a specificity of array CGH data
[Autio et al., 2003, Jong et al., 2003]. These methods provide a partition of
the data into segments, each segment being characterized by its mean and
variance µk and σ2

k in the Gaussian case. Nevertheless, even if the data are
instrinsically segmented, they are also structured into clusters which have a
biological interpretation: we can define a group of deleted segments, a group
of unaltered segments, and many groups of amplified segments for instance.
This refinement means that the mean and variance of each segment should be
restricted to a finite set such that µk ∈ {m1, . . . ,mP } and σ2

k ∈ {s21, . . . , s
2
P }

if the segments are structured into P clusters.
We propose to handle this segmentation-clustering problem combining a

segmentation model and a mixture model to assign a biological status to seg-
ments. Section 1 is devoted to the precise definition of such model. In Section
2 we propose an hybrid algorithm combining dynamic programming and the
EM algorithm to alternatively estimate the break-point coordinates and the
parameters of the mixture. The convergence properties of this algorithm are
presented.

Once the parameters of the model have been estimated, a key issue is
the estimation of the number of segments and of the number of clusters. We
propose to estimate the number of segments when the number of groups is
fixed, using a penalized version of the likelihood. We propose to apply the
procedure defined by [Lavielle, 2005], that has been successfully applied to
array CGH data [Picard et al., 2005]. An example of our method is provided
in Section 3, using publicly available data sets.

1 A new model for the segmentation-clustering

problem

Let yt represent the log2 ratio of the tth BAC on the genome and y =
{y1 . . . , yn} the entire CGH profile constituted by n data points. We suppose
that y is the realization of a Gaussian process Y whose mean and variance are
affected byK+1 abrupt changes at unknown coordinates T = {t0, t1, . . . , tK}
with the convention t0 = 1 and tK = n. This defines a partition of the
data into K segments of length nk. We write Y as {Y 1, . . . , Y K}, where
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Y k = {Yt, t ∈ Ik}, with Ik = {t, t ∈]tk−1, tk]}. We suppose that the mean
and the variance of the process are constant between two break-points and
they are noted µk and σ2

k.
More than classical segmentation models, we assume that the mean and

variance of the segment Y k can only take a limited number of values with µk ∈
{m1, . . . ,mP }, and σ2

k ∈ {s21, . . . , s
2
P }. In addition to the spatial organization

of the data, via the partition T , there exists a secondary structure of the
process into P clusters, and we adopt a mixture model approach to handle
this problem.

We assume that the partitionned data {Y 1, . . . , Y K} are structured into
P clusters with weights πp (

∑

p πp = 1). We introduce a sequence of inde-

pendent hidden random variables, Zk = {Zk1 , . . . , Z
k
P } such that Zk is dis-

tributed according to a multinomial distribution consisting of one draw on P
categories with probabilities π1, . . . , πP . The mixing proportions π1, . . . , πP
then represent the prior probability for segment Y k to belong to the pth com-
ponent, while the posterior probability of membership to the pth component
with yk having been observed is: τkp = Pr

{

Zkp = 1|Y k = yk
}

. Contrary to
classical mixture models, where the indicator variables provide informations
about the labelling of individual data points (which would be Yt in our case),
our model focuses on the belonging of the segments Y k to different clusters.

We focus on the case where the data are supposed to be drawn from a
mixture of Gaussian densities, with parameters θp = (mp, s

2
p). If we suppose

the indepence of individual data points Yt within a segment, the model can
be formulated as follows:

Y k|Zkp = 1 ∼ N (mp1lnk
, s2pInk

).

We note ψ = {π1, . . . , πP−1, θ1, . . . , θP } the vector of unknown independent
parameters of the mixture, and the log-likelihood of the model is:

logLKP (T, ψ) =

K
∑

k=1

log

{

P
∑

p=1

πpf(yk; θp)

}

.

f(yk; θp) represents the conditional density of a vector of size nk. Our purpose
is to optimize this likelihood to estimate the parameters of the model using
an hybrid algorithm.

2 An hybrid algorithm combining the EM algorithm

and Dynamic Programming

The principle of our algorithm is simple: when the break-point coordinates
T are known, the EM algorithm is used to estimate the mixture parameters
ψ, and once ψ has been estimated, the break-point coordinates are computed
using dynamic programming. This algorithm requires the prior knowledge
of both the number of segments K and the number of populations P . The
choice for these components of the model will be discussed in a later section.



148 Picard et al.

2.1 Estimating the break-point coordinates when the mixture

parameters are known

When the number of segments K and the parameters of the mixture are
known, the problem is to find the best K-dimensional partition of the data
according to the log-likelihood logLKP (T, ψ). Since the number of of par-
titions of a set with n elements into K segments is CK−1

n−1 , and because of
the additivity in K of the log-likelihood, we use a dynamic programming ap-
proach to reduce the computational load from O(nK) to O(n2), as suggested
by [Auger and Lawrence, 1989].

Let Ĉk+1,P (i, j;ψ) be the maximum log-likelihood obtained by the best
partition of the data Y ij = {Yi, Yi+1, ..., Yj} into k + 1 segments, when the
mixture parameters ψ are known. The algorithm starts as follows: for k = 0
and for (i, j) ∈ [1, n]2, with i < j, calculate:

Ĉ1,P (i, j;ψ) = log

{

P
∑

p=1

πpf(yij ; θp)

}

= log

{

P
∑

p=1

πp

j
∏

t=i+1

f(yt; θp)

}

.

Ĉ1(i, j;ψ) represents the local log-likelihood for segment Y ij . Then the al-
gorithm is run as follows:

∀k ∈ [1,Kmax] Ĉk+1,P (1, j;ψ) = max
h

{

Ĉk,P (1, h;ψ) + Ĉ1,P (h+ 1, j;ψ)
}

Dynamic programming considers that a partition of the data into k + 1 seg-
ments is a union of a partition into k segments and a set containing 1 segment.
More than a reduction in the computational load, this approach provides an
exact solution for the global optimum of the likelihood, that will be central
for downstream model selection procedures.

2.2 Estimate the mixture model parameters when the

break-point coordinates are known

When the break-point coordinates are known, we dispose of a partition of
the data into K segments {Y 1, . . . , Y K}. This partition defines the statisti-
cal units of a mixture model whose parameters have to be estimated. The
purpose is then to maximize the log-likelihood of the model logLKP (T, ψ)
according to ψ. As it is the case in classical mixture models, the direct op-
timization of the likelihood is impossible, but can be handled using the EM
algorithm in the complete-data framework [Dempster et al., 1977]. Let us
define the complete-data log-likelihood:

logLcKP (T, ψ) =

K
∑

k=1

P
∑

p=1

zkp log
{

πpf(yk; θp)
}

.

The EM algorithm is as follows:
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- E-step: compute the conditional expectation of the complete-data log-
likelihood, given the observed data Y , using the current fit ψ(h) for ψ.

QKP (ψ|ψ(h);T ) =

K
∑

k=1

P
∑

p=1

τk(h)
p log

{

πpf(yk; θp)
}

,

with

τk(h+1)
p =

π
(h)
p f(yk; θ

(h)
p )

∑P

`=1 π
(h)
` f(yk; θ

(h)
` )

.

- M-step: The M-step on the (h+ 1)th iteration requires the global max-
imization of QKP (ψ|ψ(h);T ) with respect to ψ to give the updated esti-
mate ψ(h+1):

ψ(h+1) = Argmax
ψ

{

QKP (ψ|ψ(h);T )
}

.

2.3 Convergence properties of the hybrid algorithm

The proof of the convergence of our algorithm is based on the properties
of both dynamic programming and EM. It can be seen that both algorithms
are linked through the likelihood they alternatively optimize: the incomplete-
data likelihood of the mixture of segments.

Dynamic programming globally optimizes the likelihood with respect to
T . At iteration (`) we have:

logLKP
(

T (`+1);ψ(`)
)

≥ logLKP
(

T (`), ψ(`)
)

.

On the other hand, the key convergence property of the EM algorithm is the
increase of the incomplete-data log-likelihood at each step [Dempster et al.,
1977]:

logLKP
(

T (`), ψ(`+1)
)

≥ logLKP
(

T (`), ψ(`)
)

.

Put together, our algorithm generates a sequence
(

T (`), ψ(`)
)

`≥0
that in-

creases the incomplete-data log-likelihood such as:

logLKP
(

T (`+1), ψ(`+1)
)

≥ logLKP
(

T (`), ψ(`)
)

.

3 Estimating the number of segments K when the

number of clusters P is fixed.

Once the parameters of the model have been estimated (for a fixed K and a
fixed P ), the next question is the estimation of the number of segments and
of the number of clusters. Since the principal objective of biologists is rather
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the detection of biological events on the genome rather than the clustering of
those events into groups, we choose to focus on the estimation of the number
of segments when the number of groups is fixed.

The maximum of the log-likelihood log L̂KP = logLKP (T̂ , ψ̂) can be
viewed as a quality measurement of the fit to the data of the model with K
segments. In classical segmentation models, this quantity is maximal when
the number of segments equals the number of data points. Nevertheless, as
our model also considers the clustered nature of segments, it appears that
the quality of fit of the model is not always increasing with the number of
segments, as shown in Figure 1. For P = 2 the incomplete-data log-likelihood
is decreasing for a number of segments K ≥ 12 for instance. This behavior
of the model can be interpreted as follows: since the segmentation-clustering
model is under the constraint P ≤ K, the addition of new segments can
lead to contiguous segments affected to the same cluster. This configuration
leads to an increase in the number of parameters (one additional break-point)
without any gain for the fit of the mixture model. These considerations imply
that there will be a number of segments above which the addition of a new
segment will not increase the log-likelihood.
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Fig. 1. Evolution of the incomplete-data log-likelihood log L̂KP with the number
of segments K for different number of clusters (P = 2, 3, 4).

A penalized version of the likelihood is used as a trade-off between a
good adjustement and a reasonnable number of break-points. The estimated
number of segments is such as:

K̂P = Argmax
K

(

L̂KP − βP pen(K)
)

,
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with pen(K) a penalty function that increases with the number of segments,
and βP a penalty constant. The definition of an appropriate penalty function
and constant has lead to theoretical developments in the context of break-
point detection models. Recently, [Lavielle, 2005] proposed to use an adaptive
procedure to estimate the penalty constant, that has been successfully ap-
plied to array CGH data [Picard et al., 2005]. The principle of this procedure
is to find the number of segments for which the log-likelihood ceases to in-
crease significantly. It is geometrically linked to the finding of the number
of segments for which the second derivative of the log-likelihood function is
maximal (see [Lavielle, 2005] for further details). A result of our procedure
is shown in Figure 2. For a number of clusters P = 3, the adpative proce-
dure estimates a number of segments K̂3 = 10. This leads to a profile which
presents three types of segments that can be interpreted in terms of biological
groups, as shown in Figure 2.
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Fig. 2. Result of the segmentation-clustering procedure for a fixed number of clus-
ters P = 3 and an estimated number of segments K̂3 = 10. These data concern
chromosome 1 of breast cancer cell lines Bt474.

4 Discussion

Microarray CGH currently constitutes the most powerful method to detect
gain or loss of genetic material on a genomic scale. We introduced a statis-
tical methodology for the analysis of CGH microarray data, that combines
segmentation methods and clustering techniques. It terms of modeling, the



152 Picard et al.

discovery of homogeneous regions clustered into groups could have been han-
dled using Hidden Markov Models, as in [Fridlyand et al., 2004]. In those
models, the segmented structure of the data is recovered using the posterior

probability of membership of individual data points into a fixed number of
hidden groups, whereas our method focuses on the labelling of segments to
hidden groups. Moreover, a property of Hidden Markov Models is that the
distance between two ’break-points’ is dependent on the probability distri-
bution of the hidden sequence: the within-class sojourn time is geometrically
distributed. Our approach is free from those constraints, since break-point
coordinates are ’real’ parameters of the model that are not randomly dis-
tributed.

The definition of this new model leads to unusual statistical considera-
tions: it appears that the statistical units of the mixture model (when the
segmentation is known) are segments of different size. Since the partition
of the data is random, the individuals of the mixture model themselves are
random. This explains the difficulty of the joint estimation of K the number
of segments, and P the number of clusters, since classical model selection
procedures are based on a compromize between a reasonnable number of
parameters to estimate given a fixed number of statistical units. To these
extents, this problem of model selection for two components remains an open
question.
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