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Segmentation methods have been successfully applied to themapping of chromosomal abnormalities when using CGH microarrays. Current
methods can deal with one CGH profile only, and do not integrate multiple arrays, whereas the CGH microarray technology becomes
widely used to characterize chromosomal defaults at the cohort level. In this work, we propose a new statistical model tojointly segment
multiple CGH profiles. The basics of our approach is to use mixed linear models to introduce correlations among profiles. We also solve a
computational issue which is linked to the use of dynamic programming on heavy datasets. Overall, this procedure offersa statistical and a
computational framework for the joint analysis of multipleCGH profiles.

Segmentation models
Segmentation models have shown good performance in the analysis of array CGH data [1]. The objective
of such models is to partition the data into segments with homogeneous mean. We model the observed
log-ratios by a random process{Yℓt}t whose mean is subject toKℓ − 1 abrupt changes at breakpoints{tℓk}

for patientℓ, (with conventiontℓ0 = 0 andtℓKℓ
= n) and is constant between two breakpoints within the

intervalIℓ
k =]tℓk−1, t

ℓ
k]. In this context, the segmentation model is

∀t ∈ Iℓ
k, Yℓt = µℓk + εℓt with εℓt. ∼ N (0, σ2) (1)

Interestingly, this model can be put in the general framework of linear models. Considering matrixTℓ of
dimensionn × Kℓ, such thatTℓ[t

ℓ
k, k] = 1 and 0 otherwise, and matrixµℓ = [µℓ1, . . . , µℓKℓ

], model (1)
can be written as:Yℓ = Tℓµℓ + Eℓ. More generally, if consideringL profiles, we get the following linear
model

Y = Tµ + E,

with E a Gaussian noise with varianceσ2
I. The particularity of this model is that matrixT (breakpoints) is

estimated, whereas it is fixed in the classical case.

Joint segmentation using Mixed Linear Models
Our hypothesis is that there exists correlation among different profiles at a given position. To model this
dependency, we introduce a random effectUt indenpendent ofεℓt, and such thatUt ∼ N (0, λ2). Then the
model becomes:

∀t ∈ Iℓ
k, Yℓt = µℓk + Ut + εℓt. (2)

In this context, we haveV(Yℓt) = σ2 + λ2, andcov(Yℓt, Yℓ′t) = λ2. Similarly to model (1), model (2) can
be written such as:

Y = Tµ + ZU + E,

whereZ is the fixed incidence matrix of the random effect with size[N × n], N = Ln being the total
number of data points.

Parameter estimation using the ECM algorithm
We propose to estimate the parameters of the model by maximumlikelihood, withφ = (µ, λ2, σ2,T) the
set of parameters to be estimated. The use of the EM algorithmis now well established in the context of
parameter estimation for mixed linear models [2], since those models are incomplete-data model, withU

being the unobserved data. The use of EM lies in the decomposition of the complete-data log-likelihood
such that:

logL(Y,U; φ) = logL(Y|U;T,µ, σ2) + logL(U; λ2).

The conditional expectationQ(φ; φ(h)) of logL(Y,U; φ) givenY is also a sum of two termsQ0(φ; φ(h))

andQ1(φ; φ(h)) such that:

−2Q0(φ; φ(h)) = N log(2π) + N log σ2 + ‖Y − Tµ − ZÛ‖2/σ2 + Tr
(
ZWZ

′) /σ2,

−2Q1(φ; φ(h)) = L log(2π) + L log λ2 + Û
′
Û/λ2 + Tr (W) /λ2,

whereÛ = Eφ(h) {U|Y} and whereW = Vφ(h) {U|Y}.

E-step It consists in the calculation ofQ(φ; φ(h)) which only requires the calculation of̂U andW. The
BLUP is such that̂U = λZ

′
V(Y)−1 (Y − Tµ), and we use Henderson’s trick which avoids the inversion

of V(Y). So we get at iteration(h + 1)

Û
(h+1) = W

(h)
Z
′
(
Y − T

(h)
µ

(h)
)

/σ2(h), W
(h+1) = σ2(h)

(
Z
′
Z +

σ2(h)

λ2(h)
I

)−1

.

CM-steps The principle of the ECM algorithm [3] is to breakdown the maximization ofQ(φ; φ(h)) with
respect toφ (global M-step) into simpler CM-steps which focus on one parameter, the others being fixed.

Explicit formulas exist for
{

λ2(h+1), σ2(h+1)
}

, and the challenging step is the update of the breakpoints:

{
T

(h+1),µ(h+1)
}

= arg max
T,µ

Q0

(
φ; λ2(h+1), σ2(h+1)

)
.

This optimization problem is equivalent to the minimization of the residual sum of squares:

SSRK(µ,T) = ‖Y − Tµ − ZÛ
(h+1)‖2/σ2(h+1) =

L∑

ℓ=1

Kℓ∑

k=1

SSRℓ
k(µℓ,Tℓ) (3)

under the constraint
∑

ℓ Kℓ = K. This sum is additive according to the number of segments, which allows
us to use the dynamic programming algorithm.

Dynamic programming on heavy datasets

Dynamic programming is an efficient method to estimate breakpoints when the number
of segmentsK is given. This algorithm can be used when the function to be optimized is
additive with respect to the number of segments, such that:

SSRℓ
Kℓ

(µℓ,Tℓ) =

Kℓ∑

k=1

∑

t∈Iℓ
k

(Yℓt − µ̂ℓk),

and its complexity isO(n2). However using Dynamic Programming may be impossible if
n is large, and especially when dealing with multiple CGH profiles, the number of points
is L×n. WhenSSRK(µ,T) can be written as in Equation (3), we propose to reduce the
complexity of the segmentation step using a 2-stage DynamicProgramming.

Stage-1. We denote bySSRℓ
k(Jℓ) the residual sum of squares when segmenting profile

Jℓ into k segments. This segmentation step is based on the calculus ofSSRℓ
1(]i, j]) and

on the recursive minimization

∀k ∈ [1 : Kℓ], SSRℓ
k(]tℓ1; j]) = minh

{
SSRℓ

k−1(]t
ℓ
1, h]) + SSRℓ

1(]h, j])
}

.

Stage-2. It consists in the repartition of segments among patients. We denote by
SSRK(J1, . . . , Jℓ) the total sum of squares for a model withK segments spread among
ℓ patients. This step is based on the calculus ofSSRℓ

k(Jℓ) which has been done in Step-1,
and on the recursive minimization:

∀ℓ ∈ [1 : L], SSRK(J1, . . . , Jℓ) = mink′+k′′=K

{
SSRk′(J1, . . . , Jℓ−1) + SSRℓ

k′′(Jℓ)
}

.

Complexity If all series have the same lengthn (soN = Ln) and are segmented into
Kℓ = k segments each (soK = Lk) and assuming thatk = αn (with α ≪ 1), the two-
stage dynamic programming algorithm has a complexity ofO(αLn2[n + αL2]) whereas
the overall one has complexityO(αL3n3).

Application
The data consists in a series of 57 bladder tu-
mors, chromosome 9, described in [4]. The to-
tal number of segments iŝK =

∑
ℓ K̂ℓ where

K̂ℓ has been estimated usingCGH_Seg[1]. This
allows us to focus on the breakpoint positions
only. When looking at parameter estimates,σ2 =
3.92 10−3 andλ2 = 3.12 10−3 which leads to a
correlation of 0.44 among positions. As a re-
sult, breakpoint positions change between meth-
ods. Using the joint segmentation model, we
identify more breakpoints at BACs CTB-65D18
(p-arm) and RP11-14J9 (q-arm), which contain
proteins known to be involved in bladder tumor,
like protein p16. An interesting feature is also
the enrichment in breakpoints near the telomere.
This result will have to be further investigated.
Finally, we will have to interpret the values of
Û. High values of this effect could indicate com-
mon characteristics of BACs that may be caused
by technical artifacts.
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−0
.1

5
−0

.1
0

−0
.0

5
0.

00
0.

05
0.

10

62152 15062152 30062152 45062152 60062152 75062152 90062152 105062152 120062152 13506215262152 15062152 30062152 45062152 60062152 75062152 90062152 105062152 120062152 135062152

Predicted random effect̂U


