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methods can deal with one CGH profile only, and do not Int

Segmentation methods have been successfully appliedmoethping of chromosomal abnormalities when using CGH mrcaya. Current
natltiple arrays, whereas the CGH microarray technologoines
widely used to characterize chromosomal defaults at thertddvel. In this work, we propose a new statistical modgbtotly segment
multiple CGH profiles. The basics of our approach is to usesthixnear models to introduce correlations among profiles.a¥o solve a
computational issue which is linked to the use of dynamigm@oiming on heavy datasets. Overall, this procedure dodfstatistical and a
computational framework for the joint analysis of multii@&H profiles.

Segmentation models

Segmentation models have shown good performance in thgsahal array CGH data [1]. The objective
of such models is to partition the data into segments with dgeneous mean. We model the observell
log-ratios by a random proce$¥y; }; whose mean is subject #6, — 1 abrupt changes at breakpoil{véi}

for patient?, (with conventiont! = 0 and} = n) and Is constant between two breakpoints within the
interval I{, =]¢¢_,#!]. In this context, the segmentation model is

(1)

Interestingly, this model can be put in the general framé&wadiinear models. Considering matrik, of
dimensionn x Ky, such thafI‘g[ti, k|l =1and 0 oth_erwise_, an_d matrjogg = g1, - HeK), m_odel_ (1)
can be written asY, = Tyu, + E,. More generally, if considering profiles, we get the following linear
model

Yt € IL, Yy = pgi + € With g4, ~ N(0, %)

Y =Tu+ E,

with E a Gaussian noise with variangél. The particularity of this model is that matrik (breakpoints) is
estimated, whereas it is fixed in the classical case.

Joint segmentation using Mixed Linear Models

Our hypothesis Is that there exists correlation among réiffeprofiles at a given position. To model this
dependency, we introduce a random efféctndenpendent of;, and such thal/; ~ A(0, A\?). Then the
model becomes:

Vt € I, Yo = g+ Up + e (2)

In this context, we havl® (Yy;) = o2 + A2, andcov(Yy,, Vi) = A2, Similarly to model (1), model (2) can
be written such as:

Y =Tu+ZU +E,

whereZ is the fixed incidence matrix of the random effect with sizgéx n|, N = Ln being the total
number of data points.

Parameter estimation using the ECM algorithm

We propose to estimate the parameters of the model by maxiikelimood, with ¢ = (u, A%, o2, T) the
set of parameters to be estimated. The use of the EM algorghmaw well established in the context of
parameter estimation for mixed linear models [2], sinces¢ghmodels are incomplete-data model, with
being the unobserved data. The use of EM lies in the decotmgoosif the complete-data log-likelihood
such that:

log £L(Y,U; ¢) = log L(Y|U: T, , 6%) + log L(U; X?).

The conditional expectatio@(¢; ¢\))) of log £L(Y, U; ¢) given'Y is also a sum of two term§(¢: ¢\
andQ;(¢; ¢\")) such that:

—2Qu(¢; 9™ = Nlog(2r) + Nlogo? + ||[Y — T — ZU|%/o? + Tr (ZWZ') /o,
—2Q1(¢;0\") = Llog(2r) + Llog A2 + U'U /A2 + Tr (W) /A2,

whereU = E ) {U|Y} and wheréW =V, {U|Y}.

E-step It consistiin the calculation a@p(¢; gb(h)) which only requires the calculation &f andW. The
BLUP is such thall = AZ'V(Y)~ ! (Y — Tu), and we use Henderson’s trick which avoids the inversio
of V(Y). So we get at iteratiofh + 1)

2(h)

—1
U+l —whg! (v — ), (h)) /,2(h) (h+1) _ J2(h) [ty O~
o) —w Z(Y TRy )/(7 - wiht — (ZZ+>\2<h>I> |

CM-steps The principle of the ECM algorithm [3] is to breakdown the nmaization of Q(¢; gb<h)) with
respect tap (global M-step) into simpler CM-steps which focus on oneapagter, the others being fixed.

Explicit formulas exist for{ A2(h+1) 02<h+1)}, and the challenging step is the update of the breakpoints:

{T(h+1), H(h+1)} — arg max Qq (¢; )\2(h+1)’ 02(h+1)) |

T
This optimization problem is equivalent to the minimizatiof the residual sum of squares:

L Ky
SSRi(h,T) = Y = Tp — 20|20 = % 7% "SR (e, T
(=1 k=1

(3)

under the constraint , K, = K. This sum is additive according to the number of segment&wadidlows
us to use the dynamic programming algorithm.

Dynamic programming on heavy datasets

additive with respect to the number of segments, such that:

K,
SSRY (0. Tp) =Y > (Yo — fug).
k=ltel

complexity of the segmentation step using a 2-stage Dyn&nugramming.

on the recursive minimization

vk € [1: K/, SSRL(E:j]) = min, {SSRi_l(]tf, B]) + SSR{(]h,j])} |

and on the recursive minimization:

Complexity

the overall one has complexit)(aLn?).

Dynamic programming Is an efficient method to estimate lgpeaits when the number
of segmentdy is given. This algorithm can be used when the function to bheoped Is

and its complexity i€)(n?). However using Dynamic Programming may be impossible if
n IS large, and especially when dealing with multiple CGH pesfithe number of points
IS L x n. WhenSS Ry (u, T) can be written as in Equation (3), we propose to reduce the

Stage-1. We denote by5SRL(J*) the residual sum of squares when segmenting prof
Jt into k segments. This segmentation step is based on the calculiSRf(}i, j]) and

Stage-2. It consists in the repartition of segments among patientse déhote by
SSRy(J, ..., Jf) the total sum of squares for a model wikhsegments spread among
¢ patients. This step is based on the calculuS@Ri(ﬂ) which has been done in Step-1

Ve e [l: L), SSRi(JY, ..., J%) = ming, pr_je {SSRk/(Jl, U Lol S SSRf,,(Jf)} |

If all series have the same length(so N = Ln) and are segmented into
K, = k segments each (98¢ = Lk) and assuming thdt = an (with a < 1), the two-
stage dynamic programming algorithm has a complexitp 6f Ln’[n + oL?]) whereas

it

Application

le

The data consists in a series of 57 bladder tus
mors, chromosome 9, described in [4]. The to-
tal number of segments i& = >, K, where
K, has been estimated usiG@§sH_Seg[1]. This
allows us to focus on the breakpoint positions
only. When looking at parameter estimates$ =
3.921073 and \? = 3.1210~2 which leads to a
correlation of 0.44 among positions. As a re-: |
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sult, breakpoint positions change between meth-
ods. Using the joint segmentation model, we
identify more breakpoints at BACs CTB-65D18

(p-arm) and RP11-14J9 (g-arm), which contain
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Mean CGH profile among 57 patients

proteins known to be involved in bladder tumor, = |
like protein p1l6. An interesting feature is also
the enrichment in breakpoints near the telomere: -
This result will have to be further investigated.
Finally, we will have to interpret the values of =-
U. High values of this effect could indicate com-
mon characteristics of BACs that may be caused -
by technical artifacts.
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