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Introduction

Wavelets are a relatively recent development in applied mathematics. Their
name itself was coined approximately a decade ago (Morlet, Arens, Fourgeau,
and Giard {1982), Morlet (1983), Grossmann and Morlet (1984)); in the last ten
years interest in them has grown at an explosive rate. There are several rea-
sons for their present success. On the one hand, the concept of wavelets can be
viewed as a synthesis of ideas which originated during the last twenty or thirty
years in engineering (subband coding), physics (coherent states, renormalization
group), and pure mathematics (study of Calderén-Zygmund operators). As a
consequence of these interdisciplinary origins, wavelets appeal to scientists and
engineers of many different backgrounds. On the other hand, wavelets are a fairly
simple mathematical tool with a great variety of possible applications. Already
they have led to exciting applications in signal analysis (sound, images) (some
early references are Kronland-Martinet, Morlet and Grossmann (1987), Mallat
(1989b), (1989c); more recent references are given later) and numerical analy-
sis (fast algorithms for integral transforms in Beylkin, Coifman, and Rokhlin
(1991)); many other applications are being studied. This wide applicability also
contributes to the interest they generate.

y/ This book contains ten lectures I delivered as the prmcxpal speaker at the

CBMS conference on wavelets organized i June 1990 by the Mathematics De-
partment at the University of Lowell, Massachusetts. According to the usual
format or the CBMS conferences, other speakers (G. Battle, G. Beylkin, C. Chui,
A. Cohen, R. Coifman, K. Gréchenig, J. Liandrat, S. Mallat, B. Torrésani,
and A. Willsky) provided lectures on their work related to wavelets. Moreover,
three workshops were organized, on applications to physics and inverse problems
(chaired by B. DeFacio), group theory and harmonic analysis (H. Feichtinger),
and signal analysis (M. Vetterli). The audience consisted of researchers active
in the field of wavelets as well as of mathematicians and other scientists and
engineers who knew little about wavelets and hoped to learn more. This second

. group constituted the largest part of the audience. I saw it as my task to provide .

a tutorial on wavelets to this part of the audience, which would then be a solid
grounding for more recent work exposed by the other lecturers and myself. Con-
sequently, about two thirds of my lectures consisted of “basic wavelet theory,”
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viii ' . INTRODUCTION,

the other third being devoted to more recent and unf)ublished work. This divi-
sion is reflected in the present write-up as well. As a result, I believe that this
book wﬂl be useful as an introduction to the subject, to be used either for indi-
vidual readmg, or for a seminar or graduate course. None of the other lectures
o, workshop papers presented at the CBMS conference have been incorporated
here, As a result, this presentation is biased more toward my own work than the
BMS conference was. In many instances I have included pointers to references
Pt
;further reading or a detailed exposition of particular applications, comple-
Sating the present text. Other books on wavelets published include Wavelets
Tsze Frequency Methods (Combes, Grossmann, and Tchamitchian (1987)),
eh contains the proceedings of the International Wavelet Conference held in
Mrscille, France, in December 1987, Ondelettes, by Y. Meyer (1990) (in French;
Wolish translation expected soon), which contains a mathematically more ex-
( treatment than the present lectures, with fewer forays into other fields
ever, Les Ondelettes en 1989, edited by P. G. Lemarié (1990), a collection of
#lks given at the Université Paris XI in the spring of 1989, and An Introduction
§ Wavelets, by C. K. Chui (1992b), an introduction from the approximation
heory viewpoint. The proceedings of the International Wavelet Conference m
May 1989, held again in Marseille, are due to come out soon (Meyer (1992))
Moreover many of the other contributors to the CBMS conference, as well as
sgme wavelet researchers who could not attend, were invited tn write an essay
on their wavelet work, the result is the essay collection Wavelets and their Ap-
plicatrons (Ruskai et al. (1992)), which can be considered a companion book to
thus one. Another wavelet essay book is Wavelets: A Tutorial in Theory and
Applications, edited by C. K. Chui (1992c); in addition, I know of several other
wavelet essay books in preparation (edited by J. Benedetto and M Frazier, an-
other by M. Barlaud). as well as a monograph by M. Holschreider; theie was
a spemal wavelet issue of IEEE Trans. Inform. Theorv in March of 1992; there
ill be another one, later in 1992, of Constructwe Apprommation Theory, and
ne in 1993, of IEEE Trans. Swgn. Proc. In addition, several recent buoks in-
clgde chapters on wavelets. Examples are Multirale Systeme and Fulfer Banks
by P. P. Vaidyanathau {1992) and Quantum Fhysics, Relatunty and Compler
Spacetime: Towards a New Synthesis by G. Kaiser (1990). Readers interested
in the present lectures will find these books and special issues useful for many
details and other aspects not fully presented here. It is moreover clear that the
subj ject i still developing rapidly.

This book more or less follows the path of my lectures: each of the ten chap-
ters stands for one of the ten lectures, presented in the order in which they
were delivered. The first chapter presents a quick overview of different aspects
of the wavelet ﬁra.nsform. It sketches the outlines of a big fresco; subsequent
chapters then fill in more detail. From there on, we proceed to the continu-
ous wavelet transform (Chapter 2; with a short review of bandlimited functions
and Shannon’s theorem), to discrete but redundant wavelet transforms {frames;
Chapter 3) and to a general discussion of time-frequency density and the possible
existence of orthonormal basis (Chapter 4). Mauny of the results in Chapters 2-4
can be formulated for the windowed Fourier transform as well as the wavelet
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transform, and the two cases are presented in parallel, with analogies and differ-
ences pointed out as we go along. The remaining chapters all focus on orthonor-
mal bases of wavelets. multiresolution analysis and a first general strategy for
the construction of orthonormal wavelet bases (Chapter 5), orthonormal bases
of compactly supported wavelets and their link to subband coding (Chapter 6),
sharp regularity estimates for these wavelet bases (Chapter 7), symmetry for
compactly supported wavelet bases (Chapter 8) Chapter 9 shows that orthonor-
mal bases are “good” bases for many functional spaces where Fourier methods
are not well adapted. This chapter is the most mathematical of the whole book;
most of its material is not connected to the applications discussed in other chap-
- ters, so that it can be skipped by readers uninterested in this aspect of wavelet
theory. 1 included it for several reasons: the kind of estimates used in the proof
are very important for harmonic analysis, and similar (but more complicated)
estimates in the proof of the “T(1)”-theorem of David and Journé have turned -
out to be the groundwork for the applications to numerical analysis in the work
of Beylkin, Coifman, and Rokhlin (1991) Moreover, the Calderén-Zygmimd
theorem, explained in this chapter, illustrates how techniques using different
scales, one of the forerunners of wavelets, were used in harmonic analysis lo’iig
before the advent of wavelets. Finally, Chapter 10 sketches several extensions
of the constructions of orthonormal wavelet bases: to more than one dimensiop,
to dilation factors different from two (even noninteger), with the possibility of
better frequency localization, and to wavelet bases on a finite interval instead
of the whole line. Every chapter concludes with a section of mambered “Notes,”
referred to in the text of the chapter by superscript numbers. These contain
additional references, extra proofs excised to keep the text flowing, remarks, etc.
~This book is a mathematics book: it states and proves many theorems. It
also presupposes some mathematical background. In particular, I assume that
the reader is familiar with the basic properties of the Fourier transform and
Fourier series. I also use some basic theorems of measure and integration theory
(Fatou’s lemma, dominated convergence theorem, Fubini’s theorem; these cah
be found in any good book on real analysis}. In some chapters, familiarity with
basic Hilbert space techniques is useful. A list of the basic notions and theorems
used in the book is given in the Preliminaries.

The reader who finds that he or she does not know all of these prerequisites
should not be dismayed, however; most of the book can be followed with just the
Dbasic notions of Fourier analysis. Moreaver, I have tried to keep a very pedes-
trian pace in almost all the proofs, at the risk of boring some mathematically
sophisticated readers. 1 hope therefore that these lecture notes will interest peo-
ple other than mathematicians. For this reason I have often shied away from
the “Definition-Lemma-Proposition-Theorem-Corollary” sequence, and I have
tried to be intuitive in many places, even if this meant that the exposition be-
came less succinct. I hope to succeed in sharing with my readers some of the
excitement that this interdisciplinary subject has brought into my scientific life.

I want to take this opportunity to express my gratitude to the many people
who made the Lowell conference happen: the CBMS board, and the'Mathematics
Department of the University of Lowell, in particular Professors G. Kaiser and
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M. B. Ruskai. The success of the conference, which unexpectedly turned out to
have many more participants than customary for CBMS conferences, was due in
large part to its very efficient organization. As experienced conference organizer
I. M. James (1991) says, “every conference is mainly due to the efforts of a
single individual who does almost all the work”; for the 1990 Wavelet CBMS
conference, this individual was Mary Beth Ruskai. I am especially grateful to
her for proposing the conference in the first place, for orga.nizigxg it in such
a way that I had a minimal paperwork load, while keeping me posted about
all the developments, and for generally being the organizational backbone, no
small task. Prior to the conference I had the opportunity to teach much of this
matérja.l as a graduate course in the Mathematics Department of the University
of Michigan, in Ann Arbor. My one-term visit there was supported jointly by
a Visiting Professorship for Women from the National Science Foundation, and
by the University of Michigan. I would like to thank both instituticns for their
support. I would also like to thank all the faculfy and students who sat in on
the course, and who provided feedback and useful suggestions. The manuscript
was typeset by Martina Sharp, who I thank for her patience and diligence, and
for doing a wonderful job. I wouldn’t even have attempted to write this book
without her. I am grateful to Jeff Lagarias for editorial comments. Several people
helped me spot typos in the galley proofs, and I am grateful to all of them; I
would like to thank especially Pascal Auscher, Gerry Kaiser, Ming-Jun Lai, and
Martin Vetterli. All remaining mistakes are of course my responsiblity. I also
would like to thank Jim Driscoll and Sharon Murrel for helping me prepare the
author index. Finally, I want to thank my husband Robert Calderbank for being
extremely supportive and committed to our two-career-track with fainily, even
though it occasionally means that he as well as I prove a few theorems less.

Ingrid Daubechies
ATET Bell Laboratories
and

Rutgers University

- -

In this second printing several minor mistakes and many typographical errors
have been corrected. T am grateful to everybody who helped me to spot them.
I have also updated a few things: some of the previously unpublished references
have appeared and some of the problems that were listed as open have been
solved. I have made no attempt to include the many other interesting papers
on wavelets that have appeared since the first printing; in any case, the list
of references was not and is still not meant as a complete bibliography of the
subject.

Ingrid Daubechies, Sept. 1992



Preliminaries and Notation

This preliminary chapter fixes notation conventions and normalizations. It also °
states some basic theorems that will be used later in the book. For those less
familiar with Hilbert and Banach spaces, it contains a very brief primer. (This
primer should be used mainly as a reference, to corhe back to in those instances
when the reader comes across some Hilbert or Banach space language that she
or he is unfamiliar with. For most chapters, these concepts dare not used.)

Let us start by some notation conventions. For z € R, we write |z] for the
largest integer not exceeding z,

|z} =max {n€Z; n<z}.

For example, |3/2] =1, |-3/2] = -2, | ~2] = —2. Similarly, [z] is the smallest
integer which is larger than or equal to z.

If a—0 (or 00), then we denote by O(a) any quantity that is bounded by a
constant times ¢, by o(a) any quantity that tends to 0 (or co) when a does.

The end of a proof is always marked with a =; for clarity, many remarks or
examples are ended with a n.

In many proofs, C denotes a “generic” constant, which need not hawve
the same value throughout the proof. In chains of inequalities, I often use
C,c,C” - or Cy,Cy,Cs, - to avoid confusion.

We use the following convention for the Fourier transform (in one dimension):

(FHE) = Fe) = ‘/% i " ds e f(z) . . (0.01)

With this normalization, one has .
Ifllee = Iflee B
ife < o2,

'where

l/p
Wl = [ d If(x)l”] . (0.02)

xi




xii PRELIMINARIES AND NOTATION

Inversion of the Fourier transform is then given by

o) = = [Zdeé*ff(ff)(z)=(ff>V(m>,
(0.0.3)
ilz) = §(-1).

Strictly speaking, (0.0.1), (0.0.3) are well defined only if f, respectively Ff, are
absolutely integrablé; for general L2-functions f, e.g., we should define Ff via
a limiting process (see also below). We will implicitly assume that the adequate
limiting process is used in all cases, and write, with 'a convenient abuse of no-
tation, formulas similar to (0.0.1) and (0.0.3) even when a limiting process is
understood.

A standard property of the Fourier transform is:

14
7 (g52f) = G0 Fnee).

hence

[ dz |fO @) < 00 o / de €12 17(6)) < oo |

with the notation f(©) = & f. \

If a function f is compactly supported, ie.. f(z) = 0if z < a or z > b,
where —00 < a < b < 0o, then its Fourier transform f(£) is well defined also for
complex §,-and

R b
fen < @n / dz UM O | f(a)|

. b(dm&) if Imé&>0
172 e if Im¢&2>
CORGYT R A s S

A

If f is moreover inﬁnitely differentiable, then the same a:rgument can be applied
to ' leading to bounds on [¢|¢ |f(£)|. For a C* function f with support [a, b]
there exist therefore constants Cy so that the analytic extension of the Fourier
transform of f satisfies

. bIm¢
en<ena+1ed ™ { Gme f mizg. (004

Conversely, any entire function which satisfies bounds of the type {0.0.4) for all
N € N is the analytic extension of the Fourier transform of a C* function with
support in [a,b]. This is the Paley~Wiener theorem.

We will occasionally encounter (tempered) distributions. These are linear
maps T from the set S(R) (consisting of all C* functions that decay faster than
any negative power (1 + |z|)~") to C, such that for all m,n € N, there exists
Cn,m for which

IT(F)} < Cam sup |(1+|al)* f0™(2)|

xER
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hoids, for all f € S(R)} The set of all such distributions is called 8'(R). Any
polynomially bounded function F' can be interpreted as a distribution, with
F(f) = [ dz F(z) f(z). Another example is the so-called “6-function” of Dirac,
8(f) = f(0). A distribution T is said to be supported in [a,b] if T(f) = 0 for
all functions f the support of whica has empty intersection with [a,b]. One can
define the Fourier transform FT or T of a distribution T" by T(f) = T(f) (if
T is a function, then this coincides with our earlier definition). There exis!;s a
version of the Paley-Wiener theorem for distributions: an entire function T'(£)
is the analytic extension of the Fourier transform of a distribution T in &’(R)
supported in [a, b] if and only if, for some N € N, Cy > 0,

) . et Imé Imé>0
L TE©I <O+ DY { e*1m¢ Ime<0.

L

The only measure we will use is Lebesgue measure, on R and R". We will
often denote the (Lebesgue) measure of S by |S|; in particular, |a,bll = b~ a
(where b > a). .

Well-known theorems from measure and integration theory which we will use
include

Fatou’s lemma. If f, > 0, f,(z) — f(z) almost everywhere (r.e., the set
of pownts where powntunse convergence faus has zero measure unth respect lo
Lebesgue measure), then

’ /da: f(z) < limsup /dz.f,,(:c) .

In particular, if this imsup s finite, then f 1s integrable. ,

(The lim sup of a sequence is defined by

limsup ap, = lim [sup {ax; k> n}];
n—00 n-—oo

every sequence, even if it does not have a limit (such as a,, = (~1)*), has a
lim sup (which may be oo); for sequences that converge to a limit, the limsup
coincides with the limit.)

Dominated convergence theorem. Suppose fp.(x) — f(z) almost every-
where. If |fo(2)] < g(z) for all n, and [dz g(z) < oo, then f is integrable,
_and

[ e 1) = Jim [ o fu(@)

Fubini’s theorem. If [dz[fdy |f(z,y)|] < oo, then

[az[as@n = [a|[av f(z,y)]
| [ay | [ de 5z

it



xiv PRELIMINARIES AND NOTATION

1.€., the order of the integrations can be permuted.

In these three theorems the domain of integration can be any nmieasur:
subset of R (or R? for Fubini).

When Hilbert spaces are used, they are usually denoted by H, unless t
already have a name. We will follow the mathematician’s convention and
scalar products which are linear in the first argument:

()\1’011 + Agtig, ’U) = )‘1(1&1, 'u) +,\2(u2, ‘U) .

As usual, we have

(v, u) = (u, v},
where & denotes the complex conjugate of «, and {u,u) > 0 for all u € H.
define the norm [juf} of u by : ‘

Jluli® = (v, u) . (0
In a Hilbert space, [ju]] = 0 implies u = 0, and all Cauchy sequences (
respect to || ||) have limits within the space. (More explicitly, if u, € H a
fiun — umll becomes arbitrarily small if n, m are large enough—i.e., for all €
there exists ng, depending on ¢, 50 that ||u, —un|| < € if n,m > ng—, then
exists u € H so that the u, tend to u for n—oo, ie., lim, o |Ju — un If =

A standard example of such a Hilbert space is L?(R), with

(f,9) = f dz f(z) 3(a) .

Here the integration runs from —oo to oo; we will often drop the integr
bounds when the integral runs over the whole real line.

Another example is £2(Z), the set of all square summable sequences of
plex numbers indexed by integers, with

o0
(e,d) = E Cn dy .
» n=—0o0

Again, we will often drop the limits on the summation index when wi
over all integers. Both L?(R) and ¢2(Z) are infinite-dimensional Hilbert
Even simpler are finite-dimensional Hilbert spaces, of which C* is the sta
example, with the scalar product

k
(u, v) :Z u, v, ,
=1

for u = (uy, - -,ux), v=(v1," *, %) € Ck.
Hilbert spaces always have orthonormal bases, i.e., there exist fami
vectors e, in H
(en: em) = 6n,m

lul® =D~ i, en)l?

and -
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for all u € H. (We only consider separable Hilbert spaces, i.e., spaces in which
orthonormal bases are countable.) Examples of orthonormal bases'are the Her-
mite functions in L?(R), the sequences e,, defined by (en); = 6, Wlth n,jEZ
in £2(Z) (i.e., all entries but the nth vanish), or the k vectors e,,---,ex in C*
defined by (eg)m = 0g.m, with 1 < €, m < k. (We use Kronecker’s symbol 6 with
the usual meaning: 6,, = 1ifi =75 0ifi # j)

A standard inequality in a Hilbert space is the Cauchy—Schwarz inequality,

(v, w)| < lloll flwll , (0.0.6)

easily proved by writing (0.0.5) for appropriate linear combmatlons of v and w.
In particular, for f,g € L?(R), we have

(f e If(:r)l"’)m (e 1g(z)|2)1/;

and for ¢ = (Cn)nEZ) = ( n)nEZ € Ki(z)

A consequence of (0 0.6) is

1CICECIE

lull = sup Ituv)= sup [(u,v)]. (0.0.7)
v, Jlvll<1 v, Jlvl=1

“Operators” on H are linear maps from H to another Hilbert space, often H
itself. Explicitly, if A is an operator on M, then

A()qul + )\21&2) = MAu; + M Au, .

An operator is continuous if Au — Av can be made arbitrarily small by making
u — v small. Explicitly, for all ¢ > 0 there should exist § (depending on €) so
that ||u — |l < é implies [|Au — Av)] < €. If we take v = 0, € = 1, then we
find tha,t for some b > 0, [jAu|| < 1 if |jul| < b. For any w € H we can define
w = mw, clearly ||w']] < b and therefore ||Aw|| = lll;’..ll lAw'|| < b~ YHjwl. If
| Awl}/|[w|l (w # 0) is bounded, then the operator A is called bounded. We have

just seen that any continuous operator is bounded; the reverse is also true.. The
norm || Al of A is defined by

14l = sup [lAufl/ljuf] = sup [lAu]. (0.0.8)
0 E

ueM, jju
It immediately follows that, for all u € H,
WAulf < [|A} flull .

Operators-from H t& C are called “linear functionals.” For bounded linear
functionals one has Riesz’ representation theorem: for any £: H-—C, linear and
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bounded, i.c, |#(u)] < Cllull for all u € H, there exists a unique v, € H 80 that
f(u) = (u,ve). ‘

An operator U from H; to Hz is an isometry if (Uv,Uw) = (v,w) for all
v,w € H;, U is unitary if morcover UH; = M3, i.e., every element vy € H; can
be written as v, = Uwv; for some v; € H;. If the e, constitute an orthonormal
basis in 4, and U is unitary, then the Ue, constitute an orthonormal basis in
Hy. The reverse is also true' any operator that maps an orthonormal basis to
another orthonormal basis is unitary.

A set D is calléd dense in M if every u € H can be written as the limit of
some sequence of 1, in D. (One then says that the closure of D is all of H. The
closure of a set S is obtained by adding to it all the v that can be obtained as
limits of sequences in S.) If Av is only defined for v € D, but we know that

|Av]| < C||lv|| forallve D, (0.0 9)

then we can extend A to all of H “by continuity.” Explicitly: if u € M, find
U, € D so that lim,,_,o, #, = 1. Then the u, are necessarily a Cauchy sequence,
" and because of (0.0.9), so are the Au,; the Au, havé therefore a limit, which we
call Au (it does not depend on the particular sequence u,, that was chosen).

One can also deal with nnbounded operators, i.e., A for which there exists
no finite C such that [[Au]l < C|ju|| holds for all u € H. It is a fact of life that
these can usually only be defined on a dense set D in H, and cannot be extended
by the above trick (since they are not continuous). An example is f; in L2(R),
where we can take D = C3°(R); the set of all infinitely differentiable functions
with compact support, for D. The dense set on which the operator is defined is
called its domain.

Tne adjoint A* of a bounded operator A from a Hilbert space H; to a Hilbert
space Hs (which may be H; itself) is the operator from H, to M, defined by

(ul’A‘t’Q) = (AulyuZ) 3

which should hold for all u; € H;, up € Hs. (The existence of A* is guaranteed
by Riesz’ representation theorem: for fixed u;, we can define a linear functional
£ on H; by €(u;) = (Aug,uz). It is clearly bounded, and corresponds therefore
to a vector v so that (u;,v) = #(u). It is easy to check that the correspondence
12— is linear; this defines the operator A*.) One has

ATl =14l 144l = 4] .

L
If A* = A (only possible if A maps H to itself), then A is called self-adjoint. If
a self-adjoint operator A satisfies (Au,u) > 0 for all u € H, then it is'called a
positive operator; this is often denoted A > 0. We will write A> Bif A- B is
a positive operator.

Trace-class operators are special operators such that ), [{Aep,en}| is finite
for all orthonormal bases in H. For such a trace-class operator, 3. (Aen,€,) is
independent of the chosen orthonormal basis; we call this sum the trace of A,

tr A= E (Aen,en) .



N,

ot

PRELIMINARIES AND NOTATION ) xvii

If A is positive, then it is sufficient to check whether }_, (Aen,ey) is fimte for
only one orthonormal basis; if it is, then A is trace-class (This is not true for
non-positive operators!)

The spectrum-o{A) of an operator A from H to itself consists of all the
XA € C such that A — AId (Id stands for the identity operator, Idu = u) does
not have a bounded inverse. In a finite-dimensional Hilbert space, o(A4) consists
of the eigenvalues of A; in the infinite-dimensional case, o(A) contans all the
eigenvalues (constituting the point spectrum) but often contains other A as well,
constituting the continuous spectrum. (For mnstance, in L2(R), multiplication of
f(z) with sih rz has no point spectrum, but its continuous specttum is {—~1,1] )
The spectrum of a self-adjoint operator consists of only real numbers; the spec-
trum of a positive operator contains only non-negative numbers. The spectral
radius p(A) is defined by ’

p(A) = sup (A, A € a(A)} .
It has the properties
p(A) < ||Al and p(A) = hm A"/

Self-adjoint operators can be diagonalized. Tlus is casiest to understand if
their spectrum consists only of eigenvalues (as 1s the case in finite dimensions).
One then has

o(A) = {A,; ne N},

with a corresponding orthonormal family of eigenvectors,
Ae, = e, . -

It then follows that, for ail u € H,

Au= Z (Au,e,)e, = Z (u, Aey)e, = Z Anlu,en)en ,

n n n

which is the “diagonalization” of A. (The spectral theorem permits us to gen-
eralize this if part (or all) of the spectrum is continuous, but we will not need it
in this book.) If two operators commute, i.e., ABu = BAu for all u € H, thén
they can be diagonalized simultaneously: there exists an orthonormal basis such
that

Ae, = a,e, and Be, = B,e, .

Many of these properties for bounded operators can also be formulated for un-
bounded operators: adjoints, spectrum, diagonalization all exist for unbounded
operators as well. One has to be very careful with domains, however. For in-
stance, generalizing the simultaneous diagonalization of commuting operators
requires a careful definition of commuting operators: there exist pathological
examples where A, B are both defined on a domain D, where AB and BA both
make sense on D and are equal on D, but where A and B nevertheless are not
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simultaneously diagonalizable (because D was ehosen “too small”; see, |
and Simon (1971) for an example). The proper definition of commuti
bounded self-adjoint operators uses associated boupded operators: H
commute if their associated unitary evolution operators commute. I
adjoint operator H, the associated unitary evolution operators U, are

follows: for-any v € D, the domain of H (beware: the domain of a s
operator is not just any dense set on which H is well defined), Urv is th
v(t) at,time ¢t = T of the differential equation

z% v(t) = Ho(t) ,

with initial condition v(0) = v.

Banach spaces share many properties with but are more general th
spaces. They are linear spaces equipped with a norm (which need n
generally is not derived from a scalar product), complete with respe
norm (i.e., all Cauchy sequences converge; see above). Some of th
we reviewed above for Hilbert spaces also exist in Banach spaces; e.g
operators, linear functionals, spectrum and spectral radius. " An ex:
Banach space that is not a Hilbert space is LP(R), the set of all functi
such that || f|lz» (see (0.0.2)) is finite, with 1 < p < 0o, p # 2. Anoth
is L=(R), the set of all bounded functions on R, with || fljL~ = ssup,
The dual E* of a Banach space E is the set of all bounded linear
on E; it is also a linear space, which comes with a natural norm (de
(0.0.7)), with respect to which it is complete: E* is a Banach space it
case of the L”-spaces, 1 < p < 00, it turns out that elements of LY, w
g are related by p~! +¢~! = 1, define bounded linear functionals on |
one has Holder’s inequality, -—

[ dz f(z) 3@)| < Ifllee lollze -

It turns out that all bounded linear functionals on L? are of this
(LP)* = LY. In particular, L? is its own dual; by Riesz’ representati
(see above), every Hilbert space is its own dual. The adjoint A” of :
A from E; to E, is now an operator from E3 to E}, defined by

(A*6) (1) = &x{Av) .

There exist different types of bases in Banach spaces. (We will
"consider separable spaces, in which bases are countable.) The

tute a Schauder basis if, for all v € E, there exist unique p, €

v = iMoo SoN_, finen (ie., flv—~ ):f:l Pnen)i—0 a8 N—oo). The

requirement of the pu, forces the e, to be linearly independent, in th

po e, can be in the closure of the linear span of all the others, i.e., th
" %Y 80 that e, = Emy_,o0 Zﬁﬂ' m#n Ym€m- In a Schauder basis, 1
of the e, may be important. A basis is called unconditional if in
satisfies one of the following two equivalent properties:



CHAPTER 1 - ‘

The What, Why, and How of
Wavelets

The wavelet transform is a tool that cuts up data or functions or ‘operators into
different frequency components, and then studies each component with a resolu-
tion matched to its scale. PForerunners of this techuique were invented indeper-
dently in pure mathematics (Calderdn’s resolution of the identity in -harmonic
analysis see e g., Calderén (1964)), physics (coherent states for the (ar + b)-
group in quantum mechanics, first constructed by Aslaksen and Klauder (1968),
and linked to the hydrogen atom Hamiltonian by Paul (1985)) and engineering
(QMF filters by Esteban and Galland (1977), and later QMF filters with exact”
reconstruction property by -Smith and Barnwell (1986), Vetterli (1986) in clec-
trical engineering; wavelets were proposed for the analysis of scismic data by
J. Morlet (1983)). The last five years have seen a synthesis between all these
different approaches, which has been very fertile for all the fields concerned.

Let us stay for a moment within the signal analysis framework. (The dis-
cussion can easily be translated to other fields.) The wavelet transform of a
signal evolving in time (e.g., the amplitude of the pressure on au cardrum, for
acoustical applications) depends on two variables: scale {or frequency) and time;
wavelels provide a tool for time-frequency localization. The first section tells us
what time-frequency localization means and why it is of-imt terest. The remaining
sectiohs describe different types of wavelets.

1.1. Time-frequency localization.

In many applications, given a signal f(t) (for the moment, we assume that
t lS a continuous variable), one is interested in its frequency content locally in
time. This.is similar to music notation, for example, which tells the player which
notes (= frequency information) to play at any given moment. The standard
Fourier transform, -

: _—
Fnw) = —= [aew,

-

also gives a representation of the frequency content of f, but information con-
cerning time-localization of, e.g., high frequency bursts cannot be read off easily
. from Ff. Time-localization can be achieved by first windowing the signal f, so
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as to cut off only a well-localized slice of f, and then taking its Fourier transform:

(T f)(w, t) = / ds f(s) g(s — t)e ™ . (1.1.1)

This is the windowed Fourier transform, which is a standard technique for time-
frequency localization.! It is even more familiar to signal analysts in its discrete
version, where t and w are assigned regularly spaced values: t = ntg, w = muwyg,
where m. n range over Z, and wy, 2y > 0 are fixed. Then (1.1.1) becomes

TN (f) = /ds f(s) 9(8 — nty) e~ 1M (1.1.2)

¥

This procedure is schematically represented in Figure 1.1: for fixed n, the
T (f) correspond to the Fourier coefficients of f( Jg(- — ntg). If, for instance,
g is compactly supported, then it is clear that, with ‘appropriately chosen wy,
the Fourier coefficients T*:"(f) are sufficient to characterize and, if need be,
to reconstruct f(-)g(- - ﬂt(;) Changing n amounts to shifting the “slices” by’
steps of tp and its multiples, allowing the recovery of all of f from the Ti%(f).
{We will discuss this in more mathematical detail in Chapter 3.) Many possible
choices have been proposed for the window function g in signal analysis, most
of which have compact support and reasonable smoothness. In physics, (1.1.1)
is related to coherent state representations; the g«'!'(s) = e'“*g(s — t) are the
coherent states associated to the Weyl -Heisenberg group (see, e.g., Klauder and
Skagerstam (1985)). In this context, a very popular choice is a Gaussian g. In all
applications, g is supposed to be well concentrated in both time and frequency; if
g and § are both concentrated around zero, then (7% f)(w, t) can be interpreted
loosely as the “content™ of f near time t and near frequency w. The windowed
Fourier transform provides thus a description of f in the time-frequency plane.

fitig(t)

-

g(t)

1 ]

P

F1G. 1.1 The uwindowed Fourter tranisform: the function f(t) is mﬂltipiied with the unndow
function g(t), and the Fourer coefficients of the product f(t)g(t) are computed; the procedure
ts then repeated for translated versions of the unndow, g(t — to), 9(t — 2tp), ---
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1.2. The wavelet transform: Analogies and differences with the
windowed Fourier transform.

The wavelet transform provides a similar time-frequency description, with a
few important differences. The wavelet transform formulas analogous to (1.1.1)
and (1.1.2) are

© @ =l [a e (S0 (1.2.)
and z,’;
ﬁ B o P / dt f(t) Ylag™t — nbo) . (1.22)
In wh cases we assume that 1 satisfies )
/ dt Y(t) = 0 (1.2.3)

(for reasons explained in Chapters 2 and 3).

Formula (1.2 2) is again obtained from (1.2.1) by restricting a, b to only dis-
crete values: a = aj*, b = nbpa]’ in this case, with m,n ranging over Z, and
ag > 1, by > 0 fixed. One similarity between the wavelet and windowed Fourier
transforms is clear: both (1.1.1) and (1.2.1) take the inner products of f with a
family of functions indexed by two labels, g“*(s) = e**g(s — t) in (1.1.1), and
P*b(s) = la|~'72 ¢{2zt) in (1.21). The functions ¥*® are called “wavelets”;
the function ¥ is sometimes called “mother wavelet.” (Note that 3 and g are
implicitly assumed to be real, even though this is by no means essential; if they
are not, then complex conjugates have to be introduced in (1.1.1), (1.2.1).) A
typical choice for ¢ is ¥(t) = (1 — t2) exp(~t?/2), the second derivative of the
Gaussian, sometimes called the mexican hat function because it resembles a cross
section of a Mexican hat. The mexican hat function is well lecalized in both time

.;and frequency, and satisfies (1.2.3). As a changes, the ¥*°(s) = |a|~/2y(s/a)
vcover different frequency ranges (large values of the scaling parameter |a| cor-
‘?W‘@omd to small frequencies, or large scale 3*; small values of |a| correspond
h frequencies or very fine scale ¥*%). Changing the parameter b as well

% us to move the time localization center: each ¥*(s) is localized around
8 =3It follows that (1.2.1), hike (1.1.1), provides a time-frequency descriptign
7i#%e difference between the wavelet and windowed Fourier transforms lies

pes of the analyzing functions ¢*** and ¥*P, as shown in Figure 1.2.
faons g all consist of the same envelope function g, translated to the
ity AQcatxon, and “filled in” with higher frequency oscillations. All the
WMQ of the value of w, have the same width. In contrast, the *® have
tlme’“ﬂdth&kﬂﬁ?wd to their frequency: high frequency ¥*® are very narrow,
while low fmqmcy %%P are much broader. As a result, the wavelet transform
is better able than-the windowed Fourier transform to “zoom in” on very short-
lived high frequency phenomena, such as transients in signals (or singularities
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(b)

' w(x)
Iy
v

,_mq__ﬂ“g(X) \\ / 0
x y2® withac1
. Re o' \ b>0
! IR |
i N

ya% withas> 1
b<D

\
B N

FIc 12 Typreal shapes of (a) windowed Fourer transform functions g“t, and
(b) wavelets y>° The gt(z) = ¢~ *Tg(x ~ t} can be mewed as translated envelopes 9,
“filled > unth higher frequencies the w™b are all copres of the same functions, translated

and compressed or stretched

in functions or integral kernels) This is illustrated by Figure 1 3, which shows
windowed Fourner transforms and the wavelet transform of the same signal f
defined by

ity =sin(2mnt) + sin(2rrat) + A{6(t — t)) + 8(t — tp)]

In practice, this signal is not given by this continuous expression, but by samples,
and adding a §-function is then approximated by adding a constant to one sample
only. In sampled version, we have then .

f(nr) =sin(2rvint) + sin(avpnt) + lfnpn, + 000, .

For the example in Figure 1.3a, »; = 500 Hz, v, = 1 kHz, = = 1/8,000 sec (i.e.,
we have 8,000 samples per second), a = 1.5, and ng — n; = 32 (corresponding
to 4 milliseconds between the two pulses). The three spectrograms (graphs of
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Fic 13. (a) The signal f(t). (b) Windowed Fourter transforms of f unth three different
window undths. These are so-called spectrograms: only {T™'"(f)} 1s plotted (the phase 1s not
rendered on the graph), using grey levels (high values = black. zero = white, stermedsate
grey levels are essigned proportional to log IT™"(f)|) n the t(abscissa), w(ordinate) plane.
(c) Wavelet transform of f. To make the comparison unth (b) we have also ploited TV (f)],
with the same grey level method, and a linear frequency axis (s.e., the ordinale corresponds
to a~1). (d) Comparison of the frequency resolution between the three spectrograms ond the
wavelet transform. I would like to thank Oded Ghitza for generating this figure.
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the modulus of the windowed Fourier transform) in Figure 1.3b use standard
Hamming windows, with widths 12.8, 6.4, and 3.2 milliseconds, respectively.
(Time t varies horizontally, frequency w vertically, on these plots; the grey levels
indicate the value of {T™"(f)|, with black standing for the highest value.) As
the window width increases, the resolution of the two pure tones gets better,
but it becomes harder or even impossible to resolve the two pulses. Figure 1.3c
shows the modulus of the wavelet transform of f computed by means of the
(complex) Morlet wavelet ¢(t) = Ce~t' /2" (et —~ e~*"a’/4) with a = 4. (To
make comparison with the spectrograms easier, a linear frequency axis has been
used here; for wavelet transforms, a logarithmic frequency axis is more usual.)
One already sees that the two impulses are resolved even better than with the
3.2 msec Hamming window (right in Figure 1.3b), while the frequency resolu-
tion for the two pure tones is comparable with that obtained with the 6.4 msec
Hamming window (middle in Figure 1.3b). This comparison of frequency resolu-
tions is illustrated more clearly by Figure 1.3d: here sections of the spectrograms
(i.e., plots of |(T™" f)(-,t)| with fixed t) and of the wavelet transform modulus
((T™™ f){-, b)| with fixed b) are compared. The dynamic range (ratio between
the maxima and the “dip” between the two peaks) of the wavelet transform is
comparable to that of the 6.4 msec spectrogram. '(Note that the flat horizontal
“tail” for the wavelet transform in the graphs in Figure 1.3d is an artifact of
the plotting package used, which set a rather high cut-off, as compared with the
spectrogram plots; anyway, this cut-off is already at —24 dB.)

In fact, our,ear uses a wavelet transform when analyzing sound, at least in
the very first stage. The pressure amplitude oscillations are transmitted from
the eardrum to the basilar membrane, which extends over the whole length of
the cochlea. The cochlea is rolled up as a spiral inside our inner ear; imagine it
unrolled to a straight segment, so that the basilar membrane is also stretched
out. We can then introduce a coordinate y along this segment. Experiment and
numerical simulation show that a pressure wave which is a pure tone, f,(t) =
e*“t, leads to a response excitation along the basilar membrane which has the
same frequency in time, but with an envelope in y, F,(t,3) = €** ¢.(y). Ina
first approximation, which turns out to be pretty good for frequencies w above
500 Hz, the dependence on w of ¢,,(y) corresponds to a shift by log w: there exists
one function ¢ so that ¢, (y) is very close to ¢(y—log w). For a general excitation
function f, f(t) = 7%; { dw f(w)e™t, it follows that the response function F(t,y)

is given by the corresponding superposition of “elementary response functions,”

F(ty) = —% / dw f(w) Fulty)

-~

1 : ¢ '
= — [ dw w —logw).
\/-2-;/ flw)e é(y g w)
If we now introduce a change of parameterization, by defining
W) = (2n)" V2 ¢(z),  Gla,t) = F(t,loga), -
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then it follows that
. Glat) = [ dt £(¢) wiatt— 1),
*ag

which {(up to normalization) is exactly a wavelet transform. The dilation param-
eter comes.in, of course, because of the logarithmic shifts in frequency in the ¢,,.
The occurrence of the wavelet transform in the first stage of cur own biological
; .acoustical analysis suggests that wavelet-based methods for acoustical analysis
i have a better chance than other methods to lead, e.g., to compression schemes
% “undetectablé by our ear.

” “‘f‘x”‘; «
g&.&. Different types of wavelet transform.

s
% ﬁ‘f
5 ~

¥

e rg’i‘here exist many different types of wavelet transfor}n, all starting from the
bas:c ibrmulas (1.2.1), (1 2.2). In thesc notes we will distinguish between

A. 'ﬁk’ continuous wavelet transform (1.2.1), and
B ;:I'he discrete wavelet transform (1.2.2).

Within the discrete \fwavclet-tmnsform we distinguish further between
B1. Redundant discrete systems (frames) and

B2. Orthonormal (and other) bases of wavelets.

1.3.1, The continuous wavelet transform. Here the dilation and trans-.
lation parameters a, b vary continuously over R (with the constraint a # 0). The
wavelet transform is given by formula (1.2.1); a function can be reconstructed
from its wavelet transform by means of the “resolution of identity” formula

o 2 [T [ dadd
t - f = C¢l/ [ 2 %”a'b) d’u'b y (1'3'1)
/ —00 J -0 a

2  Where *(z) = [a[~'/? ¥ (=2), and ( , ) denotes the L3-inner product. The
"#honstant Cy depends only on 1/; and is given by

Co=2r " de TR 1€ (1.3.2)

%‘%ume Cy < oo (otherwise (1.3.1) does not make sense). If ¢ is in L'(R)
is the case in all examples of practical interest), then 1/1 is continuous, so
C,,, can be finite only if %(0) = 0, i.e., fdz ¥(z) = 0. A proof for (1.3.1)
given in Chapter 2. (Note that we have implicitly assumed that 9 is real;

?ﬂplex 1, we should use ¥ instead of ¥ in (1.2.1). In some a.pphcatlons
complex 1) are useful.)

#Ppemula (1.3.1) can be viewed in two different ways: (1) as a way of re-
Wmctmg f once its wavelet transform 7™V f is known, or (2) as a way to
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p
write f as a superposition of wavelets ¥ the coeflicients in this superposition
are exactly given by the wavelet transform of f. Both points of view lead to
interesting applications. -

The correspondence f{r) -+ (I8 f)(a, b) represents a one-variable function
by a function of two variables, into which lots of correlations are built in (see
Chapter 2). This redundancy of the representation can be exploitedsa beautiful
application is the concept of the “skeleton” of a signal, extracted from the con-
tinuous wavelel transform, which can be used for nonlinear filtering (sce, e.g.,
Toreésani {1991), Delprat et al. (1992)).

1.3.2. The discrete but redundant wavelet transform-frames. In this
case the dilation parameter @ and the translation parameter both take only
discrete values. For a we choose the nteger (positive and negative) powers of
one fixed dilation parameter ag > 1, ie, ¢ qf'. As already itlustrated by
Figure 1.2, different values of m correspond to wavelets of different widths. It
follows that the discretization of the translation parameter b should depend on
m: narrow (high frequency) wavelets are translated by small steps in order to
cover the whole time range, while wider (lower frequency) wavelets are translated
by larger steps. Since the width of y(a, " r) is proportional to af)'. we choose
therefore to discretize b by b - nbyal)', where &y .- O is fixed, and n ¢ Z.. The

corresponding discretely labelled wavelets are therefore
; ;

i
mj2
U () @, ni? Plag "' (o nbaag'))

= a(,mﬂ Pla, ™ nby) (1.3.3)

i

Figure 1.4a shows schematically the lattice of time-frequency Incalization centers
corresponding to the ¢, ,,. For a given function f, the inner products (f, ¥, )
then give exactly the discrete wavelet transform T (f) as defined in (1.2.2)
(we assume again that ¥ is real).

In the discrete case, there does not exist, in general, a “resolution of the
identity” formula analogous to (1.3.1) for the continunous case. Reconstruction
of f from T f), if at all possible, must therefore be done by some other means.
The following questions naturally arise:

“

(1) Is it possible to characterize f completely by knowing TH8Y( f)?

(2) Is it possible to reconstruct f in a muncrically stable way from T v (f)?

These questions concern the recovery of f from 1ts wavelet transform. We can
also consider the dual problem (sce §1.3.1), the possibility of expanding f into
wavelets, which then leads to the dual questions:

(1} Can any function be written as a superposition of ¥, ,?

(2'} 1s there a numerically stable algorithm to cowpute the coeflicients for such
an expansion?

Chapter 3 addresses these questions. As in the continuous case, these discrete
wavelet transforms often provide a very redundant description of the original \
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function. This redundancy can be exploited (it is, for instance, possible to com-
pute the wavelet transform only approximately, while still obtaining reconstruc-
tion of f with good precision), or eliminated to reduce the transform to its bare
essentials (such as in the image compression work of Mallat and Zhong (1992)). It -
is in this discrete form that the wavelet transform is closest to the “¢-transform”
of Frazier and Jawerth (1988). .

The choice of the wavelet ¢ used in the continuous wavelet transform or in '
frames of discretely labelled families of wavelets is essentially only restricted by
the requirement that Cy, as defined by (1.3.2), is finite. For practical reasons,
one usually chooses 3 so that it is well concentrated in both the time and the
frequency domain, but this still leaves a lot of freedom. In the next section we
will see how giving up most of this freedom allows us to build orthonormal bases
of wavelets. .

1.3.3. Orthonormal! wavelet bases: Multiresolution analysis. For
gome very special choices of ¢ agd ag, by, the ¥, » constitute an orthonormal
basis for L?(R). In particular, if we choose ag = 2, bp = 1,7 then there exist v,
with geod tnme-frequency localization properties, such that the

Ymn(2) =272 p(27™z - n) (1.3.4)

constitute an orthonormal basis for L2(R). (For the time being, and until Chap-
ter 10, we restrict ourselves to a9 = 2.) The oldest example of a function ¢ for
which the 1, . defined by (1.3.4) constitute an ortlonormal basis for L? (R) is

the Haar function, .
1 0<z< §~
Y(@)=¢ -1 i<z<1
0 otherwme

The Haar basis hias been known since Haar (1910). Note that the Haar func-
tion does not have good time-frequency localization: its Fourier transform 113(6)
decays like |¢[~! for £ — oo. Nevertheless we will use it here for illustration
purposes. What follows is a proof that the Haar family does indeed constitute .
an orthonormal basis. This proof is different from the one in most textbooks; in
fact, it will use multiresolution analysis as a tool.

In order to prove that the ¥y, o(z) constitute an orthonormal basia, we need
to establish that

(1) the ¥y, », are orthonormal;

(2) any L?-function f can be approximated, up to arbitrarily small precision,
by a finite linear combination of the Y, .

Orthonormality is easy to establish. Since support (¥mw) = [2™n, 2™(n+1)},
it follows that two Haar wavelets of the same scale (same value of m) never
overlap, 80 that {$m ny¥m ) = pnr. Overlapping supports are poesible if the
two wavelets have different sizes, as in Figure 1.5. It is easy to check, however,
that if m < m’, then support (¥m,«) lies wholly within a region where Y/ n is

-
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constant (as on the figure). It follows that the inner product of ¥, n and Y
is then proportional to the integral of ¢ itself, which is zero.
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We concentrate now on how well an arbitrary function f can be approximated

by linear combinations of Haar wavelets. Any f in L?(R) can be arbitrarily well

,- approximated by a function with compact support which is piecewise constant
~ onthe [£277,(€+1)277] (it suffices to take the support and j large enough). We
can therefore restrict ourselves to such piecewise constant functions only: assume

J to be supported on [-271,2”1], and to be piecewise constant on the [£2~ %,
- {¢+ 1)2""‘[, where J, and Jp can both be arbitrarily large (see Figure 1.6). Let
us denote the constant value of f% = f on €27, (¢ + 1)2~%( by f§. We now

nt £ as a sum of two pieces, f° = f! + 6%, where f} is an approximation

#f® which is piecewise constant over intervals twice as large as originally, i.e.,
fg&-kﬂ-l'(k*_l)g—-’oiﬂl = constant = f}. The values f} are given by the aver-
«sgges of the two corresponding constant values for f°, fi = 1(f3, + f9.,,) (see

v
!
,,
)
bid
Ed

_ Jgute 1.6). The function §' is piecewise constant with the same stepwidth as
. ;g;;m immediately has
= P~ ft = YU Fews)
and,

- f’rf?"’ 01 = Foepr = J2 = §(foen — F20) = 64 -
uu;?%;;sl is a linear combination of scaled and translated Haar functions:
T g9J1+Jo—1

= 3 82"z~ 1).

t=-20+Jo-141

We have therefore written f as
5. f=f=f+ )_:_:C—Jo-u,t Y-dot1,t 5

o~
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BLOW UP
'0
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von .d e 6:6;
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FIG 16 (a) A function f unth support [-271,271], preceunse constant on the [k2- 7o,
(k +1)2=78 (b) A blowup of a portron of f On every pawr of mtervals, f s replaced by
1ts average (—— f1); the difference between f and f! 1s 6!, ¢ hnear combination of Haar
wavelets.

where f! is of the same type as f°, but with stepwidth twice as large. We can
apply the same trick to f!, so that

fl=1*+ ZC—Jo-ﬂ,I Y_gor2,t
¢

with f2 still supported on [~2”,2%1], but piecewise constant on the even larger
intervals [k2-Jo+2 (k 4+ 1)2~7o+2[. We can keep going like this, until we have

f=frthy Z Zcmzwm,.

m=-Jg+1

Here f70+7:1 consists of two constant pieces (see Figure 1.7), with
fo+Ngan; = f°*" equal to the average of f over [0,2”i[, and
[l qn g = fJa+71 the average of f over [—21,0].

Even though' we have “filled out” the whole support of f, we can still keep
going with our averaging trick: nothing stops us from widening our horizon from
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Jo +Js

'1 ’J0+J1
r__""'l—"_l
. 2h 0 29
Lydosd 1 g+
AR 31t
4I L el
_2J1+l 2J,+1
+
_2J1+1 e dr+1
L________J e
S A TEEIAPPR PR Theh e SRR

: AR
£
- F16. 1.7. The averages of f on [0, 271] and [-271, 0] can be “smeared” out over the bigger

intervals [0, 27111}, [-271+1, 0], the difference 1s a linear combination of very stretched out
Haar functions.

E
E 4

2% to 2-’1+1, and writing fJx +J2 fJ:+Jz+1 +6J:+Ja+l1 where

1 — J1+J Jy+Ja+1 — Ji 4 J:
f.h+J:+ |[0,211+1[ = %fol 2’ f 1+Ja4+ I[—2-’l+1,0[ = %f~11+ 2

and

sl
*

6J1+Jz - lfl‘+J":¢(2_"l-lz) _ lf£1+h¢(2—.h—lz + 1)

k]
&

s (aee Figure 1.7). This can again be repeated, leading to

K

vﬁﬂ:"’ ! J1+K

o _ ploth+K

R F=fRt e 5 Y ome Yme
P 29 ) m=—~Jo+l ¢

ﬁm}’ support (flo+1+K) = [-2N1+K 2h+K] and

g - - J -
FH filH'Jrl'KI[o gn+K[ = 9 Kf670+ lvau+Jl+K|{—2-’l+x,0{ =2 Kfftlﬂ--’l .
- AR,
It m jmmediately that
= ﬁ?ﬁﬂ

= IR,

- *
N o-K/2 oh/2 I f,‘,’““‘lz +| f:hi+J1'2J1/2 ,

which can béégia}e arbitrarily small by taking sufficiently large K. As claimed,
f can therefore be $pproximated to arbitrary precision by a finite linear combi-
nation of Haar wavelets!

The argument we just saw has implicitly used a “multiresolution” approach:
we have written successive coarser and coarser approximations to f (the f7,
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averaging f over larger and larger intervals), and at every step we have written
the difference between the approximation with resolution 27!, and the next
coarser level, with resolution 27, as a linear combination of the v, ;. In fact, we
have introduced a ladder of spaces (V,),cz representing the successive resolution
levels: in this particular case, V, = {f € L?(R); f piecewise constant on the
[27k,22(k + 1)|, k € Z}. These spaces have the following properties:

(1) ---cVecVicWVCcV,CcV aC--
(2) NezVy =10}, U,ezV; = L*(R);
() feV, & f(2)eVy

(4) feVo - f-—-n)eVyforallneZ.

Property 3 expresses that all the spaces are scaled versions of one space (the
“multiresolution” aspect). In the Haar example we found then that there exists
a function ¢ so that

Projy,_,f = Projy, f+ Y (fithsx) ¥ - (1.3.5)

keZ

The beauty of the multiresolution approach is that whenever a ladder of spaces
V, satisfies the four properties above, together with

(5) 3¢ € Vp so that the ¢gn(x) = #(z — n) constitute an orthonormal
basis for Vj,

then there exists ¥ so that (1.3.5) holds. (In the Haar example above, we
can take ¢(z) = 1 if 0 < z < 1, ¢(x) = 0 otherwise.) The ¥, consti-
tute automatically an orthonormal basis. It turns out that there are many
examples of such “multiresolution analysis ladders,” corresponding to many ex-
amples of orthonormal wavelet bases. There exists an explicit recipe for the
construction of ¥: since ¢ € Vp C V_;, and the ¢_; o(x) = V2 #(2x ~ n)
constitute an orthonormal basis for V_, (by (3) and (5) above), there exist
an = V2 (¢, ¢-1,) so that ¢(z) = Y, an ¢(2z — n). It then suffices to take
P(z) =Y. (-1)"a_ns1 #(2x —n). The function ¢ is called a scaling function of
the multiresolution analysis. The correspondence multiresolution analysis — or-
thonormal basis of wavelets will be explained in detail in Chapter 5, and further
explored in subsequent chapters. This multiresolution approach is also linked
with subband filtering, as explained in §5.6 (Chapter 5).

Figure 1.8 shows some examples of pairs of functions ¢, corresponding to
different multiresolution analyses which we will encounter in later chapters. The
Meyer wavelets (Chapters 4 and 5) have compactly supported Fourier transform;
¢ and 1 themselves are infinitely supported; they are shown in Figure 1.8a. The
Battle-Lemarié wavelets (Chapter 5) are spline functions (linear in Figure 1.8b,
cubic in Figure 1.8¢), with knots at Z for ¢, at Z for . Both ¢ and v have
infinite support, and exponential decay; their numerical decay is faster than
for the Meyer wavelets (for comparison, the horizontal scale is the same in (a),
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]

0 . 5. & v
‘M,oforthonoma!mvddbasa Forcverylpmthuﬁgun,

, z-—k), J,lcez oond;hdaan orthonormal basis of L*(R). The
ﬁ!‘"ﬂ plots ¢ (the ass aqdlmgﬁmcum) cmiﬁjordzﬁemt constructions which we will

- encounter in later chapters: (8) The Meyer wavelets; (b) and (c) Battle-Lemarié wavelets;
. {d) the Haar wavelet; (e} the next member of the Jamily of compactly aupportad wavelets, at;
(f) another compactly supported wavelet, with less asymmetry.



16 CHAPTER 1

(b), and (c) of Figure 1.8). The Haar wavelet, in Figure 1.8d, has been known
since 1910. It can be viewed as the smallest degree Battle-Lemarié wavelet
(YHaar = ¥BL o) OF also as the first of a family of compactly supported wavelets
constructed in Chapter 6, ¥yaar = 1%. Figure 1.8e plots the next member of
the family of compactly supported wavelets yv; ¢ and 23 both have support
width 3, and are continuous. In this family of y (constructed in §6.4), the
regularity increases linearly with the support width (Chapter 7). Finally, Figure
1.8f shows another compactly supported wavelet, with support width 11; and
less asymmetry (see Chapter 8).

Notes.

1. “There exist other techniques for time-frequency localization than the win-
dowed Fourier transform. A well-known example is the Wigner distribu-
tion. (See, e.g., Boashash (1990) for a good review on the use of the Wigner
distribution for signal analysis.) The advantage of the Wigner distribution
is that, unlike the windowed Fourier transform or the wavelet transform,
it does not introduce a reference function (such as the window function,
or the wavelet) against which the signal has to be integrated. The disad-
vantage is that the signal enters in the Wigner distribution in a quadratic
rather than linear way, which is the cause of many interference phenom-
ena. These may be useful in some applications, especially for, e.g., signals
which have a very short time duration (an example is Janse and Kaiser
(1983); Boashash (1990) contains references to many more examples); for
signals which last for a longer time, they make the Wigner distribution less
attractive. Flandrin (1989) shows how the absolute values of both the win-
dowed Fourier transform and the wavelet transform of a function can also
be obtained by “smoothing” its Wigner distribution in an appropriate way;
the phase information is lost in this procéss however, and reconstruction is
not possible any more.

2. The restriction by = 1, corresponding to (1.3.4), is not very serious: if
(1.3.4) provides an orthonormal basis, then so do the Yma(z) = 2~™/2
$(2-™x — nbp), with P(z) = |bo)~/29(by'z), where by # 0 is arbi-
trary. The choice ag = 2 cannot be modified by scaling, and in fact ag
cannot be chosen arbitrarily. The general construction of orthonormal
bases we will expose here can be made to work for all rational choices for
ag > 1, as shown in Auscher (1989), but the choice ap = 2 is the simplest.
Different choices for agy correspond of course to different 3. Although the
constructive method for orthonormal wavelet bases, called multiresolution
analysis, can work only if ag is rational, it is an open question whether
there exist orthonormal wavelet bases (necessarily not associdted with a

* multiresolution analysis), with good time-frequency localization, and with
irrational ap.



CHAPTER 2
The Continuous Wavelet Transfortn

+'The images of L?-functions under the continuous wavelet transform constitute a
roducing kernel Hilbert space (r.k.H.s.). Such r.k.H.s.’s occur and are useful
8 many different contexts. One of the simplest examples 1s the space of all
‘bandlimited functions, discussed in §§2.1 and 2.2. In §2.3 we introduce the
{g cencept of band and time limiting; of course no nonzero function can be strictly
‘i;;a time-limited (i.e., f() = 0 for ¢ outside [-7",T}) and band-limited (f(£) = 0 for
T &4.1-0,9)), but one can still introduce time-and-band.limiting operators We
present a short review of the beautiful work of Landau, Pollak, and Slepian on
this subject. We then switch to the continuous wavelet transform: the resolution
of the identity in §2.4 (with a proof of (1.3.1)), the corresponding r.k.H.s. in §2 5
T §2.6 we briefly show how the one-dimensional results of the earlier sections
+.%"can be extended to higher dimensions. In §2.7 we draw a parallel with the
7' continuous windowed Fourier transform. In §2.8 we show how a different kind
of time-and-band-limiting operator can be built from the continuous windowed
Fourier transform or from the wavelet transform. Finally, we comment in §2 9
on the “zoom-in” property of the wavelet transform.

5’:
" 2.1. Bandlimited functions and Shannon’s theorem.
*3 function f in "LZ(R) is called bandlimited if its Fourier transform Ff has

’compact support, i.e., f(£) =0 for |€] > Q. Let us suppose, for simplicity, that
1 = 7. Then f can be represented by its Fourier series (see Preliminaries),

flO=) cae™t,
neZ

where

1 * oné §
Cn = oy dfe"‘f(f)

-

1 [ o meien. L
3 [ RO = 2= 1)
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It follows that

@) = —-\;37; f de &< f(€)

- r T
- \/__ ch d{ e;(.t—n){
_ Zf( )sm w(z n) ' (2.1.1)

3 x(z —n)
where we have interchanged integral and summation in the third step, which
15 only a priori justifiable if ¥ |ca] < oo (e.g., if only finitely many ¢, are
nonzero). By a standard contimaity argument, the final resuit holds for all band-
limited f (for every z, the series‘is absolutely summable because 3", {f(n)]? =
21 Y |en|? < 00). Formula (2.1.1) tells us that f is completely determined by
its “sampled” values f(n). If we lift the restriction {} = » and assume support

f c [-0,9], with Q arbitrary, then (2.1.1) becomes

j@) =Y f(nX) S2liz-rm), (2.12)

Qr —nm
the function is now -determined by its samples f(nf), corresponding to a
samplmg density” of Q/nr = E”zmﬂ (We use the notation |A| for the
“size” of a.set A C R, as measured by the Lebesgue measure; in this case

lsupport f| = |[-0,0]] = 202) This sexpling density is usually called the
Nyquist density. The expansion (2.1.2) goeg by the name of Shannon’s theorem.

[~ +-----n---

-1 + A) -0 N Q1+ 1)

Fic. 2.1. Graph of §.

The “elementary building blocks” S22 jn (2.1 2) decay very slowly (they are
not even absolutely integrable). “Oversampling” makes it possible to write f asa
superposition of functions with faster decay. Suppose that f is etill bandlimited
in [-9,9) (i.e., support f C [-£2,Q]), but that f is sampled at a rate (1 + A)
faster than the Nyquist rate,-with A > 0. Then.fcanberecoveredfmmthe
f(nx/[Q1 + X)]) in the followmg way. Define g) by
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1, gl <0
) =4 1- K8 Q<K< (1+M)9,
0, ez a+ a0

{see Figure 2.1). Because g\ = 1 on support f, we have f(£) = f(€)ar(€). We
¥ can now repeat the same construction as before.

_ fl&) = ch e~/ I(1+4)]
n

. .4 nw )
S With e = TN f(n(1+A))‘
hence
N e /IR0 °
' f(x) = m /ﬂ(1+)\) d§e QA(E)X": Ch €
¢ _ _ nmw
= Z f( (1+A) (I a(1+,\)) ’
w V2n 2sinfzQ(1 + A/2)] sm(zﬂz\/2)

Gx(z) = 20(1 + \) (=)= AR3(1 + A)zx?

HAE %e G, have faster decay than % "‘, note that if A—0, then G;—»-—?;& as
j One can obtain even faster decay by choosing §, smoother, but it

4 ’m pay to put too much effort into making §, very smooth: true, G will

very fast decay for asymptotically large z, but the size of A imposes some

jctions on the numerical decay of Gi. In other words, a C™ choice of g,

gd!to G, deécaying faster than any inverse polynomial,
- ’ IGa(z)] < Ca(A)(1 + [a))~V+D,

but the Eonistant Cpn()) can be very large: it is related to the range of values of

KhQNNﬂl [Aérivative of ) on [2,Q(1 + A)], so that it is roughly proportional to

ththppemiffls “yundersampled,” i.e., if support f = [, )], but only
the f(nx/{Q(1 — )]} are known, where A > 07 We have

~ 5 ) = F(g) etnee/I0(1-2)]
1(aiz) = 75 [, €0 *

2(1~1A)

7": / n(l—A)
[F(6) + F(e + 2001 - &) + f(g - 2001 - N)] ,

*ne€/1(1-2)]
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where we have used that the e""¢/2 have perin 2a, and where we have assumed
A< % (otherwise more terms would intervene in the sum in the last integrand).
This means that the undersampled f (nﬁﬁl——A_)) behave exactly as if they were the
Nyquist-spaced samples of a function of narrower bandwidth, the Fourier trans-
form of which is obtained by “folding over” f (see Figure 2.2). In the “folded”
version of f, some of the high frequency content of f is found back in lower
frequency regions; only the [{| < €}(1 — 2X) are unaffected. This phenomenon is
called aliasing; for undersampled acoustic signals, for instance, it is very clearly
audible as a metallic clipping of the sound.

2.2. Bandlimited functions as a special case of a reproducing kernel
Hilbert space.

For any a,8, ~c0o<a<f < oé, the set of functions
{f € L*}(R); support f C [a, 8]}

* constitutes a closed subspace of L%(R), i.e., it is a subspace, and all Cauchy
sequences composed of elements of the subspace converge to an element of the
subspace. By the unitarity of the Fourier transform on L?(R), it follows that the
set of all bandlimited functions

B = {f € L*(R); support f C [-9,9}}

is a closed subspace of L?(R). By the Paley-~Wiener theorem (see Preliminaries),
any function f in Bg has an analytic extension to an entire function on C, which
we also denote by f, and which is of exponential type. More precisely,

1 .
2 < olim zist
£ € = Uflle
In fact, Bq consists of exactly those L2-functions for which there exists an an-
alytic extension to an entire function satisfying a bound of this type. We can

Tie)

T(es20 (12 ))

W—znn-xn
|
i

2" a(1-x) 0 Q(1-1) R

»

FIG. 2.2. The three terms f(€), f(€+20(1~ X)), and f(£ - 20(1 - X)) for || < (1 - ),
and their sum (thick line).
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therefore consider By to be a Hilbert space of entire functions For f in B we
have

1 @ 1z§ f
1@ = o= [ de= g

L e fa g e

- / dy f(y )s";?x(’ y)y) . (2.2.1)

(The interchange of integrals in the last step is permissible if f € L}, i.e, if f
is sufficiently smooth. Since, for all z, [x(z — .)]~!sinQ(z ~ ) 1s in L?(R), the
conclusion then extends to all f in Bg by the standard trick explained in Pre-
liminaries.) Introducing the notation e, (y) = %ﬂ;‘%ﬂ, we can rewrite (2 2.1)

as

f(z)=(f,e:) . (2.2.2)
Note that e, € Bq, since é;(£) = (2r)"Y2 ¢ for || < Q, é,(€) = O for
[€} > €.

Formula (2.2.2) is typical for a reproducing kernel Hilbert space (r.k.H.s). In
an r.k.Hs. H of functions, the map associating to a function f its value f(z)
at a point z is a continuous map (this does not hold in most Hilbert spaces
of functions, in particular not in L?(R) itself), so that there necessarily exists
e; € H such that f(x) = (f,e,) for all f € H (by Riesz’ representation lemma,;
see Preliminaries). One also writes

flz) = / dy K(z ,3) f(y),

where K(z,y) = ez(y) is the reproducing kernel. In the particular case of Bq,
there even exist special z,, = 3 so that the e, constitute an orthonormal basis
for Bq, leading to Shannon’s formula (2.1.2). Such special z,, need not exist in a
general r.k.H.s. We will meet several examples of other r.k.H.s.’s in what follows.

2.3. Band- and timelimiting.

Functions cannot be both band- and timelimited: if f is bandlimited (with
arbitrary finite bandwidth), then f is the restriction to R of an entire analytic
function; if f were timelimited as well, support f C [-T,T] with T < oo,
then f = 0 would follow (nontrivial analytic functions can only have isolated
zeros). Nevertheless, many practical situations correspond to an effective band-
and timelimiting: imagine, for instance, that a signal gets transmitted (e.g.’
over a telephone line) in such a way that frequencies above 2 are lost (most
realistic transmission means suffer from this kind of bandlimiting); imagine, also,
that the signal (such as a telephione conversation) has a finite time duration.
The transmitted signal is then, for all practical purposes, effectively band- and
timelimited. How can this be? And how well can a function be represented by
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such a time- and bandlimited representation? Many researchers worked on these
problems, until they were elegantly solved by the work of H. Landau, H. Pollack,
and D. Slepian, in their series of papers Slepian and Pollak (1961) and Landau
and Pollak (1961, 1962). An excellent review, with many more details than are
given here, is Slepian (1976).

The example mentioned above (signal with finite time duration transmit-
ted over a bandlimiting channel) can be modeled as follows: let Qr, Pa be the
orthonormal projection operators in L?(R) defined by

(Qrf)(z) = f(z) forlz| < T, (@rf)(z)=0 forlz|>T,

and

(Paf)ME) = f(6) for el <D, _(Paf)"(§)=0 forje)>9.

Then a signal which is timelimited to {-T,T) satisfies f = Qr f, and transmit-
ting it over a channel with bandwidth §) gives as end product Pof = PaQr/f
(provided there is no other distortion). The operator PaQr represents the total
time + band limiting process. How well the transmitted PaQr f approaches the

original f is measured by [|PaQr fI*/IfI* = (@r Pa Qr £, N/IFI2.
The maximum value of this ratio is the largest exgenvalue of the symmetric

operator Qr Po Qr, given explicitly by

T sin )z — y)
(Qr Pa Qr f)(z) = /_ T dy Fz-3) fly) iflzl<T,
0 if |z] > T.

(2.3.1)

The eigenvalues and eigenfunctions of this operator are now known explicitly
because of a fortunate accident: Qr Pp Qr commutes with the second order
differential operator A, -

2
n@=2ar- L L g,

The eigenfunctions of this operator, which had been studied for different reasons
long before their connection with band- and timelimiting was discovered, are
called the prolate spheroidal wave functions, and many of their properties are
known. Because A commutes with Qr Pq Qr (and because the eigenvalues of A
are all simple), the prolate spheroidal wave functions are also the eigenfunctions
of Qr Py Qr (with different eigenvalues, of course). More specifically, if we
‘denote the prolate spheroidal wave functions by ¢, n € N, ordered so that the
#corresponding &igenvalues a,, of A increase as n increases, then

QrPaQryn= prm

QrPaQrf=0ofLly, foral n
% f is supported on {z;|z| > T},
z\ndecreasesasnmcreases,andnlingo)« =0,
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The eigenvalues A\, depend on T and {2, of course; an easy scaling argument
(substitute z = Tz’, y = Ty in the expression for (Qr Pn Qr f)(x)) shows that
the A, depend only on the product TQ). For fixed T(Q, the behavior of A\, as n
increases is schematically represented in Figure 2.3. Typically, the A, stay close
to 1 for small n, plunge to zero near the threshold value 2TQ/n, and stay close

”‘-n
paoooooo-ooooooot¢00¢.‘

i L]

! i ‘aed

0 10 20 30
FIG. 2.3. The esgenvalues An for QrPaQr for 2TQ/x = 25.

-

to zero afterwards. More precisely, for any (arbitrarily small) € > 0, there exists
a constant C, so that

. # {"i'\n?,l“f}ﬁ%ﬂ—celog(m),

#  {ni1-e2> M 2>} <2Clog(TH), (232)
which means that the “plunge region” has width proportional to log(T(2). Since
lim, o, 27! logz = 0, the width of the plange region becomes negligibly small,
when compared to the threshold value 2T/, as T, Q—co. In fact, (2.3.2) is a
rigorous version of the fact that a time- and bandlimited region [T, T] x [-Q,§}}
corresponds to 2T'2/n “degrees of freedom,” i.e., there exist (up to an ervor,
small compared to TQQ) 27Q/n independent functions (and not more) that
are essentially timelimited to [-7, 7] and bandlimited to [-£2,€2]. Note that

.2TQ/x is exactly the area of [-T,T] x [-,9), divided by 2=. This num-
ber is therefore equal to the number of sampling times within [T, T} specified
by Shannon’s theorem for a function with bandwidth €; this heuristic way of
counting the “independent degrees of freedom”™ was part of the folklore of com-
munication theory long before it was justified by Landau, Pollak, and Siepian.
Independently, it was also known to physicists that a region in phase space

.= space-momentum, or time-frequency such as here) with area § corresponds

- %0 §f2r “independent states” in the semiclassical limit (i.e., when S is much
larger than A; the expression S/2m corresponds to units such that k = 1). We
will extend the definition of Nyquist density from its original sampling back-
ground, and use it for the critical time-frequency density (27)~! present in all
.these examples.

It is time to return to the wavelet transform. In what follows we will develop
the pontinuous versions of both the wavelet transform and the windowed Fourier
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2.4. The continuocus wavelet transform.

We restrict ourselves, for the time being, to one-dimensional wavelets. We always
suppose that ¥ € L?(R); the analyzing wavelet should moreover satisfy the
admissibility condition already mentioned in §1.3,

Cy=2n ] de (€17 (O < oo . (2.4.1)

The role of this condition will soon become clear. If ¥ € L!(R), then ¢ is
continuous and (2.4.1) can only be satisfied if 1)(0) = 0, or Jdz ¥(z) =0. On
the other hand, if fdz ¥(z) = 0 and we impose a slightly stronger condition
than integrability on ¢, namely [ dr (1 +|z|)* |¢(z)| < oo for some a > 0, then
[$(€)] < CI¢}P, with 8 = min (a, 1), and (2.4.1) is satisRed. It follows that, for all
practical purposes, (2 4:1) is equivalent to the requirement that fdz ¥(z) =
(In practice, we will impose far more stringent decay conditions on 1 than those
needed in this argument.)

We generate a doubly-indexed family of wavelets from v by dilating and

translating,
v*H(a) = lo| =% ¢ (* — ") :
a

where a,b € R, a # 0 (we use negative as well as positive a at this point). The
normalization has been chosen so that ||| = ||¢|| for all a,b. We will assume
that [[4|| = 1. The continuous wavelet transform with respect to this wavelet
family is then

(T f)(a,b)

i

(f, v

[z 1@ tai2 4 (“’—;—") .

Note that |(T™" f){s, b)] < || f}l. -
A function f can be recovered from its wavelet transform via the resolution
of the identity, as follows.

ProrosITION 2.4.1. For all f,g € L*(R),

/.w F L2 (T £)(a,b) T 9)(a,) = Oyl 9). (2.4.2)

Proof.

f.m /_w % (T f)(a, b) (T**g)(c,b)

= [ [ & [at e e Fias) |

[ / d¢’ 3(€") |a]'/? B¢ $(ag')] . (2.4.3)
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The expression between the first pair of brackets can be viewed as (27)!/? times

the Fourier transform of F,(£) = |a|'/? f(£) ¥(af); the second has a similar
b interpretation as (27)!/2 times the complex conjugate of the Fourier transform

of Go(€) = |a]"/? §(€) ¥(ak). By the unitarity of the Fourier transform it follows
that

(2.4.3) 2 / Z—;‘ / df Fa(€) Gal€)
- 2 / Ii‘?l / d £(€) 56 t(ae)l?

- o e fO 7O [ li";i,hix(ae)ﬁ

(1nterchange is allowed by Fubini’s theorem) -

C'l’ (f:g)

(make a change of variables ( = af in the second integral). =

It is now clear why we imposed (2.4.1): if Cy were infinite, then the resolution
of the identity (2.4.2) would not hold.
Formula (2.4.2) can be read as

=it [~ [T ER @b vt (2.44)

with convergence of the integral “in the weak sense,” i.e., taking the inner prod-
uct of both sides of (2.4.4) with any g € L*(R), and commuting the inner product
with the integral over a,b in the right-hand side, leads to a true formula. The
convergence also holds in the following, slightly stronger sense:

LY

ﬁﬁ;

im, lr-cpt | / LE @ p@n v =0, (249)
A <la|£A4,

Ag,B—co
*‘*.:f;’ |bi<B
YR
Ly Here the integral stands for the unique element in L?(R) that has inner products
»  with g € L?(R) given by
&
£ dadb
/ / BE @™ @b 9, )
A <lal<A4;
ib|<B
since the absolute value of this is bounded by
' dadb 1

S0 e ol =48 (- - 1) W Dl

A15[a|< A,
jbl<B
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we can give a sense to the integral in (2.4.5) by Riesz' lemma. The proof of
(2.4.5) is then simple:

fr-cit [[ e @~nabeer

A <laj<A;
<8
d
= sup (f—c;’ [[ &% a=nebn v >
ligli=1 adiden,
ibl<B
dadb e
< sup |C? —5— (T** f)(a,b) (T™*g)(a,b)
lgli=1 msa
or IaTSAI
or |bj>B p
- -1
- . da& WAav
<o lo;t [ [ SR e
Hgli=1 al2A .
or |a|€A;
or {b|>2B

]
| [C‘ [[% I(T“"y)(a.b)l’]m

By Proposition 2.4.1, the expression between the second pair of brackets is
figl* = 1, and the expression between the first pair of brackets converges to
zero as A;—0, Ay, B—oo, because the infinite integral converges. This estab-
lishes (2.4.5).

Formula (2.4.5), whnch shows that any f in L2(R) can be arbitrarily well
approximated by a superposition of wavelets, may seem paradoxical: after all,
wavelets have integral zero, so how can any superposition of them (which nec-
essarily still has integral zero) then be a good approximation to f if f itself
happens to have nonzero integral? The solution to this paradéx does not lie
(as solutions to paradoxes so often do) in the mathematical gloppiness of the
question. We can easily make it all rigorous: if we take f € L (R) N L*(R), and
if ¢ itself is in L!'(R), then one easily checks that the

dadb
¢! f/ LB @) b)w*"’
A <[al€ Ay
ibi<B

are indeed all in L'(R) (with norm bounded by 2C;* [Ifiiza ¥llea vl

B(A7'? — A;'/7)), and that they have integral zero, whereas f itself, the func-
tion they are approaching as A;—0, A, B—oo, may well have nonzero integral.
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The explanation to this apparent paradox is that the limit (2.4.5) holds in L2-
sense, but not in L'-sense. As A,—0, 43, B—o0,

dadb
f(z)-C;? W f(a,b)y>® '
Y An's/luéh ‘12

Ibi<B

becomes a very flat, very stretched-out function, which still has the same integral
as f itself, but vanishingly small L?-porm. (This is similar to the observation
that the functions gn(x) = (2n)~! for |z| < n, 0 otherwise, satisfy [ g, = 1 for
all n, even though g,(x)—0 for all x, and [jgulizz = (2n)~1/2—0 for n—oo; the
gn do not converge in L'(R).)

Several variations on (2.4.4) are possible, in which we restrict ourselves to
positive a only (as opposed to the use of both positive and negative a in (2.4.4)).
One possibility is to require that i satisfy an admissibility condition slightly
more stringent than (2.4.1), namely

(%3 . 0 .
Cy=2r /0 dg 1617 1(E)? = 2 [ &I HOR <o (246)

Equality of these two integrals follows immediately if, e.g., ¥ is a real function,

because then 1,2:(-( ) = 15(5). The resolution of the identity then becomes, with
this new Cy,

o0 da o0
f=cyt /0 = /_ N db T f(a,b) v (2.4.7)

to be understood in the same weak or slightly stronger senses as (2.4.4). (The
proof of (2.4.7) is entirely analogous to that of (2.4.4).)

Another variation occurs if f is a real function, and if support ¥ C [0, 00).
In this case, one easily proves that

f =205 /0 ~ i‘; /_ : db Re [T f(a, b) 4] , (2.4.8)

with Cy as defined by (2.4.1). (To prove (2.4.8), use that f(z) = (2r)"V/2

2Re [° d¢ e'* f(€), because f(—€) = f(€).) Formula (2.4.8) can of course be
rewritten in terms of ¥, = Re ¢ and ¢ = Im 1, two wavelets which are each
other’s Hilbert transform. Using a complex wavelet, even for the analysis of
real functions, may have its advantages. In Kronland-Martinet, Morlet, and
Grossmann (1987), for example, a complex wavelet ¢ with support ¢ C [0,00) is
used, and the wavelet transform T™®' f is represented by graphs of its modulus
and its phase. )

If both f and ¢ are so-called “analytical signals,” i.e., if support f and
sapport 9 C [0,00), then T™*" f(a,b) = 0 if a < 0, 80 that (2.4.4) immediately

simplifies to
r=cg [ % [ arganeer, (249)
0 a -0
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with Cy again as defined by (2.4.1). Finally, we can adapt (2.4,9) to the cas
where support ¥ C [0,00), but support f ¢ (0,00). We write f = f4 + f-, with
support f_,_ C [0, 00), support f_ € (=00,0], ¥} = 9, and we introduce _ (&) =

$(—€); clearly support ¥ C (—00,0]. Then (f;,%2%) = 0 and (f_,9}") =0
for a > 0, so that, by straightforward application of (2.4.9),

=0t [T [ el pehe + @i, i)

where (T7* f)(a,b) = (f4,9$%) = (£,9%"), (T™* f) is defined analogously, and
Cy is as in (2.4.1). .

Another important variation consists of introducing a different function for
the reconstruction than for the decomposition. More explicitly, if v, 3, satisfy
that

]

[ e 1617 11 Hia(o)l < oo, (24.11)

then the same argument as in the proof of Proposition 2.4.1 shows that
da ab a,b _
= [ LN 9) = Coalfi9) (24.12)

with Cy, v, = 21 [df |€|7} 1/;1(5) Pa(€). If Cy, W 7& 0, then we can rewrite

(2.4.12) as
'pl,w, /da /db {f, ’IJ . (2.4.13)

Note that ¢; and y; may have very different properties! One may be irregu-
lar, the other smooth; both need not even be admissible: if ¢;(£) = O(¢) for
£—0, then ¥2(0) # 0 is allowed. We will not use this extra freedom here. In
Holschneider and Tchamitchian (1990), the freedom in the choices of ¥, is
exploited to prove some very interesting results (see also §2.9). One can, for
instance, choose y¥» to be compactly supported, support y» C {—R, R], so that,
for any z, only the (f, 11)'1"") with |b — z} < |e|R will contribute to f(z) in the
reconstruction formula (2.4.13); the set {(a,b); |b — z| < [a|R} is then called
the “cone of influence” of ¥, on z. Holschneider and Tchamitchian (1999) also
prove that, with mild conditions on £, (2.4.13) is true pointwise as well as in the
LZ?-sense.

PROPOSITION 2.4.2. Suppose that 91,92 EALI(]R), that 7, is differentiable
with ¢, € L*(R), that z¢2 € L'(R), and that ¢1(0) = 0 = ,(0). If f € L*(R)
is bounded, then (2.4.13) holds pointwise in every point x where f is continuous,
ie.,

1@ =Gl i, [ G @, @

Ag— o0

<]a|<A2
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Proof.

1. We can rewrite the right-hand member of (2.4.14) (before taking the limit)
as

1 da -
z) = Cy / a? _/ d
fA],Az( ) \01'% AiSI“'S" 02 —00 y

[ st v (-’i{—f’) ¥ (”;")

-/ " by Mayan(z - 0)1() (2.4.15)

where all the changes of order of integration are permitted by Fubini's
theorem (the integral converges absolutely). Here My, 4, is defined by

M, 4,(2) = Cly, /Alqa,% EE / » (") v (I b)

2. One easily computes that the Fourier transform of My, 4, is

N da - ——
— 1/2 ~—1

My, 4,(6) = (2m)/2 Cy . o <tercn, Wa(af) ¥1(af) (2.4 16)
= M(A:€) - M(A), (2.4.17)

where M(€) = (2m)/2 C . fa151e) T Y2(a) ¥1(a), as follows from a

change of variables a—aé in (2.4.16). Since aths(a) € L?(R) and 31;1 (a) is
bounded, we have

WO < c( L w:;(a){*) " (f ol )

< ¢ ners/z -

By (2.4.11), M is also bounded, so that
IM(&)] < C1+ 1¢))~%2, (2.4.18)

implying that M, the inverse Fourier transform of M , is well defined,
bounded, and continuous.

3. The decay of M is governed by the regularity of M. For £ # 0, one easily
checks that M is differentiable in £, with

d - -
FO = em Ol [320) O+ (-0 (0]
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Because vy € L!, 9 is differentiable, so that, for £ =0, l

4y

& = (2m)/2 C31,. 2 41(0) ¥4(0) = 0.

€=0

" It follows that M is &ifferentiable. Moreover, since 3 € L!, we have

[9a(€) ~ G2(0)]
< ¢ [l -1l (o)

¥:2(€)|

i

< Cl / dz lawa(z)] < €' J6] ,

which implies ' ﬁM({)l <c” {hﬁx(ﬁ)l + fziq(mg)j], so that M € I2. It

then follows from

[ M) < 1 (~1 ”2')—']'” IEL o2?) M)

: 2\ 11/2
< c[[da (IM(5)|’+ )] <o

that M € L}(R). Moreover, M(0) = (2r)"/2 C;f,%fﬁ'vf)z(a) m =
(2m)~Y2%, or [dz M(z) = 1.

1/2

%M(e)

. Using (2.4.17) we can rewrite (2.4.15) as

xz

Y 1 -y 0 1 -y
)= [ avpw (22) 10 - [ du v (S22 500
Because M is continuous, integrable, and of integral 1, the first term tends
to f(z) for A,—0 if f is bounded, and continuous in z. (This follows from

a simple application of the dominated convergence theorem.} The second . -
term is bounded by

IREICIC ,
! 1/2
< ([ el [favor]”

< APV ML Ifllie < C 472, -

because M € L*(R) by (2.4.18). This term therefore tends to zero if
Ag—00. »

REMARK. In Holschneider and Tchamitchian (1990), this theorem is proved

under slightly more general conditions on f as well as on ¥;,¢5. o
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2.5., . The reproducing kernel Hilbert space underlying the continuous
L wavelet transform.

;ﬁi@"a special case of (2.4 2), we have, for f € L3(R),
c;* [ [ L2 nnr = [aiser

In other words, 7™* maps L?(R) isometrically into L?(R?; C;'a~? dadb), the
space of all complex valued functions F on R? for which |[|F|[|Z = C;' [ [ %
|F(a,b)}?> converges; equipped with the norm ||| |||, this is a Hilbert space
The image T**"L?(R) constitutes only a closed subspace, not all of L*(R?;
€, 'a"? da db); we will denote this subspace M,

. The following argument shows that H 1s a r“.k.ﬂ.s. For any F' € H, we can
find f € L3(R) so that F = T™ f. It follows then from'(2.4.2) that

' F(a,b) = (f, v*) é

da'dV/
- ¢ [ [ 57 @ ey TEn@
g el da'db’ 7 ! 14 /
. = C¢’/ =7~ Kla,b; a',¥) F(a',b) ~(@s)
with

K(a,b;, ') = (T¥vyeb)(a', V) '
~ (wa',b',wa,b) .
Formula (2.5.1) shows that ? is'indeed an r.k.H.s. embedded as a subspace in
L*(R? C,'a~2 dadb). (It also immediately shows that  is not all of L*(R?,
C; 15-2 da db), since such a reproducing kernel formula could not hold for the
whole space L?(R? C;'a"2dadb).)
In particular cases, { becomes a Hilbert space of analytic functions Let

us restrict ourselves again to functions f such that support f C [0,00), these
functions form a closed subspace of L?{R) which we denote by H?2 (it is one of a
family of Hardy spaces). For i) we choose, for instance, {(¢) = 26e~¢ for £ > 0,
W(€) = 0 for £ < 0 (¢ is also it H?). Then the functions in 7™ H? can be
written as (consider only a > 0; see (2.4.9))

. F{a,b) = (f, 'pa.b) = 201/2/wd£ f(E) aé e b+sa)é
- 0

i, = (2x) a*? G(b + ia),

%350«5 G is analytic on the upper half plane (Im z > 0). Moreover, one easily
chicks that

- jo “da j_ : B alG(o+ia)f = [ de|f (@)1,
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so that T%2¥ can be interpreted as an isometry from H? to the Bergman space
of all analytic function on the upper half plane, square integrable with respect
to the measure Imz d(Im 2) d(Rez). On the other hand, one can prove that
any function in this Bergman space is associated, via the wavelet transform with
this particular ¥, to a function in H?: the isometry is onto, and is therefore a
unitary map. For gther choices of v, such as ¥ € H? with $(£) = Ng £° ¢
for ¥ > 0, the image T"*H? can be ldentlﬁed with other Bergman spaces of
analytic functions on the upper half plane.!

Since TV L? or T"*" H? can be identified with a réproducing kernel Hilbert
space, it should be no surprise that there exist discrete families of points
(E,,,, b, ) such that f is completely determined by, and can be reconstructed from,
(T¥ f) (aa, ba). In particular, if T%* f can be identified with a function in
a Bergman space, then it is obvious that its values at certain discrete families
of points completely determine the function, since it is, after all, an analytic
function. Reconstructing it in a numerically stable way may be another matter:
the situation is not as simple as in the bandlimited case, where there exists a
special family of points z, such that the e, constitute an orthonormal basis
for Bn. There is no such convenient orthonormal basis e, 5. in our T**L? or
T***H?. We will see in the next chapter how this problém can be tackled.

Finally, before we leave this section, it should be remarked that (2.4.4), or the
equivalent r.k.H.s. formulation, can be viewed as a consequence of the theofy of
square integrable group representations. I do not wish to’dwell on this in detail
here; readers who are interested in learning more about them should .consult
the references in the notes. ? The ¥ are in fact the result of the action of the
operators U(a, b), defined by

; r-b\
Va.bfla) = 1ol 1 (252)
on the function . The operators U{(a, b) are all unitary on L*(R), and constitute
a representation of the ax + b-group:

U(a,b) U(d',b') = Uad', b+abd').

This group representation is irreducible (i.e., for any f # 0, there exists no
nontrivial g orthogonal to all the U(a, b) f, which is equivalent to saying that the
U(a, b) f span the entire space). The following result is true: if U is an irreducible
unitary representation in H of a Lie-group G with left invariant measure du, and
if for some f in H,

/G dulg) I(f, U@ ) < oo, (2.5.2)

then there exists a dense set D in  so that property (2.5.2) holds for any element
f of D. Moreover, there exists a (possibly unbounded) operator A, well defined
. in D, so that, foralleDandallhl,hze‘H

[ due) U@ (o UDP = Cpihisha), (259
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with C; = (4 f, ). In the wavelet case, the left invariant measure is a~2 da db,
and A is the operator
¥

(AN"E) =117 £(

Note that (2.5.3) is a general resolution of the 1dent.ity!

In what follows, we will not exploit this group structure underlying the
wavclet transform, mainly because we will soon go to dlscretely labelled wavelet
families, and these do not correspond to subgroups of the ax + b-group.

In quantum physics, resolutions of the ideritity (2.5.3) have been studied
and used for many different groups G. The associated families U(g)f are there
called coherent states, a name that was first used in connection with the Weyl
Hexseuberg group (see also next section), but later spilled over to all the other
groups as well (and cven to some related constructions which were not gener-
ated by a group). An excellent review and a collection of important papers-
on this subject can be found in Klauder and Skégerstam (1985).. The coherent
states associated with the az 4+ b-group, which are now called wavelets, were first
constg‘;{ctegl by Aslaksen and Klauder (1968, 1969).

2.6. The continuous wavelet transform in higher dimensions.

“There exist several possible extensions of (2.4.4) to LZ(R™) with n > 1. One
possibility is to choose the wavelet ¢ € LZ(R™) so that it is spherically symmctnc
Its Fourier transform is then spherically symimetric as well,

¥ e =D ‘

and the admissibility condition becomes

o0

e dt '
Cy = (2n)" | n Jq(t)]z < 00 .

Along the same lines as in the proof of Proposition 2.1 one can then prove that,
for all f,g € L*(R"),

artl

/Ooo da /_00 db (T f)(a,b) (T"g)(a,8) = Cy(f, g) , (26.1)

‘where (T"*f)(a,b) = (f,¥*®), as before, and ¢p*¥(z) = a~™/% y(£=2), with
2 €R,,a#0,and be R". Formula (2.6.1) can again be rewritten as

<
G
K8,

f=cyt fo s f db (T™ f)(a, b) ¥ . (2.6.2)

%

~# & It is also possible to choose a ¢ that is not spherically symmetric, and to
mtroduce rotations as well as dilations and translations. In two dimensions, for
i"Bt-ance, we then define

¥ (z) = a1y (3;1 (1' ;— b)) ,
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where a > 0, b € R?, and where Rj is the matrix
cosf —sind
sind cos# :
The admissibility condition then becomes
® dr 2 R
Cy = (2m)? / - ad [Y(rcosd, rsind)|> < oo,
0 0

and the corresponding resolution of the identity is

f=c; /W da / [ s T"‘“"f)(a,bﬂ}qb"”

A similar construction can be made in dunensmns larger than 2. These wavelets
with rotatior angles were studied by Murenzi (1989), and applied by Argoul
et al. (1989) in a study of DRA (diffusion-limited aggregates) and other two-
dimensienal fractals.

2.7. Parallels with the continuous windowed Fourier transform.

The windowed Fourier transform of a function f is given by

(T f)w,t) = {f, ¢}, (27.)

where g¥t(z) = e™*g(x—t). Arguments completely similar to those in the proof
of Proposition 2.4.1 show that, for all f,, f, € L%(R),

® [ [awa @@ ERGY = 2 Il f)
which can be rewritten as
£=(erlgl) [ [ dwat (7 py gt (2.7.2)

There is no admissibility condition in this case: any window function g in L? will
do. A convenient normalization for g is ||gllz2 = 1. (The absence of an admissi-
bility condition is due to the unimodularity of the Weyl-Heisenberg group—see
Grossmann, Morlet, and Paul (1985).) -

The continuous windowed Fourier transform can agam be viewed as a map
frodd L2(R) to an r.k.H.s.: the functions F € T*"L%(R) are all in L2(R?) and
moreover satisfy

F(w,t)=§l; / / dw dt K(w,t; o, t') F(W',t'),

where K(w,t; o',t') = (g*'t, g*%). (We assume ||g|| = 1 here.) Again there
exist very special choices for g which reduce this r.k.H.s. to a Hilbert space of
analytic functions: for g(z) = 7'/ exp(—z2/2), one finds

(T™" f)(w, t) = exp [—%(w’ +t?) - -;-wt Hw +it) (2.7.3)
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where ¢ is an entire function. The set of all entire functions ¢ which can be

obtained in this way constitutes the Bargmann Hilbert space (Bargmann (1961))7

The g“'* obtained from g{®) = go(z) = 7~Y/4 exp(—z2/2) are often called

the canonical coherent states (see the primer in Klauder and Skégerstam (1985));

. the associate continuous windowed Fourier transform is the canonical coherent

state representation. It has many beautiful and useful properties, of which we

will explain one that will be used in the next section. Applying the differential
operator H = —a;! + 22 — 1 to go(x) leads to

a2 2
(“Tda:—i +z% - 1) /4 exp(—x2/2) = )
i.e., go is an eigenfunction of H withgigenvalue 0. In quantum mechanics lan-
, guage, H is the harmonic oscillator Hamiltonian operator, and gp is its ground
. . state. (Strictly speaking, H is really tutce the standard harmonic oscillator
"~ . Hamiltonian.) The other eigenfunctions of H are given by higher order Hermite

yoex

P

o

i functions,

¢ ~1/4 o=n/2(,1y—~1/2 d\" 2

bole) =774 22 (2= 1) expl-a/2)
" which satisfy :

H¢, =2n ¢, . (2.7.4)

" (The standard and easiest way to derive (2.7.4) is to write H = A*A,
% where A = z + E' and A* is its adjoint A* = ¢ — ﬁ, and to show that
) f’ Ago = 0, A(A*)" = (A*)"A + 2n(A*)"?, so that Hé, = a, A*A(A*)" g =
-eu,, an A* 2n(A*)""! go = 2n ¢,; the normalization o, can be computed easily
a8 well.) It is well known that the {¢,; n € N} form an orthonormal basis for

P A%

L3(R); they constitute therefore a “complete set of eigenfunctions” for H.3
Let us now consider the one-parameter families ¢, = exp(—iHs)y. These

;. are the solut!ons to the equation
10,4, = HyY, , ~ (275)

" ¢-with initial condition ¥ = ¢. In the very special case where ¥o(z) = "(:c) =
_q,ll r"‘/‘ e exp{ -(x -- t)?/2], we find :/), e“"' gy, where w, = w cosZs -

‘~ % explicit computation). That is, a canomca.l coherent state, when “evolv
,% imder (2.7.5), remains a canonical coherent state (up to a phase factor which will
unimportant to us); the label (w,,t,) of the new coherent state is obtained
*%om the initial {w,t) by a simple rotation in the time-frequency plane.

-

STy The continuous transforms as tools to build useful operators.
. The resolutions of the identity (2.4.4), (2.7.2) can be rewritten in yet another

.
-

oG / df,,db () Yt =1d, (2.8.1a)
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1 w,t w,t
. //dwdt(,g yg“t=1d, (2.8.1b)

where (-, ¢)¢ stands for the operator on L?(R) that sends f to {f, ¢)¢; this is
a rank one projection operator (i.e., its square and its adjoint are both identical
to the operator itself, and its range is one-dimensional). Formulas (2.8.1) state
that a “superposition,” with equal weights, of the rank one pi1ojection operators
corresponding to a family of wavelets (or a fam’ly of windowed Fourier functions)
is exactly the identity operator. (As before, the integrals in (2.8.1) have to be
taken in the weak sense.) What happens if we take similar superpositions, but
give different weights to the different rank one projection operators? If the
weight function is at all reasonable, we end up with a well-defined operator,
different from the identity operator. If the weight function is bounded, then the
corresponding operator is as well, but in many examples it is advantageous to
consider even unbounded weight functions, which may give rise to unbounded
operators. * We will review a few interesting examples (bounded and unbounded)
in this section.
We start with the windowed Fourier case Let us rewrite (2.8.1b) in the 7.q

(momentum, posmon) notation customary in quantum mechanics (rather than
the w,t notation for the frequency-time plane), and insert a weight function

w(p, q):

=

= 51; // dpdg w(p,q) (-, ¢"9) ¢"7 . (2.8.2)

If w ¢ L(R?), then W may be unbounded and hence not everywhere defined;
as a domain for W we can then take {f; [ [dp dq jw(p,q)|® |{f, ¢")I? <
oo}, which is dense for reasonable w and g.° Two useful examples in quantum

mochamcs are (1) w(p,q) = p?, which leads to W = -a"—! + Cy Id, where
= [d¢ €2|§(€)?, and (2) w(p,q) = v(g), for wlnch W is a multlpllcatwe
pot,entxal operator: (W f)(x) = Vy(z) f(z). with Vo(z) = [dg v(q)lg(z — q)|*.

Readers familiar with the basics of gquantum mechamcs will notice that in both
cases the operator W corresponds pretty well to the “quantized version” of the
phase space function w(p,q) (in units such that A = 1), with a slight twist: the
extra constant C’ in the first case, the substitution of v x |g|? for the potential
function v in the second case. In fact both formulas were used in Lieb (1981) to
prove that Thomas-Fermi theory, a semiclassical theory for atoms and molecules,
is “asymptotically” correct (for Z-—00, i.e., for very heavy atoms); it gives the
leading order term of the much more complicated quantum mechanical model.
Lieb’s proof used the two examples above in three dimensions (rather than one);
the vperators he really wanted to consider were, of course, —A = -82 82 -82,
and V(z) = [z? + 22 + £2]~1/2, so that he had to choost an appropnate g and
deal with the extra constant Cy and the difference between V aud V » |g|? by
some other means. Note that choosing v(q) with an integrable singularity (such
as the three-dimensional Coulomb potential) always leads to a nonsingular V;:
operators of type (2.8.2) cannot represent such singularities.

Many other applications of operators of type (2.8.2) exist. In pure mathe-
matics they are sometimes called Toeplitz operators, and whole books have been
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written on them. In quantum optics they are also called “operators of type P,” .
and again there exists an extensive literature on the subject (see Klauder and

Skagerstam (1981)). % But let us go back to signal analysis, and see how (2.8.2)
can be used to build time-frequency localization operators.

Let S be any measurable subset of R%. Let us return to time-frequency

notation, and define, via (2.8.2), the operator Lg corresponding to the indicator
function of S, a{w,t) =1 if (w,t) € S, 0if (w,t) € S,

1
. Lg=— dwdt (-, g**) g“t.
(w,t)ES
It follows immediately from the resolution of the identity that

wsh o= 5 [ [ awaingor

(w,t)ES =
% //dwdt K, 9”2 = I 112

on the other hand, obviously (Lgf, f} > 0. In other words,

IA

0<Lg<id.

If*S is a bounded set, then the operator Lg is trace-class (see Preliminaries),
since, for any orthonormal basis (un), N in L*(R),

. 1 w,t 2
S Ttsmom = o [ [t Tl

(w,t}ES

(order of integral and summation may be inverted by
Lebesgue’s dominated convergence theorem)

1
= 5 [ [ watr=is
s

(w,t)ES

Py
2T,

et
;gﬁuf

.

where | S| is the measure of S. It follows that there exists then a complete set of
#® eigenvectors for Lg, with eigenvalues decreasing to zero,

E;

)

#

sy
3

Ls¢n = Andn ,
’\nZ’\n+l ZO) lim Aﬂ=‘07
' n—oo

4
a i adg
3

-

PR

{#n; n € N} orthonormal basis for L?(R) .

_ Such an operator Lg has a very natural interpretation. If the window function g
is reasonably well localized and centered around zero in both time and frequency,

I 1
N
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then (f, g*"*) g*'* can be viewed as an “elementary component” of f, localized in
the time-frequency plane around (w,t). Summing all these components gives f
again; Lgf is the sum of only those components for which {w,t) € S. Therefore,
Lg f corresponds to the extraction from f of only that information that pertains
to the region S in the time-frequency plane, and the construction from that lo-
calized information of a function that “lives” on S only (or very nearby). This
is the essence of a time-frequency localization operator such as we saw in §2.3!
We can now, moreover, study Lg for sets S much more general than rectangles
[, 9] x [-T,T). (Note, however, that even for S = {-Q,Q} x [-T, T}, our op-
erators Lg are different from the @r P Qr considered in §2.3.) Unfortunately,
for most choices of S and g, the eigenfunctions and eigenvalues of Lg are hard to
characterize, and this construction is of limited usefulness. However, there is one
choice of g and one particular family of sets S for which everything is transpar-
ent. Take g(z) = go(z) = 7~V* exp(~z?/2), and Sg = {(w,t); w* + * < R?}.
Let us denote the corresponding localization operator by Ly,

In=ge [ [ awdrc gt o
WA ISR

These operators Lr commute with the harmonic oscillator Hamiltonian
H= ———g' + z? ~ 1 from §2.7, as can be seen by the following argument. Since

-:HJ e

go

Waily

9o )

with a, = (Wt — w,t,)/2 € R, we have

« (e_,Hsf, g::,t) g:,t = (f, eiHay-od,t) g: = g 1%-e (f w-.,t-,) w,t . :

hence

1

LR e—;Ha = 51? dw dt ( , g:-.,t,.) e—-t(ut—u...t-.)/‘.’ g;:, .

w2+3< A2
If we substitute ' = w_,, t' = t_,, then one easnly checks (use the explicit

formulas for a,, w,, t, at the end of §2.7) that ot = = gote = =exp [~ (W't — wt)]

e*Hs g’ On the other hand, the domain of integration is invariant under the
transformation (w,t)—(w’,t') (because this transformation is simply a rotation
in time-frequency space!). so that

1 ' ot )y
LR e-a}h = 5; // -dwl dtl (_, g: ,t)e-—tﬂc g::t
w3412 <R?
- e—;Hc LR

and Lg commutes with H, as announced. It follows that there exists an or-
thonormal basis in which both Ly and H are diagonal (see Preliminaries). But,
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since the eigenvalues of H are all nondegenerate, there exists only one basis that
diagonalizes H, namely the Hermite functions (see §2.7). It follows that the
Hermite functions ¢,, are necessarily the eigenfunctions of Lg. The eigenvalues
of Ly can be computed from

{$n, 95°°) = (n! 2°) 2 (—i)"(w +it)" m[‘i(w’ﬂ”) - %“’t] '

23 (There are many- ways to compute this expression. One way, via the Bargmann
FS‘ Hilbert space, is explained in Note 3 at the end of this chapter.) We then have
i

5 .LR % = Afl(lt)1ﬁ1'u

'i*' with
/\n(R) = (LR ¢ru d’n)

- L w,ty (2
= = [/ o dt (g, 65

w4t2< R2

- // dodt —— (W +£7)" em[—%(w2+t2)]

w2+t2<R?
R _
1 1
= drr r oexpl-=1r2}):
/; o nl2n p( 2
. 1 R%/2
= = ds s" e’ ,
0

,,»

-7~ which is a so-called incomplete I-function. From this explicit formula for A, (R),
%Atls now possible to study its behavior as a function of n and R. I will summarize
3 ﬁ‘imly the results here (details can be found in Daubechies (1988)); Figure 2.4 also
3%gahows a plot of A,(R) for three different values of R. For every R, the A,(R)
»decrease monotonically as n increases; for small n they are close to 1, for large
&2 n-close to zero. The threshold value around which they make this “plunge,” as
-5 defined, for example, by ney; = max{n; A > 1/2}, is nynr ~ R?/2. Note that
3 “&lus is again equal to wR?/2m, i.e., the area of the time-frequency localization
¢ meglon Spr multiplied by the Nyquzst density, just as in §2.3. The width of the

‘ “glunge region is wider than in §2.3; however,

ﬁ;*‘: . #{n;1-e>A2€} <CR,
“?{ﬁ compared to the logarithmic width in (2.3.2)), but it is still negligible, for
%ge R, when compared with ny,y. Another striking difference with §2.3 is that
‘rm eigenfunctions ¢, in this case are independent of the size of the region Sg
< {tintike the prolate spheroidal wave functions): the R-dependence is completely
,,;%gaeﬁnoenuated in the An(R).”
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| o1

o] 5 10 15 20
FIG 24 The ewgenvalues Ap(R) for R=3, 5, and 7

Examples similar to all of the above exist for the continuous wavelet trans-
form We can again insert a non-constant function w(a,b) in the integral in
(2.8.1a), and construct operators W different from the identity operator. An
example is w(a,b) ~ a? in three dimensions, with a spherically symmetric v
(where the resolution of the identity is given by (2.6.2)), i.e.,

W@ =05 [" G [ @G NI, @8

where $(£) = ¢([¢]) and Cy = (20)3 ["ds s¢(s).

Because the three-dimensional Fourier transform of g{z) = |z|™2 is
§(¢) = V2/(v/7|€]) (in the sense of distributions), one easily checks that W f
can also be written as

Whe = [a =

lz — yl

f) (2.84)

so that (W f,g) represents the interaction Coulomb potential energy for two
charge distributions f and g. This formula was used in, e.g., the relativistic
stability of matter paper by Fefferman and de la Llave (1986). Notethat (W £, g)
becomes “diagonal” in the representation (2.8.3) (which, incidentally, is why
it turned out to be useful in Fefferman and de la Llave (1986)). Note also
that this diagonal wavelet representstion completely captures the singalarity of
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the kernel in (2.8.4) no “chpping off” of the singularity as in the windowed
Fourier case. This is due to the fact that wavelets can zoom in on singularities
(an extreme version of very short-lived high frequency features!), whereas the
windowed Fourier functions cannot (see §1.2 or §2.9).8

We can also, as in the windowed Fourier case, choose to restrict the integral
in (2.8.1a) to a subset S of (a, b)-space, thus defining time-frequency localization
operators Lg. These are well defined for measurable S, and 0 < Lg < 1. For
compact S not containing any points with a = 0, L is a trace-class operator. For
general S, the eigenfunctions and eigenvalues may again be hard to characterze,
but there exist again special choices of ¥ and § so that the eigenfunctions and
eigenvalues of Lg are known explicitly. Their analysis is similar to the windowed
Fourier case, but a bit more tricky. We will only sketch the results here; for full
details the reader should consult Paul (1985) or Daubechies and Paul (1988).
One such special o is z/}(g) =2 e for £ >0, 0 for £ < 0; the associated
resolution of the identity from which we start is (see (2.4 9))

— o d > a a a a
c,' /0 ;;‘5 / (. Pt + (vt =1,

~

where ¥, = ¢, ¥_(£) = ¥(—£) The operators Lc = Ls. we consider are given

Lc=Cy' / f d';f b, Wi + (- e,
(a.b)eSc
with S¢ = {(a,b) € Ry x R; &2 +5 +1 < 2eC}, and C > 1 In the
representation of (e, b)-space as the upper half complex plane (z = b + 1a), the
Sc correspond to the disks |z —2C|? < C?—1. The role of the harmonic oscillator
Hamiltonian is now played by the operator H defined by

d2 d .
H()Me) = [—5@ R % i) .

exp(—'z Ht)wi,b — ptag(ab) d]i(t)-b(t) :

z cost +sint

b(t) +1a(t) = 2(t) = —————

1

" with 2 = b+ fa. One easily checks that the flow z—z(t) preserves all the circles

jz — iC|? = C? — 1, as illustrated by Figure 2.5. It follows that H and the L¢
commute, so that they can be diagonalized simultaneously.? The eigenvalues of
H all have degeneracy 2; for every eigenvalue E, = 3 + 2n we can find two
eigenfunctions,

2v2 [(n+2)(n+1)]"V2 £ L2(26)e~¢ foré >0,

()8 =
0 foré <0,
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eigenvalues of Lg are known explicitly. Their analysis is similar to the windowed
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d2 d .
H()Me) = [—5@ R % i) .
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b(t) +1a(t) = 2(t) = —————

1

" with 2 = b+ fa. One easily checks that the flow z—z(t) preserves all the circles

jz — iC|? = C? — 1, as illustrated by Figure 2.5. It follows that H and the L¢
commute, so that they can be diagonalized simultaneously.? The eigenvalues of
H all have degeneracy 2; for every eigenvalue E, = 3 + 2n we can find two
eigenfunctions,

2v2 [(n+2)(n+1)]"V2 £ L2(26)e~¢ foré >0,

()8 =
0 foré <0,
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-

Fic. 2.5. Flow hnes for z(t) = zcost + mnt

cost — zsnt

and (¥;)€) = (W) (-€). Here L2 is the Laguerre polynomial (2 is a super-
script, not a power) as given by the general formula

da
L(z) = ;11—' ez * e (e =z™t*)
_ z": (~1)™ Fn+a+1) 1 om
- — 'm—m+1)T'(a+m+1) m!

Since the operators L commute with the parity operation (IIf)*(€) = f(-¢€),
it follows that v}, 3, are eigenfunctions for the Lo as well (because of the
degeneracy of H, not every eigenfunction of H is a priori an eigenfunction of
L¢!). The corresponding eigenvalues of Lo are

2 " 2 1
AF =7 = —_— — 4 ——
'"A““(”“)(l C+1) (C+1+n+1)'

(This means that Lo has the same degeneracy as H, so that in this case every
eigenfunction of H is in fact an eigenfunction of L¢ a8 well.) We can therefore
also use yS = .\}5(1/;,*; +¥;) and 97 = -5 (¥} — ¥;7) as eigenfunctions; these
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have the advantage that they are real. Figure 2.6 shows the plots of the first few
Y5, Y3 (e for even, o for odd). A graph of A\,(C), for various values of C, is given
in Figure 2.7. For reasonably large C, the A,(C) behave as we by now expect of
the eigenvalues of a time-frequency localization operator: they are close to 1 for
n small, with A;(C) = 1- (z3ys, and they plunge to 0 for a larger, C-dependent
. value of n. More precisely, for any v € (0,1), the value of n for which A,,(C)
. - . crosses <y is equal to n = nC + O(1) (C large), with (2 + 77 !)(1 - 2C“)"C =y
t.+ or 2n—In(1 + 29) = —Iny + Q(C™!). This implies that

2# {n; A (C) 2 'Y}
2C F7 (-Iny)+0(1),

N

|l

# {eigenfunctions; A,(C) > v}

ol
et

il
H

g m@ﬁ%:
T
.

where F(t) = 2t — In(1 + 2t). In particular,
# {eigenfunctions; A,{C) > 1/2} =2C F~!(In2) + O(1) . (2.8.5)

In order to compare this w1th the Nyquist density, we first need to find the a.rea
in time-frequency space corresponding to Lg. To do this, we go back to the ¢
We have

/ dz [Y3*(z)? =
3
a,byA 2 L 2
[ st ere =5
Hence S¢ = {(a,b) € Ry x R; a® + b +1 < 2aC} corresponds to the time-
frequency set
Sc = {(w,t) eR?% 2+ —?— +1< ?C;}
This corresponds to a low frequency as well as a high frequency cut-off; see Figure
2.8 for a comparison between this time-frequency localization set and the disks

5" " of the windowed Fourier case. '° The area of 5S¢ is |S¢| = 6m(C ~1). Combining *
7% this with (2.8.4) gives

I
A i ions; >
S # {elgenfunctnofls,l M(C) 21/2} - 1 F(In2) + 0(C)
5 1Sci 3x
" 646 "
= - frO(C )

which is different from the Nyquist density! This contradiction is only apparent,
and is due to the fact that the width of the “plunge region” of the \,(C) is
- proportional to C, and thus to |S¢|. We have indeed, for € > 0,

#{ei_genfunctions;esksl-—e}

~

= 3= et {2 (P40 -9 - Fiim el + 0GSal™)} .
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3 in contrast to the prolate spheroidal wave case, where the analog of the expression
between curly brackets tends to zero as |S|™log|S| for |S|—oc0, and with the
windowed Fourier case, where it behaves like |S|~1/2 for |S|—00. The fact that
in the present case the width of the plunge region is of the same order as IS'CI
itself results from the non-uniform time-frequency localization of the 3% it
is an indication that we have to be careful with time-frequency-density-based
intuition when dealing with wavelets. We will come back to this in Chapter 4.

2.9. The continuous wavelet transform as a mathematical zoom: The
characterization of local regularity.

This section is entirely borrowed from Holschneider and Tchamitchian (1990),

who developed these techniques in part to study local regularity properties of a

nondifferentiable function proposed by Riemann.

. THEOREM 2.9.1. Suppose that [ dz(1+ |z|) |¢(z)| < oo, and P(0) = 0. If a
bounded Sfunction f 1s Holder continuous with exponent a, 0 < a < 1, i.e.,

1f(z) = f(y)| < Clz — g™,
. then its wavelet transform satisfies

IT**(a,8)] = {(f,4**)] < C" Ja|**}/2.
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Fic 28 (a) The set S¢ = {(t,w), 2+ -31 +1< %ﬁ} for different values of C (b) A

comparison between the time-frequency localization sets for the windowed Fourter transform
(the disk Sp = {(t,w), t? +w? < R?} at teft) and for the wavelet transform (at right)

Proof Since [dz ¥(z) = 0 we have

W) = [ala? v (252) (1) - 00
hence

it < faniol o (252)| oot
¢ la+/2 [ ay 1w ul®

. < fod |a|a+1/2 ] a

IA

The following is a converse theorem.
THEOREM 2.9.2. Suppose that ¢ 1s compactly supported. Suppose also' that
f € L?(R) s bounded and continuous. If, for some a € 10,1], the wavelet
transform of f satisfies .
i . |(f,9°%)| < Clal**'/, (29.1)

then f 18 Holder continuous nth ezponent a.
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Proof.
1. Choose %, compactly supported and continuously differentiable, with

J dz P2(x) = 0. Normalize v, so that Cy 4, = 1. Then, by Proposition
24.2,

1@= "% [~ v vt

We will split the integral over a into two parts, [a| < 1 and |a] > 1, and
call the two terms fgs(x) (small scales) and f.s(x) (large scales).

2. First of all, note that frs is bounded uniformly in z: ’

sl s [ G [ @i vk

fa -1/2 z—b
. C/|;|2102 [-mdeGI 'J)z( a )l

< C 2l / dala]¥?=€"<o0. (2.9.2)
laj>1

Next, we look at |frs(z + h) — frs(z)] for |A] < 1:

hsrm-fis@l< [ oo [~ @ [ izl

(2] (=2222) o ()

Since |y2(z+t) —2(z)| < CJt|, and since support ¢, support ¥ C [-R, R}
for some R < oo, we can bound this by

(29.3) < C' |h| daa™t [db [dy|f(y)l

lal21 z—b|<{a|R+1
lv-$i<lelR
< C"|n § da |aj3 / dy " |f(@l
lai21 ly—=}<2ja| R+1

< C" ) fllus j da la]~3(dla|R +2)"/3 < C™ |h] .
fal21

This holds for all |h| < 1; together with the bound (2.9.2), we conclude
that |frg(z + h) — frs(z)| < CJh] for all h, uniformly in z. Note that we
did not even use (2.9.1) in this estimate: fig is always regular.

3. The small scale part fgs is also uniformly bounded:
( b)
a

Ifss(z)] < C / db Ja|o+i/2 |o]=1/2

laj<1 62
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< Ol /' L dalalT =0 <00

4. We therefore again only have to check |fss(z + h) — fss(z)| for small h,
such as |h| < 1. Using again |¢2(z + t) — ¥,(2)] < C|t|, we have

[fss(z + h) — fss(-’ﬁ)l .
T b
o ()R (=)

< LS Lo
laj<jh) &7

o h

+f -5 db |a|* C -l

|hI<lal<1 @7 Jiz—bl<ialR+[h a

da
¢’ {”'!Jz”m da a1 + lhl/ da Ja}~3**(|a|R + ’hl)}
lal<thl IhiSlal<1

IN

- CU Ihla .
It follows that f is Holder continuous with exponent a. =

Together, Theorems 2.9.1 and 2.9.2 show that the Holder continuity of a function
c¢an be characterized by the decay in a of the absolute value of its wavelet trans-
form. (Except for a = 1, where we do not have complete eguivalence.) Note that
we did not assume any regularity for ¢ itself: apart from decay conditions on
1, we only exploited that [ dz (z) = 0. (Although this condition is not stated
explicitly in Theorem 2.9.2, ¥ nevertheless satisfies it: the bound (2.9.1) cannot
hold otherwise.} Higher order differentiability of f and Holder continuity of its
highest. order well-defined derivative can be characterized similarly by means of
the decay of the wavelet coefficients if iy has more moments zero: in order to
characterize f € C™ and Hoélder continuity with exponent a of ™) we will need
a wavelet ¥ so that [dz z™y(z) =0for m =0,1,...,n. For such a wavelet we
have, for a € ]0,1], .

f € C*, with all the f(™), m = 0,---,n bounded*and square integ-
rable, and f(™ Hoélder continuous with exponent o

<=5
I(f, »*®)| < Cla[**¥/2**, uniformly in a .

Again, we require no regularity for 1.

What is most striking about all these characterizations is that they only
involve the absolute value of the wavelet transform. Note that one can also
derive regularity of f from the decay in w of the absolute value of its windowed
Fourier transform T™'%(w,t), if the window g is chosen sufficiently smooth. In
most cases however the value for the Hélder exponent computed from |7 (w, t)|
will not be optimal. To obtain a true characterization, the phase of T%1%(w, t)
should also be taken into consideration, for instance via Littlewood- Paley type
estimates (see, e.g., Frazier, Jawerth, and Weiss (1991)).
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The wavelet transform can also be used to characterize local regularity, some-
thing that cannot be achieved, cven when phase information 15 taken into ac-
count, by the windowed Fourier transform. The following two theorems are again
horrowed from Holschneider and Tchamitchian (1990)

THEOREM 2.9.3. Suppose that [ dr (1+|7]) [${x)| < oo and [ dz ¢(z) = 0.
If a bounded function f 15 Hélder continuous i rg, wnth erponent a € |0,1], ve.,

|f(xo + h) ~ flxo)l < ClR|7,

ther )
. I(F, w0t < Clal'’? (Ja)™ + b))

Proof. By translating everything we can assume that x; — (. Because

(%)

- [ dx (x) = 0, we again have

I/, w"'bﬂ = fd.r {f(r) — FIO) Jal 1/2

< C‘]d.r Lrl® Ja| 12 ,4,(_{;:")'
a
e b 1/2 b "
< Claf dy jy+ -1 [0l
< C a2 (la]” +1bI%) . .

THEOREM 2.9.4. Suppose thal Y is compactly supported. Suppose also that
f & L3(R) 1s bounded and continuous. If, for some v > 0 and a € ]0,1],

I(f, ") < Cla|?+1/? untformly, mn b,

and

a,b+ g 1/2 a _J_")I:*
s s ol (Jaie+ 1 )

then f s Holder continuous m ro unth exponent a.

Proof.

1. The proof starts exactly like the proof of Theorem 2 9 2, of which the first
three points carry over without change, with -y taking over the role of « in
point 3.

2. We therefore only have to check |fss{(zo + h) — fss(zp)| for small h. By
translating everything, we can assume zo = 0, and we obtain

|fss(h) — fss(0)]
h - b\ |
) ( . )

< f da ™ |a}”
|
da [ {b]™
+ / ———/ db(a"‘+—-———-)
e <tatgin @ oo ® I ¥ Tiog ]

al<infarr 6% J oo

(")
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o (e i) o (-2)

da a ___lbl"_) (h_-_fz)_ (._2)
* /|h|s1a|51°2 -oodb(w +Iloglbll L P Rl

(2.9.4)

where we have assumed a > . (If a < v, things become simpler.) Let us
denote the four terms in the right-hand side of (2.9.4) by Ty, T3, T3, and
Ts. .

3T [ dala ™ Ml < CIAP.
lalsihla/r
4. In the second term, we use support y; C [_-R, R] to derive

~l+a 1
T, < /,,,.gm"""" ¥alle

__ -1 (la[R + |h])*
* /wn/wgu}gh]da o ”‘(}?”LI |log(la|R + {h|)|

. .
< Clhl® |14 — / da la|™?
W [ logihll Jimjars <jai<ing ta }

< C .

5. Similarly, for sufficiently small A/,

~1+a . -1 . (la}R)*
o< [ delal alo + /,a,s.h.d""” ales i
< Che.
6. Finally, ’
s [, (alR+]R)®
To < OB} cua ™ [0 + Trtaimear | el 180

TS C R AR A+ BT SCT R e

.

Similar theorems for higher order local regularity can be proved. These theo-
rems justify the name “mathematical microscope,” which is sometimes bestowed
on the wavelet transform. In Holschneider and Tchamitchian (1990) these and
other resuits were exploited to study the differentiability properties of the func-
_ tion defined by the Fourier series 3" | n~? sin(n?#z), first studied by Riemann.
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Notes.

&

1. All these Bergman spaces can be further transformed, via a (standard)
conformal map, to Hilbert spaces of analytic functions on the unit disk.

2. My main reference for this paragraph are the articles by Grossmann, Mor-
let, and Paul (1985, 1986). Their results can in fact be generalized to
reducible representations as well, as long as they have a cyclic vector
(A. Grossmann and T. Paul, private communication). This is useful for
the higher dimensional case, where the representations of the ax + b-group
are reducible but cyclic.

3. The operator Hp obtained by “transporting” H to the Bargmann Hilbert
space, via the unitary map T™'*, is particularly simple:

T g (Tv*)~! [exp (— ;i—(w2 +t3) - %'wt) dlw + zt)] .

= exp (=374 ) = Jut) o+ o +i0]

or (Hpe)(z) = 2z ¢'(z). It is obvious that the eigenfunctions of Hg are
the monomials u,(z) = (2® n!)~1/2 z*. The following argument shows
that these are indeed the fupctions in the Bargmann space corresponding
to the Hermite functions. One easily computes

Twin g7 (T¥in)~! [exp (-%(w’ +t?) - -;swt) dlw+ it)} .

= “oxp (~ 7+ ) = o) (-w i) o +38),

so that ¢, = (2" nl)~1/2(4*)"g, corresponds to (2" nl)~!/3(—i)"z" =
(=9)* un(2) m the Bargmann spax:e (We use the normalization
[ ——— = [dz [dy e~ 4+ [g(z 4 iy)[?, so that g, itsell corre-
sponds to the constant function 1 in the Bargmann space.) In particular,
this means that

(#nsg) = exp [~ 102 + ) = S (<0 (27 ) 2w+ ity

4. Not every unbounded function leads to an unbounded operator; some
bounded operators can only be represented in this way if an unbounded
weight funetion is used. In fact, Klauder (1966) proved that even some

" trace-class operators require a non-tempered distribution as weight func-
tion!

5. Por real functions w, one requlres that W should be essentially self-adjoint
on this 'domain.
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Yet another application in quantum mechanics can be found in Daubechies
and Klauder (1985), where it is shown how to write the (mathematically
not well defined) path integral for exp (—it H) as a limit of bona fide Wiener
integrals {as the diffusion constant of the underlying diffusion process tends
to oo), provided H is of the form (2.8.2), with a weight function w(p, q)
that does not increase too drastically for p, g—o00. A similar theorem can
be proved in the wavelet case (Daubechies, Klauder, and Paul (1987)).

. Exactly the same arguments hold for all operators W of type (2.8.2) for

which w(w, t) is rotationally symmetric, even if it is not an indicator func-
tion. An example is w(w,t) = exp(—a(w? + t?)], for which it was first
shown in Gori and Guattari (1985) that the Hermite functions are the
eigenfunctions (irrespective of a; the eigenvalues depend on «, of course!).

. It is no coincidence that Fefferman and de la Llave would use a representa-

tion of type (2.8.3) for the operator (2.8.4): after all, Calderén’s formula (to
which (2.4.4) is essentially equivalent) is part of a toolbox developed pre-
cisely for the study of singular integral operators (long before wavelets!)
so that it is well adapted for treating the siigular kernel in (2.8.4). In
this particular instance, (2.8.4) makes sense even for nonadmissible v (Cy,
cancels out); in Fefferman and de la Liave (1986), ¢ was taken to be the
indicator function of the unit ball (which is nonadmissible, since its integral
does not vanish).

. If we make an extra transformation, mapping the upper half plane

{b+ ia; a > 0} to the unit disk (by means of a conformal mapping),
then everything becomes more transparent: the flow z—z(t) then corre-
sponds to a simple rotation around the center of the disk, and H as well
as its eigenfunctions are given by simple expressions. See Paul (1985) or
Seip (1991).

There exist many other choices of ¢ for which this analysis works. For
each choice the set Sc in time-frequency space corresponding to Sc in
(a, b)-space takes on adifferent shape. Explicit computations and a figure
illustrating these different shapes can be found in Daubechies and Paul

(1988).



CHAPTER 3

Discrete Wavelet
Transforms: Frames

In this, the longest chapter in this book, we discuss various aspects of non-
orthonormal, discrete wavelet expansions, tdgether with some parallels with the
windowed Fourier transform. The, “frames” of the chapter title are sets of non-
independent vectors; they can nevertheless be used to write a straightforward
and completely explicit expansion for every vectlorin the space. We will discuss
wavelet frames as well as frames for the windowed Fourier transform; in the
latter case, the approach can be viewed as “oversampled” with respect to the
Nyquist density in time-frequency space.

_ A lot of the material in this chapter has been taken from Daubechies (1990),
updated here and there. A very nicely written review of frames (and of the
continuous transforms as well), with some additional original theorems, is Heil
and Walnut (1989).

3.1. Discretizing the wavelet transform.

In the continuous wavelet transform, we consider the family

po(z) = lal"V2 (f’i'——b) ,

s
a

where b € R, .a € R, with a # 0, and % is admissible. For convenience, in
the discretization we restrict a to positive values only, so that the admissibility
condition becomes

[os] 0
Cy = / dE £ P = / I DO < oo

(gee §2.4.) We would like to restrict a, b to discrete values only. The discretiza-

' tion of the dilation parameter seems natural: we choose a = af*, where m € Z,

and the dilation step ag # 1 is fixed. For convenience we will assume ag > 1
Lglthough it does not matter, since we take negative as well as positive pow-
ers m). For m = 0, it seems natural as well to discretize b by taking only
-the integer (positive and negative) multiples of one fixed by (we arbitrarily fix
bo > 0), where by is appropriately chosen so that the 3(z — nby) “cover” the
whole line (in a sense to be made precise below). For different values of m, the

53
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width of a5 /2 Y(ag"r) is af* times the width of ¥(z) {as measured, e.g., by
width (f) = [fdz 2?|f(z)|*])/%, where we assume that [dz z|f(z)]* = 0),
so that the choice b = nby af* will ensure that the discretized wavelets at level
m “cover” the line in the same way that the (x — nbg) do. Thus we choose
a = ag', b = nbpay’, where m,n range over Z, and ag > 1, by > 0 are fixed; the
appropriate choices for ag, by depend, of course, on the wavelet 1 (see below).

This corresponds to )

Yml®) = ag™ %y (f—ﬂ"ﬂ) = ag™*Ylag™z —nb).  (3.11)

ag'

We can now ask two questions:

~

(1) Do the discrete wavelet coefficients {f, ¥'m ») completely characterize f?
Or, stronger, can we reconstruct f in a numerically stable way from the

(f,¥mn)?

(2) Can any function f be written as a superposition of “elementary building
blocks” ¥y, »?' Can we write an easy algorithm to find the coefficients in
such a superposition?

In fact, these questions are dual aspects of only one prob@. We will see below

that, for reasonable ¢ and appropriate ag, bg, there exist 1, » so that the answer
to the reconstruction question is simply

f = Z: (fy'd’m.n) w:n .

m,n

It then follows that, for any g € L?(R)

I

6N =T7 (z ", ¢,.,,,.><«E,:.mg>)

m,n

i

3 (9 Ymn) Bmins f)

org = 3y (g,y’;:,,) ¥m,n, at least in the weak sense;-this is effectively a
prescription for the computation uf the coeflicients in a superposition of ¥y,
leading to g. We will mostly focus on the first set of questions here; for a more
detailed discussion of the duality between (1) and (2), see Gréchenig (1991).

In the case of the continuous wavelet transform, both questions were answered
immediately by the resolution of the identity, at least if 4 was admissible. In
the present discrete case there is no analog of the resolution of the identity,? so
we have to attack the problem some other way. We can also wonder whether
there exists a “discrete admissibility condition,” and what it is. Let us first give
some mathematical content to the questions in (1). We will restrict ourselves
mostly to functions f € L2(R), although discrete families of wavelets, like their
continuously labelled cousins, can be used in many other function spaces as well.
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Functions can then be “characterized” by means of their “wavelet coefficients”
(f, ¥mn) if it is true that

: {fi, Ymn) = (f2, PYmm) forallmneZ
implies f1 = fz ,
or, equivalently, if
{f, ¥mn) =0 foralimneZ=f=0.

But we want more than characterizability: we want to b able to reconstruct f
in a numerically stable way from the (f, ¥ ). In order for such an algorithm
to exist, we must be sure that if the sequence ({fi, ¥m.n))Imnez is “close” to
¢ A{f2) Ymn))mnecz, then necessarily fi and f, were “close” as well. In order to
" make thig precise, we need topologies on the function space and on the sequence
space. {ni-the function space L?*(R) we already have its Hilbert space topology;
_on the sequence qpa.ce we will choose a similar ¢2- topology, in which the distance
sequences ¢! = (¢}, )nnez 80d & = (&, ) m nez is measured by

8
‘;4‘

wé» e =P = 3 lehn ~hal®-
add mmnelZ

. Tins implicitly assumes that the sequences ((f, Ym.n))m.nez arein £2(Z°) them-

¢ selves, ic., that 3°  |(f, ¥mn))? < oo forall f e Lz(R) In practice, this is

. *1o problem. As we will see below, any reasonable wavelet (which means that ¢

. has some decay in both time and frequency, and that [dz ¢¥(z) = 0), and any
,5"’ * choice for ag > 1, by > 0 leads to

Y S v < B IS (3.1.2)

. We will assume (without specifying any restrictions yet on the ¥m n; we will
_come back to. these later) that (3.1.2) holds. With the £2(Z?) interpretation of
« “closeness,” the stability requirement means that if 3, | |(f, Ym,n)|? is small,
& then ||f]|? should be small. In particular, there should exist a < oo so that
*):m'" f, Ymm)l?> < 1implies ||f||? < a. Now take arbitrary f € L*(R), and
define f = ¥, . f, ¥mn)l?I"V/2 f. Cleatly, 3., . Hf, ¥mn)|* < I; hence

II? < a. But this means

-1
[Z [<f, "/Jm,n)lz] 112 <a

A< Y 1S tma)? (3.1.3)

. s for some A = a~! > 0. On the other hand, if (3.1.3) holds for all f, then the
, distance || /1 — fz|| cannot be arbitrarily large if Yo i Ymn) = (f2y Ymn)?
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It follows that {e;, e2, e3} 1s a tight frame, but definitely not an orthonormal
basis: the three vectors e, eq, e3 are clearly not linearly independent o

e,
]

120°

92/ .

FIG 31 These three vectors 1 C* constatute a tsght frame

Note that-in this example the frame bound A = % gives the “redundancy
ratis” (three vectors in a two-dimensional space). If this redundancy ratio, as
measured by A, 15 equal to 1, then the tight frame 1s an orthonormal basis

~ PROPOSITION 3 21 If (9,);ec0 18 a tight frame, unth frame bound A =
?thf llo,ll =1 for all 3 € J, then the ¢, constitute an orthonormal basis

Proof Since {f, v,) =0 for all 7 € J umplies f =0, the ¢, span all of H It

" wmams to check that they are orthonormal We have, for any j € J,

-

3 lesl? =" ey, @) =Hlosli* + D e 00 -
r'ed :::5
_ Since ||y, || = 1, this implies (p,, py) =0 forall )’ #. » .

Formula (3 2.2) gives a trivial way to recover f from the (f, ¢,), if the frame
tight. Let us return to general frames, and see how things work there We
first introduce the frame operator.

DEFINITION If (p,),es 18 a frame m M, then the frame opera'or F 1s the

r operator from M to £2(J) = {c = (cj)JE,,, il = Z le,* < 0o} defined
€S

(F f )J (f ) ‘loJ)
It follows from (3.2 1) that ||Ff||? < B ||f}f?, i.e., F is bounded. The adjoint
of F is easy to compute:

R (Fc, fy = (e, FH=Y¢, T wp)
N . jeJ
= Z ¢ (p1: [}
3€J
#0 that.
gt F'c= Z (R 7N (3.2.3)

S JGJ
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Applying the operator (F*F)~! to the vectorg i; leads to an interesting new_
family of vectors, which we denote by ¢,
' ‘I.’J:(F‘F)_I‘Pj'

The family (p,),cs turns out to be a frame as well.
PROPOSITION 3.2.3. The (§,),cs constitute o frame unth frame constants

B! and A7, ‘
BUAP <Y IS @) s AT HAR (3.2.6)

I€J

The associated frame operator F: H— 83), (ﬁ‘f), {f. #,) satusfies
F= F(F*F)™?, PP =(FF), FPF=1d = FF tmdFF‘ FF* 13 the
orthogonal projection operator, m £2(J), onto Ran (F) = Ran (¥).

L)

Proof. .

1. As an exercise, the reader can check that if a bounded operator S has a
bounded inverse S, and if §* = §, then (S7!)* = §~1. It follows that

(£:85) =, (F'F)7'g)) = ((F'F)7'f, 9,) 5

hegace
Y UL @)=Y K F)Y S, o)* = |F(FF)~ fIj?
1€J 1€J

= ((F*F)"'f, F*F(F*F)7'f) = (F*F)7'{, f)}. (3.27)

By (3.2.5), this implies (3.2.6); the 3, constitute a frz-nne. Moreover, (3.2.7)
implies also that the frame operator F satisfies F*F = (F*F)~1,

2 (F(FF) 11), = A(F*F)1f, o) = (f, @5} = (Ef)y,
= [FF"F)\]'F = (F*F)" F*F = 4
F‘F F*F(FF)™' =1d.

3. Since F = F(F*F)7}, it follows that Ran (F) c Ran (F). We have
also F = F(F*F); hence Ran (F) C Ran (F). Consequently, Ran (F) =
Ran (F). Let P be the orthogonal projection operator onto Ran (F). We
want to prove that FF* = P, which is equivalent to FF(Ff) =
(i.e., FF* leaves elements of Ran (F) unchanged) and F'F*c = 0 for all c
orthogonal to Ran (F). Both assertjons are easily checked:

FF*Ff=F(F'F)~ F*Ff=Ff

clRan(F) = (¢, Ff)=0 forall feN
= Flc=0 = FF¢=0. s
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We will call (¢,),cs the dual frame of (p,),cs. It is easy to check that the
dual frame of (B,);cs is the original frame (goj)]g ; back again. We can rewrite
some of the conclusions of Proposition 3.2 3 in a slightly less abstract form;
F*F = 1d = F*F means that

»

”,

- e e ==Y &) e (32.8)

7€F 7€J

This means that we have a reconstruction formula for f from the {f, ¢,}! At
the same time we have also obtained a recipe for writing f as a stperposition of
;, which demonstrates that the two sets of questions in §3.1 are indeed “dual.”
When given a frame (p;),¢/, the only thing we therefore need to do, in order
to apply (3.2.8), is to compute the ¢, = (F*F)~! ,. We will come back to
this soon. First we will address a question that often arises at this point: I have
stressed before that frames, even tight frames, are generally not (orthonormal)
bases because the ¢, are typically not linearly independent. This means that for
a given f, there exist many different superpositions of the ¢, which all add up to
f. What then singles out the formula in the second half of (3.2.8) as especially
interesting? We can get an inkling of the answer with a simple example.

ExAMPLE. We revisit the simple example of Figure 3.1. We had there, for
any v € C?,

(W, &) e, . (3.2.9)

wuto
Eivghe

y=1

Since E?:l e, = 0 in this example, it follows that the following formulas are
also true:

3
Y (v, &) +ale,, (3.2.10)

1=1

WIM

where a is arbitrary in C. (In this particular case, one can prove that (3.2.10)
gives all the possible superposition formulas valid for arbitrary v.) Somehow,
(3.2.9) seems more “economical” than (3 2.10) if a # 0. This intuitive statement
can be made more precise in the following way:

Z (v, €,)] uvuz

whereas

. ,
3 1w e +alt =3 ol +3lal* > 5 ol f.a%0. o

r=1

Likewise, the (f, @,) are the most “economical” coefficients for a decomposition
of f into p;.
PROPOSITION 3.2.4. If f = ¥ ., ¢, ¥, for some ¢ = (c;);es € £(J), and

if not all Cy equal (f, ‘PJ) then ZJEJ |CJ| > Ege.l I /s ‘PJ)‘



DISCRETE WAVELET TRANSFORMS FRAMES 61
Proof.
‘ 1 Saying that f = 3" . ¢, g, is equivalent to staying that f = F*c

2. Write ¢ = @ + b, where a € Ran (F) = Ran (F), and b L Ran (F) In
particular, @ 1 b; hence ||c||? = |la]|® + Ib{}%. -

3. Since @ € Ran (F), there exists ¢ € H so that @ = Fg,orc= Kg+b.+
Hence f = F*c = F*Fg+ F*b But b 1L Ran (F), so that F*b = 0, and
F*F =1d. It follows that f = g; hence c = F'f + b, and

Do el =Hell® = HEFIP + 16l =3~ 1(f, @) + 1l ,

1€J red

3
e

T

L |

which is strictly larger than 3°_ ; [(f, @;)|?, unless b=0and c = Ff.

This proposition can also be used to see how the @, play a special role mn the
first half of (3.2.8). We typically have nonuniqueness there as well: there may
exist many other families (u;);es so that f =37 ; (f, ¥;) u;. In our earlier
two-dimensional example, such other families are given by U, = —eJ + a, where
@ is an arbitrary vector in C2. Since 23_1 e, =0, we obvnously have

3
. 2
,é;k‘“ ’ E (v, e,)u, = 3 E (v, e;)e, + E (v, &) a=wv.

- TAY =1 1=1 3=1

.- &jgain, however, the u, are “less economical” than the é,, in the sense that for
Ml v with (v,a) #0,

3 3
3 v, w)P =3 I, &) +3|(v,a)?
=1

=1

1 3
» 3 Ivll? +3l{v, a)? > Hvll2 =3 I &)

e 1
g 79 =

™~

-

]

Y similar inequality holds for every frame: if f = Y,es {F @;)uy, then
8, e Huy, 9 > ZJGJ {5, g)|? for all g € H, by Propo&tlon 324. .
4. Back to the reconstruction issue. If we know @; = (F*F)~1y,, then (3.28)
“‘@“% us how to reconstruct f from the (f, ¢;). So we only need td compute the
Mﬁr, which involves the inversion of F*F. If B and A are close to each other, i.e.,
2% %= BfA—1<« 1, then (324) tells us that F‘Fls close” to 418 Id, 50 that

g

\%‘1"‘ F)~1is “close” to 3— Id, and @, “close” to 3—- ;. More precnsely,

E

%gz‘ .
;e}f y F=478 A+B ,162:.’ (f, w1} wi + RS, (3.2.11)
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where R = 1d — 525 F*F; hence —374 1d < R < £34 1d. This implies®
IR|] £ g—;—} = g4;- U r is small, we can drop the rest term Rf in (3.2.11),
and we obtain a reconstruction formula for f which is accurate up to an L3-
error of 357 JIf|l. Even if r is not so small, we can write an algorithm for the
reconstruction of f with exponential convergence. With the same definition of

R, we have

FF= -415 (1d - R) ;

hence (F*F)™! = 345 (Id— R)~*. S‘mce IRl < £54 < 1, the geries 34,
converges in norm, and its hrmt is (Id —R)~'. It follows that

2
= - -1 — k
@y = (F*°F) ‘PJ*‘A_*_Bkz_:-OR Py .

Using only the zeroth order term in the reconstruction formula leads exactly
to (3.2.11) with the rest term dropped We obtain better approximations by
truncating after N terms,

N

~N 2 2 x N4l
“4+B I
£ A+Bk=oRk“° =0 A+Bk§+lR‘P1 ld-RY+]g,, (3:2.12)

with

2€J

“f DAL A

= sup (-3 U o) oV, g)!
J

ligi=1 JE

= sup Z (Fr @X@i— &, 9)

ligli=1 1€J

= sup E (fy &RV g5, g)

lell=1 {157

= w10, NGy < R 1< (5

N41
s ) I,

which becomes exponentially small as N increases, since 757 < 1. In particular,
the @' can be computed by an iterative algorithin,
B

I+t
2

AN _ _ SN-1

B =ayp ity

Z tiPe,

teJ

or
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& with ) )
23 N N 1
T = A+ B 6(_; +a “'AT_ B‘ Z (Pmy we) -

meJ
4
. This may look daunting, but it is not so terrible in examples of practical interest,

where many (p.,, @¢) are negligibly small. The same iterative technique can be
applied directly to f:

L

s

woE

-

o,
.

E-n

f = (FFY'FFRSf= lim fn,

P
’

with -

RES
z

In = 5 L R (FR)S

k=0

+

Y

o]

: = o5 (FF)f+ R fn-

= fn. .+A+BZl<f,w,>—<f~ vel e, -

1€8J

-5

y Now that we have thoroughly explored abstract frame questions, we return to
;- * djscrete wavelets.

3.3. Frames of wavelets.

*We saw in §3.1 that in order to have a numerically stable reconstruction algo-
rithm for f from the (f, ¥ ), we require that the ¢, , constitute a frame. In

4§3.2 we found an algorithm to reconstruct f from the (f, Yy ) if the ¢, , do

constitute a frame; for this algorithm the ratio of the frame bounds is important,

“and we will come back to ways of computing at least a bound on this ratio, later
in this section.- First, however, we show that the requirement that the ¢, ,
onstitute a frame already imposes that ¥ is admissible

.3.1. A necessary condition: Admissibility of the mother wavelet.

v~ THEOREM 3.3.1. If the Ymalz) = a;,“mﬂ Y(ag ™z — nby), m,n € Z, consts-
itute o frame for L2(R) wnth frame bounds A, B, then

%m%A</ d€ £ f(E) < %;%B (3.3.1)
0 -
REas [kt P <R B (3.32)
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Proof.
1. We have, for all f € L*(R),

AR < 3 I dmn)P < BISIZ. (3.33)

mneclZ

If we write (333) for f = uy, and add all the resulting inequalities,
weighted with coefficients cg > 0 such that Y, cejuel|* < oo, then we
obtain

AS allud? <3 aY Kuo bnad? <B Y cllud? . (3.3.4)
[4 [4 m.,n [ 4

In particular. if C 1s any positive trace-class operator (see Preliminaries),
then

-

C“—’Z cr (-, we) ug,

teN

where the u¢ are orthonormal, cg > 0, and Y",. ce = Tr C' > 0. For any
such operator, we have therefore, by (3.3.4),

- AT C<Y (C¥mm, Yma) SBTXC. (3.35)

m,n

2 We now apply (3 35) to a very special operator C, constructed via the
continuous wavelet transform, with a different mother wavelet. Take h to
be any L2-function such that support h C [0,00), f;° d€ €* 1h(£)I < oo,
and define, as i Chapter 2, h*® = a~*/?h (=) for a,b € R, a > 0. If
¢(a,b) is a bounded, positive function, then

C= / % / db (-, h*?) h®® c(a,b) (3.3.6)
JO —00

is a bounded, positive operator Ksee §2.8). If, moreover, c(a,b) is integrable
with respect to a2 da db, then C is trace-class, and Tr C' = ° % [* db
c(a, b)||hj|*>.6 We will in particular choose c(a,b) = w(jbj/e) if 1 < a < ao,
0 otherwise, with w positive and integrable. We then have

C= /000%:. /-:db (-, B b w (I_Z_l) ’
and

T C= /l * ‘i—“ [ st w(ls]) IA)? = 21n ag [ /0 " ds w(s)} A2 .
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A BT

3. The middle term 1n (3 3 5) becomes, for this C,
' % dg [ b
4 5 b bm) =3 [ % [ rw (M) g, ny
mmn mn Y1 —o0

. But

Yo B0 = g™ a2 [ dz (ag™e — nbo) b [ E=2
v 0 0

a

*bﬂ,~m
ag™/? o712 /dy ¥(y) h(y*——*‘““‘—Jr T;bi-m ? )

0

e AR
|

= (¥, hag'"a, a(;"'b—nbg)

After the change of vaniables o’ = ag™a, b’ = a5 ™b we there%or,e obtain

” I (o
N ) mn
{ﬁ% a(;"‘“ da’ oG [bll
8 4 a Y
% — Z /—'n _a_’z_ b’ w (71_,_) |<,¢]‘ha b —nbg”2
mn Y% %0

Take now w(s) = A e¥™*° This function has only one local maximum
and is monotone decreasing as |s| increases. An elementary approximatios
argument for integrals (the full details of which can be found 1n Daubechie
(1990), Lemma 2 2) shows that for such functions w and for any o, € R
B >0,

/wdtw(t) —ﬁwmaxg,@z: w(a-t-nﬁ)s/mdt w(t) + BwWmax »

nel
4 or, for our particular w,
e b+nbo|\ @
. Zw(——-——-)::-—+p(a,b),
e bo
E : n
£

with |p(a, b)| < w(0) = A. Consequently,
3. (C'r/z,,,,",w.,.,n>=i / da / db |(¥, *HP+R,  (33.7)
bO o & v —o00

mn

where

Rl =[5 [ jiw wen plat

IN

AC Bi?,
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which C}, as defined by (2.4.1). We can rewrite the first term in (3.3.7) as

1 © g0 [0 co . —— 2
[T [ | [ e e 1 hiag) e
wbo 0 0 J.w 0

2’_‘ * * L E£M2 i 2_2’_’ : 7 ~1 Lhrey(2
w | da /G & WO 1hae) = 2 k] /0 de £ (6|

4. For the particular weight function w ihat we have chosen, we have
Jo” dt w(t) = 1, hence Tr C = JAf}* In ao. Substxtutmg all our results in
(3.3.5) we find

ATAI? tnao < 5% g7 [ “de €1 [H(E)2 + R < BJAJ? nao,

where |R| < A Cp "1[:"7 If we divide by [Ih]|? and let A tend to zero,
then this proves (3 3 1). The negative frequency formula (3.3.2) is proved
analogously. =

REMARKS

1 Formulas (3{3.1), (3.3.2) impose an a priori restriction on ¥, namely that
Jo7 dg €71 [W(€)? < oo and [°_ dE |€]7! [(€)|® < oo. This is the same

restriction as in the continuous case (see (2.4.6)).

2 In defining the discretely labelled 3., »., we only took positwe dilations
al' into consideration (the sign of m affects whether aJ' is > 1 or < 1,
but, af* > O for all m) This is the reason why formulas (3.3.1}), (3.3.2)
dissociate the positive and negative frequency domains. If we had allowed
negative discrete dilations as well, then the condition would have involved
only [% df 1€}~ W(€)]* (as in easy to check by mimicking the above
proof).

3. If the y, , constitute a tight frame (4 = B) then (3.3.1), (3.3.2) imply

=i [Caeeior =i [ acier e

In particular, if the ¥, , constitute an orthonormal basis of L?(R) (such
as the Haar basis, or other bases we will encounter), then

[Caceor= [ ata ior =222

It is an easy exercise that the Haar basis does indeed satisfy (3.3.8). Most
of the orthonormal bases we will consider are real, so that the first equahzy
in (3.3.8) 1s trivially satisfied. .

4, A difierent proof of Proposition 3.3.1 is given in Chui and Shi (1991). o

(3.3.8)

In all that foilows, we will always assume that ¥ is admissible.

e s el s Batmn G ke

et D 4w
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3.3.2. A sufficient condition and estimates for the frame bounds.
Not all choices for 1, ag, bg lead to frames of wavelets, even if ¢ is admissi-
ble. In this subsection we derive some fairly general conditions on ¢, ag, by -
under which we do indeed obtain a frame,.and we estimate the corresponding
frame bounds. To do this, we need to estimate 3. . [{f, ¥mq)l*:

3 W bmad? =Y

mnel

2

[ " e F(€) ao™? PlapE) eow ne

2

2xb; tag ™ ~ . _ .
/o dE %058 5 F(€ + 2rbay™bo ™) B(aFE + 2ntby )

el \

lz
3 FE + 2mbaz™bo™!) DlaPE + mrebo-‘)l

“l _~m
2 2xb, “a,
m . tcZ

(by Plancherel’s theorem for periodic functions)

= % > [ d f(€) (€ + 2mka; ™bo ") H(aZ'€) P(al'€ + 2mkbo ")

b mkikeZ "~

Ly

-3 [ ali©r X wagert + Ree (). (33.9)

mel

Here Rest (f) is bounded by

< n et N
. R = 3 X [ afe
: T
£ nd 7€+ 2mkag™b5") $(ag€) Blape + 2nkby?)|
g  on o ) . 1/2
R < B3 [ s i@ B wape + 2ness|
% wm,h ~ 00

kp0

) ) ) . 1/2
[ 0P e - 2mis ) e
(use Cauchy-Schwarz, and change variables
¢ = ¢ — 2nkby 'ag™ in the second factor)

00 1/3
<2y [ [ #iior X wegol I'ﬁ(ag‘€+2wkb;’)i]

k#0 L™

N
3

o0 X ) X 1/2
: [ [ aiior T wegol l¢(08‘C-21rkbEl)|}

(ﬁse Cauchy-Schwarz on the sum over m)
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< %unﬁ g [ﬂ("%k) ﬂ(-—%o’ik)]m , (33.10)

where 3(s) = sup; 3, ez [(agé)| IJI(a.(,"{ + s)|. Putting (3.3.9) and (3.3.10)

together, we see that”

A2 S ) P

>3 {essigf S weper -3 |5 (5k) o (-3 )]m} (33.11)

mel , k#0

inf
1eH
f#0

j‘»ug ”f“—z Z Hfr wm.n)lz

m,n

< {sxép o+ 3 [ﬂ (%%’k) 8 (—%k)]m} . (3312)

k#0

f#0

If the right-hand sides of (3.3 11), (3.3 12) are strictly positive and bounded, then
the ¥;m n constitute a frame, and (3.3.11) gives a lower bound for A4, (3.3 12) an
upper bound for B. To make this work, we nced that, for all 1 < [£| < ao (other
values of £ can be reduced to this range by multiplication with a suitable af,
except for £ = 0,but this constitutes a set of measure zero, and therefore does
not matter),
O<a< Y |lapelf<f<oo;
meZ .

moreover, 3 o [ (al€)| lp(aZ € + )| should have sufficient decay at co. “Suffi-
cient” in this second condition means that Zk;é:) (B(32k)B(—32k)]'/? converges,
and that the sum tends to 0 as by tends to 0, ensuring that for small- enough

by the first terms in (3.3.11), (3.3.12) dominate, so that the ¥, , do indeed
constitute a frame. In order to ensure all this, it is sufficient to require that

o the zeros of ¢ do not “conspire,” so that

Y 1Wegorza>0 (3.3.13)
mel
for all £ #0, )
o [$(6)] < Clel™ (1 +1€1")~"2, with a > 0, v > a + 1. (3.3.14)

These decay conditions on 4 are very weak, and in practice we will require much
more! If 4 is continuous, and decays at oo, then (3.3.13) is a necessary condition:
if, for some & # 0, ¥, <2 1¥(al*é0)|* < ¢, then one can construct f € L%(R),
with [[fj| = 1, so that (27)~ by Yo I Ymn)|? < 2¢, implying A < 4w e/bp.®
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If € can be chosen arbitrarily small, then there 1s no finite lower frame bound (See
also Chui and Shi (1991), where the stronger result A < -2-,% . laRre))? < B
is proved ) The following proposition summanizes our findings

PROPOSITION 3 3 2. Ify), ag are such that

o0
inf Hale)2 >0,
ol m;m [¥(agé)l
o0

sup Y (afE)f <o, (3315)

1<|él€as om0
and of B(s) = sup, 3. W(ag*€)| 1P(ae + 8)| decays at least as fast as
(1 +{s|)~0*9) unth € > 0, then there emsts (bo)nr > O such that the ¢, n

constitute a frame for all choices by < (bo)we For bg < (bohne, the follounng
expressions are frame bounds for the ¥, ,

A=Z ! Y apor- 3o s (@k)ﬁ(-gﬁk)]m
bo |igieigar = A 1\ b bo '

k#0

o0 ok

- w3 WEROr+ 3 iﬂ(%k)ﬁ(-%k)]w

1S|€|Sﬂ0 m=-o00 k= —o00
L2

The conditions on (3 and (3.3 15) are satusfied 1f, e g, |¥(€)] < ClEj® (1 +)¢])~7
witha>0,y>a+1

Proof We have already carried out ail the necessary estimates The decay
of B ensures the existence of a (bo)un S0 that 3, o [B(Ek)G(—32K)]1/2 <

inficiei<ao Yom 1P(@€)% 1f bo < (bo)enr. ®

The moral of these technical estimates is simple: if ¢ is at all “decent”
(reasonable decay in time and frequency, {dx ¥(z) = 0), then there exists a
whole range of ag, by so that the corresponding #,,  constitute a frame Since
our conditions on ¢ imply that 9 is admissible in the sense of Chapter 2, this is
not so surprising for values of ag, by close to 1,0 respectively: we already know
that the resolution of the identity (2.4.4) holds for such 9, and it is reasonable
to expect that a sufficiently fine discretization of the integration variables should
not upset the reconstruction too much Surprisingly enough, for many ¢ of
practical interest, the range of “good” (ag,bp) includes values which are quite
far from (1,0). We will see several examples below. But first we will look at
the dual frame for a frame of wavelets, and discuss some variations on the basic
scheme.

3.3.3. The dual frame. As we saw in §3.2, the dual frame is defined by
Pmm = (P F)" Ymm (3.3.16)
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where F*Ff = 3 (f, Ymn) ¥mn- We have an explicit formula for the
inverse of F*F which converges exponentlally fast, i.e., like 300, o™, with a
convergence ratio o proportional to ( ). It is therefore useful to ha.ve frame
bounds A, B which are close to e’af__h other. Nevertheless, (3.2.8) necessitates, in
principle, an infinite number of ¥,, ,, ta be computed. The situation is not quite
as bad as one might expect: if we introduce the notation

- (D) =a ™ flag™z),  (T"f)(z) = f(z - nbo),
then it is easy to check that, for all f € L?(R),
F*F D™f = D™ F*Ff .

It follows that (F*F)~! and D™ commute as well. In particular, since ¥ n =
DT, .
Ymm = (F*F)~} D™T"p = D™ (F*F)=' Ty,

or
Ym, n(m) M/z Yon (ao "z} .

Unfortunately, F*F and T" 99, not commute, so that we still have to compute,
in principle, infinitely many 1 . In practice, one is interested only in functions
“living” on a finite range of scales, on which F*F can be reasonably approx-
imated by 31 3 7 ( ¥m,n) Yman (see the time-frequency localization
section below, §3.5). If ap™!'~™¢ is an integer, N = g™ ~™9, then one easily"
checks that this truncated version of F*F commutes with TV, so that one only
has to compute the N different 1/)0 ns 0 £ n < N —1in this case. This number is
still very large in many cases of practical interest, however. It is therefore espe-
cially advantageous to werk with frames which are almost tight (“snug frames”),
1.e., which have % — 1 « 1: we can thén stop after the zeroth order term of
the reconstruction formula (3.2.11), avoid all the complications with the dual
frame, and still have a high quality reconstruction of arbitrary f. On the other
hand, there exist very special choices of ¥, ag, bo f(lrlvhich the ¢im,n are not close
to a tight frame, but it so happens that all the i, , are generated by a single
function, N

Umn(2) = m,n(2) = 8™ Plag™z —n) . (33.17)

An example is provided by some of the bmrthogonal bases that we will encounter
in Chapter 8; another example is given by the ¢-transform of Frazier and Jawerth
(1988) (see also Frazier, Jawerth, and Weiss (1991));_'

It is important to realize that the ¥, , and the ¥y, , may have very different
regularity properties. For instance, there exist frames where ¢ itself is C* and
decays faster than any inverse polynomial, but where some of the ) 5, are not in
L? for small p (implying that they have very slow decay). An example, due to
P.,G. Lemari¢, is given in detail in Daubechies (1990), pp. 988-989.'° Something
similar may happen even if all the P n are generated by a single function W
there exist examples where ¥ € Ck (with k arbitrarily large), but where ¥ is
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not continuous (The biorthogonal bases in Chapter 8 give examples where this
happens; the first example was constructed by Tchamitchian (1989).) One can
exclude such dissimilarities by imposing extra conditions on ¥, ag, and by (see
Daubechies (1990), §11.D.2, pp. 991-992).

3.3.4. Some variations on the basic scheme. So far, we have not re-
stricted the value of ag, beyond ag > 1. In practice, however, it is very conve-
nient to have ap = 2. Going from one scale to the next then means doubling or
halving the translation step, which is much more practical than if another ag is
used. On the other hand, we have just seen that it is advantageous to use frames
with B/A ~ 1 < 1. Since our estimates (3.3.11), (3.3.12) for A, B give

A< 5 O el < B (3.3.18)

mEZ

for all £ # 0, these two requirements together umply that 3} .o [H(27E)?
should be almost constant for £ = 0, which is a very strong rwtnctlon on v,
not generally satisfied. The Mexican hat function ¢(z) = (1 — z2) ™" ‘2 , for
instance, leads to a frame with B/A close to 1, for ag < 2'/4, but certamly not
for ag = 2 because the amplitude of the oscillations of Emez [$(2™€)? is too
large. In order to remedy this situation, without having to give up too much of
our freedom in chooding 3 and its width in the frequency domain, we can adopt
a method used by A Grossmann, R. Kronland-Martinet, and J. Morlet, and use
different “voices” per octave. This amounts to using several different wavelets,
¥l,---, 9N, and to look at the frame {$% .; m,n € Z, v = 1,---,N}. One
can repeat the analysis of §3.3.2 (see, e.g., Daubechies (1990)), leading to the
following estimates for the frame bounds of this multivoice frame:

UL i T WP - (2") (3.3.19)
b isiesz o b/ -~
8= [y 3 5 W+ (2")- (3.3.20)
T b [icieicr 2t b/’ -
with N
- R(z) =Y 3 [8°(kz) B*(-k2)}'/?,
- k#0 v=1
and oo

B(s)= sup S WrETOFHE™E+ )

1SKIS? "o

By choosing the P!, .-+, "™ to have slightly staggered frequency localization cen-

. ters, coupled with good decay at co, one can achieve B/4 — 1 <« 1. (See the

examples in §3.3.5 below.) The time-frequency lattice corresponding to such a
multivoice” scheme looks a little different from 1.4a; an example, with
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2 Gt
Wo
. . 2 . L] . . . . . . L] . .
. L) - - - L - L . - . [ - L4
. . . » » L] * L] * . . L) . .
. -» L 3 - L] L3 a . . . * L} L * A4
wO bo
L) - L] d . L] .
e —
. . . . . . .
. - L) L] . - L]
- . . . . . .
. » .
L4 [ ] L
- . -
) ' | i
. (] bd
. . .
L] [} .
. . .
] . . . . . .
» . . [ » ] . .
L] . . . . L] . .
. - . . . . [ 3
. . L] » . . 4 - . . . . . . L]
L} . L] . - L] 4 . - - [ - L] - L
at }
. . L] . . . . . . . . . . .
. . . . L] - . . . e . (] . .
»

Fic 32 The tzme:ﬁuquency lattsce for a scheme unth four voices In this case i/
different vorce wavelets ¥, - -, ¢4 are assumed to be dilations of a single function ¥, 3 (z)
2"(1‘1)/‘1/)(2”"("1)/‘2), 1f]vI‘)(E)| {which we assume to be even) peaks around twg, then th
|7} unll be concentrated around +2-0~1/4,y,

four voices per octave, is given in Figure 3.2. Fot every dilation step, we find
four different frequency levels (corresponding to the four different frequency lo-
calizations of !, --,%*), all translated by the same translation step. Such a
lattice can be viewed as the superposition of four different lattices of the type
in Figure 1.4a, stretched by different amounts in the frequency direction. Each
of these four sublattices has a different “density,” which is reflected by the fact
that typically the ¥ have different LZ-norms. One choice favored by Gross-
mann, Kronland-Martinet, and Morlet is to take “fractionally” dilated versions
of a single wavelet 9

'I)V(x) - 2—-(v-l)/N w(z—(u—l)/Nx) .

(Note that these do indeed have different L2-norms!) In this case

it Tmeoo [89(2™E)[? becomes simply o0, [$(2™/VE)[?, and this
can easily be made to be almost constant, by choosing /N large enough.
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Fixing ap = 2 allows also for a modification of the estimation techniques in
§3.2, which may be useful in some instances. Let us go back to the estimate
for Rest (f). We can rewrite k € Z, k # 0, as k = 2¢(2k’ + 1), where & > 0,
k' € Z; the correspondence k—(£, k') is one-to-one. If ap = 2, then we can
regroup different terms, and write

Rest ()= 3 [de f@FE+2nae + Db 2
m' k'€l
T B (2™ e + 2m(20 +1)bo )] -
e
This leads to
— 2_7': : Lomeyi2 )
A= {13!!!&1{52 ; [e(2me)| |
bad 2n, 2 ., 1/2
..k’zz_:w {a, (—6;(2k +1)),@, (-zguk +1))] } .
. (3.3.21)
— g’f m 2
B=3 {13&1&2 ; lB(2me)|
2%, 2r ., 1/2
+k,§_‘:w {ﬂl (—b;(% + 1)) B (—E(Zk + 1))] } ,
(3.3.22)
where
Pr(s)= sup Y Z Y™ P2U2E +9))] - (3.3.23)
121¢1<2 meZ 1€=D

These estimates are due to Ph. Tchamitchian. (Full details of the derivation can
be found in Daubechies (1990).) Note that B8;, unlike 3, still takes the phases
of 9 into account; as a result, the estimates (3.3.21), (3.3. 22) are often better
than (3.3.11), (3.3.12) when % is not a positive function. If ¥ is positive, then
(3-3.11), (3.3.12) may be better. The estimates (3.3.21), (3.3.22) hold if we have
one single voice per octave; they can of course also be extended to the multivoice
case.

3.3.5. Examples.

A. Tight frames. The following construction (first proposed in Daubechies,
Grossmann, and Meyer (1986)) leads to a family of tight wavelet frames. Let v
be a C* (or C*) function from R to R that satisfies:

s _Jo i <0,
r . V(z)-{ 1 if z>1 (3.3.24)



74 CHAPTER 3

(see Figure 3.3). An example of such a {C?) function v is

0, r<0,
viz)=4¢ sin® §z, 0<z<1, *(3.3.25)
1, r>1.

For arbitrary ap > 1, by > 0 we then define ¥*(¢) by
0, E<toré>a’t,

E = a2 | sin [3(aESy)] tsisat,
cos [’§'V(a—,§f,,;—‘“_—'1))] : aol < € < ag? ,

where £ = 2r{bo(ag® ~ 1)}, and $~(€) = ¥+(—€) Figure 3.4 shows ¢+ for
ap =2, bp = 1, and v as in (3 3.25), It is easy to check that

{support $*| = (ap® — 1)& = 2r /by

and i
Y 1 (@) = (Inag)™! x(0,m(€)
melZ N
where X(0.0) i8 the indicator function of the open half line (0,00), ie.
X(v.00) (£} = 1if 0 < § < 00, O otherwise.
For any f € L*(R), one then has

S vk P
mnel
;;mh": 2 m 2 - T :
= S ap | defe) et T
m,nel e ¢

v{x)

Fic 33. The function v(z) defined by (3.3 25).
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1 T —r r

vi(E)
05}

0 4R/3 8r/3
FI1G. 34 The funclion ¥ (£} with the chowces ag = 2, by = 1

2n - .
=Ty [aier vteer
Rz
- 5oa | wiier

Simiarly, 3., {f, Y = 52 [0 d If(E)P. It follows that the
collection {9t .; m,n € Z, ¢ = + or —} is a tight frame for L}(R), with
frame bound E%’:E One can use a variant to obtain a frame consisting of real
wavelets: ¥! = Re y* = 1yt + ¢ 7] and ¥* = Im ¢+ = 2t — ¥~] generate
the tight frame {¢)), ., m,n € Z, A =1 or 2}. These frames a.e not generated
by translations and dilations of a single function; this is a natural consequence of
the decoupling of positive and negative frequencies in the construction. A more
serious objection to their practical use is the fact that themr Fourier transforms’
are compactly supported, and that the size of this support is relatively small (for
reasonable ag,bp). As a result, the decay of the wavelets is numerically rather
slow: even though we may choose v to ba C*, so that the ¥* decay faster than
any inverse polynomial,

[pE(z) < Cn (1 +jal)V,

the value of Cy turns out to be too large to be practical. Note that we did not
introduce any restriction on ag, by in this construction. '

B. The Mexican hat fungtion. The Mexican hat function is the second
derivative of the Gaussian e~% /2; jf we normalize it so that its L%-norm is 1, we
obtain 4 9 -

. - -1/4 2y _—x%/2

T)=—4mn 1-x%e .
¥(z) 7 ( )

This function (and dilated and translated versions of it) was plotted in Figure
1.2b; if you take one such plot, and imagine it rotated around its symmetry axis,
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then you obtain a shape similar to a Mexican hat. This function is popular in -
vision analysis (at least in theoretical expositions), where it was also christened.
Table 3.1 gives the frame bounds for this function, as computed from (3.3.19),
(3.3.20), with ag = -2, for différent values of by and for a number of voices
varying from 1 to 4. As soon as we take 2 or more voices, the frame may be
considered tight for all by < .75. Note that by = .75 and (g )effoctive = 2'/2 ~ 1.41
(intuitively corresponding to two voices per octave) are not small values for the
Mexican hat function: the distance between the maximum of ¥ and its zeros
is only 1, and the width of the positive frequency bump of 1 (as measured by
o™ dE (& — Eav)? [(E)I1*]'/2, with Eay = [;~ d€ € [$(€)[?), is 1/3/2 =~ 1.23. For
fixed N, and by small enough, so that the frame is almost tight, the table also
shows that 4 ~ B is inversely proportional to by, which fits the intuition that
for tight frames of normalized vectors, A = B measures the “redundancy” of
the frame (see §3.2), which should indeed double if by is halved. On the other
hand, the numbers in the table also show that B/ A increases dramatically if by is
chosen “too large”. For every N, the last value of by shown is the last value (with
increments of .25) for which our estimate (3.3.19) far A is positive; from the next
bp on, the ¥, , are probably not a frame any more. This very abrupt transition,
from a reasonable frame, to a very loose frame and then no more frame, as bg
increases. was first observed by J. Morlet (1985, personal communication), and
was one of the motivations for a more detailed mathematical analysis,

C. A modulated Gaussian. This is the function most often used by
R. Kronland-Martinet and J. Morlet. Its Fourier transform is a shifted Gaussian,
adjusted slightly so that ¥(0) = 0,

$E) = a4 {e’(f'f")z/z—w‘fz/’ e"‘*””] , (3.3.26)

Y(z)v = x4 (e“"e““’ ~e'£3/2) e /2

Often & is chosen so that the ratio of the highest and the second highest max-
imum of ¥ is approximately 3, i.e. & = 7[2/In2]*/? ~ 5.3364...; in practice
.one often takes £ = 5. For this value of £y, the second term in (3.3.26) is so
small that it can be neglected in practice. This Morlet-wavelet is complex, even
though most applications in which it is used involve only real signals f. Of-
ten (see, e.g., Kronland-Martinet, Morlet, and Grossmann (1989)) the wavelet
transform of a real signal with this complex wavelet is plotted in modulus-phase-
form, i.e., rather than Re (f, ¥ma), Im (f, ¥m,n), one plots [{f, ¥mn)| and
tan~! [Im (f, ¥mn)/Re {f, ¥mn)]; the phase plot is particularly suited to the
detection of singularities (Grossmann et al. (1987)). For real f, one can exploit

F(=€) = f(£) to derive the following frame bounds (this is analogous to what
was done in §2.4 for real f):

AP S Y2 IKF, $mad? SB IS for f real

m,nel
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e

TABLE 3.1
Frame bounds for wavelet frames based on the Mezican hat function (z) = 2/+/3 n~1/4(1 —
z’)e"'z/’. The ddation parameter ap = 2 m all cases; N 13 the number of voices.

-

= N=2
bo A B B/A bo A B B/A
25 | 13.001 | 14.183 | 1.083 25 | 27.273 | 27.278 | 1.0002
50| 6546 | 7.092 | 1.083 50 | 13.673 | 13.639 | 1.0002
75| 4.364 ) 4728 | 1.083 75| 9.091 | 9.093 | 1.0002
1.00 | 3223 | 3596 | 1.116 150 | 6768 | 6.870 | 1.015
1.25 | 2001 | 3454 1.726 1.25 | 4.834 | 6077 | 1.257
b 1.50 | 325 | 4.221 | 12.986 150 | 2609 | 6.483 | 2485
fj _ 175 | 517 | 7.276 | 14.061
? .
N=3 N=4 .
do A B B/A bo A B B/A
D% | 40.914 | 40.914 | 1.0000 25 | 54.552 | 54.552 | 1.0000
50 | 20.457 | 20.457 | 1.0000 5Q | 27.276 | 27.276 | 1.0000
75 | 13.638 | 13.638 | 1.0000 75 | 18.184 | 18.184 | 10000
1.00 { 10.178 | 10.279 | 1.010 1.00 | 13.586 | 13.690 | 1.007
) 1.25 | 7530 | 8835 1.173 1.25 | 10.205 | 11.616 | 1.138
; 1.50 | 4.620 { 9.009 | 1.947 150 | 6.594 | 11.590 | 1.758
. 1.75 | 1747 | 9942 | 5691 1.75 | 2928 | 12659 | 4.324
with -
n
A = il {l inf Z l¢(06"£)|2+w(06'“£)|2 -R,,
bo |2
mel
\
27r 1 m 2 2
B = . {-2- sup Z [$(ae)] +¥(ag™E)?| + R} ,
i meZ
where

Be(s) = 7 sup Y [(ae) + eb(—aFe)] Wh(afé + 5) + e(—age — 9)| .

mel

These can, of course, again be generalized to the multivoice case. Table 3.2 gives
;~$he frame bounds for ag = 2, several choices of by, and number of voices ranging
* from 2 to 4. In practice, the number of voices is often even higher.

¥
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L) -

TABLE 3.2

Frame bounds for wavelet frames based on the modulated Gaussan, P(x) = n~1/4 (e—*6o=

e€6/2) =312, unth € = %(2/In2)"/2. The dilation constant ag = 2 in all cases; N s the
rmmbcf of voices.

N=2 N=3
bo A B B/A bo A B B/A
516010 | 7.820 | 1.299 .51 10.205 | 10.467 | 1.017
1. | 3.009 ] 3910 | 1.230 1. |' 5147 ] 5234 | 1.017
1.5 ] 1.944 | 2.669 | 1.373 - 15| 3.366 | 3.555 | 1.056
2. {1178 ['2287 | 1.950 2. 2.188 | 3.002 | 1.372
25 ] .486 | 2.282 | 4.693 ©25| 1175 | 2977 | 2534
. 3. 320 | 3.141 | 9.824
N=4
by A B B/A

5 | 13.837 | 13.846 | 1.0006
.| 6918 | 6.923 | 1.0008
1.5 | 4540 | 4688 | 1.032
2. | 3013| 3910 1.297
25| 1.708 | 3.829 | 2.242
3. 597 | 4017 | 6.732

D. An example that is eaéy to implement. So far we have not addressed
the question of how the wavelet coefficients (f, ¥m ») are computed in practice.
In real life, f is not given as a function, but in a sampled version. Computing
the integrals [ dz f(z) ¥m n(z) then requires some quadrature formulas. For the
smallest scales (most negative m) of interest, this will not involve many samples
of f, and one can do the computation quickly. For larger scales, however, one
faces huge integrals, which might considerably slow down the computation of
the wavelet transform of any given function. Especially for on-line implementa-
tions, one should avoid having to compute these long integrals. A construction
achieving this is the so-called “algorithme a trous” (Holschneider et al. (1989)),
which uses an interpolation technique to avoid lengthy computations (for details,
I refer to their paper). Here I propose an analogous example (although it is not
“3 trous”), by borrowing a leaf from multiresolution analysis and orthonormal
bases (to which we will come back), i.e., by introducing an auxiliary function ¢.
The basic iden is the following: suppose there exists a function ¢ so that

¥(z)=)_ ddz—Fk), (33.27)
- .
é(z) = Z ce ¢(22 - k), (3.3.28)

k
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where in each case only finitely many coefficients are different from zero.!!
(Such pairs of ¢, ¥ abound; an example is given below. The “algorithme
a trous” corresponds to special ¢ for which ¢g = 1, all other even-indexed
can = 0.) Here ¢ does not have integral zero (but v does!), and we will
normalize ¢ so that [dz ¢(z) = 1. Define, even though ¢ is not a wavelet,
Bm.n(z) = 272 $(27™x — n); we take ag = 2, bg = 1. Then it is clear that

(f! '/’m,n) = Z di (fv ¢m,n+~k> H
k

the problem of ﬁndiflg the wavelet coefficients is reduced to computing the
{f, émn) (finite combinations of which will give the (f, ¥m,n)). On the other
hand, ] .
(fa ¢m,n) = ""\/'—é Z Cr (f) ¢m~!.2n+k) '

k

8o that the (f, ¢man) can be computed recursively, working from the smallest

Gk S A e Y A s
3 ™ 3 e
i

scale (where they are easy to compute) to the largest scale Everything is done
by simple, finite convolutions
An example of a pair of functions satisfying (3.3.27), (3 3.28) is
!
1 1
¥ =N [-3 8+ ) +62) - J otz 1)]
. i€ _ 4 . 4
() = 12 (e 1) _ 1 (sm £/2) ,
| V2 1§ v2r £/2 .
: f‘% which corresponds to
1 ié-}“ s
ffgk [} (z+2)3, -2<z< -1,
%
IS 3-2*(1+2/2), -1<z<0,
b e .
“f@ ¢(z)=J %—z’(l-z/?), 0<z<1,
£
2 §(z-2?, 1252,
T | 0 otherwise .

3

1‘?" is & normalization constant chosen o that ||yf| = 1; one finds N = 64/ 13%.

N £ 3.5a shows graphs of ¢, ¥; they are not unlike a Gaussian and its second

ﬁ&'imtive, plotted in Figure 3.5b for comparison. The function ¢ clearly satisfies
. ﬁS.W) with dg = N, d41 = —N/2, all other dx = 0, whereas

- (B (=

= (cos £/2)* $(6),

»
£
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which implies
#(x) = o2z +2) + %¢E2x +1) + §6(22) + jo(2r ~ 1) + Lo(22 - 2)

or ¢y = %, C41 = %, Cia = {‘-;, all other ¢x, = 0 For this ¢, ap = 2 and by = 1, the
frame bounds are 4 = 73178, B = 1.77107, corresponding to B/A = 2.42022;
for ag = 2, by = .5 we have A = 233854, B = 2.66717, and B/A = 1.14053
(using bp = .5 means that the recursion formulas, linking the ¥, » with the
¢m.n and the ¢, ,, with the ¢,,,_; ., have to be adapted, but this is easy). Here
we have used only one voice. It is of course possible to choose several different
¥¥, corresponding to different df, that give rnise to a multivoice scheme, ¢loser
to tight frames. -

This concludes our example section, other examples are given in Daubechies
(1990) (including ene for which the estimates (3.3.21), (3.3.22) outperform
(3.3.11), (3.3.12)) Many other examples can of course be constructed. The
wavelets used in Mallat and Zhong (1990) are another example of the same type
as our last one; in their case ¥ is chosen to be the first derivative of a function
with non-zero integral (so that [dz ¢(z) = 0 but [dz zy(z) # 0).

~

(a) 1 1 . .
] v
/N

0 -
of - A ~ N S/ ‘

-5_ -‘1 ] 1 E i :2~ 0_ 2

(b) 1 ==~ - - -- 1 =
Gaussian Mexican Hat

0
2 1 0 1 2 2 0 2

F1G 3.5. An ezample that 15 easy to implement: graphs of ¢,y (in a), and a comparson
with @ Gaussian and its second dervatwe (1n b).

3.4. Frames for the windowed Fourier transform.

The windowed Fourier transform of Chapter 2 can also be discretized. The
natural discretization for w,t in g“'*(x) = %7 g(z —t) is w = muwy, t = nty,
where wy, tp > 0 are fixed, and m, n range over Z; the discretely labelled family
is thus

gm.n(z) = €™9% g(z — nto) .
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“
W oasho

We can again seek answers to the same questions as in the wavelet case: for
which choices of g, wg, o can a function be characterized by the inner products
{f\ 9mn); when is it possible to reconstruct f in a numerica.lly stable way from
these inner products; can an efficient algorithm be given to write f as a linear
combination of the g .7 The answers are again provided by the same abstract
framework: stable numerical reconstruction of f from its windowed Fourier co-
efficients

: {fy gmm) = /d-'c f(z) e7"0% g(z — nip).

is only possible if the gm n constitute a frame, ie, if there exist A > 0, B < 00
S0 that

w

AJ

A [wif@P < T K small <B [zl

m,neZ

If the gm » constitute a frame, then any function f € L*(R) can be written as

f=3 AL, 9mpn) Gmm = D {fs Gmm) Gmim (3.4.1)

“where 9m.n are the vectors in the dual frame; (3.4.1) shows both how to recover
., f from the (f, gm.n) and how to write f as a superposition of the g, ,. The de-
%, tailed analysis of frames of windowed Fourier functions brings out some features

* different from wavelet frames, due to the differences in their constructions.

*3.4.1. A necessary condition: Sufficiently high time-frequency den-
sity. The arguments in the proof of Theorem 3.3.1 can be used for the windowed
Fourier case as well (with the obvious modifications), leading to the conclusion

< —2"—0 o2 < B (342)

Jor any frame of windowed Fourier functions, with frame bounds A, B. This

.goes not impose any additional restrictions on g (we always assume g € L*(R)).

A consequence of (3.4.2) is that the frame bound for any tight frame equals

é ?,,21r (woto) ™! (if we choose g to have norm 1); in particular, if the gm,» constitute

% .0 orthonormal basis, then wotp = 27.

b i3+ The absence of any constraint on g in the inequalities (3.4.2) is similar to the
absence of an admissibility condition for the continuous windowed Fourier trans-
form (see Chapter 2), and quite unlike the constraint [ d€ |€|=2 [%(£)]® < oo on

'+ the mother wavelet, necessary for wavelet frames as well as for the continuous
wavelet transform. Anpother difference with the wavelet case is that the time and
frequency translation steps to and wp are constrained: there exist no windowed
Fourier frames for pairs wp,fp such that woty > 27. Even more is true: if
woty > 2w, then for any choice of g € L%*(R) there exists a corresponding
7€ L2(R) (f # 0) 50 that f is orthogonal to all the g »(z) = ™07 g(z —nty).

« In this case the g,, , not only fail to constitute a frame, but the inner products
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{f, 9m ) are not even sufficient to determine f. We are therefore restricted
to wote < 27; in order to have good time- and frequency-lo¢alization, we even
"have to choose wpty < 27. Note that no similar restriction on ay, by existed in
the wavelet case! We will come back on these conditions in Chapter 4, where
we discuss in much greater detail the role of time-frequency density for win-
dowed Fourier versus wavelet frames; we postpone our proof of the necessity of
wotp < 27 until then.

3.4.2. A sufficient condition and estimates for the frame bounds.
Even if wotp < 27, the g, »n do not necessarily constltutea frame. An easy
counterexample s g{z) =1for 0 <z < 1, Ootherwme'iffo> 1, then any func-
tion f supported in [1, tp] will be orthogonal to all the gn n, however small wp
is chosen. In this example essinf, 3_, [g(z — ntp)|? = 0, and this is what stops
" the gm n from being a frame. (Something similar occurs for wavelet frames; see
§3.3.)
Computations entirely similar to those in the wavelet case show that

u"f "f"_2 Z I, gm,qu b

I#G

2o {mf Y otz — nto) - 3 [ﬁ (gk) 8 (-?f-k)}ln}, (3.4.3)
T k#0
sup fII” 23 K gman? ’
J0 .

< i.—’; {s::p ; lg(z — nto)i®+) [ﬁ (-f%k) B (—gk)]llz} ., (34.4)

where 3 is now defined by

Bls)=sup 3 lg(z — nto)] lg(= ~ nto+ )|

As in the wavelet case, sufficiently fast decay on g leads to decay for 3, so that
by choosing wp small enough, the second terms in the right-hand sides 0of {3.4.3),
{3.4.4) can be made arbitrarily small. If }°_ [g(z — ntg){? is bounded, and
bounded below by a strictly positive constant (no “conspiring” of the geros of
g), then this implies that the g,; , constitute a frame for sufficiently small wy,
with frame bounds given by (3.4.3), (3.4.4). Explicitly, we have the following
propeeition.
ProrosITION 3.4.1. If g, to are such that

5 S — )2
o2, 2 lsz-nwl*>0,
’ sup Y. lg(z—nto)f? < oo, (3.4.5)

0<2<to 0o
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and if ((s) = suPpcact, 2on |9(z — nto)| lg(z — nto + 8)| decays at least as,
fast as (1 + |8])~(*9), unth € > 0, then there emsts (wo)inr > O 30 that the
gmn(z) = ™% g(x ~ nty) constitute a frame whenever wy < (wWolwne For
wo < (wo)thy, the might-hand sides of (3.4.3), (3.4.4) are frame bounds for the
Imn.
The conditions on 3 and (3.4.5) are met if, e.g., |g(z)] € C(1 + |x|)~" with
4> 1.
- REMARK. The windowed Fourier case exhibits a symmetry under the Fourier
transform absent in the wavelet case. We have

(9m.n)"(€) = €7*"4% §(€ ~ mup)

which implies that (3.4 3), (3.4.4) still hold if we replace g, wp, to by §, to, wo,
respectively, everywhere in the right-hand sides (including in the definition of
B). Using this remark, we can therefore compute two estimates each for A and
, B, ang pick the highest one for A, the lowest for B o

*

-

3.4.3. The dual frame. The dual frame 1s again defined by
gon = (F*F)7 g
s»% where F*Fisnow (F*F)f =3 (f, 9mmn) gmn. In this case one easily checks

*j‘“ that F*F commutes with translatlons by to as well as with multiplications by
Je*0%, e, if (Tf)(z) = f(z ~ to), (Ef)(z) = €% f(z), then

F*FT=TF"F, F'FE=FEF°F.
é}t follows that (F*F)~! also commutes with E and T, so that

gmn = (F*F)VE"T"g
E™T" (F*F)™' g,

T §(z - nto) = m,n(z)

exe § = (F* F)~1g. Unlike the generic wavelet case, the dual frame is glways

feperated by a single function §. This means that it is not as important in the

... dowed Fourier case that the frame be close to a tight frame: if B/A — 1 is
nneégligible, then one simply computes § to high precision, once and for all,

i4pd works with the two dual frames.

=

M‘a Examples.

gmn(z) =e

5m3'.l.‘ight frames with compact support in time or frequency. The fol-
* lawing construction, again from Daubechies, Grossmann, and Meyer (1986), and
g - Nery similar to §3.3.5.A, leads to tight windowed Fourier frames with arbitrarily
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high regularity if woty < 27. If support g C [—l —”—}, then

wo' wp

2

njv 27 ‘ 2
dzx e'™“0 Zf (:c + (__) g (a: +€— — nto)
° tel “o “o

ZKf»gm,n)F = E

2
2% /wa

2
= jZf dx Zf(erEg’—r)g(eregfi-nto)
wo S Je ez “o wo
g(:c-!—!ﬁ—nto)
Wo

where we have used that for any n, at most one value of £ can contribute, because
of the support property of g.
Consequently, .

:[,m If, gomin)? = f;’g / de @ 3 e~ ntol

2 2

)

2 Zt/wn
=y dz |f (x + ez’-’)
Wo nt 70 Wo

and the frame is tight if and only if }_,, |g(z —nto){? = constant. For instance, if
woptp > , then we can start again from a C* or C™-function v satisfying (3.3.25)
and define :

rsin [.’2!,,(__1_51_" “"")] , -

kit k.S
In—woto “',—DSzS;;"'tﬁv
17 I <<~ 41t
-1/2 ) =T> J

g(:z)=to’ { wo we
* n— E N L

cos [5 V(i;‘:%%‘{;)] y —mExtth<z<

. 0 otherwise .

Then g is a C* or C™ function (depending on the choice of +) with compact
support, {lgl| = 1, and the g, , constitute a tight frame with frame bound
2n(wolg) ! (as already followed from (3.4.2)). If wgty < 7, then this construction
can easily be adapted. This construction gives a tight frame with compactly
supported g. By taking its Fourier transform, we obtain a frame for which the
window function has compactly supported Fourier transform.!?

B. The Gaussian. In this case g(z) = n~1/4 e~="/2. Discrete families of win-
dowed Fourier functions starting from a Gaussian window have been discussed -
extensively in the literature for many reasons. Gabor (1946) proposed their use
for communication purposes (he proposed wgtg = 27, however, which is inappro-
priate: see below); because of the importance of the “canonical coherent states”
in quantum mechanics (see Klauder and Skagerstam (1985)) they are of inter-
est to physicists; the link between Gaussian coherent states and the Bargmann
space of entire function makes it possible to rewrite results concerning the g, », in
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terms of sampling properties for the Bargmann space. Exploiting this link with
entire functions, it was proved in Bargmann et al. (1971) and independently in
Perelomov (1971) that the g,, » span all of L?(R) if and only if wpte < 2; in
Bacry, Grossmann, and Zak (1975) a different technique was used to show that
if woty = 2m, then

’i’é{‘ A2 1 gmmd? =0,

even though the g, , are “complete,” in the sense that they span L?(R).'3 (We

= will see in Chapter 4 that this is a direct consequence of wp - tp = 2, and of
the regularity of both g and §.) This is therefore an example of a family of
gm.n Where the inner products (f, g, ») suffice to characterize the function of f
(if {fi, 9mmn) = (f2, gmqn) for all m,n, then f; = f;), but where there is no
numerically stable reconstruction formula for f from the (f, g, ). Bastiaans
(1980, 1981) has constructed a dual function § such that

f= Z (f, gm.n) Gmm (3.4 6)

;p%th Fmalz) = €™F g(z — ntp), but convergence of (3.4.6) holds only in a
~4ery weak Sense (in the sense of distributions—see Janssen (1981, 1984)), and

: aot even in the weak L2-sense; in fact, § itself is not in L2{R).
. + . The case wpty = 2x 1s thus completely understood, what happens if wyty <
0 Zvr" Table 3.3 shows the values of the frame bounds A, B and of the ratio B/ A, for
% various values of wg-tg, computed from (3.4.3), (3.4.4) and the analogous formulas
“ using §. We find that the g,» » do constitute a frame, even for wg - to/(27) = .95,
. although B/A becomes very large so close to the “critical” density. It turns out
that when wp - to/(27) = 1/N, N € N, N > 1, the frame bounds can also be
computed via another technique, which leads to exact values (within the error
of computation) instead of lower, respectively, upper, bounds for A, B.14 For the
;%hmces wp - to/ (21r) 1 1 and 1, Table 3.3 reveals these exact values as well; it
surprising to see how close our bounds on A4, B (which are, after all, obtained
ia a Cauchy-Schwarz inequality, and might therefore be quite coarse) are to
e exact values Substituting these values for A, B into the approximation
hem? at the end of £3.2, we can compute § for these different choices of wg, ¢p.
gure 3.6 shows plots of § for the special case where wy = to = (A\2m)!/2, with A
ing the values .25, .375, .5, .75, .95, and 1. Note that Bastiaans’ function §,
thich corresponds to A = 1 (lower right plot in Figure 3.6), has to be computed
Bifferently, since A = 0 for A = 1. For small A, the frame is very close to tight,
%nil g is close to g itself, as is illustrated by the near-Gaussian profile of g for
= .25. As ) increases, the frame becomes both less redundant (as reflected by
ﬁe growing maximum amplitude of §) and less tight, causing g to de\fial?es more
ihd more from a Gaussian. Because both g and § have (faster than) exponential
, one can easily prove from the converging series representation for § (see
:§3.2) that § and § have exponential decay as well, if A > 0. It follows that
the §,, » have good time-frequency localization properties, for all the values of
A < 1 in Figure 3.6, even though it is quite striking how § tends to Bastiaans’

%,

N
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FIG 36 The dual frame funclion § for Goussian g ond wp = tp = (2x0)M2, wath
A = 25,.375, 5, 75, 95, and 1. 4s X mcreases, § demaies more and more from a Gaussian
(reflecting the increase of B/A), and its emphitude increases as well (because A+ B decreases).
Far XA = 1, § 15 no longer square integrable.

pathological § as ) increases. For A = 1, all- time-frequency localization breaks
down.’® The series of 'plots in Figure 3.6 suggests the conjecture, first formulated
in Daubechies and Grossmann (1988), that, at least for Gaussian g, the g,, , are
a frame whenever wotp < 2m. In Daubechies (1990) it was shown that this
is indeed the case for woty/(27) < .996. Using entire function methods, this
conjecture has since been proved, by Lyubarskii (1989) and independently by
Seip and Wallstén {1990). '

There exist of course many other possible and popular choices for the window
function g, but we will stop our list of examples here, and return to wavelets.

3.5. Time-frequency localization.

One of our main motivations for studying wavelet transforms (or windowed
Fourier transforms) is that they provide a time-frequency picture, with, hope-
fully, good localization properties in both variables. We have asserted several
times_that if 1 itself is well localized in time and in frequency, then the frame
generated by v will share that property. In this section we want to make this
vague statement more precise.

For the sake of convenience, we assume || and |¢| to be symmetric (true if,
e.g., ¥ is real and symmetric—a good example is the Mexican hat function)?6,
then 4 is centered around 0 in time and near +£; in frequency (with, e.g., o =

Jo7 dE €W /1fs7 de 19(€)I])- 1+ is well localized in time and frequency, then
l/lm,n will similarly be well localized around ag'nby in time and around tag ™€y |
in frequency. Intuitively speaking, {f, ¥mn) then represents the “information
content” in f near time aj'nbp and near the frequencies +ag™£o. If f itself is
“essentially localized” on two rectangles in time-frequency space, meaning that,
for some 0 < Qg < §2; < 00, 0 < T < 00,
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> v, g e At

TABLE 3.3

Values for the frame bounds A, B and their ratio BfA for the case g(x) = x=1/4 exp(—22/2),
< for different values of wo,to For woty = 7/2 and n, the exact values can be computed 1a the
¥ Zak transform (see Daubechies and Grossmann (1988)).

wotp = 7 /2
o As Aexact B Begay B/A
0.5 1203 1221 7091 709t 5896
1.0 383 3854 4147 4.147 1076
1.5 3899 3899 4101 4.101 1.052
; 20 3322 3322 4679 4679 1.408
25 2365 2365 5664 5664 2395
30 1427 1427 6772 6.772 4745

R

. woto = 3x/4

to A B B/A

10 1.769 3.573 2.019

15 2500 2833 1133

20 2210 3124 1414

25 1577 3.776 2.395 -
30 0951 4515 4745

wolp ==

to A Aexact B Bexat B/A
10 0601 0601 3546 3.546 5901
15 1519 1540 2482 2482 1635
20 1575 1600 2425 2425 1539
25 1172 1178 2843 2843 2.426
30 0713 0T13 3.387 3387 4752

wotp = 31(/4 =

to A B B/A
10 0027 3.545 130.583
15 0342 2422 7.082
20 0582 2.089 3.592
25 0554 2.123 3.834
3.0 0393 2.340 5.953
35 0224 2656 11.880
40 0105 3.014 28.618

wotlo = 1.97
tt A , B BJA-
> 1.5 0.031 2.921 92935
2.0 0082 2.074 25412
2.5 0.092 2.021 22004
30 0.081 2077 25668
3.5 0.055 2.218 40.455
40 0031 2432 79.558
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[ aif@rza-a e, 35.)
o LK|Sth

dz |f(@)? > (1-8) |fI?, (35.2)
l=I<T
where § is some small number, then this intuitive picture suggests that only
those (f, ¥mn) corresponding to m,n for which (af*nby, taz™&o) lies within
or close to [-T,T] x ([-fh, —Q] U [Qo, {}]) are needed to reconstruct f
to a very good approximation. The following theorem states that this is indeed
true, thereby justifying our intuitive picture.
THEOREM 3.5.1. Suppose that the ¥, o(z) = agy m/2 Y(ag "z — nby) constr-
tute a frame with frame bounds A, B, and suppose that

W(z)] < C+2%)2, ) <ClefP (146%)~EM/2 1 (353)

with a > 1, 8 > 0, v > 1. Then, for any € > 0, there emists a finite set
B, Qu; T) C Z* so that, for all f € L3(R),
[f - z (f- 'pm,n) d',r::n

(m,n)EB‘ (QO \Ql )T) l

1/2 172
S.\/—g[( / dﬂf(&)l"’) + (/I;t)T d-’r}f(vI)IQ) +6l|fl|} :

j€l< 8
‘or [Ef> /

(3.5.4)

REMARKS.
1. If f satisfies (3.5.1) and {3.5.2), then the first two terms in the right-hand-
. side of (3.5.3) are bounded by 26 \/2 ||]; choosing ¢ = & then loads to

If =~ Cmncr, (s Ymn) Pmall = O6). ‘

2. As e—0, # B.(S, 11; T)—o00 (see proof, below):.infinite precision is only
possible if infinitely many (f, ¥m ) are used. o

Figure 3.7 gives a sketch of the set B.(f2o, §21; T) for one particular value of
¢; the proof will show how we obtain this shape.

Proof.

1. We define the set B, as
B.(Q, @; T) = {(m,n) € Z% mo <m < my, |nby| <az™T +1},

where mg, m; and ¢, to be defined below, depend on o, 2;, T, and €. The
points (af'nby, +a; &} corresponding to (m,n) in such a set, do indeed
fill a shape like Figure 3.7.
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Fic. 3.7. The set B.(,50),T) of “wavelet lattice pownts” needed for an approzwmate
reconstruction of f if f 15 localized mostly n [T, T} in time and n [~Q), o} U [0, U] n

Jrequency.

2. f‘ Z (f» "pm,n) iz'-:n_,‘n

(m,n)eB,

= swp (AW~ 3 {fr Ymand @, B)

firll=1 (m,n)€B,

= Bup z (fm 1/’m,n)(¢;v:;h i‘)

uhl|=1 (m,n)gB,

< s Y )

“hﬂ=1 m<mg peZ

or m>my

((Pao fr Ymmdl + (1~ Paoa)fs Ymndll [(¥mms B

' + sup Z Z

2T - fAll=1 mo<m<m, Inbo4>n;"‘T+¢

QTS Ymm)] + H(1 = Qr)S, Ymn)]] (s B

(3.5.5)
where we have introduced (Qrf)(z) = f(z) for |z| < T, (Qrf)(z) = 0
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otherwise, and (Pag,n, )ME) = f(€) if Qo < €] < D, (Pag.a, ))ME) = 0
otherwise. Since the v, , constitute a frame with frame bounds B~%, A~1,
we have

Y ST KA - Paga)f, $madl [(Ymn, b))

m<mo nel

or m>m, 12 12
< (Z ‘((1 - Pﬂn.ﬂ))fa ¢m,n>lz) (Z l(’ﬁm.m h)lz)

< BM2 (1 = Pog,)fll A~'/2 by '

»

B

1/2 )
= —;[ / dflf(ol?] _ (because laf| =1) .
i€i<fg

or [€]>0y

Similarly,

sup 3 K- Qn)f Y| (Yo, B

"h"'—“l moS'"Sml 'nbol)ﬁ;mT‘!'l
B 1/2
<V [ dxm:cn’} :
. lzi>T

It remains to check that the other two terms in (3.5.5) can be bounded by

VEe Al

. By the same Cauchy-Schwarz trick, we reduce the remaining two terms in

(3.5.5) to

1/2

AL ST S K Paganfs Yman)?

m<mg
or m>m) ﬂez

1/2

+ Y S KQrfs $mall?

MoSMEMy |nbg|>ay ™T+¢
(3.5.6)
It is therefore sufficient to show that for appropriate my, m,, ¢ each of the
expressions between square brackets is smaller than Be? ||fi?/4.

4. We tackle the first term in (3.5.6) by the same technique as in the proof of
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Proposition 3.3.2:

Z Z l(Pﬂo,(h f‘ wm,n)Iz

mlmg neZ

<F T ¥ / d€ | (6)]

- -1
Roie-2ndag ™o 1Sy

17 (6= 3easm) | wiaen]i (ame - 32e)

53 [ / dé 1f(©)?
tel fo<leism

N
-, 1
005“—21!00 bD 1<y .

DO LG L |«/3 (- 3¢)
m(mg

- [ / a Q)P
No <K<,

- -1
fg<icrantas ™ol i<y

. 1/2
> 1 (ape+ ) P Izi)(aa"C)i”‘*] . (357)

where 0 < XA < 1 will be fixed below. Since [1 + (u — s)?]™?
(1 + 8®)[1 + (u+ s)?]"! is bounded uniformly in « and s, we have

s [ (ape - 3e)|

-1/2

2
< Ot + (6272 [1 + (aa"c -k ) ]
<Ci(1+ )%, .
Substituting this into (3.5.7) we find

(357) < 1 CallPauan JI°
Y+ sup 3 WapgPeN.  (358)

orm>my

The sum over £ converges if YA > 1, ie., if A > 1/v; we can choose, e.g.,
A=4(1+77"). On the other hapd, for 2y < || < U,

Z l&(a&"f)lz(l"x) S 03 Z (1+a(2)m03)—1(1—.-‘\)

m>m, m>my

< Cq 96‘3‘7(1—4\) a‘;':ml’Y(l-"-) (35‘9)
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and

Z [Plale)2-Y < ¢ Z(a{,"nx)zl’“-")

m<mg m<mp '

Cs Q2ﬁ(l -1) 2moﬂ(1 A (3.5.10)

IA

In all these estimates, the constants C, may depend on ao, b, A, B, and
~ but are mdependent of Q, 4, mo, and my. Subs@ntutmg into (3.5.8),
with the choice A = 1(1 + y7!), leads to

(358) £ Cr IfI? [(Soag™)~ 01 + (aFoq)P-Di]

If my > (Inag)™! [(y - 1)"! In(4Cy/Be?) ~ InQ] and mg < (In ap)~!
B~y = 1)71 In (Be2/4C7) — In ], then this leads to

Y Y lPaga wmn>P<B— e,

m<mg 7
ot m>n'\\

as desired.

5. The second term in (3.5.6) is easier to deal with. We have

Y QTS Yma?

[nbg)>ag ™ T+t

S Y IAPNQr dmall?

Inbof>ag ™ T+t

< IfFi dza;™ Y [wlagz - nbo)l® .

l=IsT Inbol>a; ™ T4t

The sum over n splits into two parts, n > by’ (ag™7 + t), and
n < -~by'(ag™T-+t). Let n; be the smallest integer larger than
b“(aa'"Tﬁ-t) Then

a;™ dr Y [¥(ag™z - nby)l?

l=I<T

nbp>ag " T+t
< a” —/uzrdz ,Z;, Cs{i+[t+(n—n1)bo+06'"(7’-'¢))2}—a
(because |ag ™z ~ nibo| = nbp — 65"z > (1~ n1)bo +
t+a;™(T-z))

IA

Co Y [+(t+ )Y < Cpot™.
=0

b Andeah
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| The sum over n < —b; !(a; ™T+t) is dealt with in the same way. It follows
that
> Do HQrS: dmall < 2m —mo+1) Cro t7 £,

MeSMEM: |nbyi>a; " T+t
which can be made smaller than B ¢2||f}2/4 by choosing
t 2 [8(m1 - my + I)Cm B-1€—2)l/2ct .

This concludes the proof =

e

The estimates for mg, m;,t that follow from this proof are very coarse; in

+ 2byt(my — mg + 1)t

*" -~ -~
practice, one can obtain much less coarse values if ¢ and ¥ have faster decay
than stated in the theorem (see, e.g., Daubechies (1990), p 996).

¥ For later reference, let us estimate # B.(f)p, Q): T), as a function of

o, M, T, and ¢ We find

k4

L4 m

FooAB( Qs T) > 3 25" (6T +1)

F& m=my

A -myg —m,

¥ ag ag

~ 2T Cubg(ao ~ 1)1 /01 (0, ~ Q)

+2¢71/% by l(ln ag)~(22+V/2 €y [Cr3 + 10 Q) — In Qg)PRe+/2e

& On the other hand, the area of the time-frequency region [~T', T} x ([, o] U
[, 21]) 15 4T(2;) — Q) As Q—0 and T, Q) —o00, we find

# Be(Slo, 0, T) 1 _ 111 (2/(y=1)
lim AT, = 00) 20,, byt(ap - 1) € , (3.5.11)

‘whlch is not independent of e. We will come back to this in Chapter 4.
" Theorem 3.5.1 tells us that if ¥ has reasonable decay in time and in
ency, then frames generated by ¢ do indeed exhibit time-frequency lo-
: whhzatlon features, at least with respect to time-frequency sets of the type
AT, T) x (|-, ~S)} U [, Q). In practice, one is interested in localiza-
+4ion on many other sets. A chirp signal, for instance, intuitively corresponds to
‘s diagonal region (possibly curved) in the time-frequency plane, and it should be
poasible to reconstruct it from only those ¥, » for which (aT*nby, Lag™&) is in
-OF close to this region. This turns out to be the case in practice (for chirp signals,
‘and many others). It is harder to formulate this in a precise theorem, mainly
one first has to agree on the meaning of “localization” on a prescribed
t?me—ﬁ'equency set, when this set is not a union of rectangles as in Theorem 3.5.1.
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If we choose the interpretation in terms of the operators Lg defined in §2.8 (i.e.,
f is mostly localized in S if ||(1 — Lg)f|| < ||f]|), then the theorem is almost
trivial if the wavelets in the definition of Lg and in the frame both have good
decay properties. For any othér time-frequency localization procedure (e.g., us-
ing Wigner distributions, or the affine Wigner distributions of Bertrand and
Bertrand (1989)), we still expect results analogous to those in Theorem 3.5.1,
but the proof will depend on the chosen localization procedure

An entirely similar localization theorem holds for the windowed Fourier case.

THEOREM 3.5.2. Suppose that the g, n(z) = e™“o%g(z — nip) constritute a
frame unth frame bounds A, B, and suppose that

lo(@)| < C(1+2)72 |5(6) < C(1+€)7/%,

wsth a > 1. Then, for any € > 0, there enst t,,w, > 0, such that, for all
f € L*R), and all T,2 > 0, -

lr- ¥ tomadim

Imuwg| < M+we
Inegt<T+ee

1/2
B 2 o
< 7 [( ‘:‘>szif(w)l) +(/H mdeu(sn)

Proof.

1/2

te Nfll] :

”f— S fs Gl

1. By the same tricks as in points 2, 3 of the proof of Theorem 3.5.1, we have
|mwgl SO+we

' %
Intg!<T+t,

< \/§ M =Qr)fll + (X - Pa)fl]

172
;AT [z > e, gm.,.n’}

nel jmuwg|>St+w,

1/2
+ [}_j 3@t g...,,.n?] ,

meL inte]>T+t,

(3.5.12)

where (Qrf)(z) = f(z) for jz| < T, 0 otherwise, and (Paf)"(£) = f(€) for

. €] < N, 0 otherwise. The theorem follows if we can prove that the last two

terms in (3.5.12) can be bounded by BY/2 ¢jif|l. Let us first concentrate
on the last term.
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2 Z Z [(27 8 gm,n)‘2

meZ |nto|>T+t,

27 2
<2y v [ wual(-2
“o Into}]>T+t. el l=l<T “o
|:——§:-u5,'r

lg(z — nto)]

g (:1: - ~2-7££ - nto)
Wo

< 33}:[ / dz |f(@)? 3" lg(z ~nto)|
lzi<T

W
0 eL Into}>T+t,

]1/2
[ [ wier. ¥
fvl<T

nto|2T+t¢,

fz~ A8 T
wo

o(=- Se-)
glz——E€—nty
wp

v+ 3ZejcT

- |g (y + 2 nto)! lo(y - nto)l] "

e/ Y s lg(a - nto)

wo b=i<T
LeZ Into]|>T+t, |=-=2xt|<1'
wy =

(== 5otm)
glzx— —L—nly
wo

27

< — "f“2 c? Z Z sup [1+4 (z - nto)z]"“/’

7
|

wo L Into) 2T+, 13.‘%?:51'
2r 2] 7o/
[1 + (1: L nto) ] . {(35.13)
wp

One easily checks that the contribution for n > t; YT +t,) is exactly equal
to that for n < —t; (T +t.); we may restrict ourselves to negative n only,
. ai the price of a factor 2. By redefining y = = — 2% £ if £ is positive, we see
’ that we may restrict ourselves to negative £ as well. Hence

s < T Y %

[ntol 2T+, £20 '

0 97 —a/2
sup  [1 + (z + nty)? /2 [l + (z + -“-Ee + nto) }

j=IsT
—-<T
i= P i<
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< Zow ¥ %

Intol>T+t, £20

A

2 —~af2
1+ {nty - T)3} /2 [l + (nto -T+ ?5-[) ] .(3.5.14)
0
However, for any u, v > 0, we have
3+ (e )

=0 .
< (L+p?)y o7 4 fdx [+ (u+ vz)?o/2
S+ 4 2"/‘"% /Omdy (Vitu?+y)®
use a? + 6% >
< (14 pP) % 4 2o/
It follows that

@AM ST GIAR Y (14t~ T2

nto2>T+t,

Let n, be the smailest integer larger than T + ¢,. Then

Y [+ (ntg -T2

nto 2T+,

< Y L4 ((n- o+ 272

n=n;

<Cp (14 3)H

by the computation above. Putting it altogether, we have

Yo Y KQrfigmaP<C (1) fJ?, (3.5.15)

mel |ntg]2T+t.
where C3 depends on wy, ty, @, and C, but not on T (or £2).

3. Similarly, one proves
S S UPaf, gmaB <G+ AR (35.16)
nEZ |7W0|2n+hl¢ N

Since a > 1, it is clear that appropriate choices of t,,w, (independent of
T or ) make (3.5.15), (3.5.16) smaller than Be? ||f||?>/4. This concludes
the proof. =
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Figure 3 8 gives a sketch of the collection (m,n) such that {mwy] < Q + w,,
[nto] < T + t, as compared to the time-frequency rectangle [-T,T] x |[-£,9).
The “e-box” has a different shape from that in Figure 3 7

Fic 38 The set of latltice pownts B, needed for apprommate reconstruction, wnia the
windowed Fourter transform, of a funciion locahzed mostly in [T, T] mn time and mn [, )
in frequency

. .« Let us compare again the number of pomts in.the enlarged box B, =
"’}fr {(m,n), |muwo| < Q+w, Inty| < T +t.} with the area of [-T,T] x [-Q,Q), in

[ t?ie hmit for large T',
5]

2 # BT, Q) | wiM(Q+w) 25N (T +t.)
5 aTQ 4T

* " In contrast to the wavelet case, this limit is independent of ¢ We will come back
-~ to the significance of this m Chapter 4.

"

Y

— (wote) ! . (3.5.17)

".- 8.8. Redundancy in frames: What does it buy?

=+ As illustrated by the different tables of frame bounds, frames (wavelets or win-

" dowed Fourier functions) can be very redundant (as measured by, e.g., i.}g

+ % il the frame is close to tight, and if all the frame vectors are normalized). In -
o some applications (e.g., as in the work of the Marseille groups—see the papers of

P
.
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Grossmann, Kronland-Martinet, Torresani) this redundancy is sought, because
representations close to the continuous transform are wanted. It was noticed very
early on by J Morlet (private communication, 1986) that this redyndancy also
leads to robustness, in the sense that he could afford to store the wavelet coeffi-
cients {f, ¥'m n) with low precision (only a couple of bits), and still reconstruct f
with comparatively much higher precision. Intuitively, one can understand this
phenomenon as follows. Let (g,),¢s be a frame (not necessarily of wavelets or
windowed Fourier functions). If this frame is an orthonormal basis, then

F: H-E(J), (Ff), =({f, o)

is a unitary map, and the image of H under F is all of #(J). If the frame
is redundant, i.c., if the ¢, are not independent, then the elements of F'H are
sequences with some correlations byilt inte them, and FH = Ran (F) is a
subspace of €2(.J), smaller than #?(J) itself. The more redundant the frame 1s,
the “smaller” Ran (F) will be. As shown in §3 2, the reconstruction formula

f’zz (f, ?’1) ?,

R i et * - jGJ
involves a projection onto Ran {F): it can be rewritten as
f=FFf,

and F*c = 0if ¢ L Ran (F). f the (f, y,) are adulterated by adding some o,
to each coefficient (an example would bé round-off error), the total effect on the
reconstructed function would be

fapproxzi“ (Ff+a).

Since F* includes a projection onto Ran (F'), the component of the sequence
a orthogonal to Ran (F) does not contribute, and we expect {{f ~ fapproxi} to
be smaller than |ja]|. The effect should become more pronounced the “smaller”
Ran (F) is, i.e , the more redundant the frame is

Let us make this more explicit with the two-dimensional frame used as an
example in §3.2, and by comparing it with an orthonormal basis. Define u, =
(1,0), u2 = (0,1), ey = uz, €2 = ~’2§u1 ~duy, e = ’?ul — Zug; (ug,up)
constitutes an orthonormal basis for CZ, (e1,€2,e3) a tight frame with frame
bound g If we add a,e to the coefficients (f, u,), where a, are independent
random variables with mean zero and variance 1, then the expected error on the
reconstruction will be X

2 ; 2 2 Y

E|IF-D ((fu)+aeu| | =€E} Y o) | =E@i+a)) =

r=1

If we add a,e¢ to the frame coefficients (f, e,;), then we find
2

3
E f“g Z((f, e;) +a, €)e;

=L
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2

4 4
= §€2E = 652E(\a3 + a3 + a3 — qyaz — azas — aas)

3
2 : Q,€,
=1

4
= —62

3

which represents a gain of % over the orthonormal case!

A similar argument can be applied to wavelet or windowed Fourier frames.
In order to confine ourselves to only finitely many ¥, », or gm n, We assume f to
be “essentially localized” on [-T,T] x (-, -] U {20,1]) (wavelet case)
or [-T,T] x [-9,8] (windowed Fourier case), so that there exists a finite set
B, (see §3.5) for which

< el fil

lf— Y wm,..>.¢7...'..

m,neB,

(and similarly for the windowed Fourier case). Let us assume the frame is al-
most tight, Ymn >~ A Wy, n. Adding am . 6 to every (f, ¥mn), under the
assumptions E{amn Om’ n’) = Smm'Onn’, E(Gm,n) = 0, leads to

2)

<EIfIF + 8*(# B)A™? (3.6.1)

E ("f ~A70 30 (s Ymad + am,né)w...,nl

m,n€B,

If we assume [[{ 4l = 1). If we “double the redundancy” by halving by, then
the new frame would again be almost tight (see, e.g., (3.3.11), (3.3.12)), with a
frame bound A’ twice as large; on the other hand, the new “e-box” B. would
contain twice as many elements. It follows that

(# B)A =1 (# B)A?,

i.e., doubling the redundancy leads to halving the effect of adding errors to the
" wavelet coefficients. The same argument can be made for the windowed Fourier
. *case.
As it stands, the argument above is rather heuristic. There are indications
<" also that it can be considerably strengthened: the gain factor observed by Mor-
'~ let was in fact larger than what would follow from these arguments. More-
A% " over, recently Munch (1992) showedthat for tight windowed Fourier frames
5. Wwith A = (2m)"'wolo = N™!, N € N, N > 1, the gain factor with respect to
;- the orthonormal case is in fact N~%, and not N~1, as would follow from our
*  argument. His proof uses that A~! is integer in an essential way, but it is hard
4. to believe that the same phenomenon would not exist for noninteger A~!; maybe
gjﬁr it also holds for wavelet frames! I put this as a challenge to the reader. ...
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3.7. Some concluding remarks.

iIn this chapter we have studied in some depth the reconstruction of f from the

sequence ((fa wm,ﬂ»m,nEZv where ¢m,n(x) = a(;M/z 'd)(aaml' - nbo) (and varia-

tions thereof —see §3.3.4). We have seen that numerically stable reconstruction
is only possible if the ¥, , constitute a frame, and we have derived a reconstruc-
tion formula if the ¥, , are a frame. One can, however, use other reconstruction
formulas (provided the ¥y, n do constitute a frame: the necessity of that condi-
tion remains!) To conclude this chapter, let me sketch the approach of S. Mallat,
which addresses moreover the problem of shift-invariance.

The discrete wavelet transform, such as I have described it in this chapter, is
highly non-invariant under translations. By this I mean that two functions may
be shifted versions of each other, while their wavelet coefficients may be very
different. This is already illustrated by the “hyperbolic lattice”!? in Figure 1.4a,
where the axis £ = 0 plays a unique role. In practice one does not use an infinite
number of scales, but cuts off very low and very high frequencies: only those
m for which m; < m < my are used. The resulting truncated lattice is then
invaniant under translations by by2™® (choose ag = 2 for simplicity), which is,
however, very large with respect to, e.g., the sampling time step for f (in most
applications, f is given in sampled form). If f; is a shifted version of f obtained
by a translation # nby2™?, then typically the wavelet coeflicients of f; will be
different from those of f;. Even if the shift is nb2™, with m; < m < my,
then (fi, ¥mn) = (f, Ymmn—2n-mz) if m > m, but no such formula can be
written for m > m. For some applications (in particular, all applications that
involve “recognizing” f) this can be a real problem. In a first approximation,
the solution proposed by S. Mallat is the following:

¢ Compute all the [ dz f(x) P(2 ™z —n2 ™bp) = am n(f) (a special ¥ such
as in §3 3 5.D makes it-possible to compute these in C' N log N operations,
if f consists of N samples). This list of coefficients is invariant for shifts
of f by 7by.

o At every level m, retain only those oy, »(f) that are local extrema (as a
function of n). This effectively corresponds to a subsampling of the highly
redundant o, n(f). In practice, the number of subsamples retained is
proportional to 2™ times the original number; this is about the same
number as one has in a not too redundant frame of the type described
earlier, but the subsampling is now adapted to f, and not imposed a priori
by the hyperbol}c lattice.

Together with this prescription for decomposition (here described in a sim-
plified form) Mallat then proposes a reconstruction algorithm, which works very
well in practice (see Mallat (1991)).18 In Mallat and Zhong (1992), the procedure
was extended to two dimensions, to treat images. One way to view Mallat’s ap-
proach is to look upon the 2 ™$(2 ™z —n2"™by) as the underlying frame (note
that the change in normalization counters the larger number of frame vectors in
every m-level). Again, it is necessary that this family satisfy the frame condition
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+

(3.1.4) for a stable reconstruction algorithm to exist, but once this condition is
satisfied, several reconstruction algorithms can be proposed In this case, Mal-
lat’s extrema-algorithm is certainly more sophisticated than the standard frame
inversion algorithm.

Notes.

1. If any f can be written as such a superposition, the ¢, are also
called “atoms,” and the corresponding expansions “atomic decomposi-
tions.” Atomic decompositions (for many spaces besides L?(R)) have been

’f studied and used in harmonic analysis for many years: see, e.g., Coifman
and Rochberg (1980) for atomic decompositions in entire function spaces.

2. This is true except for very special 9. If the ¥,, ,, constitute an orthonormal
: basis (see Chapters 4 and later), then the expansion with respect to this
. orthonormal basis provides a discrete “resolution of the identity.”

3. The polarization identity recovers (f, g) from ||f % gl|, }f £ igli:
(£.9) =3 [If +gl®> = NIf — gl® +illf +igh® — illf —igli®] .

=« 4. That is, if (J, is any increasing sequence of finite subsets of J, i.e.,
neN
Jn C Jm if n £ m, tending to J as n tends to oo, i.e, U N Jn = J, then
|1F*c - E]e‘,” ¢; ¢;1| — 0 for n—o00. The proof is in two steps:

e If ng > n; > ng, then
"EjEJng C¥r — ZJGJ,., &9
= SUP| sj=1 |(Z,e1,.,\.r,‘, casoj»f)}
2 1/2 2
< syt (Zoesnoe, ICJI.) (el )
1/2
< B!/ (ZJGJ\J'.D Ic,-lz) ‘

a /
which tends to 0 for np—oo. Hence the 7, = }_ ¢ ; c,ip; constitute
a Cauchy sequence, with limit  in L2(R).
e For this 1, and any f € L%(R),

1/2

% i

WK .
R4y o B, s
= It

A

7
o
Lo
L3
A

("Ta f) = liMp oo (nny f) = limp L0 ZJGJ,‘ ) ((PJ" f)

) =3 ,cs6lpnf)={(cFf).
) Hence 1 = F*c. ’
5. This is proved as follows:
o (R(f+9), f+9)—(R(f —g), f~g)
= 2(Rf,g) + 2(Rg, f) = 4Re (Rf,g)
(because R* = R) ;
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o Re (Rf,g) <1 B4 [If + gl +{f — ali?) = § B4 (1712 + (gl ;
e |(Rf,9)l =(Rf,9) (Rf,g)/(Rf,q)|

= (Rf, (Rf,9)9/KRS,9)I)
B54 WA + GRS, 9do/ (RS 9 1)

B=A 111 + et ;
o IRl = supysy—, yoy=1 (R0 < 554 -

<

o=

<

N

6. Intuitively, ‘C can be understood as a “superposition” of the rank one

trace-class operators (-, h*?)hb, with weights c(a,b). If c is integrable
with respect to a~2 da db, then the individual traces of (-, h*#)h®t (which
are all equal to 1), weighted by the c(a,b) are “summable,” so that the
whole superposition has finite trace,

da [
nc:/o E;/;mdbc(a,b).

This handwaving argument can be made rigorous by approximation argu-
ments. k

We use here the “essential infimum” (notatioxi: ess inf) defined by
ess inf f(z) =inf{a; [{y; f(y) 2 a}i >0},

where |A| stands for the Lebesgue measure of A C R. The difference
between essinf, f(z) and inf, f(z) lies in the positive measure require-
ment: if f(0) = 0, f(z) = 1 for all z # 0, then inf; f(z) = 0, but
essinf,  f(z) = 1, because f > 1 except on a set of messure zero, which
“does not count.” In fact we could be pedantic, and replace inf or sup by
essinf or esssup in most of our conditions without invalidating them, but.
it is usually not worth it: in practice the expressions we are dealing with
are continuous functions, for which inf and essinf coincide. In (3.3.11) the
situation is different: even for very smooth 3, the sum YomeZ [D(aE))?

is discontinuous at £ = 0, because 12)(0) = 0. For the Haar function, for

instance, [(£)| = 4(2m)~V/2[¢|! sin® £/4, and T,z [$(E) = (2m)!
if£#0, 0if £ =0. We therefore need to take the essential infimum; the

infimum is zero. .
This condition implies both the boundedness of 3, 7 |¥(aT*€)|? and the
decay of 3(s):

Y W(egé)l® < e Y [(ago)r

mel =% meZ

- )
< Clr | Y g™+ Y afme(1+afm)

m=~o0 mz=1}
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and

B(s)= sup I [(aFE)l [Plafe + 5|
1_<.|€|Sao mel
-1
$02 sup ag E mo (1+ia 2€+8|2) (r—a)/2

ISlfl‘Sﬂo ms=—-00

o0

+ 3 [ +1age)1 + lagg + s|2)]‘(’“°)/2} ’

m=0

In the first term we can use that, for |s| > 2, |aT'6€ + 3| > |s| -1 > J%l,
and hence (1 + Jaf*€ + 3[%)~! < 4(1 + [s]>)7", for |s] < 2, (1 + |aT€ +
52)" < 1 < 5(1+|sf?)!. It follows that the first term can be bounded
by C'(1 + |s}]2)~ (=22 a5 so0n a8 & > 0, v > a. For the second term
we use that sup, g 1 +3*)1+@E - )1+ @ +y)P]" <ooto
bound the sum by C"(1 + |sf?)~(7-=)0-0/2 5% (1 1 |apg[?)=<r-e)/2,
where 0 < € < 1 is arbitrary. Since 1 < |¢| < aq, this can be bounded by
C™”(1 + [8]?)~(7—2)01-9/2 if 4 > . We have therefore, for 0 < p < v — a,

Bis) < Clp)(1 +|s)7"?

S o(5) s (“%")]ws C(p) 657!

k#0

hence

fp> 1

. If  is continuous and has decay at oo, then > W(aZe)}? is continuous in

£, except at £ = 0. There exists therefore a 50 that 3, 5 1¥(aP€)|? < e
if |€ — &} < a. Define, for o/ < a, a function f by f(£) = (2/)~/ if
|€ — &0} € o, f(€) = 0 otherwise. Then

S i tma? < e+—* Y @yt

m,n€L ™ kEZ

dE|Y(aE)] 19(al€ + 2mkby )|

, 1t~€aisa’

I(+z*»“.;"-(o|<n'

—e+———z Z (22)1

|bl<-’§gc° ==1

[ #weor
—¢olsa’
. (use Cauchy-Schwarz on the integral)

IA
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10.

11.

12.

CHAPTER 3

:}'f + 23(201')"1 2a'bgm !

2
Yo [ wegor

z
me lé~Eol o’

< ge~é~2a sup Zao llalr oI .

melZ

1A

If [(€)] < C + :5|2)-v/2 with v > 1, then this infinite sum is uniformly
bounded in £, and we can choose o' so that the whole right hand-side of
the inequality is < 2e.

Beware of a mistake in the example on pp. 988—-989 of Daubechies (1990).
The formula for (hoo)* should read (hoo)* = ¥ o, 74,0, and leads to the
conclusion that hgo@# LP(R) for small p. I would ilke to thank Chui and Shi
(1991) for pointing this cut to me.

This is slightly different from multiresolution analysis, where (3.3.27) would
also contain a scaling factor 2:

W) =Y de B2z~ K) .
k

One can also construct tight frames where neither g nor § have compact
support. It is, for instance, possible to construct a tight frame in which
both g and § have exponential decay. One way of doing this is to start

-from any windowed Fourier frame, with window function g, and to define

the function G = (F*F)~'/2 g, where F*F = Y (,9mn)9mn- The
functions G, n(z) = ™% G(z — ntp) (same wy, tp as in the g, ») then
constitute a tight frame. One has indeed

D i Cmu)? = Zl(f, (F*F)" 2 gm,n)f?

Y (FF) ’/2f, gmn)[? = (F*F)(F*F)~1/2f, (F*F)™2f)

m,n

= IF*.

The explicit computation of G can be carried out by a series expansion for
(F*F)~1/2 analogous to the series for (F*F)~! in §3.2. If g and § have
exponential decay (in particular if g is Gaussian), then the resulting G and
its Fourier transformn have exponential decay as well. -For more details,
plots of examples, and an interesting application, see Daubechies, Jaffard,
and Journé (19'91).

I
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The proof in Bacry, Grossmann, and Zak (1975) uses the Zak transform,
which we introduce and use in Chapter 4. Full details of their argument
are also given in Daubechies (1990). It is interesting that their proof can
be extended to show that the g, , still span all of L2(R) if one {any one)
of the gm » is deleted, but not if two functions are deleted.

These exact formulas use again the Zak transform. Their derivation is given
in Daubechies and Grossmann (1988); it 1s also reviewed in Daubechies
(1990).

In some applications, Bastiaans’ result is interpreted (correctly) to m&an
that one should “oversample” (1e., choose wyts < 27) n order to restore
stability. Nevertheless, even 1n such an “oversampled” regime, sometimes
Bastiaans’ pathological dual function is still used (see, for instance, Porat
and Zeevi (1988)). If wpty = =, then the g,, , can be split into two families,
9m2n and Gm 2n41, €ach of which can be considered to be a family of
Gaussian windowed Fourier functions with wgty = 27, one generated by g
itself, the other by g(z —ty). For both families, the badly convergent {(non-
convergent in L?) expansion (3.4.6) can be written, and a function can be
viewed as the average of the two expansions This 1s of course true n the
sense of distnibutions, and in practice reasonable convergence (probably
due to cancellations) seems to be achieved (using a truncated version of
Bastiaans’ §— private communication by Zeevi (1989)), but far better time-
frequency localization, and I suspect better convergence, in practice, would
be achievable by using the optimal dual function g (corresponding to A = .5
in Figure 3.6 in this case).

. This symmetry is certainly not necessary. .

. Itisin fact a true hyperbolic lattice with respect to the hyperbolic geometry

on both the positive and negative frequency half plane.

Note, however, that Y. Meyer has proved recently that the o, .(f) which
are local extrema in the construction above do not suffice to characterize
f completely.



CHAPTER 4

‘Time-Frequency Density and
Orthonormal Bases

This chapter splits naturally into two parts. The first section discusses the
role of time-frequency density in wavelet transforms versus windowed Fourier
transforms. In particular, for the windowed Fourier transform, orthonormal
bases are possible only at the Nyquist density but no such restriction exists for
the wavelet case This leads naturally to the second section, which discusses
different possibilities for orthonormal bases in the two cases.

4.1. The role of time-frequency density in wavelet and windowed
! Fourier frames.

We start with the windowed Fourier case. We mentioned in §3.4:1 that a family
. of functions (gm »; m,n € Z),

Im.n(T) = ™% g(z —nty) , - (411)

cannot be a frame, whatever the choice of g, if wg - ¢ > 2. In fact, for any
.choice of g € L*(R), one can find f € L?(R) so that f # 0 but (f, gmn) =0 for
.allm,n € Z. If, for instance, wp = 27, to = 2, then Buch a function f is eesy to
; (é‘construct (f, 9mn) =0 for all m,n € Z leads to

=
#

/ dz ™™= f(z) (7 — 2n)
“’; = / dxez"’"’z,f(z+l)g(:v+l 2n) ,

teZ s

o that it is sufficient to find f # 0 for which 3,5 f(z +¢) gz + £ - 2n) =
Befine now, for 0 < z < 1, £ € Z, flz+ & = (1) glx—2—1). Clearly,
W odr [f(D) = [To.dz lg(2)?, so that f € L*(R) and f # D. However,

T ez fl@+ 8 gz +€-2n) = Yyq(~1)¢ gz —€—1) glx+£~ 2n), which
7 turns into its negative upon the substitution £ = 2n — ¢ — 1, and therefore
4 equals zero. The same constriiction can be used for any other pair wy,p
With product 4r; a generalization of this construction exists if wp - 8y > 27
*and (2r)"lwpty is rational (see Daubechies (1990), p. 978). If woto(27)~! is
larger than 1 but irrational, then I know of no explicit construction for f # 0,

107
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f 1 gmn- The existence of such an f was proved in Rieffel (1981), using ar-
guments involving von Neumann algebras.! If only “reasonably nice” g are con-
sidered (i.e., g that have some decay in time as well as in frequency), and if we
are only interested in proving that the g,,, cannot constitute a frame (which
is weaker than proving that there exists f L gmn), then the follawing very
elegant argument by H. Landau does the trick. If |g(z)] < C(1 + 22)~*/2,
|3(€)] < C(1 + €?)7°/2 and the g n constitute a frame, then Theorem 3.5.2
tells us that functions f which are “essentially localized” in [-T,T} x [-12,9]
in the time-frequency plane can be reconstructed, up to a small error, by using
only the {f, gmn) with [muwyg| < Q, |ntg] < T. More precisely, if f is bandlimited
to [-9, 9] and if [fi,)57 dz |f(@)*]'/% < € | fIl, then

i <2 yBim.

According to this formula, all such functions can therefore be written, up to
arbitrarily small error, as a superposition of the i » With |m| < wy? (24-6), |n| <
to~1(T +6), where 6 depends on the error allowed, but not on €2 or T. However, a
corollary of the work of Landau, Pollak, and Slepian (see §2.3) is that the space
of functions bandlimited to [~Q,Q] and satisfying ., dz | F@)P? <y If?
(0 < ¥ < 1. v fixed) contains at least “g——"-T — O(log (XT)) different orthogonal
functions (the appropriate prolate spheroidal wave functions). All these different
orthonormal functions can only be approximated by linear combinations of a
finite number of §, n if the number of §n, n exceeds that of the orthonormal
functions, i.e., if 2r~1QT —~ O(log (AT)) < 4wy 1te~1(Q+6)(T +6), for any Q, T..
Taking the limit as Q, T—oo0 leads to (21)~1 < (wpto) ™! or wotp < 2w. (This is
really only a sketch of the proof. For full technical details, see Landau (1989).)

For all practical purposes we even have to limit ourselves to wg - tp < 2
(strict inequality) if we want good time-frequency localization: frames for the
limit case wp - tg = 27 have necessarily bad localization properties in either time
or frequency (or even in both). This is the content of the following theorem.

THEOREM 4.1.1. (Balian-Low) If the gm n(z) = e2™™%g(x — n) constitute o
frame for L*(R), then either [ dz z?|g(z){> = oo or [ d€ €%|§(£)|* = oo.

Before proceeding to the.proof of this theorem, let us review its history, and
add some remarks. Originally, the theorem was stated for orthonormal bases (in-
stead of frames), independently by Balian (1981) and Low (1985). Their proofs
are very similar, but contain a small technical gap which was filled by R. Coifman
and S. Semmes; this proof can then be extended to frames as well, as reported in
Daubechies (1990), pp. 976-977. Subsequently, a different, very elegant proof for
orthonormal bases was found by Battle (1988), which was generalized to frames
in Daubechies and Janssen (1988). (This is the proof we give below.)

Two well-known examples of functions g for which the family e2**™*g(zx —n)
constitutes an orthonormal basis are

" g(a) = 1, 0<z<1,
9T} =1 0, otherwise

f’ Z (f» gm,n) gm,n

tmwpi<N$w,
Intgi ST+t




ki

TIME-FREQUENCY DENSITY AND ORTHONORMAL BASES 109

and g(z) = 222X Ip the first case, [df €%|§(£)|*> = oo, in the second case
J dz z*|g(z)|*> = oo. It is shown in Jensen, Hoholdt, and Justesen {1988) that
one can choose g with slightly better tune—frequency localization: they construct
g such that both g and § are integrable (i.e., [ dz |g(z)] < oo, [ d¢ |§(€)] < o0),
but their decay is still rather slow, as dictated by Theorem 4.1.1.

Note that the choice wyg = 2w, tp = 1 in our formulation of Theorem 4.1.1
is not a serious restriction: the conclusion holds whenever wp - to = 2. To see
this, it suffices to apply the unitary operator (U f)(z) = (21rw'])‘/ 2 g(2nwy 'x);
applying U t0 g () = €™9%g(z—nty) one finds (Ugm o )(z) = €2"™*(Ug)(z~

n).
To prove Theorem 4.1.1, we will use the so-ealled Zak transform. This trans-

form is defined by :
(ZNls,t) =Y (- 0) . (412)

teZ

A priori, this is well defined only for f such that }_ |f(s — €)] converges for all

" s, in particular for |f(z)] < C(1 + |z])~*+9). It turns out, however, that this

‘ restrictive interpretation of Z can be extended to a unitary map from LZ(R) to
L*([0,1]?). One way of seeing this is the following:

¢ emn(z) = 2"Me(z —n:), with e(z) = 1.for 0 < z < 1, e(z) = 0 otherwise,
constitutes an orthonormal basis for L?(R).

* (Zem,u)(s, t) = Ze eh:tt eZm’m(a—l) e(s —_y— l)

e = eZn’tms e—21ntn(Ze)(8’t) .

. o (Ze)(s,t) = 1 almost everywhere on [0,1)2 .

It follows that Z maps an orthonormal basis of L2(R) to an orthonormal basis
+ of L2([0,1]%), so that Z is unitary. We can extend the image of L(R) under Z
" to a different space, isomorphic to L?([0, 1]?). From (4.1.2), we find, if we allow
s {s,t) outside [0,1)2,

P (Zf)(s,t+1) = (Zf)s,1),

¥ (Zf)(5+1,8) = e*™(Z f)(s,t) .

2  Let us therefore define the space Z by )

b Z={F: R~C; F(s,t +1) = F(s,t), F(s+1,t) = 2™ F(s,t)
‘i%’ and |F|% = /ldc jlda |F(s8,t)|2 < o0} ; “

5l 12~ then Z is unitary between L?(R) and Z. The inverse map is easy as well: for
‘&%"@ any F e 2,

o . . !
L (Z"IF)(z) =/; dt F(z,t) ,
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if this integral 1s well defined (otherwise, we have to work with a limiting argu-
ment). g

The Zak transform has many beautiful and useful properties. As is often the
case with beautiful and useful concepts, it was discovered several times, and it
goes by many different names, according to the field in which one first learns of it.
It is also known as the Weil-Brezin map, and it is claimed that even Gauss was
aware of some of its properties. It wis also used by Gel'fand. J. Zak discovered it
independently, and studied it systematically, first for applications to solid state
physics, later in & wider setting. An interesting review article, geared mainly to
applications in signal analysis, is Janssen (1988).

Only two of the many properties of the Zak transform will concern us here.
The first is that if g, o(z) = €***™* g(x — n}, then ¥

(Zgm,n)(s,t) = €2™™* 72 (Zg)(s, 1)

(as we already showed above, in the special case g = e). This implies

Y Wfigma)P= D UZf Zgma)  (by unitarity)

mmnel m,nel

- ¥

mmed

-

1 - 1 2
f ds f dt e=2mm™s 2™t (200 1) Zg) ()
(1] 13

= [[as [ aiznis o 1(Ze)s, o
(V] 0

Equivalently, we have Z{F*F)Z~! = multiplication by |{(Zg)(s,t)|? on Z, where
F*Ff = ¥ onn (f, 9mn) gmn. The second property we need concerns the
relation between Z and the operators Q,P defined by (Qf}zx) = zf(z),

(Pf)(z) = —1f'(z) (or, more propexly, (Pf)*(¢) = £f(£)). One checks that
Z@N)(s1) = s(Z)(s,0) — 50 B(ZNGD,
which means that [ dz z?|f(z}}* < oo, i.e., Qf € L*(R), if and only if 8;(Zf) €
L2([0,1}?). Similarly, [ d€ €4f(E}? < oo or Pf € L*(R) if and only if 3,(Zf) €
L?([0,1]?). We are now ready to attack the proof of Theorem 4.1.1.
Proo’f of Theorem 4.1.1.
1. Assume that the g, » constitute a frame. Since

1 1
~ S U omadl® = [ as [ at 1250007 1Z0e, 00

and since Z is unitary, this implies

0<A<|Zg(s,t)2<B<oo. (4.1.3)
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2 The dual frame vectors §,, n, are given by
gmn=(F'F) gmn
(see §3.2, §3 4 3). Since Z(F*F)Z~! = multiplication by |Zg|?, it follows

that
Z.‘}m.n = [Zgl_-z Z9mn
or
(Zgma)(s,t) = |Zg(s, )72 2™ 2" (Zg)(s, 1)
e21nm.s e—?tttn [m]—l ; (414)

which is in Z by {4.1.3) In particular, (4.1.4) implies that

2wsmzx

gm,n(x) =€ 6(1 - n) )
with Z§ = 1/Zg.

3 Suppose now that [dz z2?|g(z){? < oo, fdE £%3(£)|? < oo, ie., that Qg,
Pg € L*(R). This will lead to & contradiction, which will then prove the
theorem Since Qg, Pg € L?(R), we have 8,(Zg), 8,(Zg) € L*([0,1}?).
Consequently,

3,25 =(29)" %20, Zg and 0, Z§=(Zg)"% 8, Zg
are in L2([0,1]?); hence Qg, P§ € L*(R).

4. (g, gm.n) = <Z§v ng.")
1 1
"“/ @ [ dt Z§(s,t) Zg(s,t) e~ 2™ = 5060 ;
» JO (1] H

similarly,

(9, Gm.n) = Smobno . (4.1.5)

5. Since Qg, Pg € L(R), and since the (gum,n)mmeczs (Gm.n)mnez constitute
dual frames, we have -

(@9, P3) =3 (Q8 Gmm)(Gmms P3) .

But (Qg, dm.n) = [ dz 2g(z) e~ 2""= Gz — n)

]

[ dz 9(@) emime (2 ) 5z =)
(bm (9’ g’m,m\ = 6m06u0)
= (g—m,—m Qg) .
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Similarly, {(gm,n, Pg) = (Pg, §-m,-n). Consequently,

(Qg, P3) =) (Pg G-m-n)g-m-n, Q3 =(Pg, Q3), (416)

where the last term is again well defined because Pg, Qs € Lz'(R),

We have now reached our contradiction: (Qg, Pg) = {Pg, Qg) is im-
possible. For any two functions fi, f; satisfying |f;(z)] < C(1 +2%)7%,
1£() < C(1+£%)7", we have

@f, Pf) = / dr zfy(z) i Fi(@)

= - /d:r [z fi(2) + fi(z)] fo(x)
= —i{fi, f2)+(Pf, Qf2).

On the other hand, since Pg. Qg € L?*(R), there exist g, satisfying
lgn ()] < Ca(1+2%)71, |§a ()l < Ca(1 +£2)7" such that limu_oo gn = g,
lim, .« Pg, = Pg, lim,., Qg, = Qg. (Take for instance g, =
Y r-o (g, Hi)Hy, where Hy are the Hermite funetions.) A similar se-
quence J, can be constructed for §: Then

(Pg, Qg) = lim (Pgn, Qgn)

lim [(Qgn, Pgn) +1 (gn, §n})}

B—00

= (Qg, P§)+ilg,3) .

Together with (4.1.6) this implies (g,§) = 0. However, from (4.1.5) we
have (g, §) = 1. This contradiction proves the theorem.? «

We can summarize our findings so far as

wolo > 2x — no frames.

woleo =2r — there exist frames, but they have bad time-
frequency localization.

woto < 2r — frames (even tight frames) with excellent time-
frequency localization are possible (see §3.4.4.A).

This is represented in Figure 4.1, showing the three regions in the wy, fo-plane.
As pointed out in §3.4.1, orthonormal bases are only possible in the “border case”
woto = 27. In view of Theorem 4.1.1, this means that all orthonormal bases of
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@y
"v
NO FRAMES FOR
woly > 2w
woty =27 ONLY FRAMES
WITH BAD-TIME FREQUENCY
GOOD LQCALIZATION ARE POSSIBLE
TIGHT
FRAMES
POSSIBLE IF
Woty <2n

Y

F1G. 41 The regions woty > 2n where no frames are possible, and woty < 27, where
taght frames unth ezcellent time-frequency localtzatton erist, are separated by the hyperbola
wgtlo = 2mr, the only region where orthonormal bases are possible

the type {gm.n; m,n € Z}, with gm, as in (4.1.1), have bad time-frequency
localization.

In fact, wp - £y is a measure for the “time-frequency density” of the frame
constituted by the g,, ,. We can for instance define this “density” as

i 24 (i) €5), @i

where S is a “reasonable” set in R? (with nonzero Lebesgue measure). This himut
is independent of S, and equal to (wp - to)~!. This “density” also emerged in
the time-frequency localization discussion in §3.5; see (3.5.17). The restriction
{wo - to) ™! > (27)~! means that the time-frequency density of the frame has to
be at least the Nyquist density (in its “generalized” form; see §2.3). In fact,
Theorem 4.1.1 tells us that we have to be strictly above the Nyquist density if
we want good time-frequency localization with'windowed Fourier frames.

Let us now turn to wavelets, where the situation is very different. It turns
out that there is no “clean” definition of time-frequency density for wavelet ex-
pansions. We already saw a first indication of this in the study of the localization
operators in §2.8: for the windowed Fourier case, the number of eigenvalues in
the transition region became negligible (as compared to the number of eigen-
values close to 1) when the area of the localization region tended to infinity,
whereas these two numbers were of the same order of magnitude in the wavelet
case. This made it impossible to make an accurate comparison with the Nyquist
density.

Something similar happens with discrete wavelet families. In the discussion
of time-frequency localization with frames, in §3.5, we saw that a function that
is essentially concentrated in [-T,T] x ([-S,—0) x [Q0, %)) in the time-
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frequency plane can be approximated with good precision by a finite number of
wavelets. Unlike the windowed Fourier case, the ratio of this number to the time-
frequency area 4T(£2; —£p) depends on the desired precision of the approximation
(see”(3.5.11)), which makes it impossible (as in the continuous case) to make a
precise comparison with the Nyquist density. On the other hand, if we try to
define the analog of (4.1.7) for the hyperbolic lattices of Figure 1.4a, then we
find that
_ # {(m,n); (mwp,nty) € AS}

(where S is chosen so that the numerator is finite] does not tend to a limit
as A—oqg For § = [-T, T} x ([-2™:, —-2me]y [2™0, 2™]) and gy = 2,
for instance, Rg()\) oscillates between p(1 — 2mo—™1~1)/(] — 2Mmo—™) apd
2p(1 — 2mo~mi-1) /(1 — 2Mo~™) where p depends on the chosen wavelet
1. It might be this phenomenon, rather than the absence of an intrinsic
time-frequency density for the frame, that causes the problem in coupting the
number of wavelets needed for time-frequency loealization. So let us probe a
little deeper.

As we mentioned before, there is no a priori restriction on the range of dila-
tion and translation parameters in a wavelet frame: any choice of ay, by can be
used to define a tight frame with good localization in both time and frequency
for  (see §3.3.5.A). In fact, from a (tight) frame with discretization pa.rameters
ap, b we can always construct a different (tight) frame with parameters ag, by’
(same ag) with by arbitrary, by-simple dilation. 3'It is therefore not surprising
that we have no a. priori restrictions on ag,bp. We can remove this dilational
freedom by fixing not only the normalization of ¥, ||¥|| = 1, but by also im-
posing a fixed value for [d¢ €|~ {(£)}2. For real o, we could impose, for

instance, f;°d€ €71 IO = [2 dE €17} [$(O)I* = 1. A tight frame gener-
ated by a 9 thus restricted would automatically have frame bound A= m
(see Theorem 3.3.1). A comparison with the formula A = %to for tight win-
dowed Fourier frames suggests that maybe (bglnag)~! could play the role of
time-frequency density for the wavelet case. The following example destroys all
hope in this direction. In the next section we will encounter the Meyer wavelet
1; it has a compactly supported Fourier trapsform 1,() € C* (where k_may be
00, a3 in §3.3.5.A; the two constructions are related) and the Y, = 27 ™/2

$(2~™z —n), m,n € T are an orthonormal basis for L*(R). Let us, for this
chapter only, define

Yo a(z) =272 (2 ™z —nb) , {4.1.8)

where 1 is the Meyer wavelet, and b > 0 is arbitrary. Consider the b-dependent
families F(b) = {y2, .; m,n € Z}. As b changes, the “density” of the associated
lattice changes as well. (Note that ag and y are the same for all the F(b) hIf
any representation like Figure 4.1 held also for wavelets, then we would expect,

gince F'(1) is an orthonormal basis for L2(R), that F(b) would not span all of
L?(R) if b > 1 (“not enough” vectors), and that F'(b) would not be linearly
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independent (“too many” vectors) if b < 1. Yet one can prove (see Theorem 2.10
in Daubechies (1990), we also sketch this proof later in this chapter) that for
some € > 0, F(b) 1s a Riesz basis for L*(R), for any b € |1 — ¢, 1 + ¢[. This
example shows conclusively that it is not always safe to apply “time-frequency
space density intuition” to families of wavelets.

4.2. Orthonormal bases.

4.2.1. Orthonormal wavelet bases. The conclusion of the last paragraph
seems a rather negative point for wavelets: no clean time-frequency density
concept In this section we emphasize a much more positive aspect: the existence
of orthonormal wavelet bases with good time-frequency localization.

Historically, the first orthonormal wavelet basis is the Haar basis, constructed
long before the term “wavelet” was coined. The: basic wavelet is then, as we
already saw in Chapter 1,

-

1, 0<z <3, )

P(z)=¢ -1, ;<< (4.2.1)
0 otherwise

‘We showed in §1 6 that the ¥, o(x) = 27™/%)(2 ™z « n) constitute an or-

thonormal basis for L*(R). The Haar function is not continuous, and its Fourier

transform decays only like }¢] ™!, corresponding to bad frequency localization. It

may therefore seem that thus basis 1s no better than the windowed Fourier basis

Imm(z) = €™ g(z — n) . (4.2.2)
with
() = L, 0<z<],
g\ = 0, otherwise, .

which is also an orthonormal basis for L2(R). However, the- Haar basis already
has advantages that this windowed Fourier basis does not have. It turns out, for
instance, that the Haat basis is an unconditional basis for LP(R), 1 < p < o0,
whereas the windowed Fourier basis (4.2.2) isnot #f p # 2. We will come back
to this in Chapter 9. For the analysis of smoother functions, the discontinuous
Haarf basis is ill suited

An orthonormal wavelet basis with time-frequency properties complementary
to the Haar basis is given by the Littlewood-Paley basis,

_ [ e, xs g <o,
¥() = { 0, otheé'mae

@

LY

or
¥(z) = (rz)”! (sin2sx ~ sinxz) .

It is easy to check that the ¥y, »(z) = 27™/2 {2~-™z — n) constitute indeed an
orthonormal basis for LZ(R). We have |jthy o]} =1 for all m,n € Z, and

3 )P = Y (2m) 1 2m

m,n

2
df f(€) em?"¢

lz-mrsmsz—"-“w
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2

[ d¢ fa-me) e
rLi{|<2n A

2

2n
= 2(21.0”2‘"'[ /0 dget™ [F(2™)xin,20i(€) + F27™(C = 27))x0,m(C)]

nr
=y 2 [ dC1F@T™0) xman () + F27™C - 20) xiom ()P

“x e wifemors [T aifor =

By Proposition 3.2.1, this implies that {¥, »; m,n € Z} is an orthonormal
basis for L?(R). The decay of ¥(z) is as bad (¥(z) ~ |z|~! for z—00) as that of
the orthonormal windowed Fourier basis used in the Shannon expansion (2.1.1);
both have excellent frequency localization, since their Fourier transforms are
compactly supported.

In the last ten years, several orthonormal wavelet bases for L2(R) have
been constructed which share the best features of both the Haar basis and the
Littlewood-Paley basis: these new constructions have excellent localization prop-
erties in both time and frequency. The first construction is due to Stromberg
(1982); his wavelets have exponential decay and are in C* (k arbitrary but fi-
nite). Unfortunately, his construction was little noticed at the time. The next
example is the Meyer basis mentioned above (Meyer (1985)), in which ¥ is com-
pactly supported (hence ¢ € C*°) and C* (k arbitrary, may be oo). Unaware at
that time of Stromberg’s construction, Y. Meyer actually found this basis while
trying to prove a wavelet equivalent of Theorem 4.1.1, which would have shownt’
the non-existence of these nice wavelet bases! Soon after, Tchamitchian (1987)
constructed the first example of what we shall call biorthogonal wavelet bases
(see §8.3). The next year, Battle (1987) and Lemarié (1988) used very differ-
ent methods to construct identical families of orthonormal wavelet bases with
exponentially decaying ¢ € C* (k arbitrary but finite). (Battle was inspired
by techniques in quantum field theory; Lemarié reused some of Tchamitchian’s
computations.) Despite having similar properties, the Battle-Lemarié wavelets
are different from the Stromberg wavelets. In the fall of 1986, S. Mallat and
Y. Meyer developed the “multiresolution analysis” framework, which gave a sat-
isfactory explanation for all these constructions, and provided a tool for the
construction of yet other bases. But this is for later chapters. Before we get into
multiresolution analysis, let us review the construction of Meyer’s wavelet Dasis.

The construction of |t)| is similar to the tight frame in §3.3.5.A. That frame
-had redundancy 2 (twice “too many” vectors). To get rid of this redundancy,
Meyer’s construction combines positive and negative frequencies (reducing a pair
of functions to a single function). In order to achieve orthonormality, some clever
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tricks with phase factors are needed. More explicitly, we define 3 by

f ()2 % sin[E v (2l -1)], T<ki<E.
YE)=4 (2n) V2 e/ cos[Z v (2lE)-1)], L <<y, (423)

0 otherwise,

where v is a C* or C™ function satisfying (3.3.25), i.e.,

0 if <0,
U(:l‘)-':{l if 231, (4.2.4)

with the additional property -

viz)+v(l-z)=1. (4.2.5)

The regularity of ¥ is the same as that of v. Figure 4.2 shows the shape of a

typical v and /| In order to prove that the ¥, o(x) = g-m/2 ¥(2 ™z — n)
constitute an orthonormal basis, we only have to check that ||| = 1 and that
the ¥, , make up a tight frame with frame constant 1 (see Proposition 3.2.1).

18 v -

(b) | W(&)L

w

B

o pg

. -10 -5 0 5 10
Fic. 4.2. Functions v gnd ¢ as given by (4.2.3){(4.2.5).
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We have

L CORR desmz[gu(%m—x)]
Zei<qy
] ()

gl

= (27)7! {2 -2-371 /0l ds sin? [g u(s)] +2 4?11- /: ds cos? [g u(s)]}

= -:2;{1+/Olds cos? [g u(s)]}.

But
1 1/2
A ds cos? {7—; V(s)] = A ds cos? [% u(s)]
172 x 1
o w3 (-0 ()]
- (because v(s+ 1/2) =1~ »(1/2 - 8) by (4.2.5))
1/2 1/2

= ds cos® [g— u(s)] +

A ds’ sin® [er' V(.s')]

0

[S-R

hence ||y[|? = 1. -

To evaluate Zm‘n [{f, Ym.n)|?, we use Tchamitchian’s frame bound estimates
(3.3.21), (3.3.22). We first prove that 5,(2n(2k+ 1)) =0 for all k € Z, i.e., for
all ( e R,

3 9(2%) PRC + 2n(2k +1))] =0 (4.2.6)

£=0

Because of the support of 1, nonzero contributions to (4.2.6) are only possible
if |2¢¢] < & and |2°(¢ + 2n(2k + 1))] < &, implying 2¢|2k + 1| < 8/3. The only
pairs (£, k) that do not violate this are (G, 0), (0,—1), (1,0), and (1,-1). Let us
check k =0 (k = —1 is analogous). Then the left-hand side of (4.2.6) becomes

B(0) (¢ +2m) + $(2) B2 +4m) . 4.2.7)

[O———

[

Pe——
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One easily checks that both terms m {(4.2.7) vanish unless — % < ( < —<E. For

- ¢ within this interval, { = -4 + 2o with0 < a <1, we have

(42.7) = €e*%/? sin [-1[ v(l - a)] eM6+20)/2 gip E u(a)]

+ e"‘ co8 [ v(l - a)] M$H27) e [—12[ u(a)]

—cos [32: u(a)] sin [g u(a)] + sin[ u(a)] [ u(a)]

(ise (4.25))
= 0.

ThlB establishes (4.2.6). On the other hand, one essily checks that
T 19262 = (27) ! for all £ # 0. It then follows from (3.3.21), (3.3.22) that
the ¥y, n constitute a tight frarhe with frame bound 1. (Similar computations
can be used to prove that F(b) (see the end of §4.1) constxtutes a Riesz basis for
L?(R) if b is close to 1.5)

- This proof that the Meyer wavelets constitute an orthonormal basis relies on
quasi-miraculous cancellations, using the interplay between the phase of ' and
the special property (4.2.5) of v. Using multiresolution analysis, we will be able
to explain away most of the miracle (see next chapter). Figure 4.3 shows a graph
of ¥(x), with the C*~¢ choice v(z) = z*(35 — 84z + 70z* — 20z3) for 0 < z < 1.
Note that even if v € C™, so that ¥ decays faster than any inverse polynomial,
i.e., for' all N € N, there exists Cy < 6o so that

@) <On Q+ED, (4238)

the numerical decay of 1 may be rather slow (i.e., inf {g; J¥(z)] < .001 {|j¢]| L= for
|z| > a} may be very large, reflecting a large Cy in (4.2.8)). The exponentially
decaying wavelets of Stromberg or Battle-Lemarié have much faster numerical
decay, at the price of sacrificing regularity.

1t ﬂ w(x) )

!

_1 1 1 1
-5 0 5

F16. 4.3. The Meyer wavelet (z) for the choice v(x) = z4(35 — 84z + 70z3 — 2023).
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In the matter of orthonormal bases then, wavelets seem to do quite a bit
better than windowed Fourier functions: there are constructions in which both
1 and ¢ have fast decay, in stark contrast with Theorem 4.1.1, which forbids
simultaneous good decay for g and § if g is a window function leading to an
orthonormal basis. If I had written this chapter three years ago, this is probably
where 1 would have stopped. But matters are not quite that simple: in the last
few years, the windowed Fourier transform has led to a few surprises, which we
will discuss briefly in the remainder of this chapter.

4.2.2. The windowed Fourier transform revisited: ‘Good” orthonor-
mal bases after alll One way in which one could try to generalize the win-
dowed Fourier construction, so as to get round Theorem 4.1.1, is to consider
families g, »(z) that are not generated by a strict time-frequency lattice. This
allows for a little leeway: Bourgain (1988) has constructed an orthonormal basis
(95)jes for LE(R) such that

[t @z P s,
(4.2.9)

/&«—gf@@Wsc.

uniformly in j € J, where z; = [dz zlg;(z)?, § = { d€ €|g;(6)°. (Note
that wavelet bases do not satisfy such a uniform bound.®) Giving up the lat-
tice structure therefore permits better localization than allowed by the Balian-
Low theorem. However, Steger (private communication, 1986) proved that even
slightly better localization than (4.2.9) is impossible: L2(R) does not admii an
orthonormal basis (g;);es satisfying

jau—nﬂ“ﬂmesc,
- ' . (4.2.10)

/@«—&ﬂ”ﬂm«Wsc, ,

uniformly in j, if € > 0. This approach can therefore not lead to good time-
frequency localization. There is another way in which we can try to break away
from the lattice scheme (4.1.1). Note that in (4.2.9), (4.2.10), “time-frequency
localization” stands for strong decay properties of the g, n, (gm,2)" away from
the average values T, 4, £man. This corresponds to a picture in which both
gm,n 80d (gm )" have essentially one peak. Wilson (1987) proposes instead to
construct orthonormal bases gy, », of the type

Im,n(Z) = fm(z - 1), meN, neZ, (4.2.11)

where f,, has two peaks, situated near 2 and -7,

fm(€) =% (6 -~ g) +d, (E + '—;—) , (4.2.12)

3 ilfven N o
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with ¢}, ¢, centered around 0. This ansatz changes the picture completely.
Wilson (1987) proposes numerical evidence for the existence of such an orthonor-
mal basis, with uniform exponential decay for f,, and ¢}, ¢;.. In his numerical
construction he further “optimizes” the localization by requiring

[ € €TV @ b =0 i m-m]>1
i [m__mli = l , (42.13)
or if {1n-‘n'151 .

Sullivan et al. (1987) present arguments explaining both the existence of Wil-
son’s basis and its exponential decay In both papers there are infinitely many
functions-¢Z ; as m tends to oo, the ¢% tend to a limit function ¢Z,.

The moral of Wilson's construction is that orthonormal bases with good phase
space localization seem possible after all if bi-modal functions as in (4.2.13) are
used.

Note that many of our wavelet constructions, frames as well as the orthonor-
mal bases we saw earlier, have these two peaks in frequency (one for £ > 0, one
for £ < 0). In the case of frames, or for the continuous wavelet transform, the
two frequency regions can be separated (corresponding to one-frequency-peak
functions; see §3.3.5.A or (24.9)), but this does not seem to be the case for
orthonormal bases. We will see later that the two frequency peaks of 1 need not
be symmetric: there even exist examples with |y}~ [, d¢ J#(€)|? arbitrarily
small (but strictly positive!). However, there is no example, so far, of reason-
ably well-localized functions 1* with support (¥%) c R* and such that the
{y¢, n; myn € Z, € = + or —} constitute an orthonormal basis for L?(R), cor-
responding to wavelet bases with only one “peak” in frequeng\y (Equivalently,
there is no example of a reasonably smooth function 5 = o+ such that the
functions 2™/2 exp (2w 2™ n¢) n(2™¢€), m,n € Z, are an orthonormal basis of
L?(R*).) It is believed, without proof so far, that no such basis exists.”

But let us return to Wilson bases. If one gives up the restriction (4.2.13) (if
fm, X have exponential decay, then these quantities decay exponentially fast
in jm — m'], |n — n’| anyway), then Wilson’s ansatz (4.2.11), (4.2.12) can be
dramatically simplified. )

In Daubechies, Jaffard, and Journé {1981}, a construction is proposed that
uses only one function ¢ Explicitly, this construction defines :

Imn(z) = fm(z—n), meN\{0}, neZ, (4.2.14)
with B
. f1(&) =),
fal8) = % [#(€ - 27) — $(€ + 27)]

36 = ‘—1,5 [B(E — 27) + B(E +2m)et/? |
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fal6) = ;}; [B(E — 4m) + $(€ + 4)] |
fs(6) = —’ﬁ [B(€ ~ 4m) - B(€ + dm)]e/? |

etCc.«»

or  faryoll) = \—}_3 1(€ — 2me) + (—1)1+7 @(€ + 27m0)) e°¢/2, (4.2 15)

with €N, o =00r 1, and # =0, 0 = 0 excluded. The result of all these phase
factors and alternating signs is that

fi(z) = d(z),
| R AN
.fuw(f) = 7 d((:t-&- -2-) A CE RN O § M T
If we relabel the gm » in (4.2.14) by defining G,nn, mE€ N, n€ Z as
GO,n =601,n, - ‘
Geznso = G2t+0m -
then )
Gonlz) = ¢(x - n) , (4.2 16)
and for £ > 0,

Cenlz) = V2 & (m - (4.2.17)

2) | sin 2néx if L+n isodd.
This construction (as well a8 others mentioned below) shows therefore that the
key to obtaining good time-frequency localization (¢ can be chosen so that ¢, ¢
have exponential decay) and orthonormality in the windowed Fourier framework
is to use sines and cosines (alternated in an appropriate way) rather than complex
exponentials,
But let us get back to (4.2.14), (4.2.15) and show how this construction can
lead to an orthonormal basis. As uspal, we only need to check [fgm [l = 1 and
ez by gmn)l? = IRI2. We immediately have gy all = 111l = l16],
and for m > 1,

n){ cos 2iréx if €+n iseven,

I

Ifml? = f2eso}? (m=2{+o, £>0)
3 [0 + 200 [ de oterote + an0)

"9m,ﬂ“2

il

(we assume ¢ is real, for simplicity). Hence |jgm || = 1 for all m,n if

[t 6(6) o6+ 4mt) = b (42.18)
On the other hand,

o0

Y X M malP =2 Y X [ de hie) BE+ 20 nl6) e+ 2m)

m=1 neZ m=1 kel
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This equals [[h}j? if
Y Jml(8) fm(€ +27k) = (27) o - (4.2.19)
m=1

A few simple manipuylations lead to

Y Fm(€) Fm(E +2mk)

B(£) B(& + 2nk) + Z B(& + 2nl)p(€ + 2nl + 27k) (1 + (—1)*]

t;eo
(4.2.20)
Z (—1)! ¢(€ — 27)$(€ + 2xL + 27k)[1 — (~1)*] .
t;m
If k is odd, k = 2k’ + 1, then this reduces to
37 (=1 b6 - 2n8) $(§ + 2n(¢ + 2K + 1)), " (4.2.21)

el

which is zero, since the substitution & = —(£€ + 2k’ + 1) transforms (4.2.21) in
its negative. If k is even, k = 2k’, then (4.2.19) reduces to

3" B(E+2m8) $(E+ 2xL + 4K = (27) barg . (4.2.22)
teZ

The {gmn; m € N\ {0}, n € Z} therefore constitute an orthonormal basis if ¢
is a real function satisfying (4.2.18) and (4.2.22). Note that integrating (4.2.22)
over £, between 0 and 2, automatically leads to (4.2.18), so that we really
have only the single condition (4.2.22) to satisfy. This turns out to be easy: we
can take for instance support ¢ C [—27, 2x], so that (4.2.22) is automatically
satisfied for k’ # 0, and we only need to check } ,c7 ¢(£+27€)? = (2x)~1. This
is true if, e.g.,

[ (27)~"/25in [g u(-,f;-i-l)}, ~2r<E<0,

#(€) =9 (2x)~2cos [% V(-z%)];, 0<E< 2,

[ O otherwise ,
»

with v as in (4.2.4). If v is C™, then the f,, have decay faster than any inverse
polynomial, but, as for the Meyer basis, the numerical decay may be slow. Faster
decay for the f,, can be obtained with nencompactly supported ¢. To construct
such a ¢, satisfying (4.2.22), we can again use the Zak transform, now normalized
so that
(Zh)(s,1) = (4m)*/2 Y~ ¥t h(dn(s - £)) .
el
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With this normalization, Z is again unitary from L?(R) to L?([0,1]?). It is not
hard to check that (4.2.22) is equivalent to

WZe)(s, ) +1(Zg)(s + 5, )P =2. (42.23)

(Full details are given in Daubechies, Jaffard, and Journé (1991).) This suggests
the following technique for constructing ¢:

e Take any h such that

0<a<|Zh(s,t)?+|Zh(s+ L, )P <B<o0; (4.2.24)
# Define ¢ by
Zd(s,t) = V2 Zhis,t) (4.2.25)

[1Zh(s, 02+ |2n (s + 1.0)["] v

If h and h both have exponential decay, then ¢ turns out to have exponential
decay as well. Figure 4.4 shows the graph of ¢ and ¢ when h is a Gaussian.
(Gaussians do indeed satisfy (4.2.24).) An interesting observation is that (4.2.23)
is exactly equivalent to the requirement that the @,, ,(z) = ™™= ¢(x - 2),
or equivalently, the ¥m (§) = e™™ $(§ — m), with m,n € Z, constitute a txght
frame (with necessarily redundancy 2) for L?(R). The construction (4.2.25) can
then be interpreted as the transition from a general frame, generated by A, to
a tight frame, by application of (F*F)~1/2 (see note 11 after Chapter 3, or
Daubechies, Jaffard, and Journé (1991)). This Wilson basis can therefore be
viewed as the result of a clever “weeding” proc%s on a (tight) frame with “twice
too many” elements. -

Many variations or this Wilson scheme are possnble. Laeng (1990) has con-
structed an extension of the above scheme in which the frequency spacing need
not be as regular as here. Auscher (1990) has reformulated the whole construc-
tion: starting directly from (4.2.16), (4.2.17) as an ansatz, he derives all the
results without use of the Fourier transform, and constructs different examples.
In particular, he obtains examples where, in the notations of (4.2.17), the “win-
dow” ¢ is compactly supported, which is very useful in applications. (The decay
in frequency is less crucial, as long as it is “reasonable.”) These examples can
also be viewed as the result of a “weeding” procedure on the tight frames with
redundancy 2 obtained by taking wyfp = 7 in §3.4.4.A.

Other windowed Fourier bases using cosines and sines rather than complex
exponentials, and leading to good time-frequency localization, have been found
by Malvar (1990) and Coifman and Meyer (1990). Malvar’s paper again uses
alternating sines and cosines; he presents applications of his construction to
speech coding. Coifman and Meyer's “localized sine basis” starts from a partition

of R in intervals,
R= U [aj’ aJ+1] b
€%

-

M.WL Mt 2%
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*

2 T v
¢(x)
1r 4
0
4 . . . x
2 ¥ ¥ L
$(%)

1+ 1
0
-1 — 4 1 g

-4 -2 0 2 4

FIG. 4.4. The functions ¢ and ¢ corresponding to (4.2.25) of h(z) = n~1/4 axp(—2?/2).

with a; < aj41 and lim;_, 4. a; = £oo. They then build window functions w,
localized around these I, = [a,, a;41], overlapping slightly with the neighboring
intervals:

0<wr)<1,
wi(z) =1 for a;+¢ <z L ay41— €41,
0 for z<a;j—¢ or T2a,41+¢€41,

where we assume that the ¢, satisfy a; +¢€; > a;j41 — €4 for all j. Moreover, we
' require that w; and w;_; complement each other near a;: w;(z) = w;_1(2¢; ~z)
¥ and wi(z) + wi_,(z) = 1if [z ~ a;] < ¢;. (All this can be achieved with smooth

. wj; one can take, for instance, w;(z) = sin{} ,,(i:_;:’i&)] for |z — a;| < ¢;, and
w;(z) = cos(} u(i’—"ig'——‘l""’ﬂ—‘)] for |z — aj41| < €41, with v satisfying (4.2.4)
and (4.2.5).) Coifman and Meyer (1990) prove that the family {u,x; j,k € Z},
with

T o (g enl ()]
ujr(z) = | ——— wi(zg)sin |r | k+ = ) ——] ,
J,k( ) aj-'-l — aJ J( ) 2 aj+1 - aj

P
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-
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constitutes an orthonormal basis for L?(R), consisting of compactly supported
functions with fast decay in frequency. This basis has moreover a very interesting
property: if for any j € Z we define P; to be the orthogonal projection onto

the space spanned by the {u;x; k € Z} (P; is “morally” the projection into

[aj, aj+1]), then P; + Pjy, is exactly the projection operator P;, associated
to [a;, aj;3], that we would have obtained if we had deleted the point ;4
from our “slicing” of R (i.e. if we had started with the sequence a, dx = ax
if k < j, @ = apy1 if K > 7+ 1). This property makes it possible to split and
regroup intervals at will, adapted to the application one has in mind. A very
nice discussion of this whole construction, with full details, is Auscher, Weiss,
and Wickerhauser (1992). .

So there is, after all, more to orthonormal windowed Fourier bases than
was expected even only a few years ago. None of these bases, however, are
unconditional bases for LP(R) if p # 2. This is one point where wavelet bases
have the advantage: they turn out to be unconditional bases for a much larger
family of function spaces than even these “good” windowed Fourier bases. We
will come back to this in Chapter 9.

Notes.

1. Rieflel's proof does not produce an explicit f orthogonal to all the gm 5.
This is a challenge to the reader: find a (simple) construction of f L g »
for all m, n, for arbitrary wp, fg with wotp > 27.

2. For orthonormal bases the proof is much simpler. In this case we need not
bother with the Zak transform, which was only introduced to prove that
if Qg, Pg € L?, then Q§, Pj € L* as well. For orthonormal bases we can
start directly with point 5, establishing (Qg, Pg) = (Pg, Qg), which is
impossible by point 6. This is the original elegant proof in Battle (1988).

3. If the Yma(x) = ao™™? Ylap ™z — nby) constitute a (tight) frame,
then so-do the Ymn*(z) = ao~™? ¢#(ap ™z — nby'), with v#(z) =
(bo/ba’)!/? Y(boz/bo’).

4. To illustrate this, the following example shows that the complex exponen-
tials exp (2minz) do not constitute an unconditional basis for LP({0, 1]} if
p ¥ 2. One can show (see Zygmund (1959)) that

)
Z n" 1/4 2winz ~ C'xl-al‘
n=2

tz|-+0

m 1]
Z np=1/4 VR e’b’*inzl o Cllogz]
n=3 >
-2
z;O Cz )

In both cases, z = 0 is the worst singularity, and the integrability of
powers of these functions on [0, 1] is determined by their behavior around

BB a rr

o v Faie
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0. The first function is in LP for p < §, the second is not, even though
the absolute values of their Fourier coefficients are the same. This means
that the functions exp (2mnz) do not constitute an unconditional basis
for LY/3([0, 1}).

The Haar basis adapted to the interval [0, 1] conisists of {#}U{¥m n; m,n €
Z, m<90, 0<n<2m™ -1}, with ¢(z) = 1 on [0,1]. This basis is
orthonormal in L2([0,1]), and is an unconditional basis for LP({0,1]) if
1<p<oo.

. The following is a sketch of the proof that F(b) = {¢}, ,; m,n € Z}, with

1/}5’"’,, as 1n (4 18), constitutes a Riesz basis (i.e., a linearly independent
frame) for L2(R) if b is close to 1. First of all, we can still apply (3.3.21),
(3.3.22) to find estimates for the frame bounds. For b # 1, B;(27(2k +
1)/b) # 0, but if b < 2, then only k = 0, £1, £2 lead to nonzero fy. In
the computation of {4 2.6) (with (2k + 1) replaced by (2k + 1)/b), only a
finite number of ¢ contribute, so that this expression is continuous in b.
It follows that the “rest terms” in (3 3.21), (3.3.22) are continuous in b as
well; since (3.3.21)=(3.322)=1if b= 1, we have A > 0, B < oo for b in
a neighborhood of 1. It remains to prove that the ¢,';l'n are independent.

* » To do this, we construct the operator S(b),

SOV =D {fs ¥hn) Vhn -
Clearly, S(b)y}, , = ¢%, .. To prove independence of the y5, , it is suf-
ficient to prove that [|S(8)f(| > Ciif|l, uniformly in f € L?*(R}, for some
C > 0. But .
ISOAR == 3 (f PhndBhns ) (B ) -

manm' n’

(rm n)s(m’ nty

Using that for |B,x| = | Bg,|, we have

. 1/2 1/2
Yo oa@ B < | la, 1Byl 3 fakl? |Byl
J.k ik 2.k
J#k 1#k §#k
< Jlall sup ) By,
2
k;J
we obtain

p

ISOAC 2 A2 |1-sup Y (@ a0 ¥he )l

m,n
' m’

L (m?,n7) g (m ) (4.2.26)
= “fn2 1-- Sl:p Z l(wg,n’ wrbn',n')l

mi n’
L (m/ .n')#(0.n)
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Because of the support properties of 1, only m’' = 0, +1 contribute in this
sum. If m’ = 0 or 1, then any choice of n gives the same result; if m' = 1,
then the sum may have one of two possible outcomes, depending on whether

- n is odd or even. On the other hand, using the decay j¥(z)} < Cn(1 +

[|2)=N of 4, one easily checks that 3.z 1(¥8 ., ¥2, /)| converges and
is continuous in b for m’ = 0, +1. It follows that the coefficient of || f||? in
the right-hand side of (4.2.26) is continuous in b; since it is 1 for b = 1, it
is > 0 for b in a neighborhood of 1.

They satisfy
g /dl‘ (z=2"n)? [Pm,a(2)]* < 22;" C,
[ d€ i tmate)? < 27 C S
instead.
Aftcr the first printing of this book, a proof was found by P. Auscher, to be

published in the Comptes Rendus de I’Académie Scientifique, Paris, under
the title “Il n’existe pas de bases d’ondelettes réguliéres dans l'espace de
Hardy H%(R).” Explicitly, he proves that it is impossible that n € C! and
)+ 7' ()] < C(1 + [¢])~* with a > 1/2.

s 2200



CHAPTER 5

'Orthonormal Bases of Wavelets and
Multiresolution Analysis

The first constructions of smooth orthonormal wavelet bases seemed a bit mirac-
ulous, as illustrated by the proof in §4.2.A that the Meyer wavelets constitute
an orthonormal basis. This situation changed with the advent of multiresolution
analysis, formulated in the fall of 1986 by Mallat and Meyer. Multiresolution
| analysis provides & natural framework for the understanding of wavelét bases,
and for the construction of new examples. The history of the formulation of
. multuesolutxon analysis is a beautiful example of applications stimulating theo-
: retical development. When he first learned about the Meyer’ basis, Mallat was

working on image analysis, where the idea of studying images simultaneously at

different scales and comparing the resuits had been popular for many years (see,
.. e.g., Witkin (1983) or Burt and Adelson (1983)) This stimulated him to view
orthonormal wavelet bases as a tool to describe mathematically the “increment
in information” needed to go frem a coarse approximation to a higher resolution
approximation. This insight crystallized into multiresolution ana.lysxs (Mallat
(1989), Meyer (1986)).

§.1. The basic idea.

A multiresolution analysis consists of a sequence of successive a~proximation
spaces V,. More precisely, the closed subspaces V, satisfy!

wWhovicWweVo,cVo,c- (5.1.1)
with
Uv = ’m), .(5.1.2)
€l
Vv = {0. (5.1.3)
1€l

If we denote by P, the orthogonal projection operator onto V,, then (5.1.2)
ensures that lim,_,_,, P,f = f for all f € L3(R). There exist many ladders of
spaces satisfying (5.1.1)-(5.1.3) that have nothing to do with “multiresolution”;
the multiresolution aspect is a consequence of the additional requirement

fEV, &= f@)eVs. (5.1.4)
129
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That is, all the spaces are scaled versions of the central space Vp. An example
of spaces V, satisfying (5.1.1)-(5.1.4) is

V,={f€L*R); VKE€Z: flup gs(rsay = Constant} .
4
We will call this example the Haar multiresolution analysis. (It is agsociated with
the Haar basis; see Chapter 1 or below.) Figure 5.1 shows what the projection of
some f on the Haar spaces ¥, V1) might look like. This example also exhibits
another feature that we require from a multiresolution analysis: invariance of ¥
under integer trahslations,

feVy = f(--n)eV, forallneZ. (5.1.5)

Because of (5.1.4) this implies that if f € V,, then f(- - 2n) € V, foralln € Z.
Finally, we require also that there exists ¢ € Vj so that

{#o.n; n € Z} is an drthonormal basis in V; , (5.1.8)

v .

where, for all j,n € Z, ¢, .(z) = 277/2 $(2~72 ~n). Together, (5.1.6) and (5.1.4)
imply that {¢,; n € Z} is an orthonormal basis for V, for all j € Z. This last
requirement (5.1.6) seems a bit more “contrived” than the other ones; we will see
below that it can be relaxed considerably. In the example given above, a possible
choice for ¢ is the indicator function for [0,1], ¢(z) =1 0< 2 <1, ¢(z) =0
otherwise. We will often call ¢ the “scaling function” of the multiresolution
analysis 2 -

The basic tenet of multiresolution analysis is that whenever a collectio;
of closed subspaces satisfies (5.1.1)-(5.1.6), then there exists an orthonormal
wavelet basis {1, x; j,k € Z} of L2(R), ¢, x(x) = 279/29(2"7z — k), such that,
for all f in L%(R),

Piaf=Pf + Y (f n) ¥y - (5.1.7)

kel

(P; is the orthogonal projection onto V;.) The wavelet ¥ can, moreover, be
constructed explicitly. Let us see how.
For every 7 € Z, define W, to be the orthogonal complement of V; in V;_;.
We have
Viaa=V,eW; (5.1.8)

and .
W, LWy if j#5 . (5.1.9)
(If 3 > j'y e.g., then W, C VL W) It follows that, for j < J ,
J-j~1 ,

V=Vie @ Wi, (5.1.10)
k=0
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where all these subspaces are orthogonal By virtue of (5 1.2) and (5.1 3), this

implies
L}(R) = w,, (51.11)
3
Jel

i
”"%&% a decomposition of L?*(R) into mutually orthogonal subspaces. Furthermore, the
S LW, spaces inherit the scaling property (5.1.4) from the V;:

Sy ¢
‘ few, <= f(2) € Wo. (5.1.12)

~13‘ormuhs, (5.1.7) is equivalent to saying that, for fixed 7, {1, ; k € Z} constitutes
- an orthonormal basis for W,. Because of (5.1.11) and (5.1 2), (5.1.3), this then
~automatically implies that the whole collection {4, x; j,k € Z} is an orthonormal
2. bsis for L?(R). On the other hand, (5.1.12) ensures that if {0, k € Z} is an
sarthonormal basis for Wo, then {1, x; k € Z} will likewise be an orthonormal
basis for W,, for any j € Z. Our task thus reduces to finding ¥ € Wy such that
#he y(- ~ k) constitute an orthonormal basis for Wo.
To construct this 1, let us write out some interesting properties of ¢ and Wp.

. Since ¢ € Vy C V-1, and the ¢_,, are an orthonormal bagis in V_.,, we

f .
=) hn -1, (5.1.13)
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with
hn={¢, 6-1n) and Y [|ha|*=1. (5.1.14)

nel
We can rewrite (5.1.13) as either

$(z)=V2 Y hn $(2z-n) (5.1.15)

or

7 1 —wmnEf2 3
6 = > ‘é hn €72 §(£/2) | (5.1.16)

where convergence in either sum holds in L2-sense. Formula (5.1.16) can
be rewritten as

#(€) = mo(£/2) $(£/2) (5.1.17)
where
mol£) = % znj B €= (5.1.18)

Equality in (5.1.17) holds pointwise almost everywhere. As (5.1.14) shows,
myg is a 2r-periodic function in L2([0, 27]).

The orthonormality of the $(. — k) leads to special properties for my. We
have

Sko = /da: d(x) ¢z — k) = /d{ 13(€)]? etk
= f %dé e Y (e + 2m0)?
0

tel

implying )
3 18(E +2m0)? = (21)7" ae. (5.1.19)
[

Substituting (5.1.17) leads to ({ = £/2)

Y Imo(¢+ =) |6(¢ + xO)F = (2m)~" ;
4

splitting the sum into even and odd ¢, using the periodicity of my and
applying (5.1.19) once more gives
Imo(¢)* + Imo(¢+m)> =1 ae. (5.1.20)

Let us now characterize Wy: f € W) is equivalent to f € V_; and f 1 V.
Since f € V_,, we have

f=z fn ¢—1,n ’
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. with fn = (f, é_1,n)- This implies

f() = % S e Ge2) = my(e/2) BE/D),  (5.1.21)

where

m(€) = % S faeme (5.1.22)

my is a 2w-periodic function in L%([0, 2x]); convergence in (5.1.22) holds -
pointwise a.e. The constraint f L V; implies f 1¢g « for all k, i.e.,

/def‘(s)é?'(s_)e"‘f =0

2w —
dg e )" f(€+2ml) p(E+2m8) = 0;
0 ¢

hence

S f(e+2me) € +2m0) = 0, (5 1.23)
- :

where the series in (5 1.23) converges absolutely in L (|-, 7}). Substitut-
ing (5.1.17) and (5 1 21), regrouping the sums for odd and even £ (which we
are allowed to do, because of the absolute convergence), and using (5.1.19)
leads to

ms(¢) mo(() + my(C+m) mo((+7) = 0 ae (5.1.24)

Since mg(¢) and mg(¢ + 7) cannot vanish together on a set of nonzero
measure (because of (5 1.20)), this implies the existence of a 27-periodic
functionr A(¢) so that

ms(¢) = MC) mo(C +7)  ace. © (5.1.25)
and ‘
MO +M+7T) =0 ae (5.1.26)
This last equation can be recast as
ME) = 4 v(20), ’ (5.1.27)

where v is 2m-periodic. Substituting (5.1.27) and (5.1.25) into (5.1.21)
gives

f(&) = 4/ mo(€f2 + 7) v(€) $(£/2) , (5.1.28)

where v is 2m-periodic.
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4. The general form (5.1.28) for the Fourier transform of f € W, suggests
that we take ’

(E) = e/ mo(e/3 + 1) $(€/2) (5.1.29)

as a candidate for our wavelet. Disregarding convergence questions,
(5.1.28) can indeed be written as

f&) = (z Vi e""‘) W(€)
k

or
F=Y wy(-k,
N

i

so that the ¢(- — n) are a good candidate for a basis of Wy. We need
to verify that the o, are indeed an orthonormal basis for Wy. First

of all, the properties of mg and ¢ ensure that (5.1.29) defines indeed an
L3-function € V_; and L V, (by the analysis above), so that ¥ € W.
Orthonormality of the ¥y x is easy to check:

/ dz p(z) PE=F) = / dE €™ [ ()2

= hd{ e N " (g + 2xl)
£

0
Now
Y e +2xO) =) imo(€/2+ xt + m)* 1§(£/2 + xO)
£ [4

= |mo(§/2+m)* Y 16(6/2 + 2am)|®

n

+ mo(&/21 Y 18(&/2+ n + 2mm)?

= (2m)7" [Imo(€/2) + Imo(6/2+m)|*] ae  (by (5.1.19))
=(2n)"! ae (by(5.1.20)) .

Hence [dzx ¥(x) Y(z —k) = O&ro. In order to check that the v are
indeed a basis for all of Wy, it then suffices to check that any f € W can

be written as
f= Z Tn Yo »
n

x'
with Z Inl? < o0, or
- n

FE& =& ¥, (5.1.30)
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with  27-periodic and € L%({0, 2n]). Let us go back to (5.1 28). We have
F(&) = w(€) $(&), with f;™ dEIv(EI? =2 f dC IX(Q)IP. By (5122).

29
dlmg@)F =7 Y Il =7lfI* <0
On the other hand, by (5 1.25),

2% 2n
d lmy@)F = [ de |ME)Imol€ + m)]?
dg [ME)? [Imol€ + 7)1 + Imo(€)?] (use (51 26))
B = ]; "dgu(g);’ (use (5.1.20))

H

Hence 3" d¢ [W(€)* = 2r ||f)? < oo, and f 13 of the form (5 1 30) with
square integrable 2r-periodic v

We have thus proved the following theorem.

THEOREM 5.1 1 If a ladder of closed subspaces (V)),cz 1n L*(R) satis-
fles the conditions (5.1.1)-(5.1.6), then there exists an associated orthonormal
wavelet basis {1, x, 7,k € Z} for L*(R) such that

. P, =P, +Z( ¥5.x) %k (5 1.31)
rk}
¥
4 One possiility for the construction of the wavelet Y 1s
*, P(E) = €%/? mol€f2 + x) $(£/2) ,
¥
W (unth ;g as defined by (5.1.18), (5.1.14)), or equwvalently
" b = Y (D" hoaybin, (5 1.32)
» n
Py ¥e) = VIR hont 425 =)
@,& T
27 (unth convergence of the last sertes 1n L?-sense).
e,

& Note that ¢ is not determined uniquely by the multiresolution analysis ladder
#4  and requirement (5.1.31) if ¢ satisfies (5.1.31), then so will any ¢# of the type

e V*(0) = o(&) $(O) , (5.1.33)

*". with p 2n-periodic and |p(€)| = 1 a.e.? In particular, we can choose p(€) = pg e*™”
%5 withme 2, |oe] = 1, which corresponds to a phase change and a shift by m for

g"%, * t. We will use this freedom to define, instead of (5.1.32),
S5 fe .
;%,* ; $= gnd_1n With go=(-1)"h_ny; (5.1.34)

3,
* 2
.
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or occasionally
gn = (-1)" honirion, (5.1.35)

with appropriately chosen N € Z. Of course we can take more general p in
(5.1.33), but we will generally stick to (5.1.34) or (5.1.35).4

Even though every orthonormal wavelet basis of practical interest, known to
this date, is associated with a multiresolution analysis, it is possible to construct
“pathological” 1 such that the ¥, x(x) = 279/ {277z ~ k) constitute an or-
thonormal basis for L2(R) but are not derivable from a multiresolution analysis.
The following example (due to J. L. Journé) is borrowed from Mallat (1989).
Define ’

P(€) (2m)~Y2% if ;<] <w oor dm < g B
) 0 otherwise .

(5.1.36)

We immediately have |[,]| = [[¢ll = 1. Furthermore, 273", ()2 =1 ace.
By Tchamitchian’s criterium (3.3.21)-(3.3.22) the ¢, x therefore also constitute
a tight frame with frame constant 1, provided

0O

Y d(2%) B(24E+ 2n(2k + 1)) = 0 ae. (5.1.37)

=0

One easily checks that support ¢ N {support 4 + (2k + 1)2w2¢] has zero measure
for all £ > 0, k € Z, so that (5.1.37) is indeed’ satisfied. It then follows from
Propasition 3.2.1 that the 1, constitute an orthonormal basis for L*(R).

If 1 were associated with a multiresolution analysis, then (5.1.29) and (5.1.17)
would hold for the corresponding scaling function ¢ (with possibly an extra p(£),
lo(€)] = 1 a.e. in the formula for ¥—see (5.1.33)). It then follows from (5.1.20)

that X ) R
1B + 19O = I8¢/, (5.1.38)
which implies, for £ # 0,
1B =D (&P .
i=1

One easily checks from (5.1.36) that this implies
(2m)~Y2 if 0L €| < 4m/7,
or r< i <8x/7,
or 2x < [€] £ 16%/7,

0 o'therwise .

16(€)] =

If there existed a 27-periodic mg so that (5.1.17) held for this ¢, then we would
have |mg(£)| = 1 for 0 < [¢| < 4w/7. By periodicity this would imply [mo(£)| =1
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as well for 2r < £ < 18x/7; hence |mo(€)] |(¢)] = (2m)~1/2 for 27 < € < 167/7,
even though |$(26)] = 0 on this interval. This contradiction proves that
this orthonormal wavelet basis is not derivable from a multiresolution analysis.
Note that 3 has very bad decay. It is an open problem whether this kind of
“pathology” can persist if some smoothness is imposed upon ¥ (i.e., decay on
%).5 For later convenience, we note that in terms of the h,, equation (5.1.20)
can be rewritten as

3" hahngox = bxo - (5.1.39)

-~ ®  (This follows easily from writing out the explicit Fourier series for |mq(¢)|? +
o me(¢+m)2)

5.2. Examples.

Let us see what the recipe (5.1.34) gives for the Haar multiresolution analysis.
In that case, ¢{z) = 1 for 0 < z < 1, 0 otherwise; hence

1/v2 if n=0,1,

0 otherwise.

h,,=\/5/dz¢(a:)¢(2z-n)={

¥

Consequently, ¥ = ;}5 $-10— 7]5 ¢_1, or

wty W
ek

1 if 0<z<d,
Y(z)=4{ -1 if%S_I(l,

e
s

0 otherwise.

4
=4

*

This is the Haar basis, which is no surprise;: we already saw in §1.6 that this
wavelet basis is associated with the Haar multiresolution analysis.
i The Meyer basis also fits neatly into this scheme. To see this, define ¢ by

L )
-

'

& (2m)=212, lel < 2n/3,

5 #O={ e elgy (RKI-1)], 2/3<lel <dns3,
s b .

:‘fﬁ% 0 otherwise,

i
&

r:;%ﬁ

where v is a smooth function satisfying (4.2.4) and (4.2.5). é is plotted in

@ég@ " Figure 5.2. It is an easy consequence of (4.2.5) that 3", .7 |$(6+27k)|2 = (2)?,
%%  which is equivalent to orthonormality of the ¢(- — k), k € Z (see §5.2). We then
b 2,} define Vj to be the closed subspace spanned by this orthonormal set. Similarly,
;@ ¥; is the closed space spanned by the ¢;, k € Z. The V, satisfy (5.1.1) if and
Toeos nply if ¢ € V_;, i.e., if and only if there exists a 2r-periodic function myg, square
%  integrable on [0, 2], so that

A

S #(6) = mo(€/2) $(E/2)
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’ A
(2myt | $&
*
j \
0
——e . . L |8
-4n/3 -2x/3 0 2r/3 4x/3

-

FIG. 5.2 The scaling function ¢ for the Meyer basis, unth v(z) = z4(35 — 84z + 70z —
20z3).

In this particular case, mp can be easily constructed from ¢ itself:
mo(€) = V21 Y,z H(2(6 +2a¢)). This is 27-periodic and in L3([0, 27)),
and ‘

mo(£/2) B(£/2)

V2r Y B(E + 4nt) $(¢/2)

el
- = Vam d(g) $(E/2)
(because [support $(-/2)] and [support é(- + 4r0))
do not overlap if £ # 0)
e
(because v2r $(£/2) = 1 for £ € support @).

il

I leave it as an (easy) exercise for the reader to check that the V) also satisfy
properties (5.1.2), (5.1.3) ((5.1.4) and (5.1.5) are trivially satisfied already; see
also §5.3.2). Let us now apply the recipe (5.1.29) to find ¢:

$(6) = /P molE/2+7) dE/2)
= Vam et/? Y g€+ 2m(2 + 1)) 6(£/2)
€2
= VI &4 [g¢+2n)+ $ - 2m)] BE/2)
(for all other ¢, the supports of the two factors do not overlap) .

It is easy to check (see also Figure 5.3) that this is equivalent to (4.2.3). The
phase factor e’¢/2 which was needed for the “miraculous cancellations” in §4.2
occurs here naturally as a consequence of the general analysis in §5.1.

Before we discuss other ‘examples, we nee“di {0 relax condition (5.1.6).
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“8.3. Relaxing some of the conditions.

.3.1. Riesz bases of scaling functions. The orthonormality of the ¢(-~k)
i (5.1.6) can be relaxed: we only need to require that the ¢(- — k) constitute
a Riesz basis. The following argument shows how to construct an orthonormal
basis ¢#(- — k) for V; starting from a Riesz basis {¢( — k); k € Z} of V.
Tte ¢(- — k) are a Riesz basis for Vp if and only if they span Vp and if, for all
(ck'ecz € E(Z),

2
AN el <D e ol —k)" <BY lal,
k k k

where £ > 0, B < co are independent of the c, (see Preliminaries).
But

|

»

(5.3.1)

L4

2 2

= [d |5, ox e §(¢)
2 2

el e
] k

Zk cx ¢(- — k)

o

Y 1+ 2n0)

ez

L

2

o
i

L
-
o

1 3.

-8r/3 -4x83

<o

-

FiG. 5.3 Graphs of ¢(£ + 2r) + $(€ — 2x) and of $(£/2) Jor the Meyer multiresobution

i analyes; thew product 18 [Y(€)| (See alao Figure 42.)
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and
2

¥

2r
2 _ -1
Sdaf = @0t [

k
so that (5.3.1) is equivalent to

k

0'< (2r) 'A< ) |6 +2x0)2 < (21) ' B < 00 aee. (5.2.2)
n .
We can therefore define ¢# € L%(R) by

-1/2
$*(E) = (2m)71? [E |$(e+2we)|2} é(6) - (5.3.3)

4

v

Clearly, 3=, |6* (€ + 27£)]* = (27)"! a.e., which means that the ¢#( — k) are

orthonormal. On the other hand, the space Vo# spanned by the ¢*(- — k) is
given by

VO#

i

{f; f =Y fFe*(-n), (ff)nezeﬂ(Z)}

. n

I

{fi f = v¢* with v 2n- perodic, v € L3([0, 2n))}
= {f; f = 1 ¢ with vy 27~ periodic, vy € LQ({O, 2r))}
(use (5.3.2) and (5.3.3))

{f; f= Z Ia ¢( —n) with (fn)nez € e2(z)}

= V, (since the ¢(- — n) are a Riesz basis for V}) .

5.3.2. Using the scaling function as a starting point. As described
in §5.1, a multiresolution analysis consists of a ladder of spaces (V;),cz and
a special function ¢ € V, such that (5.1.1)-(5.1.6) are satisfied (with (5.1.6)
possibly relaxed as in §5.3.1). One can also try to start the construction from

. an appropriate choice for the scaling function ¢: after all, V; can be constructed
from the ¢(- ~k), and from there, all the other V, can be generated. This strategy
is followed in many examples. More precisely, we choose ¢ such that

#(z) = ) cnd(2x-n), (5.3.9)
where 3, |cn|? < 0o, and
O<as) Ipe+2nO)P<f<oo. (5:3.5)
el

"We then define ‘;, to be the closed subspace spanned by the ¢;x, k € Z, with
bix(z) = 279/% $(2-3x — k). The conditions (5.3.4) and (5.3.5) are neces-
sary and sufficient to ensure that {¢;; k € Z} is a Riesz basis in each V;, and

&

oo™

2 T o
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that the V, satisfy the “ladder property” (5.1.1). It follows that the V; satisfy
(5.1.1), (5.1.4), (5.1.5), and (5.1.6); in order to make sure that we have a mul-
tiresolution analysis we need to check whether (5.1.2) and (5.1.3) hold. This is
the purpose of the following two propositions.

PROPOSITION 5.3.1. Suppose ¢ € L%(R) satisfies (5.3.5), and define V, =

Span {¢,x; k€ Z}. Thenn,cz V, = {0}.

Proof.

1. By (5.3.5), the ¢ constitute a Riesz basis for V. In particular, they
constitute a frame for Vg, i.e., there exist A > 0, B < oo so that, for all
f €W, ] )

. « s
x'{ “ .

ANFIE <3 IS, don) < B IS (5.3.6)

kel

(see Preliminaries). Since V; and the ¢, ; are the images of Vj and the ¢g
under the unitary map (D, f)(z) = 277/2 f(277z), it follows that, for all
feV,

AP <30 1 < B IS, (5.3.7)

. kel
with the same A, B asin (5.3.6). .

L: 2. Now take f € N,z V,. Pick € > 0 arbitrarily small. There exists a

compactly supported and continuous f so that || f — fllL2 < €. If we denote
by P, the orthogonal projection on V,, then

I =Pfll = 1B =N - Al <€

hence

Wfll<e + |Pfll foralljeZ. (5.3.8)

: N . 1/2
: 3. 1P/l < A7V [Srez I(F, 4,0P7] ", and

IA

. e 2
277 dz |f(z)| 6(277z - k)l]
S v
(R chosen so that [-R, R] contains the

compact support of f)

2
-3 || fiI2 o
2 ufuwg( /mdz 16277z k)l)

-3 11 Flii2 ~F 2
7 1l 2R 3 /.z.s_ad”"“z z— k)|

Zl(f, bix)?
k

IA

IA

= iz~ 2R [ - dyleWw)P (5:39)
_ IS8r;
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with Sg; = Ukez [k ~277R, k+277R], where we assume that j is large
enough so that 277R < %

4. We can rewrite (5.3.9) as
S Gl < 2RI [ duxGlew)? (5.3.10) f
k

where x; is the indicator function of Sg,, i.e, x,(y) = 1 if y € Sg,,
x;{(v) =0if y & Sg,. For y ¢ Z, we obviously have x,(y) — 0 for j — oo.
It therefore follows from the dominated convergence theorem that (5.3.10)
tends to 0 for j — oo. Im particular, there exists a j such that (5.3.9)
< €2A. Putting this together with (5.3.8), we find || f]| < 2¢. Since ¢ was
arbitrarily small to start with, f =0. =

This proves that (5.1.3) is satisfied. For (5.1.2) we introduce the additional
hypotheses that ¢ is bounded and that [dr ¢(z) # 0.

PROPOSITION 5.3.2. Suppose that ¢ € L2(R) satisfies (5.3.5) and that, more-
over, $(€) 13 bounded for all € and continuous near £ = 0, with $(0) # 0. Define
V, as above. Then Uycz V, = L*(R).

Proof.
"1. We will use éga.in that (5.3.7) holds, with A, B independent of j.

2. Take f € (U,ez V;)*. Fix e > 0 arbitrarily small. There exists a compactly
supported 'C* function. f so that ||f — fllL2 < e. Consequently, for all

J=-j€l
IP_sfll = IRAl=IP(f- )l (since P,f =0)
"< e (5.3.11)
On the other hand, by (5.3.7),
WP_afi? =2 B~ Y If, d-an)®. (5.3.12)
kel

3. By standard manipulations (see Chapter 3) we have

S U, 60 = 2 [deB@OR IFOF + R, (5313

keZ ?
with , |
R < 2 Y [ a1 7011 Fe+2” 2n)] 190 izTe + 2n0) i
140
. 2 o e Y
< Wik Y fae1fen e+

4H#o
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Since f is C*, we can find C so that

Lfe)l<ca+ g7, (5.3.14)

It then follows that

R < O HolEe T [de (1l + 20wty 1+ 1€~ 22mt) 2

A0

IA

IN

C Bl 3 (1+72 £2220)-12 / a1+

L0

(use supR A+l +E-9? 1+ @=+y)? <o tmoe)
z.y€
< ¢, . (5.3.15)

4. Putting (5.3.12), (5.3.13), (5.3.14), and (5.3.15) together, we find
2n [ dg b2 OF | J@F < BE + €727 (5.3.16)

Since ¢(£) is uniformly bounded as well as continuous in £ = 0, the left-
hand side of (5.3.16) converges to 2n|$(0)[2]|f)|2. (by the dominated con-
vergence theorem) for J — oco. It therefore follows that

- ) fhee < 1800)) 7 Ce, (5.3.17)

with C independent_of . Combining (5.3.17) with ||f — fllz, < ¢, we
obtain

s < e+ 1 flis < (1 + CI8O)| e,

Since ¢ was arbitrarily small, f=0. =

REMARKS.

1. If slightly stronger conditions are imposed on ¢, then Propositions 5.3.1 and
5.3.2 can be proved with easier estimates. In Micchelli (1990), for example,
the same conclusions are derived if ¢ is continuous and satisfies |¢(z)] <
C(L+ |2)717¢, Ypez ¢(z — £) = const. # 0, which implies both ¢ € L!
and [dz ¢(z) # 0.

2. The extra condition that ¢3 be continuous in 0 in Proposition 5.3.3 is not
necessary. The following is an example of a multiresolution analysis in
which the scaling function is not absolutely integrable. Let VM, M, M
be, respectively, the multiresolution spaces, the sceling function, and the
wavelet for the Meyer wavelet basis, with ¥ € C® (see §5.2). Let H be
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the Hilbert transform, (Hf)*(¢) = f(€) if € > 0, —f(£) if € < 0. Define
V, = HVM, ¢ = H¢M. Because the Hilbert transform is unitary and
commutes with scaling and with translations (in z), the V| still constitute
a multiresolution analysis, and the ¢g  are an orthonormal basis in V5.
But ¢ is not continuous in 0. Because 0 & support W@M), ¥ = (HpM)"
is a C*°-function with compact support, so that ¥ itself is C> with fast
decay. This is therefore an example of a very smooth wavelet with good
decay, associated tc a multiresolution analysis with bad decay for ¢.6 Note
also that ™ and ¢ satisfy (5.1.17) with the same my, illustrating that the
¢n in (5.3.4), or equivalently myg, do not determine ¢ uniquely, and that
decay of the ¢, as [n}]—o0 does not ensure decay for ¢.7

. If ¢ is bounded, and continuous in 0, then the condition $(0) # 0 is nec-

essary in Proposition 5.3.3. This can be seen as follows. Take f € L*(R),
f # 0, with support f C [-R,R], R < 00. f U,z V, = L*(R), then
f = limj_,0 P_yf. Buth

WPt < AN [ d-amlP
k

< 47 for facberoriier + g|.

as in (5.3.13). Since ¢ is continuous, the first term tends to
A™Y 2716(0)]2 |If}? for J—o0, by the dominated convergence theorem.
The second term can be bounded exactly as in (5.3.15), so that this term
tends to zero for J—oo. It follows that

IFI? = Jim [P_sfI* < 27 AV IO A7 -

Since {|f|| # O, this implies ${0) # 0.

. The argument in points 3 and 4 of the proof can also be used to prove

[$(O)|2 < B/2n. We have indeed
BIf? 2 BIP-sfI? 2 Y (f, - sa)P

keZ

= 2n [ deld@ )P 1F O + R,

where |R| can be bounded by C2~7 for nice f. The other term tends to
2r|$(0)(2[| F1|* (see 4). Together with remark 3 above, this implies A/2r <
|#(0))* < B/2n. In particular, if the ¢o s are orthonormal, then A = B
and |¢(0)] = (27)"1/2,

The conditions ¢ € L*, $(0) # 0 (with ¢ continuous in 0) imply certain
restrictions on the ¢, as well. Equation (5.3.4) can be rewritten as

#(€) = mo(E/2) (£/2), (5.3.18)

«t

o R =

R i sttt ¥
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with mo(€) = § ¥, ¢ e™. In particular, #(0) = mo(0) $(0), which
implies mg(0) = 1 (since ¢(0) # 0) or

Y em=2. (5.3.19)

Moreover, (5.3.18) implies that mg is continuous, except possibly near
the zeros of d:» In particular, mg is continuous in £ = 0. 1f, further-
more, |¢(€)] < C(1 + |€])~1/?7¢, then the continuity of ¢ implies that
3, |6(¢ + 2xé)[? is continuous as well, so that ¢# (as defined in §5.3.1) is
also continuous; consequently, mg‘ (&) = ¢* (2¢)/* (¢) satisfies m¥ (0) = 1.
Since |m¥ (£)2 + |m¥ (£ +))? = 1, it follows that m¥ () = 0. This implies
mo(m) = 0 (m¥ (€) = mo(£)[T, 19(€ + 2x )23 - [T, (26 + 2m8)[2]72/2),

or
3 e(-1)" = 0. (5.3.20)

n

Together with 3, ¢, = 2, this implies ), can =1 =) cCony;. Thisis
consistent with the admissibility condition for 1.8 Note also that ¥, cg, =
1=3, c2n41 is equivalent with Micchelli (1990)’s condition ) , ¢(z—£) =
const. # 0 if |¢(z)| < C (1 + |z])~'~¢ and if ¢ is continuous.’ o

All this suggests the following strategy for the construction of new orthonor-
mal wavelet bases:

e Choose ¢ so that (1) ¢ and ¢ have reasonably decay,
(2) (5.3.4) and (5.3.5) are satisfied,

(3) [dz ¢(x) #£ 0
(by Propositions 5.3.1, 5.3.2 the V; then constitute a multiresolution anal-
ysis);

o If necessary, perform the “orthonormalization trick”
~1/2
¢*(€) = ¢(6) [% IR (3 +21rl’)I2] ;
]

o Finally, $(€) = e/*m¥(£/2+7)¢*(€/2), with m(§) = mo(¢)
(53, 16(€ + 270)2]Y/2 [, [$(2€ + 2r€)[2]~1/2, or equivalently

vi) = Y ()" hE L e

withmf(¢) = J5 X, h¥f e7™%
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5.4. More examples: The Battle-Lemarié family.

The Battle- Lemarié wavelets are associated with multiresolution analysis ladders
consisting of spline function spaces; in each case we take a B-spline with knots
at the integers as the original scaling function. If we choose ¢ to be the piecewise

constant spline, %
_J 1 0Lz<],
d(z) = { 0 otherwise,

then we end up with the Haar basis.
The next example is the piecewise linear spline,

— I—IZ'Y OS'I'SI)
¢(z) = { 0 otherwise,

plotted in Figure 5.4a. This ¢ satisfies

o(z) = 302z +1) + ¢(2z) + § #(2z-1);

i
w
G
3
3
é
k
g

see Figure 5.4b. Its Fourier transform is

. 2
io = em (BH2)

and 21 T,z [HE+ 270 = 241 cos€ = }(1+2c0s?£/2).1°

~

(a)

#{x)

1 ei2xe) o2

o A\

3 0 ]
FiG. 5.4. The piecewise linear B-spline ¢; it satisfies $(z) = 4(2z + 1) + ¢(22) + }
#(2z - 1).
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Both (5.3.4) and (5 3.5) are satisfied, ¢ € L! and [dzr ¢(z) = 1 # 0. The
V, constitute a multiresolution analysis {consisting of piecewise linear functions
with knots at 2’Z). Since ¢ is not orthogonal to its translates, we need to apply
the orthogonalization trick (5.3.3)

4sin® £/2

PO = V3™ s g

Unlike ¢ itself, ¥ is not compactly supported; its graph is plotted in Figureé 5.5a.
To plot ¢#*, the easiest procedure is to compute (numerically) the Fourier coef-

ficients of [1+ 2cos? £/2]71/2

[142cos® £/2]72 = Y cae™™,
n

and to write ¢¥#(z) = % 3. cn #(z — n). The corresponding m# is
1+ 2cos? {/2] 172

mi(e) = oot ez | N

10} q

05 ¢

"95 L i 4

5 0 5
Fi1G. 5.5. The scaling funciion ¢ and the wavelet ¥ for the hnear spline Battle-Lemarié
construction.
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and 1/:' is given by

. 9gin? /2
Be) = et e [T 0 e

1/2

_ €/2 o2 1+ 2sin® £/4 ;
= V3 sin® (/4 [(1+2c052 (12000 e9) ¢

Again we can compute the Fourier coefficients d,, of [(1 — sin? £/4) (1 +
cos? £/2)~1(1 + cos? £/4)71]/2, and write

U)(T) = —.? Z (d'n.+l - 2dn + dn—l) ¢(2$* n) "

This function is plotted in Figure 5.5b.
In the next example ¢ is a piecewise quadratic B-spline,

j(@+1)%, -1<z<0,
4(z) = ?—(I—%)2, 0sz<l,

3(x-2)%, 1<<2,

0 otherwise ,

as plotted in Figure 5.6a. Now ¢ satisfies

plr) = 1¢Q2z+1) + 36(22) + 39(22-1) + § ¢(2z - 2)
(see Figure 5.6b); we have

. 3
- _ _ sin £/2
B(E) = (2am)~Y2 e/ (_) ,
and 27 3, |P(E+2m8))2 = B+ 13 cos€+ g5 cos2 = &+ Bceost+ 335 cos? &
Again (5.3.4) and (5.3.5) are satisfied, and ¢ € L!, with | dz ¢(z) # 0. Tk,
¢(- — k) are not orthonormal, and we need to apply the orthogonalization tric

(5.3.3) to find ¢# and m# before we can construct ¥ Graphs of ¢# and ¥ ar
given in Figure 5.7.

}n the general case, ¢ is a B-spline of degree N,

- _ -1/2 _—iK¢/ sin 5/2 N+1
$(8) = (2m)71/2 7412 (———5/2 ) ,

where K = 0 if N is odd, K = 1if N is even. This ¢ satisfies [ dr ¢(z) = 1 anc

( 2M +1
9-2M z (2A'Ij+ 1) o2z -M—-1+j) if N =2M is even
=0

#(z) =

2M+2
2-2M-1 %" (2Mj+2)¢(2:r~—M—l+J) if N =2M + 1 is odd.
. 1=0

X me

Fen
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10+ é(x)

05} ]

10}

0756 (2x) 075¢(2x 1)

05+

FiG 56 The quadratic B-spline ¢, translated so that its knots are at the integers It
satrsfies ¢(x) = 1o(22 +1) + 36(22) + 392z — 1) + jH(2z - 2)

Explicit formulas for ), |p(€ + 27£){2, for general N, can be found, e.g., in
Chui (1992). In all cases, ¢ satisfies (5.3.4), (5.3.5). For even N, ¢ is symmetric
around ¢ = %, for odd N, around z = 0. Except for N = 0, the ¢(- — k) are
not orthonormal, and the orthogonalization trick (5.3.3) has to be applied. The
result is that support ¢# = = support ¢ for all the Battle-Lemarié wavelets.
The “orthonormalized” ¢* has the same symmetry axis as ¢. The symmetry
axis of ¥ always lies at x = .%, (For N even, ¥ is antisymmetric around this axis,
for N odd, ¢ is symmetric.) Even though the supports of ¢# and ¢ “stretch
out” over the whole line, ¢#* and ¥ still have very good (exponential) decay. To
prove this, we need the following proposition.

PROPOSITION 5.4.1. Assume that ¢ has exponential decay, |p(z)] <
C e 121, and that, for some a < v (a > 0),

sup [(e? @)M(E) < C (1+(g) 1 . (5.4.1)
Bi<a

Assume also that 0 < a < ¥, |§(€ + 2x8)2. Define ¢* by $*(¢) =
$(£) 2 T, |6(& + 2m€)|2)~1/2. Then ¢# has exponential decay as well.
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-5 Q 5
FiG. § 7. The scaling function ¢ and the wavelet Y for the quadratic spline Battle-Lemarié

construction.

Proof.
1. The bound |¢(z)] < C e~°l=l implies that @(£) lias an analytic extension
to the strip |Im {| < o, and that #(- + i€3) € L*(R) for all |&2] < a. The

samie is true for ¢(€) = H—E).

2. For fixed ¢, define Fg, (€;) = $t€1 + ia) #(—&: — i€3). Then
Y |Fe (6 +2n0)|

el
1/3

1/2
< (; |$(el+z'en+zxe;’) (g 13(—61—1'&—2«!)!’) .

and

Z 103(51 +i&g + 2nl)}?

¢

< 51; /d€1 16(6x + i&2)f? +2/d€1 |B(&x + i)@' (& + i&2)|

|
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1
< - 2§21 2
< 5 [daeeeioa)

+2 [/ dz eu”iq&(z)lz]l/? [/dz e%1* g2 lqb(:c)l"'] v < 0.

(We have used that 3, |f(z+2rf)] < (2r)! [dx |f(z)|+ [ dz |f'(z)|.1?)
Consequently, >, Fe, (§&1 + 2mf) converges absolutely if [Im &| < 7.
Similar bounds, combined with the dominated convergence theorem, show
that }°, Fe, (€1 + 2n¢) is analytic in § = £; + 1€ on the strip |Im | < 7.

3. The function G(§) = ¥, |¢(€ + 27€)|? has thus an-analytic extension to
Im €] < v. Since G is periodic, with period 2x, and Gjg > a > 0, this
implies that there exists &, possibly smaller than v, sa that ReG(§) > a/2
for |Im £| < &. Consequently, G~!/2 can be defined as an analytic function

o
<

-2y

v

P on |Im £| < &, which means that #* = G-!/2 ¢ has an extension to a
’f} uniformly bounded analytic function on the strip |[Im €} < a.
i 4. On the other hand, (5.4.1) implies that
e [d(6 +i€) < C (1 +a))"
« for |€2] < a. It follows that on |Iin £] < min (&, a), @* is analytic, and is
bounded by

. |6*(£)l € C (1 +|Re £])7° .
Consequently,

R a
@) = gim en | [ et o)

I

r R e
‘ ’ Jm m | [ dg etm et g (6 i)
- 3]
+/ dse 1 Re~22g# (R + is)
0

€2
- f dse Re "2 9# (R + is)
0

< Ce % for |€2| < min(G,a). =

-

.- COROLLARY 5.4.2. All the Battle-Lemarié wavelets ¥ and the corresponding
orthonormal scaling functions ¢* have ezponential decay.
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5.5. Regularity of orthonormal wavelet bases.

For wavelet bases (orthonormal or not—see Chapter 8) there is a link between
the regularity of 1 and the multiplicity of the zero at £ = 0 of 4. This is a
consequence of the following theorem (stated amnd proved in greater generality
than needed here, for later convenience).

THEOREM 5.5.1. Supposc f. f are two functions, not identically constant,
such that

(Frkr Fyre) = 855000

with f,x(z) = 2792 f(272z - k), fia(z) = 272/2f(2-9z - k). Suppose that
If(z)} < CQ + |z])~2, with a > m + 1, and suppose that f € C™, with fO
bounded for £ < m. Then

/dzz' flz) = 0 fort = 0,1,--,m . (5.5.1)

1. The idea of the proof is very simple. Choose 3, k, j', k' so that f, x is rather
spread out, and f,:,k- very much concentrated. (For this expository point
" only, we assume that f has compact support.) On the tiny support of f,.,,,
the slice of f, x “seen” by f,:,kr can be replaced by its Taylor series, with as
many terms as are well defined. Since, however, Jdz f;k(z) f,: w(z) =0,
this unphes that the integral of the product of f and a polynomial of_
order m is zero. We can then vary the locations of f,ry, as given by~
k’. For each location the argument can be repeated, leading to a whole
family of different polynomials of order m which all give zero integral when
multiplied with f. This leads to the desired moment condition. But let us
be more precise as follows.

2. We prove (5.5.1) by induction on £. The following argument works for both
the initial step and the inductive step. Assume [dr 2" f(z) = Oforn € N,
n < £. (If ¢ = 0, then this amounts to no assumption at all.) Since f(©
is continuous (£ < m), and since the dyadic rationals 277k, (j, k € Z) are
dense in R, there exist J, K so that f(9(277K) # 0. (Otherwise () =0
would follow, implying f = constant if £ = ( or 1, which we know not to
be the case, or, if £ > 2, f = polynomial of order £ — 1 > 1, which would
imply that f is not bounded and is therefore also excluded.) Moreover, for
any € > 0 there exists § > 0 so that

[
f@ - (@) fM@K) (z~277K)"| < de - 2 K¢

n=0

if |r ~2"'K| < 6. Take now j > J, j > 0. Then

[ dz f(z) F(@z - 2-7K)

-
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¢
()" f(2-7K) [ dz (z - 2K F2iz ~ 9-7K)

n=0

[4
+ / dz [ Fz) =3 a7t (2T Kz - 2—’1()"]

n=0

- f(@z-2-K). (5.5.2)

Since [dz :::"f(:c) = 0for n < ¢, the first term i8 equal to
@ oK [t T (5.53)

Using the boundedness of the f(*), the second term can be bounded by

c / dy I’ 1F(2'y) + f dy (1 + 1Y) 1F@)|
fyl<é lwi>6

. 218 “
< 2¢C 277U+ dt t'{1 +¢t)~*
0

o ]
r20' C f dt (14041 +22t)=°
[
< Cy 277U 4 ¢y 279087 0(1 4 )1, (5.5.4)

where we replaced the upper integration bound by oo in the first term, and
where we used in the second term that (14 27¢)7! < f3& (1 +¢)7' <
277148 (14 ¢)~! for t > 6. Note that Cy, Cz only depend on C, a, and ¢;
they are independent of ¢, 6, and 3. Combining (5.5.2), (5.5.3), and (5.5.4)
leads to

l f dz 28 f(z)| < () [FOQTK)|™! [eCy 4 67(1 4 6)+! 2-9@~-1) ]

Here ¢ can be made arbitrarily small, and for the corresponding é we can
choose 3 sufficiently large to make the second term arbitrarily small as well.
It follows that [dz z'f(z) = 0. »

When applied to orthonormal wavelet bases, this theorem has the following corol-
laries:

COROLLARY 5.5.2. If the ¢,x(z) = 273/ 9(27 9z — k) constitute an or-
thonormal set in L2(R), with |[Y(z)] < C (1 + |z|)~™"!~¢, ¥ € C™(R) and y¥
bounded for £ < m, then [dz z¢ ¢(z) =0 for £=0,1,---,m.

Proof. Follows immediately from Theorem 5.5.1, with f = f =% =

- - . & WY



MULTIRESOLUTION ANALYSIS 155

.

REMARKS.

1. Other proofs can be found in Meyer (1990), Battle (1989). Both proofs

* work with the Fourier transform, unlike this one. Similar links between

zero moments and regularity also constituted part of the “folk wisdom®
among Calderén-Zygmund theorists, prior to wavelets.

2. Note that we have not used multiresolution analysis to prove Corollary 5.5.2
or Theorem 5.5.1, nor even that the 3, form a basis: orthonormality
is the only thing that matters. Battle’s proof (which inspired this one)
also uses only orthonormality; Meyer’s proof uses the full framework of
multiresolution analysis. o

COROLLARY 5.5.3. Suppose the 1, i are orthonormal. Then st s smpossible
. that ¢ has exponential decay and that ¥ € C®, unth all derwatives bounded,
:’* unless v = 0.

¥ Priof
32932 If € C* with bounded derivatives, then by Theorem 5.5.1, [ dz z'y(z) =
0for all £€ N; hence g 9| =0 forall £€N.

L
%
4t

2. If ¥ has exponential decay, then ¥ is analytic on some strip |Im £ | < A
Together with j{-, 'ﬁIE—O = ( for all £ € N, this implies ¢ =0. »

This is the trade-off announced at the end of the last section: we have to
* choose for exponential (or faster) decay in either time or frequency; we cannot
" <have both. In practice, decay in x is often preferred over decay in £.
A last consequence of Theorem 5.5.1 is the following factorization.
. COROLLARY 5.5.4. Assume that the v, constitute an orthonormal basis
’ of wavelets, associated with a multsresolution analysss as described n §5.1. If
b (@), [W(@)] < C (1+]2])"™2~¢ and y € C™ unth Y9 bounded for £ < m,

. them mq, as defined by (5.1.18), (5.1.14), factorzes as

m® = (25)™ zto, (555
tohere L 1s 2r-pervodic and € C™. ‘
'1. By Corollary 5.5.2, £ $| =0 for £ < m.

5; 2. On the other hand, V(€) = e%/? mg(€/2 + ) ¢(£/2). Since both ¥ and
¢ are in C™, and $(0) # O (see Remark 3 at the end of §5.3.2), this means
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that mg is m ti;rnes differentiable in £ = 7, and

%mo =0 forf<m.

e=x

3. This implies that mq has a zero of order m + 1 at £ = m, or

mo©) = (225)" ete).

Sincemg€C™, LeC™aswell. =

We will come back to the regularity of wavelet bases in Chapter 7.

5.6. Connection with subband filtering schemes.

Multiresolution analysis leads naturally to a hierarchical and fast scheme for the
computation of the wavelet coefficients of a given function. Suppose that we have
computed, or are given, the inner products of f with the ¢,  at some given, fine
scale.!? By rescaling our “units” (or rescaling f) we can assume that the label of
this fine scale is j = 0. It is then easy to compute the (f, ¥,x) for j > 1. First
of all, we have (see (5.1.34))

¢ = Zg,'¢~1,ﬂﬁ

n

where g, = (#’1 ¢—l,n> = (___l)n honir. Consequently,

Vinlz) = 2729279z -k)
= 2792 Zg,. 212 9(2-1 ¢ — 2k —n)

= Zgu ¢J-—l.2k+n(z)
= Y gn2k bj-1a(2) . (5.6.1)

it follows that
if, Y14} = Z Tose {f, Poum) s

i.e., the {f, ¥1,) are obtained by convolving the sequence ((f, do,x))nez With
{(¥_n)nez, and then retaining only the even samples. Similarly, we have

(fy ¥sa) = 2 Gz {fy G-1m) (5.6.2)

which can be used to compute the {f, ;) by means of the same operation’
(convolution with §, decimation by factor 2) from the (f, ¢, k), if these are
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known. But, by (5.1.15)

$ia(z) = 2792 (27iz - k)
= E hn_2k Pj-1,a(z) , (5.6.3)
;r whence
' (f, $ik) = Y Fnax {f) bj1m) - (5.6.4)
{i:{’ n
;% The procedure to follow is now clear: starting from the (f, ¢o,n), we compute
£ the (f, ¥ &) by (5.6.2), and the (f, 1,4 by (5.6.4). We can then apply (5.6.2),

b i (5.6.4) again to compute the (f, wzgg), (f, d22) from the (f, ¢1 ), etc....: at
every step we compute not only the wavelet coefficients (f, ¥,x} of the corre-
- sponding j-level, but also the (f, ¢; ) for the same j-level, which are useful for
*, the computation of the next level wavelet coefficients.

:ﬁ?‘ The whole process can also be viewed as the computation of successively
.3 * coarser approximations of f, together with the difference in “information” be-
tween every two successive levels. In this view we start out with a fine-scale
ippmxnmatxon to f, f* = Pyf (recall that P, is the orthogonal projection onto
I}’ we will denote the orthogonal projection onto W; by Q,), and we decompose

€V = VieW,into f© = f1 46, where ! = Pf° = Pf
is the next coarser approximation of f in the multiresolution analysis, and
' = 0~ f1 = Q,f° = Q.f is what is “lost” in the transition f° — f1. In
each of these V,, W, spaces we have the orthonormal bases (¢, k)rez, (¥;k)rez.
respectively, so that .

.fo = Z C?; ¢0,vn fl =\Z cqlz ¢l,n9 61 = Z 411-, 1/’1,:. -

n n n
< Formulas (5.6.2), (5.6.4) give the effect on the coefficients of the orthogonal basis
transformation (¢o,n)nez — (#1,n,¥1,n)ncz in Vo:

= Z Fnacn,  dio= ) gmea. (585

n

; . With the notation a = (an)nez, @ = (@ )nez and (Ab)i = Y. a2k-n by, we
" can rewrite this as _
d=HL, d&=G.
.. The coarser approximation f! € V; = V, & W, cii again be decomposed into
“ fl = f2 4+ 82, f2 € Vi, 6% € Wa, with
f2=z C?.¢2',, ﬁ”zda
n n

> We again have _
=0, &F£=C.

Schematically, all this can be represented as in Figure 5.8.

3 L DR g
&““&,(J%g%-“ s




1568 CHAPTER §

FiIG 58 Schematsc representation of (5.6.5).

In practice, we will stop after a finite number of levels, which means we have
rewritten the information in ({f, Pon)lncz = c® as d*,d%,d%,---,d’ and a final
coarse approximation ¢”, i.e., ({f, ¥jx)sez, ;=1, s 30d ({f, ¢sk))xez. Since
all we have done is a succession of orthogonal basis transformations, the inverse

operation is given by the adjoint matrices. Explicitly,
70 = e
L= }:q’,ttj,k + 3 d Yy
k k-

hence
cr’:_l = (.P“la ¢J—l,n)
= Y { $-1m) + Y d (ks bi-10)
k k .
= Z [hn-zk e + gn-2 d{,] (5.6.6)

k
(use (5.6.1), (5.6.3)) .

In electrical engineering terms (5.6.5) and (5.6.6) are the analysis and synthe-
sis steps of a subband filtering scheme with exact reconstruction. In a two-channel
subband filtering scheme, an incoming sequence (c2 ),z is convolved with two
different filters, one low-pass and one high-pass. The two resulting sequences
are then subsampled, i.e., only the even (or only the odd) entries are retained.
This is exactly what happens in (5.6.5). For readers unfamiliar with this “filter-
ing” terminology, let me explain briefly what it means. Any square summable
sequence (cn),cz can be interpreted as the sequence of sampled values y(n) of
8 bandlimited function v with support 4 C [—, x] (see Chapter 2),

or ’ l
y = ——= g .
. W = 7 n{-‘fz en € /

A filtering operation corresponds to the multiplication of 4 with a 27-periodic -
function, e.g.,

a§) = Y ane™™. (5.6.7)
nEZ
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*

The result is another bandlimited function, a * v,

A ——ln{
3e (a*'Y) \/i;r_ n}é_; Z Qpnom Cm ,

mel
or
o sin n(z —n)
i (a*7 = Z (Z an—-m cﬂ‘l) 1[(1"71) .
©°  The filter is low-pass if &f_, ,; is mostly concentrated on [=n/2, x/2], hsgh-
pass if al —n.xj is mostly concentrated on {¢; 1r/2 < €] € «}; see Figure 5 9.
The “1deal” low-pass and high-pass fillers are G.(¢§) = 1 if |€] < #n/2, 0 if

n/2 < |¢] < 7, and &y (€) = 0 if [€] < n/2, 1 if 7/2 < |¢] < =, respectively. The
corresponding a,, (as in (5.6.7)) are given by

i
ﬁgj ( % forn=10,
oy ok = 0 ' forn=2k k#0,
if?’“’ n -
*;EZ ——(—_—1—)-k——— forn=2k+1
5 [ (2k+ U)n '
:;%f ( i forn=0,
" 0 forn=2k k#£0,
a, = ¢
( 1)k+1 _ f
@ T forn=2k+1 .

¥ X ] 0 w2 x
F1c. 5.9. A low-pass filter (solsd line) and a high-pass filter (deshed line)

When the ideal low-pass filter is applied to -, the result is a bandlimited
function with support C [—#/2, 7/2]. Such a function is completely determined
by its sampled values in 2Z, and we have (see (2.1.2))

sin [r(z ~ 2n)/2)

(aL*9)(=) = ; (g O c"‘) x(z — 2n)/2
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A

Similarly, the result of applying the ideal high-pass filter to v is a frequency-

shifted version of a bandlimited function with support C [-#/2, 7/2]. Such a

function is again completely determined by its sampled values on 2Z,
(enrn@ =7 |

d& eu:{ ( a% _ cm) e-—-’hn{
g<icisn Er.: g o

> (g o o cm) “‘“,[(’;(i;,f,’};/ 2 (2cosfr(z - m)/2) - 1) .

Since the even-indexed entries of the convolutions of the ak, af with the c;
suffice to characterize a; * vy and ay * v completely, it makes sense to retain
only them after the convolution. This is the rationale behind the decimation by
a factor 2 in subband filtering, also called “downsampling.” Reconstructing the
original ¢, from the two filtered and decimated sequences,

=Y ofpcmem =) of_nem, (5.6.8)
m

i8 easy:
cm = (m) = (ar *7)(m)+ (ay *v)(m)

(since G + Gy = 1)

- 3y S/ (o et - 2072 - 1)

Distinguishing between even and odd m, we find
Com = c,ﬁ + cf,’,,
21t
Com4+1l = E 1(2‘+1) (m-l ) .

This can also be rewritten as
=2 Z (ag“z"c'[; + afl-—?ncf) . (5.69)

This last operation can be seen as the result of

o interleaving both the c% and c¥ with zeros (i.e., constructing new se-
quences with zero odd entries, and with even entrjes given by the con-
secutive cZ, c);

e convolving these interleaved (“upsampled”) sequences with the filters a¥,
a¥, respectively;

e adding the two resuilts.
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Schematically, (5.6.8) and (5.6.9) can bhe represented as in Figure 5.10.

The filter coefficients a%, all for the ideal low-pass and high-pass filters
ef, af decay much too slowly to be useful. In practice, one prefers t5 use
the scheme in Figure 5.10 with filters a®,a’,a% a! with much faster decaying
coeflicients. This can only be achieved if the corresponding 2n-periodic func-
tions a®,a!, 3%, ' are smoother than a’, a”. This means aliasing can occur:
|a®], |al] look like “rounded” versions of at, e*! (as in Figure 5.9), which means
their support is larger than [—# /2, /2] and {§; 7/2 < [£] < 7}, respectively.
Consequently, a® + 9, a! * v are not truly bandlimited with maximal frequency
x/2, and sampling them as if they were leads to aliasing, as explained in §2.1.
This has to be remedied in the reconstruction stage: a°, a! need to match a°
and a' to get rid again of the aliasing present after the decomposition. And even
this “matching” is only possible if a” and a! are already matched in some way.
To find the appropriate conditions on these filters, it is convenient to use the
“z-notation,” in which a sequence (an),cz i5 represented by the formal series
a(z) = Y,z an 2" If 2 = €7 is on the unit circle, then this is nothing but
a Fourier series; sometimes it is convenient to consider general z € C rather than
|z] = 1. The decomposition stage of the subband filtering scheme in Figure 5.10
can then be written as

2%

) =

[a®(2)e(z) + a%(~2)c(-2)] ,
[a'(2)c(z) + al(~z)c(-2)] .

Here a°(z)c(h) is the z-notation for the convolut:on of a® and ¢; i[b(z) + b(—2))
is equal to the formal sequente 3 b, 227, i.e., b(z) with all the odd entries

removed.
The reconstruction stage is

H2) = @) ) + M)A,

B 03]

[ T T, Spree

=.-
i
ot
1
{
»
Y

Fi1G. 5.10. Schemaiic representation of the decomposition and reconstruction stages
(separated by the vertical dashed line) i o subband filtering scheme. Every letter (a%,a!,..")
1n a boz represents convolution unth the corresponding sequence; 2 | stands for the downsam-
pling by 2 (retaining only the even entries), 2 | for upsampling by 2 (interleaving usth zervs).
In the “ideal” case, a° = ab, a! = a¥, &% = 2al, and 1 = 2aH; the final result is 1dentical
to the input, €= c.
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daa -
where ¢?(2?) is the z-notation for the upsampled version of ¢’ (zeros have been
interleaved: ¢?(z%) = ¥ - ¢ #?"). The total effect is

Y = ) R6R) + @ (2)] ofa)
. +3 [8°@)6%(-2) + @'(2)a'(-2)] e(~2). (5.6.10)

In this expression, the second term contains the aliaging effects: ¢(—z) corre-
sponds to a shifting of the Fourier series ) cn €7 by 7, exactly what you
would expect from aliasing due to sampling at half the Nyqumt rate. In order to
eliminate aliasing, we therefore need

- @%(2)a%-z) + @'(z)al(~2) = 0% (5.6.11)

The first subband coding schemes without aliasing date back to Esteban and
Galand (1977). In their work, as in most schemes that will be considered in
these notes, the sequences are real; they choose

al(z) = aO(_z)'
a%z) = a%_2), (5.6.12)
al(z) = ~a’(-2),

so that (5.6.11) is indeed satisfied, and (5.6.10) simplifies to
LEz) = L0 - a%-2) cla) -

If.a® is symmetric, ¢®, = a2, then o'(§) = ¥, ale™™ is the

“mirror” of a® with respect te the “half-band” value §€ = =/2, since
') = ¥, ad (-1)" e = oPn - £). Filters chosen as in (5.6.12)
are therefore called “quadrature mirror filters” (QMF). In practice, one likes
to work with FIR filters (FIR = finite impulse response; this means that only
finitely many a, are nonzero). Unfortunately, there exist no FIR a° so that
a®(z)? — a®(~z)? = 2, so that ¢ cannot be identical to c in this scheme. It is
nevertheless possible to find a® so that a%(z)? — a%(—z)? is close to 2, so that
the output of the scheme is indeed close to the input. There is by now an im-
mense literature on the design of various QMF; see the issues of IEEE Trans.
Acoust. Speech Signal Process. for the last 15 years. There also exist many
generalizations to splitting into more than 2 bands (GQMF>—generalized QMF).

In Mintzer (1985), Smith and Barnwell (1986), and Vetterli (1986) a scheme
different from (5.6.12) was proposed:

al(z) = 37'a%-2z7Y), )
Oz = &'z, (5.6.18)
"(1) = a'(z") =z2d%-2

It is easy to check that this satisfies again (5.6.11), and that (5.6.10) becomes
i(z) = } @)%Y + -] ela) .
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For z = e* and real af, the expression between square brackets becomes

T HIOE R + ja%(=e)j] = 1(la®() + Ja®(€+m)?). There now exist FIR

5’ choices of a® for which this is exactly 1, so that we have exact reconstruction in

) the subband filtering scheme. Smith and Barnwell (1986) named filters chosen as

3 in (5.6.13)'3 “conjugate quadrature filters” (CQF), but the term has not become
&  as generally popular as QMF.

o One last remark before we return to wavelets. The whole purpose of sub-

i“f“ band filtering is of course not to just decompose and reconstruct: a simple wire,

2 instead of the scheme in Figure 5.10, would be far cheaper and more efficient.

> ‘The goal of the game is to do some compression or processing between the de-

A composition and reconstruction stages. For many applications (image analysis,

for example), compression after subband filtering is more feasible than without

A filtering. Reconstruction after such compression schemes (quantization) is then

~  pot perfect any more,'* but it is hoped that with specially designed filters, the

distortion due to quantization can be kept small, although significant compres-

. gion ratios are attained. We will come back to this (albeit briefly) in the next,

chapter.

Back to orthonormal wavelet bases. Formulas (5.6.5), (5.6.6) have ezactly

the same structure as (5 6.8), (5 6.9), respectively. Going from one level in a

multiresolution analysis to the next coarser level and the corresponding level

of wavelets, and then doing the reverse operation, can therefore be represented

by a diagram similar to Figure 5.11. Here (R)p, = h_n, (§)n = G- (see

above). If we assume that the h, are real, and if we also take into account that

= (—1)"h_p41, then we can identify Figure 5.11 with Figure 5.10 with the

choices ,
a®(z) = h(z™), a%(z) = h(2),
a'(2) = g(z7) = —27th(-2) , a'(z) = g(z) = ~zh(-z71) .
p Up to a trivial sign change 1n a! and &}, this corresponds exactly with (5.6.13).

d This means-that every orthonormal wavelet bases associated with a multires-
#- " olution analysis gives rise to a pair of CQF filters, i.e., to a subband filtering
scheme with exact reconstruction. The reverse is not true: in an orthonormal
basis construction we necessarily have a®(1) = ¥, h, = 2'/2 (see Remark 5 at
the end of §5.3.2), but there exist CQF for which ab(1) is close to, but not equal
to, 21/2. Moreover, all the examples of orthonormal bases we have seen so far
correspond to infinitely supported ¢#, and hence to non-finite sequences h,,; for
applications, FIR filters are preferred. Is it possible to construct orthonormal
wavelet bases corresponding to finite filters? What does it mean for these filters
to correspond to, e.g., regular wavelets? How can wavelets be useful in filtering
contexts? All these are questions that will be addressed in the next chapter,

,.%%
&

. Notes.

A

f i. I choose here the same nesting order (the more negative the index, the
- larger the space)‘as in the ladder of Sobolev spaces. This is also the order
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7;-;-421-.—5:-—._27#.1#,

] 2f o) 21 9

Fic. 511 Subband filtering stheme for one decompostion + reconstruction step ih mul-
tiresolution analysts, -

k-
that follows naturally from the notation of non-orthogonal wavelets as ini-
tiated by A. Grossmann and J. Morlet. It is non-standard, however: Meyer
(1990) uses the reverse ordering, more in accordance with established prac-
tices in harmonic analysis. For applications in numerical analysis, Beylkin,
Coifman, and Rokhlin (1989) find the ordering presented here the most
practical.

2. We impose here no a priori regularity or decay on ¢, unlike, e.g., Meyer
(1990). -

3. Equation (5.1.33) characterizes all the possible 1#. This follows from
Lemma 8.1.1 in Chapter 8.

4. In case ¢ has compact support, and we would like ¥ to have the same
compact support, (5.1.35) is the only possible choice.

5. It is generally believed that there is no such “pathological” example with
continuous %. Another challenge for the reader!
When this book was in its last stages, I heard that Lemarié (1991) has
proved that if ¢ is compactly supported (continuous or not), then it is
automatically associated with a multiresolution analysis. This solves the
open problem for one very important special case.

8. Note that there exists ¢# € Vj so that the ¢3: 4 are an orthonormal basis
for Vo and ¢# € L!(R), unlike ¢. It suffices to take $#(€) = A(£) #(£),
where ) is 2n-periodic and M¢) = sign(£) - €4/2 for |£] < w. This ¢*”
is again a Schwartz function. The same Hilbert transform trick can be
applied to other multiresolution analyses, such as the Battle-Lemarié cése
or the constructions with compactly supported v in the next chapter. .

7. If we impose that é is continuous at E=0, then mo does determine $
- nniquely. -

-

8. The continuity of ¢, together with $(0) 3 0, implies that mg(0) = 1 and
that my is continuous in § = 0. It follows that m¥ is contincous in £ = 0.
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Since |m¥(€)]2 + {m¥(€ + 7)|? = 1, it follows that |m¥| is continuous

in £ = = Consequently, |%(€)] = [m¥(£/2) + 7)||#(¢/2)] is continuous
in £ = 0 since ¥ has to be admissible, this implies m# (w) = 0; hence
mo(x) =0 This provides another derivation for (5 3.20).

. Proof We prove that 3 con = 1= Y can41 &> 3, d(x — £) = const. # 0

if |¢(z)] < C(1 + |a])~'~¢ and ¢ is continuous

=> Define f(z) = }_,#(z — f). The conditions on ¢ ensure that f is well
defined and continuous We have

f(z) = Z Z Cn ¢(2x—2£'—n)=z Z Cm—3¢ (2T - m)
[4 n 4 m

- z (2‘: Cm:23) (22 — m) = Z #(2z ~m) = f(2z) .

m

Hence f 1s continuous, periodic with period 1, and

flz)=f2z) = - = f@"z) = --- .
It follows that f 18 constant. )
<= ¥, ¢z - ) = c implies d(2xn) = 8po(2x)~? c. But $(£) =
" mg(£/2) $(£/2); hence
0 = ¢(2n(2n+1)) = mo(n(2n+1)) $(7(2n+1)) = mo(7) $(r(2n+1)).

If mo(r) # 0, then ¢(m{2n + 1)) = 0 would follow for all n € Z,
in contradiction with ¥ |é(r + 27n)|*> > 0. Hence mgy(r) = 0, or
cn=1=3 cony1. ®

10. An easy way to compute the Fourier coefficients of 3, |(€ +2n8)|? is the

following:
1 - 2

e T+l = x [ deibor

2 Jy
& A ——————————
= 5 [ #s@F-n.

For B-spline ¢, these are easy to compute; see also Chui (1992) for an
explicit formula. :

11. Proof. f(y) = f(z) + [] dz f'(2)

= for 0 <y < 2m,

. 2  J v
2 fly+2nf) = dz f(z + anl) + / dr [ dz f{z + 2n¢)
0 0 z

-/:rdrz /:d: ' (z+ 2n¢)
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12.

13.

14.

CHAPTER 5

= |fy+2m0) < & [ dz \f(@) + 2V dz | f(2)]
= 3,1/ (y+2n8)| < (2m) ! fdx_lf(x)! + fdz |f'(z)]. .

If f is given in “sampled” form, i.e., if we only know the f(n), then the
inner products {f, ¢o,») can be computed.by a convolution (or filtering)
operation, under the assumption that f € Vp to start with (components of
f orthogonal to V; cannot be recovered). We have f = Y, (f, do.x) dox;
hence f(n) = T3, (f, do4) ¢(n — k). Consequently,

Y fn)e = (Z (f, dox) <) : (}: $(m) e'""f) .
n k m

i.e., the (f dox) are the Fouder coefficients of (Y, f(n) e™*™)
(Zm @(m) e"""‘)—l. It follows that (f, ¢ox) = Y, ax—n f(n), where

2% =1
am = (21)} /0 dg e (ZW) e"'f) .
. 4

For convenience, they chose a’(z) = 23V ~1a%(—z71), @%(2) = z*N a®(z71),
a!(z) = za%—z) rather than (5.6.13), with N € Z picked so that all
the a’, @’ are polynomials in z (no negative powers). One finds then
&(z) = 22N ¢(3), which corresponds to a pure delay in the reconstruction.

This is an argument used by fans of the Esteban-Galand-type QMF filters:
these fail to give exact reconstruction from the start, but their deviation
from exact reconstruction can be made small in comparison with distortions
introduced by quantization.
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CHAPTER 6

Orthonormal Bases of Compactly
Supported Wavelets

Except for the Haar basis, all the examples of orthonormal wavelet bases in the
previous chapter consisted of infinitely supported functions, as a result of the
orthogonalization trick (5.3.3). To construct orthonormal examples in which ¥
is compactly supported, it pays to start from my (or, equivalently, from the sub-
band filtering scheme—see §5 6) rather than from ¢ or the V,. In §6.1 we show
how to construct my so that (5.1.20) is satisfied as well as (5.5.5) for some N >0
(a necessary condition to have some regularity for ). Not every such my is asso-
ciated to an orthonormal wavelet basis, however, an issue addressed in §§6.2 and
6.3. The main results of these two sections are summarized in Theorem 6.3.6, at
the end of §6.3. Section 6.4 contains examples of compactly supported wavelets
generating orthonormal bases. The orthonormal wavelet bases thus obtained
cannot, in general, be written in a closed analytic form. Their graph can be
computed with arbitrarily high precigion, via an algorithm that I call the “cas-
cade algorithm,” which is in fact a2 “refinement scheme” as used in computer
aided design. All this is discussed in §6.5.

A lot of this material goes back to Daubechies (1988b); for many of the re-
sults, better, simpler, or more general proofs have been found since, and I have
given preference to these new ways of looking at things. These different ap-
proaches are borrowed mainly from Mallat (1989), Cohen (1990), Lawton (1990,
1991), Meyer (1990), and Cohen, Daubechies, and Feauveau (1992); for the link
with refinement equations the references are Cavaretta, Dahmen, and Micchelli
(1991) and Dyn and Levin (1990), as well as earlier papers by these authors (see
§6.5).

6.1. Construction of mg.

In this chapter we are mainly interested in constructing compactly supported
wavelets 1. The easiest way to ensure compact support for the wavelet ¥ is
to chooge the scaling function ¢ with compact support (in its orthogonalized
version). It then follows from the definitiof of the An,

b=V [ do#(a) 3BT,

167
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that only finitely many h, are nonzero, so that ¢ reduces to a finite linear
combination of compactly supported functions (see (5.1 34)), and therefore au-
tomatically has compact support itself. Choosing both ¢ and ¢ with- compact
support also has the advantage that the corresponding subband filtering scheme
(see §5.6) uses only FIR filters.

For compactly supported ¢ the 2r-periodic function mg,

1 -3
mﬂ(f)r“\/—i zﬂ:hﬂc nf,

becomes a trigonometric polynomial. As shown in Chapter 5 (see (5.1.20)),
orthonormality of the ¢y, implies

Imo(&)1* + Imo(€+m)* =1, (6.1.1)

where we have dropped the “almost everywhere” because my is nec&ssa.nly con-
tinuous, so that (6.1.1) has to hold for all £ if it holds a.e.

We are also interested in making-y and ¢ reasonably regular. By Corol-
lary 5.5.4, this means that mg should be of the form

1+e %\
mol®) = (M=) 6, (612
with ¥ > 1, and £ a trigonometric polynomial. Note that even without reg-
ularity constraint, we need (6.1.2) with N at least 1.! Putting (6.1.1), (6.1.2)
together, it follows that we are looking for

Ma(€) = Imo(€)P? ) (6.1.3)
a polynomial in cos £, satisfying o
Mo(§) + Mo(§+m)=1 - (6.1.4)
and N
M) = (o £) L0, 6.15)

where L(€) = |£(€)]? is also a polynomial in cos{. For our purpose it is conve-
nient to rewrite L(£) as a polynomial in sin? £/2 = (1 — cos £)/2,

N
Mo(€) = (cosz g) P (sm’ E) (6.1.6)
In terms of P, the constraint (6.1.4) becomes
-9 P)+y" PO -y) =1, (6.1.7)

which should hold for all y € [0, 1], hence for all y € R. To solve (6.1.7) for P
we use Bezout’s theorem.?
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‘ THEOREM 6.1.1. If py, p2 are two polynomials, of degree n,, nj, respec-
tively, with no common zeros, then there erist unique polynomials ¢, ¢z, of
degree ny — 1, n; — 1, respectively, so that

21(z) ai(z) + p2(z) @a(z) = 1. (6.1.8)

Proof.

1. We first prove existence; uniqueness follows later. We can assume that
n; > ny (by renumbering, if necessary). Since degree (p2) < degree(p;),
we can find polynomials a3(x), b:{(z), with degree(a;) = degree(p,) —
degree (p2), degree (b) < degree{pz), so that

P1(z) = a2(z) pa(z) + ba(z) .
2. Similarly, we can find a3(z), b3(r), with degree(az) = degree(pq)
—degree (b;), degree (b3) < degree (by), so that
pa(z) = aa(z) ba(z) + ba(x) -

We keep going with this procedure, with b,_, takmg the role of ps in this .
last equation, and b,, the role of bq,

bn-1(z) = an41(z) bu(T) + bntr(z) -

Since degree {b,,) is strictly decreasing, this has to stop at some point, which
is only possible if by 4, = 0 for some N, with by # 0,

by_1(z) = an4a(z) bn(2) .

3. Since
by_z2=anN by +bN,
it follows that by divides by_5 as well. By induction by divides all the

previous by, and p,, so that by divides both p; and p;. Since p; and pg
have no zeros in common, it follows that by is a constant different from

zero.
4. We have now
k.2
by = by_2—-anbn-1=bn_2-an(bn_s—an-1bn-3)
= {l4+anvoan-1)bn-2—anbn_3
etc. .

By induction . .
- by =anx bv-x +an4k by _k-1 ,

with én,; = —an, v, = 1, GNk41 = BNk — GNk BNk, BN R+1 = GNk-

It follows, again by induction, that degree{dn ) = degree(by-x—1) —
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degree (bn.1), degree(dnx) = degree(by—x) — degree(by_3). For
k=N —1, we find

by =dNN-1 P23+ aENN-1 D1, *

with degree(@y n-1) = degree(p)) — degree(by-1) < degree(p1),
degree (an n—1) = degree(p2) — degree (by_1) < degree(p2). (We have
used that degree (by_1) > 1; if degree (by_,) were 0, then by would be
zero.) It follows that ¢; = aNN 1/bN, g2 = an n—-1/bN. solve (6.1. 8) and
satisfy the desired degree constraints.

5. It remains to establish uniqueness. Suppose ¢y, g2 and §;, G are two
solution pairs to (6.1.8), both satisfying the degree restrictions. Then

) e —§)+p2(g2 - G2) =0

Since p;, pz have no zeros in common, this implies that every zero of p; is
a zero of ¢; — Gi, with at least the same multiplicity. If ¢, # §;, then this
means degree (¢ — §1) > degree (p2), which is impossible since degree {q,),
degree (§;) < degree (pg) Hence g; = §). It then follows immediately that

@2=G. =
REMARKS.

1. For later convenience (Chapter 8), we have stated Bezout’s theorem in
greater generality than needed in the present chapter. In fact, it holds un-
der even more general conditions: if p; and p2 have zeros in common, then
(6.1.8) can still be solved if its right-hand side is divisible by the greatest
common denominator (g.c.d.) of p;, p,. The proof is still the same, but
by is now the g.c.d. of py, p2 instead of a constant. The argument in the
proof is nothing but the construction of the g.c.d. by Euclid’s algorithm,;
it works in many other frameworks than the polynomials (in any graded
ring, in algebraic terminology).

2. It is clear from the construction of p;, pa, that if p, and p; have only ratio-
nal coefficients, then so will ¢; and g. This will be useful in Chapter 8. o

" Let us now apply this to the problem at hand, i.e., {6.1.7). By Theorem 6.1.1
there exist unique polynomials g, ¢, of degree < N — 1, so that
1-9)"aw) +vVe@) =1. (6.1.9)
Substituting 1 — y for ¢ in (6.1.9) leads to
1-»al-y+yal-y=1;

the uniqueness of g1, gz thus implies g2(y) = q1(1 — y). It follows that P(y) =
@1(y) is a solution of (6.1.7). In this case, we can find the explicit form of ¢,

A Y
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without even using Euclid's algorithm:
auly) = (1 - 1 -yVa(1-y))
= Z (V) wt oM,

~

where we have written out explicitly the first N terms of the Taylor expansion
for (1 — y)~N. Since degree(q;) < N — 1, ¢ is équal to its Taylor expansion
truncated after N terms, or-

‘fh(!l) z_% (N+: 1) >

This gives an explicit solution to (6.1.7). (Fortunately, it is positive for y € {0, 1],
s0 it is a good candidate for ILZ(E)I2 ) It is the unique lowest degree solution,
which we will denote by Py.3 There exist however many solutions of higher
degree. For any such higher degree solution, we have

(- [Py) - Pu()l +y¥P(1-%) — Pu(1-y)]=0.
This already implies that P — Py is divisible by y*,
P(y) - Pn(y) =y"P(y).

Moreover, ) )

i.e., P is antisymmetric with respect to 1. We can summarize all our findings as
follows.
PROPOSITION 6.1.2. A irigonometric pqunoms’al my of the form

—if N
mo(6)=(1+2e ) L) (6.1.10)

satisfies (6.1.1) if and only if L(£) = |L(€)|? can be written as

L(¢) = P(sin? £/2),

with r
Py)=Pv)+¥" R(}-9), (6.1.11)
w’lem N-1
LOEDS (N’,:”‘) s (6.1.12)
k=0

and R is an odd polynomial, chosen such that P(y) > 0 for y € [0, 1].
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This proposition completely characterizes [mg(¢)|2. For our purposes we need
however myg itself, not [mg|2. So how do we “extract the square root” from L?
Here a lemma by Riesz (see Polya and Szegd (1971)) comes to our help.

LEMMA 6.1.3. Let A be a positive trigonometric polynomial invariant under
the substitution {— — §; A is necessarily of the form

M
A§) =Y am cosmf, with am€R .

m=0
'y

Then there ezists a trigonometric polynomial B of order M, i.c.,

M
B(&)= Y bme™, with bneR,

m=0

such that |B(E)I* = A(€).
Proof. . - -

1. We can write A(£) = Pa(cos), where p4 is a polynomial of degree M with
real coefficients. This polynomial can be factored,

M
ra@=a ] (c-c),
1=1

where the zeros c; of p4 appear either in complex duplets ¢;, ¢;, or in real
singlets. We can also write

A(g) = "M Py,
where P, is a polynomial of degree 2M. For |z| = 1, we have

P _ M M z+4 z_l
A(Z) = z a H 2 - cJ
B Jj=1
M /1 1 j
— , i 2 S
= a H (5 —cjz+ 32 ) ; (6.1.13)
i=1
the two polynomials in the right- and left-hand sides of (6.1.13) therefore
agree on all of C.

2. If ¢; is real, then the zeros of § —c;2+ }2% are ¢; +,/c3 — 1. For || 2 1,

these are two real zeros (degenerate if c; = +1) of the form r;, ;. For
lcj} < 1, the two zeros are complex conjugate and of absolute value 1, i.e.,
they are of the form e*®/, e=%s. Since |c;| < 1, such zeros correspond to
“physical” zeros of A (i.e., to values of £ for which A(¢) = 0). In order
not to cause any contradiction with A > 0, these zeros must have even
multiplicity.
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% 3. If ¢c; is not real, then we consider it together with ¢z = &,. The poly-
%% nomial (3 — ¢jz + 32%) (3 — Gz + }2%) has four zeros, ¢, + /c ~ 1 and
%f. ¢ x 1/6? — 1. One easily checks that the four zeros are all different, and

form a quadruplet z;, z;‘l, Z,, ?j“.

4. We therefore have

N

k: J
PA() = 3am [H (z = 2,)(z = Z5)(z = 57}z - f;“i]

L i
) [H (z—ft)(z-'il)] )

0=1

: whpre we have regrouped the two different kinds of zeros.
5. For z = e~* on the unit circle, we have

) (e™ ~ z0)(e™™ — 257)] = |20f™" Je™* — 2/ .

gy

Consequently,
i A(¢) |A(£)] = |Pa(e™*)] .

I

3

1 J K J ) )
slanrl IT 12,172 TTimed=* | I (7% - zi)(e™* - %)

j=1 k=1 1=1
L 2
Il - "t)[

=1

2

il

K 2
. H(e—-ie _ eia. )(e-i€ _ e-—ian) .
k=1 .

= |BE)?,

j=1 k=1 =1

J K 1/2 J
B(§) = [gnauu [Tiz" IInur‘] - [I(e7% — 2¢ % Rez; + 12/%)

K L
JJ(e % - 2¢ % cosa; + 1) - [J (™ — o)
k=1 =1

is clearly a trigonometric polynomial of order M with real coefficients. =
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REMARKS.

1. This proof is constructive. It uses factorization of a polynomial of degree
M, however, which has to be done numerically and may lead to problems
if M is large and some zeros are close together. Note that in this proof we
need to factor a polynomial of degree only M, unlike some other procedures,
which factor directly P4, a polynomial of degree 2M.

2. This procedure of “extracting the square root” ig also called spectral foc-
tortzation in the engineering literatyre.

3 The polynomial B is not unique! For M odd, for instance, P4 may have
M =1 quadruplets of complex zeros, and 1 pair of real zeros. In each
quadruplet we can choose to retain either z,, Z; to make up B, or z; 1 Z; -1
in each duplet -we can choose either rq or r, ;1. This makes a.lready for
2(M+1)/2 different choices for B. Moreover, we can always multiply B with

e™, n arbitrary in Z. ©

v

Together, Proposition 6.1.2 and Lemma 6.1.3 tell us how to construct all the
possible trigonometric polynomials my satisfying (6.1.1) and (6.1.2). It is not
yet clear, however, whether any such g leads to an orthonormal wavelet basis.
In fact, some do not. This will be discussed in the next two sections. Readers who
would like to skip most of the technicalities can find the main results summed
up in Theorem 6.3.6 at the end of §6.3.

6.2. Correspondence with orthonormal wavelet bases.

We start by deriving a-formula for a candidate scaling function ¢. Once this is
done, we will check when this candidate defines indeed a bona fide multiresolution
analysis.

If a trigonometric polynomial m, is associated with a multiresolution analysis
as in §5.1, and if the corresponding scaling function ¢ is in L}(R), then we know
that for all £,

$(€) =mo(€/2) b(¢/2) . (6.2.1)

(See (5.1.17). Continuity of ¢ and mq allows us to drop the “a.e.”) Moreover,

we know from Remark 3 following Proposition 5.3.2 that necessarily $(0) # 0,
hence mo(0) = 1. Because of (6.1.1) this i in turn implies mo(x) = 0. It follows
that, for all k € Z, k # 0,

#(2kn) = 43(2 2'(2m + 1)7) (for some £ >0, m € Z)

II ma(241-3(2m + 1)x) | mo((2m + 1)x) ¢((2m+ 1)r)

=1

= mq(r) §((2m +1)x) =0
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& oy

Since Y, [A(€ 4+ 2728)2 = (27) ! (see (5.1.19)), this fixes the normalization of ¢:

g’% 16(0)] = (2m)~1/2, or | [ dz ¢(z)| = 1. It is convenient to choose the phase of ¢
;%“‘f so that [dz ¢(z) = 1 Taking all this into account, it follows from (6.2.1) that
]

4 $(€) = (2m)~"/2 H mo(274¢) . (6.2.2)

j=1

> This infinite product makes sense: since ), [hn|[n| < oo, and me(0) =
mo(€) = 2712 T h, e7*¢ satisfies

Imo(€)] < 14 |mo(€) =1/ S 14 V2 Y |ha||sin ng/2| < 1+ Cle| <

hence

T imo2 7€) < ex (fj Cl2"5l) < eClel

" 1 The infinite product in the right hand side of (6.2.2) therefore converges abso-
t¢ itely and uniformly on compact sets.*

All this applies generally whenever ¢ € L!, and the h, have sufficient decay.
In our present case, my is a trigonometric polynomial (only finitely many of the
Byitme different from zero), and we are looking for ¢ with compact support.
Togéther with the obvious constraint ¢ € L?, compact support for ¢ means
é € L', so that the above discussion applies. It follows that (6.2.2) is the
only possible candidate (up to a constant phase factor) for the scaling function
- corresponding to a trigonometric polynomial my constructed as in §6.1. We now
% need to check that ¢ satisfies some basic requirements for a scaling function.
First of all, ¢ is square integrable:
fa LEMMA 6.2.1. (Mallat (1989)) If mo is a 2w-periodic function salisfying
§0 (6.1.1), and of (2m)~ 12 T1;2, mo(277€) converges pomntwise a.e., then its limit

¢(£) 13 in L3(R), and [|¢flL: < 1.

¢

Proof.
1. Define fi(§) = (27)7}/2 [HL] mo(2'j5)] X[ (27%), where
X{-x(C) = 1if |(| < =, O otherwise. Then fy — ¢ pointwise a.e.

2. Moreover,

Ll k
[ & ()P = (2r)! f d¢ T imo2-%e)?
o

2h+l

é = (2r)~! f 3 H Imo(2-9€)]*  (by the 2n-periodicity of mo)

=1
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*x k-1
= (2m)~! [o dé [H |mo(2""£)lz] [Imo(27*€)? + Imo(27%¢ + m)?]
J=1 ,
2% k-1 )
=@ [ dg I imo(z2g)P (by (6.1.1))
0 1=1
= fe-al? .
3. It follows that, for all k,
Ifell? = N feal = - = Al =1.

Consequently, b;' Fatou’s lemma,
/ d¢ |$(6)]* < lim sup / (O <1. o

'

Second, since my is a trigonometric polynomial, the following lemma borrowed
from Deslauriers and Dubuc (1987) proves that ¢ has compact support.
LEMMA 6.2.2. If T(€) = Y02y n e, with 320 Ya = 1, then
H;’il I'{(272§) 1s an entire function of ezponential type. In particular, it is
the Fourser transform of a distribution with support in [Ny, Na).
Proof. By the Paley—Wiener theorem for distributions, it is sufficient to prove

that H°° [(272€) is an entire function of exponential type with bounds

Ci(1+ €)M exp (N1 |Im §|) forlm € >0,

»

[Ire~e

=1

IA

[Ire7e)| < Gl + €)™ exp (N; [Im§]) forlm{ <0,

j=1

for some Cy, Cz, My, M. We will only prove the first bound; the second is
entirely analogous. Define

Na=N,

' | B} (E) = ciN;f F(f) = Z In+Ny et

n=0

Then
II [(277¢) = e7*M¢ H r(27%) ,
=l

so we only need to prove a polynomial bound for ]"[‘,,»3l I‘;(2 i€) for Im £ 2 0.
For Im { > 0 we have

Na—N,

Q=1 € Y bl le™™ -1

n=0
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Na-N,
< 2 3 el min (1,0[))
n=0
< C min (1, [{]) .
Take { arbitrary, with Im £ > 0. If |¢} < 1, then
o0 o0
[[r@e < Jln+c27)
=1 =]
o : ]
< H exp (277C) < €. (6.2.3)
=1

If |€] > 1, then there exists 7o > 0 so that 2% < [£] < 2%+!, and

hnd Jot1 0o P
H (2778 < H (1+C) H r2” 2—3:;-15)
)=l 7=1 721

% < (1+C)yt €

< e (1+0C) exp[In(1+C) Inj¢|/In2

< (1+C) €€ fgfrtee/inz (6.2.4)

Combining (6.2.3) for |{| < 1 and (6.2.4) for |[£] > 1 establishes the desired
polynomial bound. ‘= ”

So far, so good. All this is not sufficient, however, to define a bona fide
scaling function. A counterexample is

-

3
mo(€§) = (1 +2€ ) (1- e % +e'2'5)
1+e 3 e ¥
= —5—=¢ cos-?z— .

This satisfies (6.1.1), as well as mg(0) = 1. Substituting it into (6.2.2) leads to®

3(€) = (2m)~2 g-siesa S0 K/2

3/2
or .
2 0<z<K3
_ 3 =T >,
9(=) { 0 otherwise.

This is not a “good” scaling function: the ¢o n(z) = ¢{z—n) are not orthonormal,
even though mg satisfies (6.1.1). Another way of looking at this is to see that
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(5.1.19) is not satisfied:

3 Ib(e-+ 200 = @n)7 |5+ oo €4 S eos2e]
14

Note that this means that 3, [¢(¢ + 2n€)|2 =0 for £ = 2, 80 that évefi (5.3.2)

is Hlot satisfied: the ¢y, are not even a Riesz basis for the space they span.®

. # order to avoid this kind of mishap, we have to impose extra conditions
on my to make sure that ¢ generates a true multiresolution analysis. These

ctnditions ensure that

) o 2 I8 2807 = (2m)! (6.2.5)
t -

for all £&. Once (6.2.5) is satisfied, everything else works: the spaces
V, = Span{¢,n; n € Z} constitute a multiresolution analysis (by §5.3.2); in
each V), the (#.n)nez constitute an orthonormal basis. We define ¢ by

‘ Yz} =v2 Y (-1)" A s ¢(2z - n); - (6.2.6)

this is automatically compactly supported because ¢ is and because only finitely
many h,, differ from zero. The (¥, ), kez constitute then an orthonormal basis
of compactly supported wavelets for L?(R).

Before we go into the conditions on my that ensure (6.2.5), it is interesting
to remark that even if (6.2.5) is not satisfied, the function ¢ defined by (6.2.6)
still generates a tight frame, as proved in Lawton (1990). -

PROPOSITION 6.2.3. Let mq be a trigonometric polynomial satisfying (6.1.1)
and mo(0) = 1, and let ¢, Y be the compactly supported L?-functions defined by
(6.2.2), (6.2.6). Define, as usual, ¥;x(z) = 277/2 (2-7z — k). Then, for all
f € L*R),

3 W e =112,

jk€ed
t.e., the (Yjx; J,k € Z) tonstitute a tight frame for L*(R).

Proof.
1. First remember that (6.1.1) can also be written as

Z hm hmyar = bk0 . (6.2.7

(see (5.1.39)).

2. Take f compactly supported and C. Then 3., |(f, ¢;.x)|* convérges for
all 5

-

2
S s el <2 3 | ] dz |£(@)] |92z k)l]
k x L ‘
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. < W fmppert(1)) 2 3 [ gearz—nr .
_ -
< i Vloupport () 3 /6_‘ L u-RP. 629

Choose K so that 2-7 support(f)N{2-? support(f)+k} is empty if k > K.
Then

dy lo(y - k)I?

ke /1;52 ] -uppor'(.f)

=2 2

,,,Ez 2=0 -/veﬁ —3 support(f)

55 [avtow-op
£=0

(because, for every ¢, the sets
(2-7support(f) + £ + mK),,cz do not overlap)

<K |l¢l?
Simularly, 3°, |(f, ¥,.x}|? converges for all )
. " Bocouse ¢ = T, had-tn, ¥ = Lp(=1)" Fonsg 6-1,0 we bave
23: () G0} + 1(F, Yol

3 [hueas Fonca + (-1)™™ Blaitiar Bomsrsan]
k mn

* (f’ ¢—1,n)(¢—l,mo f) . (6.2.9)

It 15 easy to check that the right-hand side of (6.2.9) is absolutely summable
(use that only finitely many h, ate nonzero), so that we may invert the
order of the summations.

dy |¢(y —mK - )

oy
&=
s

4. If n, m are even, n = 2r, m = 23, we have

Z [har-ax Rag-2k + B 2rs2k+1 h-2012841)
*

=Y har-as haeemn+ Y haazert har-arn
k ¢
(substitute k =8+ r — £)
= Y Barp Papp =80 =bum (by (62.7)).
»
Similarly, for n = 2r + 1, m = 28 + 1 both odd,

Z [Rar+1-2¢ Raas1-an + Baryae hogesan) = brs = bnm -
*
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5. If n = 2r is even and m = 23 +1 is odd, then

z [A2r-ak A2sa1-2k — R 2ry2ks1 B2siak)
k

= Y har-ar hoggiak — 9 Pagr1-2r har_at
“k T

(substitute k =s+r — ¢)

=063 m .

6. This establishes
Z [hn—-2k h:y.—zk + (=)™ R fiv2k homirdor] = Ompn
- i

for all m, n. Consequently,

S I S0+ 1S Yo =3 K boam)f?

k

By “telescoping,” we have

; .
Yo Y wRE = Y Kool - 3K el . (6210)
j=—J+1 kel k- k

7. The same estimates as in points 3 and 4 of the proof of Proposi-
tion 5.3.1 show that, for fixed continuous and compactly supported f,
Yul(f, #5x)? < e if J is large enough, with ¢ arbitrarily small (J de-
pending on f and ¢). Similarly, the estimate in point 3 of the proof of
Proposition 5.3.2 leads to

31, dsnt =2 / de 142IOP IFOP+R,  (6211)
—

with |R| < ¢ if J is sufficiently large. Since ¢ is continuous at £ = 0, and
#(0) = (21)~1/2, the first term in the right-hand side of (6.2.11) converges
to [d¢ |f(€)[? for J—oo (by dominated convergence: |(¢)] < (2r)~1/?
for all £, because |mg| < 1 by (6.1.1)). Combining all this with (6.2.10),

we have
3K i = NI

j.k€Z

for all compactly supported C™ functions f. Since these form a dense set in
L?, the result extends to all of L*(R) by the standard density argument. =

Without any extra conditions on mg, we therefore already have a tight frame
with frame constant 1. By Proposition 3.2.1, this frame is an orthonormal basis
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if and only if |[[]] = 1 (use that {4;ill = li¢ll for all j, k € Z), or equiva-
lently, if J dz 9(z) P(z —~ k) = by, for all k € Z.7 This in turn is equivalent to

Lo [9(€+2m)[2 = (2m)~1. Using [$(€)] = Imo(€/2+7)| |#(€/2)! (a consequence
of (6.2.6)), this can be rewritten as

Imo(£/2 + m)? a (£/2) + Imo(€/2)]? alg/2 + 1) = 1, (6.2.12)
with a(¢) = 21 3", [#(¢ + 2m€)[2. This is equivalent to |
Imo(Q)? la(C + ) — 1] + lmo(¢ + 7)) [a(¢) - 1] = 0. (6.2.13)

We have mo(¢) = 7- SN 2 8, Bn 7%, with by, # 0 # hy,, so that jme(¢)® isa
polynomial in cos¢ of degree N3 — Ni. On the other hand, a{¢) = 3°, ar e,

with ap = (20)) [d € [BOP = (20)7 [dz ¢(z) ¢z~ =

£ > Ny — Ny, since support ¢ C [Ny, Np). Consequently, a({) — 1 is a poly-
nomial in cos( of degree N, — N; — 1. However, by (6.2.13), a(() — 1 is zero
whenever |mo({)}? is (Imo(¢)|? and {mo(¢ + =)} have no zeros in common), so
that this polynomial has at least Ny — Nj zeros {counting multiplicity). Since it
is of degree N; — Ny — 1, it therefore has to vanish identically, i.e., a(¢) =1, or

X, 16(¢+2x8)]2 = (2r)~*. This is another way to derive that (6.2.5) is necessary
“~and sufficient for the ¥, x to constitute an orthonormal basis.

. In the non-orthonormal example we saw above, with n;o(ﬁ) = %(1 + e~ 3),
the recipe (6.2.6) for ¢ leads to

i» 0<z<},
bz)=¢ -3, §<=z<3,
0  otherwise ..

In this case y is indeed not normalized, [|¢]} = 3=2/2. If we defire ¥ = fly}| =4,
then the ¥; ; are normalized, and constitute a tight frame with frame constant
3: the “redundancy factor” of the framé is 3. This is not so surprising once
one realizes that the family (tﬁ,,k)”,ez can be considered as the union of three
shifted copies of a “stretched” Haar basis: -

) $ja = Ds ¢?‘" )
(G ax+1)(z) = (Da Hser) (z —~ 1/ 3) )
(Vj,3k+2) (@) ° (Ds ¥i=) (z - 2/3),

with (Dsf)(z) = 3/2 f(3x).
But let us return to the condition {6.2.5),

Y 1dE+ 2702 = (2m)F
[ 4

or its equivalent
j dz ¢(z) p(z —n)=6np . (6.2.14)
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Several strategies have been developed, corresponding to conditions on mg, to
ensure that (6.2.5) or (6.2.14) hold. Most of these strategies involve proving that
the truncated functions fy introduced in the proof of Lernma 6.2.1 (or some other
truncated family) converge to ¢ not only pointwise, but also in L%(R). Since it
is not hard to show that, for every fixed k, the {fi(- — n); n € Z} are orthonor-
mal, this L2-convergence then automatically implies (6.2.14). Conditions on mo
sufficient to ensure this L-convergence are, e.g.,

. i{lig:ﬁ jme(€)| >0 (Mallat (1989)) - ‘ (6.2.15)
or £ N

o omale) = (F5) o,
with

sup |L(€)| < 2¥~1/2 (Daubechies (1988b)) . (6.2.16)
£

Neither of these conditions is necessary, but both cover many interesting exam-
ples. Better bounds in || than (6.2.16) lead to regularity for ¢ and ¢; we will
come back to this in Chapter 7. Subsequently, necessary and sufficient conditions
on my were found. We discuss these at length in the next section.

6.3. Necessary and sufficient conditions for orthonormality.

Cohen (1990) identified a first necessary and sufficient condition on my ensuring

L3-convergence of the f;. Cohen’s condition involves the structure of the zero-set

of mo. Before starting his result, it is convenient to introduce a new ¢oncept.
DEFINITION. A compact set K is called congruent to {—, x] modulo 2x if

1. [K| = 2m;
2. For all € wm [—=, n), there exists L€ Z s0 that { + 2w € K.

Typically, such a compact set K congruent to [—=, 7] can be viewed as the
result of some “cut-and-paste-work” on [~=, x]. An example is given in Figure
6.1. We are now ready to state and prove Cohen's theorem.

THEOREM 6.3.1. (Cohen (1990)) Assume that my 18 a trigonometric poly-
nomial satisfying (6.1.1), with me(0) = 1, and define ¢ as in (6.2.2). Then the
following are egquivalent: )

1.

/ dz §(z) HE —7) = bup . (6.3.1)

" 2, There ezists a compact set K congruent to [—n, n} modulo 2% and contain-
ing a nesghborhood of 0 so that

inf inf |mo(27%¢)|>0. (6.3.2)

k>0 geK
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Fic. 61 K = [——%w,-—-‘i‘!w] U [~r,-§] u [—}, ?]U {-31’-'-,1] u [9{.‘3{,] 13 a compact
set congruent to |-, 7] modulo 2%; st can be wewed as the result of cutiing [~n/2, ~x /4] and

{57/8,3n /4] out of {—n, 7] and mownng the first piece to the rght by 2, the second to the left
by 4x. N

REMARK. The condition (6.3.2) may seem a bit technical, and hard to
verify in practice. Remember however that K is compact, and is therefore
bounded: K C |-R, R]. By the continuity of mg and mg(0) = 1, it follows
that |mg(27%¢)] > 1, umformly for all |¢] < R, if k is larger than some kq.
This means that (6.3 2) reduces to requiring that the ko functions mgo(£/2),
mo(£/4),- -, mo(2-*0£) have no zero on K, or equivalently, that mg has no zero
n K/2, K/4,.- 2% K This is already much more accessible! o

Proof of Theorem 6.3.1

1. We start by proving (1) = (2).

Assume that (6.3 1) holds, or equivalently, 3, |4(¢ + 2m8)|? = (2r)~%.
Then, for all £ € [, =], there exists & € N so that

3 1bE+ 20 > (am)

je1<¢t;

Since ¢ is continuous, the finite sum Lin<e, [¢(- + 2x8){? is continuous
as well. Therefore there exists, for every £ in [, 7], a neighborhood
{¢;1¢ — €] < Re} so that, for all ¢ in this neighborhood,

: Y 1$¢+2m0R > (8m)".

i<t

Since [—x, 7] is compact, there exists a finite subset of the collection of
intervals {¢;|¢ — ¢| < Re} which still covers [-n, x]. Take £ to be the
maximum of the ¢, associated to this finite covering. Then, for all ¢ €
[_”5 “]i
Y I8¢+ 2x)? > (8m)7 (6.3.3)
15t

2. ltfo!lgwsthat for every £ € [—=, 7], there exists £ between —£; and & so0
that |#(E+2me)| > [Bn(2lo+1)]~1/2 = C. Define now sets Sy, —~fp < £ < by
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by
So = {€ € [-m, x]; |$(€)] > C)

and, for € #£ 0,

t-1
S = {,E € [-m, 1r]\ ( U S U So) ; ]&(g +270)| > C} .

k=-¥&

’I:he S, =& < ¢ < & forn) a partition of [-m, x]. Since
|#(0)] = (27)~1/2 > C, and since ¢ is continuous, Sy contains a neigh-
borhood of 0. Now define

&
K= |J (5 +2xi).

{=-14p

Then K is clearly compact and congruent to [—x, ] medulo 27. By con-
struction, |¢(§)} > C on K, and K contains a neighborhood of 0.

Next we show that K satisfies (6.3.2). As pointed out in the remark before
the proof, we only need to check that infee g [mo(27%¢)] > O for a finite
number of k, 1 < k < kqg. For £ € K, we have that

ka

ERIE (HImo(T"E)I) |(27%¢)| (6.3.4)

k=1

is bounded below away from zero. Since |@| is also bounded, the first factor
in the right-hand side of (6.3.4) has therefore no zeros on the compact set
K. As a finite product of continuous functions it is itself continuous, so

that
ko

I Imo@*)2C1 >0 foréek.
k=1

Since |mg| < 1, we therefore have, for any k, 1 < k < ko,

ko
mo(27*)) 2 [T mo@ ™€) 2 Ci>0.
k=1

This proves that (6.3.2) is satisfied, and finishes the proof (1) = (2).

We now prove the converse, (2) = (1).

Define n(€) = (2)7/2 [[Tiey mo(277€)] - xxc(27%6), where xxc is the
indicator function of K, XK.(E) = 1if { € K, 0 otherwise. Since K contains
a neighborhood of 0, pux—¢ pointwise for k—o0.
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5. By assumption, |{no(2‘kf)| >C>0fork>1and £ € K. On the other
hand, we also have, for any £, imo(£) — me(0)] < C’|¢[; hence |my(£)] >
1—C"}¢]. Since K is bounded we can find ko so that 2-*C'[¢| < L Fe e K
and k > ko. Using1 -z > e7 % for 0 < z < 3, we find therefore, for
(e K,

e 0]

ko
161 = @M~ [Jimo27*e)l J] Imo(27*¢)I
k=1 k=ko+1

(@m)~2c* ] exp [-2C" 274ig]
k=kg+1

> (21r)—l/2 Cko exp [—0'2_k"+1 ?éa’%( ‘fl] =C">0.

Y

We can rephrase this as

» xx(€) S 1HEN/C” .
This implies

k
(€)= (@m)* T imo(2776)] xxc(27%€)

=1

%
< (€™t (2w 2 I Imo(27726)] 1B(27%€)]

=1

(C")~ (2m)~V2 |p(€)] - (6.3.5)

We can therefore apply the dominated convergence theorem and conclude
that ue—¢ in L2

6. The congruence of K with [—=, x] modulo 2r means that for any
2x-periodic function f, food€ f(€) = [T d¢ f(&) = [;"d¢ £(6). In

particular,
k-1
2 ~wmE _ -1 ) 2 ~wmn2%¢
[ & ey e = 2myt 2 fcex“‘ I imoor «

k1

2x
= (2)"12 [) d¢ e~ [H lmo(2‘C)I’} Ima($)I?
=1

x k-1
= (2r)~12* /o dg ein?¢ [II mu‘cn’] [Imo(Q)I? + Imo(¢ + mI7]

=1

. =
= ()2 [ g e T ima(20)F
=1
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2% k-2
=(@m)72t [ dg e [T Imo(2f)?

0 2=0

= /df k-1 (E)Pe¢

. Since

/ dg |y () e = (2m)1 2 ]0 T e = b,

this implies [ d€ |ux(€)]? e ™€ = 6, o for all k. Hence

[aerpior et = jim [ lm©r e

(because pk—-»qA& pointwise, together with
the dominance (6.3.5))
= 6”.0 ’

which is equivalent with (6.2.5) and therefore with (6.3.1). »

REMARK The “truncated” functions pu; are not the same as the fi in-
troduced in the proof of Lemma 6.2.1, but the following argument shows that
L2-convergence of the u, implies L?-convergence of the fi. First of all, K
contains a neighborhood of 0, K D [—a, a] for some a, 0 < a < 7. De
fine v, = (2r)~1/2 H;zl mo(277€) xl_a,a](Z"‘E). Since X(-a,a] < Xk, the
same dominated convergence argument as for the yu; applies, and ve—¢ in
L?. Consequently, |jux — mflL2—0 for k—oo. Using the congruence of K
to [, 7] modulo 2x, one shows that ||ux — willz2 = ||fi — wllrs. Hence
Wk = Bllzs < 1fe = alles + i — Blla—0 for k—voo. o

Note that if Mallat’s condition (6.2.15) is satisfied, then we can simply take
K = [-m, n]; Cohen’s condition is then trivially satisfied, and the JJo,n are
indeed orthonormal. The following corollary gives another example of how to
apply Cohen’s condition.

COROLLARY 6.3.2. {Cohen (1990)) Assume that my 1s a trigonometric poly-
nomial satisfyang (6.1.1), with mg{0) = 1, and define ¢ as is (6.2.2). If my has
no zeros in [~ /3, n/3}, then the ¢g n are orthonormal.

Proof. We need only to construct a satisfactory compact set K. Since mg
may have zeros in x/3 < |§] < %/2, K = [-n, 7] is no longer a good choice.
But we cap start with this choice as an ansatz, and “cut out” the zeros. More
precisely, assume. that the zeros of mg in 7/3 < £ < 7/2ar6 §f < --- S §f.
(They are necessarily finite in number, since my is a trigonometric polynomial.)
Similarly, we have £§; < --- <& for the zeros of mg in —7/2 < §{ < —x/3. For
every £ chooae I} to be the intersection with [—, #] of a smali open interval
around £, small enough so that $he I3 do 1;05 overlap with each other or with
[-7/3, n/3) and so that lmol,t < L (I f,‘ == 1r/2 iben IL will be of the
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A very different approach to the derivation of conditions on mg that ensure
(6.2.5) was initiated by Lawton (1990). Let us assume that myg is of the form

N
1

= — h e—"l‘E N 6. 7

mo(§) ﬁ; n (6.3.7)

ie, h, = 0forn < 0D or n > N; mp can always be brought into this forin
by multiplication by e*M¢  corresponding to a shift of ¢ by N,. Define a, =
fdz ¢(z) #(z —£). Since support(¢) C [0,N), a; = 0if {¢| > N, and we
can regroup the non-trivial ay, |£| < N into a (2N — 1)-dimensional vector

(a—-N+1,"'vaﬁ:"'aaN-l)- Because ¢(I) = \/2- En h’" ¢(2I - Tl), the ay
satisfy ’

N
a = 2 Z h,.ﬁ;/dqu(h—-n) #(2x — 20 — m)

nm=0

i

N
Z he hm At m-—n

n,B=0 N
N-1 N
- = Z (Z hn hk—2l+n) [s 779 (638)
k=~N+1 n=0
If follows that if we define the (2N — 1) x (2/V — 1) matrix A by
N
A=Y hnhi_zeen, -N+1<LE<N -1, (6.3.9)
n=0

where implicitly h,, =0if m <0 orm > N, then
Aa=a, (6.3.10)

i.e., ar is an eigenvector of A with eigenvalue 1. Note that 1 is always an eigenvalue
of A: if we define 3 by 3 = (0,---,0,1,0,---,0) (1 in the central position), or
B¢ = 64,0, then

(AB)e =" Aw 0= hn hn_ar=800= 0
k n

by (6.2.7), i.e., AB = B. If the eigenvalue 1 of A is nondegenerate, then a
necessarily has to be a multiple of g, i.e., [dr ¢(z) ¢(x — £) = 8¢ for some
4 € C. This implies T_, |$(¢ + 2mk)|? = (27)~1v; since |$(2xk)| = 0 for k £ 0
(see the start of §6.2) and $(0) = (2r)~/2 by definition, it follows that 7 = 1,
so that [ dz ¢(z) #(z — £) = 8,0. We have thus a very simple sufficient criterion
for orthonormality of the ¢o n-

THEOREM 6.3.4. (Lawton (1990)) Assume that my is a trigonometric poly-
nomial of the form (6.3.7), satisfying (6.1.1) and mo(0) = 1; define ¢ as =n
(6.2.2). If the eigenvalue 1 of the (2N — 1) x (2N — 1) matriz A defined by
(6.3.9) is nondegenerate, then the o are orthonormal.
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Orthonormality of the ¢, can only fail if the characteristic equation for
A has a multiple zero at 1. This indicates that among all the possible choices
for the h,, n = 0,---, N (keep N fixed), the “bad” choices (leading to non-
orthonormal ¢y ) constitute a very “thin” set. (This statement is made more
precise in Lawton (1990).) For N = 3, for instance, the only non-orthonormal
choice (up to an overall phase factor) is hg = h3 = 1/2, hy = hy = 0.

Lawton’s condition can be recast in terms of trigonometric polynomials. De-
fine, as before, Mo(£) = |mo(£)|?, and define the following operator Py, acting
on 2r-periodic functions f.

(Pof)&) = Mo(£/2) f(£/2) + Mo(§/2 + ) f(€/2+7) .

Clearly the constant polynomial 1 is invariant under Pp by (6.1.1). Writing .

everything out in terms of Fourier coefficients, we have

Mo(§) = Z(Zhn K.T.I) ek

k L4

Mo(£) f(&) = Y (Zhn mfc—k) e
k,n

¢

hence

[

(Pof)(&) =§: (Z hn B le-d:) Mt
kn

or

(Pﬂf)l = Z h, Fn—_k fu«‘b = Z (Zhn h»-u+m) fm .

[ X m

This is essentially the same expression as (6.3.8)! (We have not assumed that
fm =0 for |m| > N, however, so it is not quite the same.) It follows that Law-
ton’s condition is satisfied if we know that the only trigonometric polynomials
invariant under P, are the constants.

A priori it is not clear whether Lawton’s condition is sufficient or not: it is
conceivable that A has an eigenvector different from § with eigenvalue 1, but
that a nevertheless happens to be equal to 5. However, in the spring of 1990
both Cohen and Lawton proved, independently, that their two conditions are
equivalent (a generalization appears in Cohen, Daubechies, and Feauvean (1992)
as Theorem 4.3; see also Lawton (1991)), implying the sufficiency of Lawton's
condition.

THEOREM 6.3.5. Assume that mq is a trigonometric polynomial such that,

’(6.1.1) is satisfied and mo(0) = 1. If there exists a compact set K congruent .

to [~x, x] modulo 2, eontaining a neighborhood of 0, such that infyy; infeex
Tmo(27%€)} > 0, then the only trigonometric polynomials invariant under Po are
the constants. ’
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REMARK. This is sufficient to prove equivalence. If we denote Lawton’s orig-'
% inal condition by (L), Cohen’s condition by (C), Lawton's condition rephrased
. in terms of Py by (P) and the orthonormality of the ¢ », by (O), then we already
E know

(P) = (L) = (0) = (C).
The implication (C') = (P) suffices to prave equivalence of all four conditions. o

Proof of Theorem 6.3.5.

1. We will prove that the existence of a nonconstant trigonometric polynomial
f invariant for F, contradicts the existence of a compact set K with all
the desired properties. Suppose f is such a nonconstant trigonometric

‘ polynomial, invariant for Po. Define fi(€) = f(€) — ming f((), falé) =

~f(€) + max, f(¢). Since f is not constant, at least one of fi, f, has
f,(0) # 0. Pick j so that f,(0) # 0, and define fo = f,. Then f; is
nonnegative, fo(0) # 0, fo has at least one zero, and f; is invariant under
Py. )

2. Next we explore the zero set of fp, which turns out to have a very particular
structure. If fo(£) = 0 for 0 # £ € [0, 2x], then

0= fo(§) = (Pofo)(§) = Mo(£/2) fol€/2) + Mo(§/2 +7) fo(£/2+ 7).

Here My, fo are both nonnegative, and Mp(€/2), Mp(€/2+7) cannot vanish
simultaneously, by (6.1.1). Therefore, either f5(£/2) or fo(£/2 + n) = 0.
It follows that if we—pick one zero 0 # & € [0,2n{ of fo, then we can
asgociate to it a chain of zeros in {0,2n], &, -, &, -+, with the property
that £,41 equals either %1 or 521 + m, or, equivalently, {, = 7€,41, where
T is the transformation £ — 2 mod (2x), which maps [0, 27| into itself.
Being a trigonometric polynomial, fy has only finitely many zeros, so that
this chain cannot go on ad infinitum. Note that the chain has at least two
elements, since £; = §; would imply £, = 0. Let r be the first index for
which recurrence occurs, i.e., § = £ for some k < r. Then necessarily
k = 1, because & > 1 would lead to & = 75" '€ = 751, = £, _44) with
1<r—k+1<r, sothat r would not be the first index for recurrence.
It follows that we have a cycle of zeros, &y, -,&—1, With 7§41 = §, for
j=1,---,r -2, and 7€, = &.1. Note that 7"~1¢, = &, for every zero in
this cycle.

3. If this cycle of zeros does not exhaust the set of zeros different from 0,
then we can find 0 # (1 # &, j = 1,---,r — 1, for which fo(¢;) = 0.
This can again be taken as a seed for a chain of zeros, {;,{3,---,{s, - .
Every element of this new chain is necessarily different from all the §;,
sinca (¢ = €; would imply ¢4 = r#71( = 771, i.e., {; would equal some
£x. By the same argument as above, {; generates therefore a cycle of zeros
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for f, invariant under 7, and disjoint from the first cycle. We can keep
on constructing such cycles until exhaustion of the finite set of zeros of fo.
The zero set of f; therefore consists of a union of finite invariant cycles
for .

. Now note that if f3(€) = 0, then necessarily fo{€ + 1) # 0. Indeed, since

7€ = 7(€ + ), both £ and € + n would belong to the same cycle of zeros if
fo(€) = 0 = fo(& + ). If this cycle has length n, then it would follow that
E=1¢ =1""176 = 7" Y9 (¢ 4 1) = £ + =, which is impossible.

. Finally, we remark that if fo(£) = 0, then ‘Mo(E + m) = 0. Indeed, for any

£ so that fo(§) =0, 7€ is also a zero for fg, and it follows that

0= fo(r€) = (Pof)(7€) = Mo(€) £(€) + Mal€ + 1) F(E+1) .

Since fo(€) = 0 and fo(€ + 7) # 0, this implies Mp(§ + n) = 0; hence
mo(§ + =) = 0. Therefore, the existence of fp implies the existence of a
cyclic set &, -+ ,&, for 7, with §, = 7§41, j=1,--- ,n =1, & = 7€,, so
that mg(€, + r) = 0 for all 5. Since fo(0) # 0, we have &, # 0.

. We now show how these zeros §; + m for mg are incompatible with the

existence of K. Since 7§,4, = §;, 7§, = £, and, in particular, §; =
T"€,, we have §, = 2rx,, where the z, € [0, 1] have the following binary
Tepresentations:

!
21 = didsdndy - -dndy - dp - (d, =0 or 1)
Ty = dy---dudy---dndy - -dy - -
In = -dndl"'dndl"’dn"'

Since £ # 0, not all the d; are zero. Let us, for this point only, define
d=1-dford=0or 1. Then§; + 7 = 2my, modulo 2w, with y, given by

h = .Elgzda"'d,.dl'--dndl---d,,n-
Yo = dody - dpdy - -dndy - dp -

dpdy - -dpdy -+ dy - -

We have mg(27y;) = 0, j = 1,---,n. Suppose a compact set K existed
with all the desired properties. Then there would be an integer £, with a
binary expansion with at most a certain preassigned number L of digits (L
depends only on the size of K), so that 2ry = 2x(2y; + {) has the property
that mo(2n2-%y) # 0 for all k > 0. We have

y=er---exe dodg---dndy-- - dndy---dp--- ,

withe; =1or0for j=1,---,L. We can also rewrite this as

i

Un

Y = €Lpn""*C€L}1EL "~ €3€} ~d2d3"'dndl"'dndl"'dn"' .

[
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where e, = lorOfor j =1,---,Lande, = 0if ) > L. The 27y are
obtained by shifting the decimal point to the left. Since my is 2n-periodic,
only the “tail,” i.e., the part of the expansion of 2%y to the right of the
decimal point, decides whether mg(2x2~*y) vanishes or not. If e; = dj,
then y/2 would have the same decimal part as y;, hence my(27y/2) = 0
would follow. Since mo{27y/2) # 0, we therefore have ¢; = d;. Similarly,
we conclude e; = d,, e3 = d,-1, etc. It follows that ep 4, -+, eL4n
are also successively equal to dy,dx-y,---,dy,dn, - ,dryy for some k €
{1,2,---,n}. Since the d, are not all equal to 0, whereas e 4, = -+ =
eL+n = 0, this is a contradiction:” This finishes the proof. =

With Theorem 6.3.5 we end our discussion of neeessary and sufficient con-
ditions on mg. The following theorem summarizes the main results of §§6.2
and 6.3.
THEOREM 6.3.6. Suppose mg s a lrngonometric polynomial such that
Imo(E)? + Imo(€ + m)|* = 1 and mp(0) = 1. Define ¢, ¥ by *

%
:
f

R

$(€) = (2m) 2 ] mo(27%¢),

1=1
Y(E) = —e 2 m(E/2+7) B(E/2) .
Then ¢, ¥ are compactly supported L?-functions, satisfinng

pz) = V2 Zh,. $(2x —n),

W) = V2Y (-1 hopyy #(22-1),

where h, 15 determined by mg via mg(€) = :}52”;12_ e ", Moreaver, the

¥,x(z) = 2792 p(279z — k), j,k € Z constitute a tight frame for L*(R) with
frame constant 1. This tight frame 1s an orthonormal basis if and only if my
satisfies one of the following equivalent conditions:

e

W

o There ezists a compact set K, congruent to [—m, 1] modulo 27, containing
a neighborhood of 0, so that '

. . —k
inf inf Jmo(277¢) > 0.

e

ATy TR T I
.

o There erists no nontrivial cycle {&,,---£,} in [0,2x[, tnvariant under 7:
£ v 2¢ modulo 27, such that mg(§; +7) =0 forallj=1,---n.
e The eigenvalue 1 of the [2(N3 ~ Ny) - 1} x [2(N3 — N;) - 1]-dimensional
mairiz A defined by
Ny
A=Y hoBlzesn, ~(N2—N))+1<LE< (Ny - M)+ 1
n=N,

(where we assume h, =0 for n < N1, n > Nj) is nondegenerate.

PP
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From the point of view of subband filtering, this theorem tells us that, pro-
vided the high-pass filter has a null at DC (mg(7) = 0, hence mo(0) = 1 with the
appropriate phase choice), we “almost always” have a corresponding orthonor-
mal wavelet basis. The correspondence only fails “accidentally,” as is illustrated
by the last two equivalent necessary and sufficient conditions. In practice, one
likes to work with filter pairs in which the low-pass filter has no zeros in the
band |€| € n/2, which is sufficient to ensure that the ¥, are an orthonormal
basis. But it is time to look at some examples! )

6.4. Examples of compactly supported wavelets generating an
orthonormal basis.

All the examples we give in this section are obtained by spectral factorization of
(6.1.11), with different choices of N and R. Except for the Haar basis, we have
no closed-form formula for ¢(z), ¥(z); we will explain in the next section how
the plots for_¢,.y are obtained. o TS
~ A first family of examples, constructed in Daubechies (1988b), corresponds
to R = 0in (6.1 11). In the spectral factorization needed to extract £(¢) from
L(¢) = Pn(sin® £/2), we retain systematically the zeros within the unit circle.
For each N, the corresponding nmg has 2N non-vanishing coefficients; we can
choose the phase of ymyg 50 that

2N-1

Nmo(€) = :}—i Z Nhn et

n=0

Table 6.1 lists the yh, for N = 2 through 10. For faster implementation,

it makes sense to keep the factorization (6.1.10) explicit: the filter £ is much

shorter than mg (N taps instead of 2N), and the filters —‘-ﬂz:-‘i are very easy to

implement. Table 6.2 lists the coefficients of £(£), for N = 2 to 10. Figure 6.3

shows the plots of the corresponding n¢, vy for N = 2,3,5,7, and 9. Both

~n¢ and Nt have support width 2N — 1; their regularity clearly increases with
N. In fact, one can prove (see Chapter 7) that for large N no, ny¢ € CHV,

with u >~ .2,

Retaining systematically the zeros within the unit circle in the spectral fac-
torization procedure amounts to choosing the “minimum phase filter” my among
all the possibilities once |mp]? is fixed. This corresponds to a very marked asym-
metry in ¢ and v, as illustrated by Figure 6.3. Other choices may lead to
less asymmetric ¢, ¥, although, as we will see in detail in Chapter 8, complete
symmetry for ¢, ¥ can not be achieved (except by the Haar basis) within the
framework of compactly supported orthonormal wavelet bases. Table 6.3 lists
the h,, for the “least asymmetric” ¢, ¥, for N = 3 through 9, corresponding to
the same |mg|? as in Table 6.1, with a different “square root” my. We will come
back in Chapter 8 on how this “least asymmetric square root” is determined.
Figure 6.4 shows the corresponding ¢ and ¢ functions.

Figure 6.5 shows plots of |mg| as functions of £, for the above examples,
for N = 2, 6, and 10. These plots show that the subband filters for these
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TaBLE 6 1

The filter coefficsents yhn (low-pass filter) for the compactly supporied wavelets unth extremal

phase and highest number of vanishing moments compatible with thesr support undth. The

Nhn ore normahzed so that } . nhn = V2
F 2

n Nhe n Nhn

N=2] 0 4820629131445341 Nes [] 0544158422431072
] 836516303737807T7 1 3128715908143166

2 2241438680420134 2 6756307362973195

3 | - 1294095225512603 3 5853546836542159

i N=3] o 3326705529500625 4 | — 0158291052563823
1 8068915003110924 § | ~ 2840155420615824

2 4598775021 184814 6 0004724845739124

3 | - 1350110200102546 7 1287474266204893

4| — 0854412738820267 & | - .01736930100180%0

5 0352262918857005 9 | ~ DB440882539307971

N=4] 0 23037781330688964 10| .01398810279174001
H T148465705520154 1n 0087460940474065

b] 6308807679398587 12 | - .0048703529934520

3 | - 0279837694168595 13 | ~ 0003917403733770

41 ~ 1870348117190931 14 0006754494064506

s 0308413818355607 15 | - 0001174767841248
6| 0328830116668852| [N =9 | O] 0380779473638778 |

7 | ~ 010597401 7850690 1 2438346746125858

N=s| 0 1601023978741929 2 6048211236900955
1 60382926979T1895 3 6572880780512736

2 7243085284377726 4 1331973858249883

3 1384281459013203 s | — 2932737832791663

4| - 2422948870663823 6 | — 0968407832229492

5 | — 0322448695846381 7 1485407493381 256

[ 0775714938400459 8 830725681 4793385

7 | - 0062414902127983 9 | ~ D676328290613279

8 | — 0125807519990820 10 0002509471 148340

9 D033357252854738 11 0223616621236798

N=6| 0 1115407433501005 12 | — 0047232047577518
1 4946238903984533 13 | ~ 0042815036824635

2 7511338080210959 4 0018476468830563

3 3152503517091962 15 0002303857635232

4 | ~ 1262646939654400 16 | ~ 0002510631880477

5| -~ 1297668075672625 17| 0000393473203183

L 0975016065873225 | | N=16] O 0266700579005473

: 7 0275228655303053 ] 1881 768000776347
8 | - 03158203931748562 ] $272011889315757

8 0005538422011614 3 ©884590394534363

10 0047772575109455 4 2811723436605715

11 | - 0010773010853085 5 | — 2498464243271598

N=7] G 07785205403850037 6 | ~ 1959462743772862
1 3965393194818912 7 1273683403357541

2 7291320908461957 8 0930573646035547

3| .4697822874051889 9 | — .D713941471663501

4 | - 1439060039285212 10 | ~ 0284575368218390

5| - 2240361849938412 11 D332126740583612

6 0713092192668272 12 0036065535660870

7 0806126091 510774 13 | — 0107331 754833007

8 | - 0380299369350104 " 0013953517470688

8 | ~ 0185745416306655 15 0019924052951925

v 10 0125500985560086 16 | ~ OO0B858566948564
) §1 0004205779729214 17 | ~ 0001164668551285

12 | - 0018016407040473 8 DO00IISBBE 703202

13| .000353T137009745 19 | — 00U0132642028945

195
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The coefficients £, of VE L(¢) = 2“ the '™, for N = 2 to 10. Normalization: En 1, = V2

CHAPTER 6

TABLE 6.2

1.93185165258
— 0.517638090205

2.6613644236
- 1.52896119631
0.281810335086

3.68604501294
—3.30663492292

1.20436190091
—0.169558428561

N=9

19.4959090503
~ 50.6198280511
63.3951659783
— 49.3875482281
25.8600363319
—~9.24491588775
2.18556614566
-0 310317604756
0.0201458280019

5.12327673517
— 6.39384704236

3.41434077007
—0.936300109646

0.106743209135

7.13860757441
—~11.1757164609

8.04775526289
—~3.24691364198

0.719428097459
— 0.0689472694597

N

10

27.3101392901
— 80.408349622
— 114.98124563
—103.671381722
64.3509475067
— 128.2911921431
8.74937688138
— 1.82464995075
0.231660236047
—0.013582543764

|

9.96506292288

— 18.9984075665
17.0514392132

~ 9.03858510919
2.93696631047

- 0.547537574895
0.0452753663967

N=3
N=4¢
N=5
N=6¢6
N=71
N=28

13.9304556142
~ 31.3485176398
33.6968524121
— 22.07104076339
-38930245651
—2.56627196249
0.413507501939
—0.0300740567359
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F1G. 6.3. Plots of the scaling functions x¢ and wavelets ¢ for the compactily supported
wavelets with maximum number of vanishing moments for their support width, and with the

extremal phase choice, for N = 2,3,5,7, and 9.
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TABLE 6.3

The low-pass filter coefficients for the “least asymmetric® compactly supporied wavelels with
maxwnum number of vanishing moments, for N = 4 to 10. Listed here are the ey =
VZhnnionehas Y, enn=2. -

n CN.n n EN.n -
N=4 0 | -~0.107148901418 { N =8 4 0.06949046591 1
1 | ~0.041910965125 8 | ~0.038483521263 {
2 0.703739068656 ¢ | —0.073482508761
3 1.136658243408 7 0.515398670374
1 0.421234534204 8 1.099106630537
s | ~0.140317624179 9 0.680745347199
6 | - 0.017824701442 10 | ~0.086653615408
7 [° 0.045570345806 11 | - 08.202643655288
12 0.010758611751
N=s| 0 0.038654795955 13 0.044823623042
i 0.041746864422 14 | —0.000766690896 ,
. 2 | - 0.055344186117 15 | —0.004783458512
3 0.281990696854 -
4 1.023052966894 | N = 9 0.001 512487309
5 0.896581648380 - 0.0006691 41509
6 0.023478923136 - 0.014515578553
T | - 0247951362613 0.012528806242
8 | - 0.028842499869 0.087791251554
9 0.027632152958 - 0 025786445830
- 0.270893783503
0 0.021784700327 0.049882830939
1 0004936612372 0.8730484U7349
2 | - 0.166863215412 1.015259790832
3 | - 0.068323121587 0.337658923602
4 0.694457972958 -0.077T172161097
s 1.113892783926 0.000825140929
[ 0 477904371333 0.0427444336072
7 | ~0.102724969862 ~ 0 016303351226
8 | -0.029783751209 - 0 018769396836
9 0.063250562660 0.000876502539
10 0.002499522093 0 001981183736
11 | - 0.011031867509
N=10| o 0.0010891 70447
=7} 0 0.003792658534 1 0.000135245020
) | -0.001481225915 2 | - 0012220642630
2 | - 0.017870431651 . 3| -0.002072363923
3 0.043155452582 4 | +0.C64950924579
4 0.09601 4767938 5 0.016418868426
s | -0.070078291222 | . 6 | -0.225558972234
[} 0.024665659489 T | - 0.100240215031
b4 0.738162601564 8 0.667071338154
8 1.085782709814 8 1.088251530500
9 0.408183039725 10 0.542813011213
10 | - 0.198056706807 11 | ~ 0050256540092
11 | - 0.152463871856 12 | ~-0.045240772218
12 0.005671342688 13 0.070703567550
13 0.014821394762 14 0.008152816790
15 | - 0.028786231926
N=8]| 0 0.002672743303 16 | - 0.001137535314
1 | = 0.000428394300 17 0.006495726375
- 2 | —0.021145686528 18 0.600080661204
3 0.0053840%784 19 | = 0000649580896 _

’ , I
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F1G. 6.4. Plots of the scaling function ¢ and the wavelet ' for the “least asymmetric”
compactly supported wavelets with mazrimum number of vanishing moments, for N = 4,6,8,

and 10.
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Fic 6.8 Plot of |mg(£)| for the 8-tap filter corresponding to N = 2 and mo(7x/9) =0
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" orthonormal bases are indeed very flat at 0 and x, but very “round” in the
transition region, near x/2. The filters can be made “steeper” in this transition
region by a judicious choice of R in (6.1.1). Figure 6.6 shows the plot of |mo}
corresponding to N = 2 and R of degree 3 chosen such that |mg(£)]? has a zero

" at £ = 7w /9 (= 140°). This is much closer to a “realistic” subband coding filter.
The corresponding “least asymmetric” function ¢ is shown in Figure 6.7; it is
less smooth than ¢ (which has the same support width, but corresponds to
N = 4 and R = 0), but turns out to be smoother than 2¢ (for which mg has a
zero of the same multiplicity, i.e., 2, at £ = 7). In Chapter 7 we will come back
in greater detail to these regularity and flatness issues. The h,, corresponding to
Figure 6.7 are listed in Table 6.4..

P
Ry $ ot

15 T T T

0.5 ~ .
2 4 6
2 L
v
1
kg
t 0
-1 N M .
-2 0 2 4

b
¥
I3
3
1
}'r-

FiG. 6.7. The “least asymmelric” scaling function ¢ and wavelet ¢ corresponding to fmg;
as plotted in Figure 6.6.

~

All these examples correspond to real h,, ¢ and ¢, i.e., to |¢| and || symmet-
. ric around £ = 0. It is also possible to construct (complex) examples with |}, ||
. toncentrated much more on £ > 0 than on § < 0. Take for instance the my of the
_ previous example, which satisfies {no(t—’ol) =], and define m# (&) =mp(€ - '%' .
This m¥ obviously satisfies (6.1.1), since mo does, and m¥(0) = 1. We can there-

fore'construct * (&) = | | m (273¢), P#(€) = e~ %/2 m¥ (£/2 + 7) $*(£/2);

VM
T M IR 3

-

e

£ PV L
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TaBLE 6.4
The coefficrents for the low-pass filter corresponding to the scaling function in Figure 6.7,

.hn
-0.0802861503271
—0.0243085969067

0.362806341592
0.550576616156
0.229036357075
—0.0644368523121
~0.0115565483406
0.0381688330633

=3

N OO AW N = O

these are compactly supported L?-functions, and the z/;f o J»k € Z constitute
a tight frame for L?(R), by Proposition 6.2.3. Morcover, since the only zeros
of myg on [~m,n) are in € = j:7" +m, it follows that m] #(€) = 0 only for
£=xm, -% or —-— Conscquently, I ()] > C > 0 for |€] < Z, and the ¢#
coustitute an orthonurmal wavelet basis, by Corollary 6.3.2. Figure 6.8 plots
|m0 (©)1, 6% (€)] and [$#(£)[; it is clear that I de [# (€)]? is much larger than
f ® de {w#(€)]2. Note that the negative frequency. part of ¥# is much closer to
the origin than th( pmmve frcqm,my part, as required by the necessary condition

[ de Jel [u* @) = f_ de 1] "19# (€))° (see §3.4). The existence of such

“asymmetric” d; was first pointed out in Cohen (1990), in fact, for any ¢ > 0 one

can find an orthonormal wavelet basis such that fi’m d€ (62 < e.

6.5. The cascade algorithm: The link with subdivision or refinement
schemes.

It can already be suspected froin the figures in §6.4 that there is no closed-
form analytic formula for the compactly supported ¢(z), ¥{z) constructed here
(except for the Haar case). Nevertheless, we can, if ¢ is continuous, compute
@(x) with arbitrarily high precision for any given z; we also haye a fast algorithm
to compute the plot of ¢.® Let us see how this works.

First of all, since ¢ has compact support, and ¢ € L' (R) with [ dz ¢(z
we have

PROPOSITION 6.5.1. If f is a continuous function on R, then, for allz € R,

Jim T/nyz+w¢ﬂw) (6.5.1)

If f is uniformly continuous, then this pointwise convergence is uniform as
well. If f is Hélder continuous with exponent o,

|f(z) - f()| < Clz —y|*,
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then the convergence 1s exponentially fast mn 3
1@ -2 [y 1o +3) T < 27 (652)

§ Proof. All the assertions follow from the fact that 27¢(2? ) 1s an “approximate
é-function” as 3 tends to oo More precisely,

f@)-2 [ay sz+ 8‘@%7)]

- 12J / dy 1f(z) - flz + )] $(@)

f

| [é 5@ - s+ 2221 96
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Sllgles - sup  {f(z) - f(=z + v)]
luj<2-iR -
(where we suppose support ¢ C [~R, R]) .

If f is continuous, then this can be made arbitrarily small by choosing j suf-
ficiently large. If f i uniformly continuous, then the choice of j can be made
independently of z, and the convergence is uniform. If f is Holder continuous,
then (6.5.2) follows immediately as well. =

Assume now that ¢ itself is continuous, or even Holder contiffuous with exponent
a. (We will see many techniques to compute the Holder extponent of ¢ in the next
chapter.) Take z to be any dyadic rational, z = 2=/ K. Then Proposition 6.5.1
tells us that

#@) = lm? [ay 82K +1) 5@)

= lim 2"/2/dz W(z) b—j,21-7(2)

00

- Jlilgo P, b_j2-1x) -
Moreover, for j larger than some jg,
I6EYK) — 27 ($.¢_2-1x) S C27° (6.5.3)

where C, jo are dependent on J or K. If 27~J K is integer, which is-automatically

true if j > J, then the inner products (¢, ¢_; 5,- k) are easy to compute. Under

the assumption that the @y, are orthonormal (which can be checked with any

of the necessary and sufficient conditions on my listed in Theorem 6.3.5), ¢ is
. the unique function f characterized by

(fv ¢9,n) = 60,11 ’ (6.5.4)
(f, ¥—jn) 0 for >0, k€Z. (6.5.5)

We can use this as input for the reconstmétion algorithm of the subband filter-

ing assoviated with mg (see §5.6). More specifically, we start with a low pass
sequence c3 = §p,n and a highpass sequence d2 = 0, and we “crank the machine”

to obtain
Cn 1 Z An—ak Cg . (6.5.6)
k

t

We then use d;;! = 0, to obtain, after another cranking,

=Y hmoan ', (65.7)

’
etc. At every stage, the c;7 are equal to (¢, ¢—-;n). Together with (6.5.3),
this means that we. have an algorithm with exponentially fast convergence to
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compute the values of ¢ at dyadic rationals. We can interpolate these val-
ues and thus obtain a sequence of functions n; spproximating ¢.? We can, for
instance, define qf(a:) to be the function, piecewise constant on the intervals

[277(n—1/2), 275 (n+1/2)[, n € Z, such that nJ(2~7k) = 29/% (¢, ¢_;4). An-
other possible choice is 5} (z), piecewise linear on the [2-7n,27(n + 1)],n € Z,
so that n}(277k) = 20/%(¢, ¢_, ).

For both choices we have the following proposition.

PROPOSITION 6.5.2. If ¢ is Holder continuous with exponent a, then them
ezists C > 0 and jo € N so that, for j > jo,

¢ —nlllee <C27% ,  fi@—njlie SC27% . (6.5.8)

Proof. Take any z € R. For any j, choose n so that 2~9n < z <
277(n + 1). By the definition of 1}, nj(x) is necessarily a convex linear com-

bination of 22/2(¢, ¢_;.») and 27/2(¢, ¢_; n+1}, Whether € = 0 or 1. On the other
hand, if j is larger than some jg,

I(z) — 27/%(p, b j.n)|
< |¢(z) - (277 n)| + |¢(277n) — 2972 (¢, $_;.0)]
<Clg-2n|*+C2 9" < 29>, ~

the same is true if we replace n by n+ 1. It follows that a similar estimate holds
for any convex combination, or |¢(z) — 75(z)] < C 277°. Here C can be chosen
independently of z, so that (6.5.8) follows .

This then is our fast algorithm to compute approxlmate values of ¢(z) with
arbitrarily high precision:
I Start with the sequence ---0---010---0- - -, representing the n§(n), n € Z.

2. Compute the 77§ (277n), n € Z, by “cranking the machine” as in (6.5.7).
At every step of this cascade, twice as mMany values are computed: values
at “even points” 27(2k) are refined from the precious step, -

7(2792K) = Y hage—gy M1 (2770) (6.5.9)
[ 4

and values at the “odd points” 277(2k+ 1) are computed for the first time,

@7k +1) = Y hageg 12770 . - (65.10)
[4

Both (6.5.9) and (6.5.10) can be viewed as convolutions.

3. Interpolate the n5(2~7n) (piecewise constant if ¢ = 0, piecewise linear if
€ = 1) to obtain 7j(z) for non-dyadic z.
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The whole algorithm was called the cascade algorithm in Daubechies and
Lagarias (1991), where ¢ = 1 was chosen; in Daubechies (1988b), the choice
¢ = 0 was made.!® All the plots of ¢, ¥ in §6.4 and in later chapters are, in
fact, plots of 1), with j = 7 or 8; at the resolution of these figures, the difference
between ¢ and these n]‘ is imperceptible. A particularly attractive feature of the
cascade algorithm is that it allows one to “zoom in” on particular features of ¢.
Suppose we already have computed all the (275}, but we would like to look
at a blowup, with much better resolution, of ¢ in the interval {15, -ﬁ] centered
around 1. We could do this by computing all the 75(27/n) for very large J,
and then plotting n5(z) only on the small interval of interest, corresponding to
27-%.15 < n < 27-%.17 But we do not need to: by the “local” nature of
(6.5.9), (6.5.10) much fewer computations suffice. Suppose h, = 0 for n < 0,
n > 3. The computation of 75{277n) only involves those n5_;(277/*k) for
which (n — 3)/2 < k < n/2. Computation of these, in turn, involves only
the n9_,(277%2¢) with (k —3)/2 < € < k/2, or n/4 — 3/2 — 3/4 < €< nfd
Working back to 3 = J — 4, we see that to compute 5§ on 16, 16] we only
need the n§(2~ 5m) for 28 < m < 34. We can therefore start the cascade from

+0---010---0-- -, go five steps, select the seven values 7§(273m), 28 < m < 34,
use only these as the input for a new cascade, with four steps, and end up with a
graph of 1§ on {16, 16] For larger blowups on even smaller intervals, we simply
repeat the process; the blowup graphs in Chapter 7 have all been computed in
this way.?

The arguments leading to the cascade algorithm have implicitly used the
orthonormality of the ¢, x, or equivalently (see §6.2, 6.3), of the ¢ ,: we have
characterized ¢ as the unique function f satisfying (6.5.4), (6.5.5). The cascade
algorithm can also be viewed differently, without emphasizing orthonormality at
all, as a special case of a stationary subdivision or refinement scheme.

Refinement schemes are used in computer graphics to design smooth curves
or surfaces going through or passing near a discrete, often rather sparse, set of
points. An excellent review is Cavaretta, Dahmen, and Micchelli (1991). * We
will restrict ourselves, in this short discussion, to ohe-dimensional subdivision
schemes.!? Suppose that we want a curve y = f(z) taking on the preassigned
values f(n) = f,. One possibility is simply to construct the piecewise linear
graph through the points (n, fg); this graph has the peculiarity that, for all n,

f (2"2* 1) - %f(‘n.) + %f(w 1, (6.5.11)

which gives a quick way to compute f at half-integer points. The values of f at
quarter-integer points can be computed similarly,

. f (g + %) = %f (g) + %f (g + -;-) , (6.5.12)

and so on for Z/4 + Z /8, etc. This provides a fast recursive algorithm for the
computation of f at all dyadic rationals. If we choose to have a smoother spline
interpolation than by piecewise linear splines (quadratic, cubic or even higher
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order splines), then the formulas analogous to (6.5.9), (6.5.10), computing the
f(27n 3+ 27771 from the f(277k), would contain an infinite number of terms.
It is possible to opt for smoother than linear spline approximation, with inter-
polation formulas of the type

f@In+2777) =) ax f277(n - k), (6.5.13)
k

with only finitely many a, are nonzero; the resulting curves are no longer splines.
An example is

f@m+277Y) = ‘i% [f(277(n - 1))+ f(277(n + 2)]
+%‘ [f(277n)+ f277(n+1))] . (6.5.14)

This example was studied in detail in Dubuc (1986), Dyn, Gregory, and Levin
(1987), and generalized in, for example, Deslauriers and Dubuc (1989) and Dyn
and Levin (1989); it leads to an almost C?-function f. (For details on methods
to determine the regularity of f, see Chapter 7.) Formula (6.5.14) describes an
interpolation refinement scheme, in which, at every stage of the computation,
the values computed earlier remain untouched, and only values at intermediate
points need to be computed. One can also consider schemes where at every stage
the values computed at the previous stage are further “refined,” corresponding
to a more general refinement scheme of the type

fran@777 ) =) S wa £,(277K) (6.5.15)
k

Formula (6.5.15) corresponds in fact to two convolution schemes (with two masks,
in the terminology of the refinement literature),

F01(27n) =Y " waniy f,(277K) (6.5.16)
k

(the refinement of already computed values), and

1@+ 2777 = " wan gy £(277K) (6.5.17)
k

(computation of values at new intermediate points). In a sensible refinement
scheme, the f, converge, as j tends to oo, to a continuous (or smoother; see
Chapter 7) function fo,. Note that (6.5.15) defines the f, only on the discrete
set 277Z. A precise statement of the “convergence” of f, to the continuous
function f, is that

lim { sup |fA(27™279k) — f,’,:ﬂ(z—m—?k)‘} =0, (6.5.18)
m—00 1 4>0,kcl
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where the superscript A indicates the initial data, f3(n) = A,. The refinement
scheme is said to converge if (6.5.18) holds for all A € £°(2); see Cavaretta,
Dahmen, and Micchelli (1991). (It is also possible to rephrase (6.5.18) by first
introducing continuous functions f;, interpolating the f;(277k); see below.) A
general refinement scheme is an interpolation scheme if wax = 80, leading to
fi+e(279n) = £;(277n).

In both cases, general refinement scheme or more restrictive interpolation
scheme, it is easy to see that the linearity of the procedure implies that the limit
function fo (which we suppose continuous!?) is given by

foo(®) =Y fo(n) F(z —n), (6.5.19)

where F = F, is the “fundamental solution,” obtained by the same refinement
scheme from the initial data Fy(n) = 6, 0. This fundamental solution obeys
a particular functional equation. To derive this equation, we first introduce
functions f;(z) interpolating the discrete f;(2-7k):

5(@) =3 527k wiiz — k), (65.20)
k

where w is a “reasonable”!? function so that w(n) = é,9. Two obvious choices
are w(z) = 1 for -3 < z < %, 0 otherwise, or w(z) = 1 — |z for |z| < 1, 0
otherwise. (These correspond to the two choices in the exposition of the cascade
algorithm above.) The convergence requirement (6.5.18) can then be rewritten
8s ||f} — fllL—0 for §—oo. For the fundamental solution Fo,, we start from

Fy(r) = w(z). The next two approximating functions Fi, F; satisfy
Fi(z) = Y Fi(n/2) w(2z—n) (by (6.5.20)

= Z wy, w(2z — n) (use (6.5.15) and Fo(n) = 65,0)

3

= Z wy Fy(2z —n) , (6.5.21)

Fiz) = Y Fi(n/4) wldz - n)

= ) waa Fi(k/2)w(dz—n)  (use (6.5.15))
n,k
= Z wi Z wy w(dz — 2k - £) (becauseFy(k/2) = Wy)
k £

> w Fi(2c-k).
k

This suggests that a similar formula should hold for all Fj, i.e.,
Fj(z) =) wi Fj1(2z—k). (6.5.22)
k
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Induction shows that this is indeed the case:
Fnfz) = Y Fu(277'n) w(@+'z —n)
n
= Z Wn_ok F5(277k) w(21z ~ n)
n.k

Y oz we F_1(277H k- £) w(@H'z - n)
n,k,t

(by the induction hypothesis)
= Z we Z Fj 1277 'm) wy_gpm_ge w(2+'z — 1)
7 .

m,n

= Z IU{ Z F,‘l(2"'“m) Wer_2m w(2’+1:1: —-29¢ - 1‘)
[4 m,r

= Y w ) Frw@@-0-r) (by (65.15)
[ 4 m

= Y w FQz-¢ (by(65.20).
t .

Since F = Fy, = lim,_. F;, (6.5.22) implies that the fundamental solution F
satisfies
F(z)=Y_ w F(2z k). (6.5.23)
k

It is now clear how our compactly supported scaling functions ¢ and the cascade
algorithm fit into refinement schemes: on the one hand, ¢ satisfies an equation of
the type (6.5.23) (basically as a consequence of the multiresolution requirement
Vo C V_1), and on the other hand the cascade algorithm corresponds exactly to
(6.5.15), (6.5.20). Orthonormality in the underlying multiresolution framework
made our life a little easier in the proof of Proposition 6.5.2, but similar results
can be proved for refinement schemes, without orthonormality of the F(z — n).
Some basic results for refinement schemes are:

e If the refinement scheme (6.5.15) converges, then ), w3, =Y, wany1 =
1, and the associated functional equation (6.5.23) admits a unique contin-
uous solution of compact support (up to normalization).

e If (6.5.23) admits a continuous compactly supported solution F, and if the
F(z ~ n) are independent (i.e., the mapping £°(Z) 3 A — 3~ A, F(z —n)
is one-to-one'®), then the subdivision algorithm converges.

For proofs of this and many other results, we refer to Cavaretta, Dahmen, and
Micchelli (1991) and papers cited there. Note that the condition ) wen =
Y, Wan41 = 1 corresponds exactly to the requirements mo(0) = 1, mo(n) =0.
In a sense, constructions of compactly supported scaling functions and
wavelets can therefore be viewed as special cases of refinement schemes, 1 feel
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that there is a difference in emphasis, however. A general refinement scheme is as-
sociated with a scale of multiresolution spaces V), generated by the F(277z —n),
but typically no attention is paid at all to the complementary subspaces of the
V, in V;_,. Refining a sequence of data points in ; steps corresponds to finding
a function in ¥_; of which the projection onto V;, as given by the adjoint of
the refinement scheme (usually not an orthonormal projection), corresponds to
the data sequence. There are many such functions in V_.,, corresponding to the
same data sequence, but the refinement scheme picks out the “minimal” one.
There is no interest in the study of the other non-minimal solutions in V_j;, and
how they differ from the unique refinement sclution. This is natural: refine-
ment schemes are meant to build more “complicated” structures from simple
ones (they go from V; to V__,). In contrast, wavelet analysis wants to decompose
arbitrary elements of V_, into building blocks in Vj and its complement. Here
it is absolutely necessary to stress the importance of all the complement spaces
Wi = Vy_1 © Vg, and to have fast algorithms to compute the coefficients in those
spaces as well. This is where the wavelets enter, for which there is typically no
analog in general refinement schemes. ’

There is another, amusing link between orthonormal wavelet bases with com-
pact support and refinement schemes: the mask associated with an orthonor-
mal wavelet basis is always the “square root” of the mask of some interpola-
tion scheme. More explicitly, define Mp(¢) = |mo(£)2 = 3 3, 0, 7™, i,
Wn =Y, hx hi4+n- Then the w, are the mask coefficients for an interpolation
refinement scheme, since wo, = ), b hgyan = 00 (see (5.1.39)). In particular,
as noticed by Shensa {1991), the interpolation refinement schemes obtained from
the choice R = 0 in (6.1.11) are the so-called Lagrange interpolation schemes
studied in detail by Deslauriers and Dubuc (1989),' of which (6.5.14) is an
example. ’

Note that it is impossible (except for the Haar case) for a finite orthonormal
wavelet filter mq to be itself an interpolation filter as well: orthonormality implies
Imo(€){2 + Imo(€ + 7)|2 = 1, while the interpolation requircment is equivalent to
hop = %6,1’0, or mo(£) + mo(€ + ) = 1. If both requirements are met, then

- . 1= [mg(E)f* + 11 — mo(€)?
or ]_
Enj hohiin = 7 [hx + h_i] - (6.5.24)

Assume that h, = 0 for n < Ny, n > Np, and hn, # 0 # hn,. Then (6.5.24)
already implies that either N; = 0 or Ny = 0. Suppose N} = 0 (N = 0 is
analogous); N> is necessarily odd, No = 2L + 1. Take k = 2L in (6.5.24). Then

— — 1 —
ho har + h1 hapyy = —= har .

V2

Sinee ho = 27'/2, and hyr,q # O, this implies h; = 0. Similarly k = 2L — 2
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leads to

— —_ — S 1
ho har 2+ hy hap 1+ ha hap + h3 hap 1 = E har -2 ,

which, together with hy = 0, hy, = 27/ 26,.,0 imphes hy = 0. It follows eventu-
ally that only hy and hyy,, are nonzero; they are both equal to 1/1/2, so that
the mask is a stxetched” Haar mask Orthonormality of the ¢g, then forces
L =0, or mg(€) ='1 3(1+€e7%), i.e., the Haar basis. If we lift the restriction that
mg is a trigonometrlc polynomial, i.e., if ¢, ¥ can be supported on the whole
real line, then mq(€) + mo(€ + 7) = 1 and |mo(€)]? + |mo(€ + 7)}> = 1 can be
satisfied simultaneously by non-trivial mp; examples can be found in Evangelista
(1992) or Lemarié—Malgouyres (1992).

[y

Notes.

1. A compactly supported ¢ € L?(R) is automatically in L'(R) It then
follows from Remark 5 at the end of §5.3 that mp(0) = 1, mp(n) =0, ie,
that mg has a zero of multiplicity at least 1 in 7.

2. In Daubechies (1988b), the solutions P of (6.1.7) were found via two com-
binatorial lemmas. The present more natural approach. using Bezout's
theorem, was pointed out to me by Y. Meyer.

3. This formula for Py was already obtained in Hermann (1971), where max-
imally flat FIR filters were designed (without any perfect reconstruction
schemes, however).

4. This convergence also holds if infinitely many h,, are nonzero, but if they
decay sufficiently fast so that 3 |A,|(1 + |n|)¢ < oo for some € > 0. In that
case |sin n¢| < |n¢|™*(1¢) leads to a similar bound.

5. We use here the classical formula
sm z I-I cos(2-7z)
1=1

An easy proof uses sin2a = 2cosa sina to write

sin(2-7+1z) sinz

277 =

Jl:Il cos(27z) = H 2sin(2—7z) 27 sin(2-9z) '
which tends to #2% for J—oo. In Kac (1959) this formula is credited to
Vieta, and used as a starting point for a delightful treatise on statistical

independence.

6. This is true in general: if my satisfies (6.1.1) and ¢, as defined by (6.2.2),
generates a non-orthonormal family of translates ¢ ,, then necessarily

32, |4(€ + 27£€)]> = 0 for some £. (See Cohen (1990b).)
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. The condition [ dz ¢(z) ¥(z — k) = & o may seem stronger than [} =

but since the ¥; » constitute a tight frame with frame constant 1, the two
are equivalent, by Proposition 3.2.1.

. Since ¥(x) is a finite linear combination of translates of #(2z), fast algo-

rithms to plot ¢ also lead to fast plots for 1. Throughout this section, we
restrict our attention to ¢ only. ;

. If ¢ is not continuous, then the n; still converge to ¢ in L“‘ (see §6.3). More-

ovet, they converge to ¢ pointwise in every point where ¢ is continuous.

The choice € = 1 was uaed in the proof of Proposition 3.3 in Daubechzee
(1988b), because the 7} are absolutely integrable, whereas the i are not.
In Daubechies (1988b) the convergence of the 7 to ¢ was actually proved
first (using some extra technical conditions), a.nd orthonormality of the
¢o,n was then deduced from this convergence.

Note that there exist many other procedures for plotting graphs of wavelets.
Instead of a refinement cascade one can also start from appropriate ¢(n)
and then compute the ¢(2-7k) directly from ¢(z) = V2Y, hao(2z - n).

(In fact, when ¢ is not continuous, the cascade algorithm may diverge, while
this direct use of the 2-scale equation with appropriate ¢(n) still converges.

I would like to thank W. Sweldens for pointing this out to me.) This more
direct computation can be done in a tree-like procedure; a different way of
looking at this, avoiding the tree construction and leading to faster plots,
uses a dynamical systems framework, as developed by Berger and Wang
(see Berger (1992) for a review). The “zoom in” feature is lost, however.

Many experts on refinement or subdivision schemes find the multidimen-
sional case much more interesting!

This is not a presentation with fullest genemhty' We merely suppose that
the w) are such that there exists a continuous limit. This already implies

Yt =Y a1 =1
For example, any compactly supported w with bounded variation would

_ be “reasonable” here.

15.

16.

The following stretched Haar function shows how the F((z—n) can fail to be
independent. Takeé wy = wy = 1, all other wy, = 0. The solution to {6.5.23)
is then (up to normalization) F(z) = 1 for 0 < z < 2, 0 otherwise. In this
case the £°-sequence ) defined by A, = (—1)" leads to 3, A\ F(z-n) =10
ae.

This is no coincidence. If we fix the length of the symmetric filter M, =
|mof?, then the choice R = 0 means that M, is divisible by (1 + cos§)
with the highest possible multiplicity compatible with its length and the
constraint Mo(&)+Mp(£+7) = 1. On the other hand, Lagrange refinement




T o

am—

- PPN

COMPACTLY SUPPORTED WAVELETS 213

schemes of order 2NV — 1 are the interpolation schemes with the shortest
lengt\h that reproduce all polynomials of order 2N — 1 (or less) exactly
from their integer samples. In terms of the filter W(£) = § 3, wn €™,
this means

W) +W(E+n)=1  (interpolation filter: wq, = 6, 0)
and

W) =1+0@¢™) = 1+0((1-cos))
(see Cavaretta, Dahmen, and Micchelli
(1991), or Chapter 8).

The two requirements together mean that W (¢ + 7) has a zero of order
2N in £ = 0, i.e., that W(£ + 7) is divisible by (1 — cos £)V; hence W(£)
by (1 4+ cos&)V. It follows that W = M.



CHAPTER 7

More About the Regularity of
Compactly Supported Wavelets

The regulanty of the Meyer or the Battle-Lemarié wavelets is easy to assess: the
Meyer wavelet has compact Fourier transform, so that it is C*°, and the Battle-
Lemarié wavelets are spline functions, more precisely, piecewise polynomial of
degree k, with (k — 1) continuous derivatives at the knots. The regularity of
compactly supported orthonormal wavelets is harder to determine. Typically,
they have a non-integer Holder exponent; moreover, they are more regular in
. some points than in others, as is already illustrated by Figure 6.3. This chapter
¢ presents a collection of tools that have been developed over the past few years
£ to study the regularity of these wavelets. All of these techniques rely on the fact
. that

¢(x) = Y o @2z —n), (7.0.1)

i where only finitely many ¢, are nonzero; the wavelet 1, as a finite linear combina-
tion of translates of ¢(2z), then inherits the same regularity properties. It follows
[ that the techniques exposed in this chapter are not restricted to wavelets alone;
F they apply as well to the basic functions in subdivision schemes (see §6.5). Some
E of the tools discussed here were in fact first developed for subdivision schemes,
£ and not for wavelets. )

,._ The different techniques fall into two groups: those that prove decay for the
g Fourier transform &, and those that work directly with ¢ itself. We will illustrate
¢ each method by applying it to the family of examples n¢ constructed in §6.4. It
¥ turns out that Fourier-based methods are better suited for asymptotic estimates
I (rate of regularity increase as N is increased in the examples, for instance); the
E second method gives more accurate local estimates, but is often harder to use.

. References for the results in this chapter are Daubechies (1988b) and Cohen
E (1990b) for §7.1.1; Cohen (1990b) and Cohen and Conze (1992) for §7.1.2; Cohen
t and Daubechies (1991) for §7.1.3; Daubechies and Lagarias (1991, 1992), Mic-
t chelli and Prautzsch (1989), Dyn and Levin (1989), and Rioul (1991) for §7.2;
¥ Daubechies (1990b) for §7.3.

7.1. Fourier-based methods.
E'The Fourier transform of equation (7.0.1) is

#(€) = mo(€/2) $(€/2), (7.1.1)

215
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where mo(§) = 1Y, cne "™ is a trigonometric polynomial. As we have seen
many times before, (7.1.1) leads to

d&) = @07 I mo(279), | (7.1.2)

=1

where we have assumed mg(0) = 1and [dz ¢(x) = 1, as usual. Moreover,
mg can be factorized as

—i€ N
mol®) = (F5—) 2@, (713)
where L is a trigonometric polynomial as well; this leads to
g\ N oo -
#¢) = (m)? (l—lé-—’e) I ce) . (7.1.4)
j=1

A first method is based on a straightforward estimate of the growth of the infinite
product of the £(277€) as |¢|—o0.

7.1.1. Brute force methods. Fora=n+3,n€N, 0< 8 <1, we define
C? to be the set of functions f which are n times continuously differentiable and
such that the nth derivative f(") is Holder continuous with exponent 3, i.e.,

™ () - ™ (z + )| < C|t|? for all z,t .
It is well known and easy to check that if
[a i@ a+ien < o,
then f € C°. In particular, if |f(€)] < C(1+ |€])"1~*"¢, then it follows that

f € C=. It follows that, if the growth for |¢|—o00 of [I32; £(277€) in (7.1.4) can

be kept in check, then the factor ((1 — e~¥)/i¢ )N ensures smoothness for ¢.
LEMMA 7.1.1. Ifq = sup; |L(¢)] <2V~27, then ¢ € C°.

Proof.
1. Since my(0) = 1, £(0) = 1; hence |£(£)] < 1 + C|€|. Consequently,

su L£(277¢)] < sup exp [C277|¢]] < €€ .
sup gl (7)< sup E [C23¢l]

2. Now take any £, with |¢] > 1. There exists J > 1 so that 2/~ < |¢] < 27.
Hence
o0

IT 1c@¢)

. =1

J -]
I e ] te@-72-7¢)

j=1 j=1
q.l . eC' < c’ 2J(N~a—l—e‘)

<
< C"(fghNete,
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Consequently, |$(¢)] < C™ (1 +¢))>'"*, and g€ C=. =

Grouping together several £ leads to better estimates, as follows.
LEMMA 7.1.2. Define

e

7-1
1 q, = sup H L@ *e) , (7.1.5)
3 k=0 !
: _ logg,
; K, = Tlog2 ’ (7.1.6)
K = inf K,.
J€N

Then K = limj_.oo K,; if C< N -1~ a, then ¢ € C*.

Proof.
: 1. Take j; > j;. Then j2 = nj; + r with 0 < r < 7, and
: 3. < (@,)" 41 -
Consequently, :

nlogg,, +rlogq
J2log2

K, < <Ky, + Chfia-
2. For any € > 0, there exists jo so that K = inf, K, > K,, —¢. For j 2 jo
we then have K, S K+ €+ C jo/j — K +¢. Since ¢ was arbitrary, it”
3—00

follows that K = lim, .. K,.

3 IK<N-1—-a, then K, < N-1-a for some f € N. We can then
repeat the argument in the proof of Lemma 7.1.1, applying it to

I ce72e) = [] 272,

i=1 =6
with £,(€) = H;;] L£(277€), and with 2¢ playing the role of 2 in
Lemma 7.1.1. This leads to |(£)] < C(1 + |¢])~N+5e < C(1 + J¢])—=1—,
hence p € C*. =

The following lemma shows that in most cases, we will not be able to obtain
much better by the brute force method.
LEMMA 7.1.3. There erists a sequence (£¢)sen 30 that

2C>0.

(1+1eh ™[] c27en)

J=1
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Proof.

1. By Theorem 6.3.1, the orthonormality of the ¢(- — n) implies the existence
of a compact set K congruent to [—m,#] modulo 2, such that |§(¢)] >
C > 0for £ € K. Since K is congruent to [—m,n] and L, is periodic with
period 2¢t1x, we have

N

ge = sup L&) = sup [LE)],
le1<2tx €e2K

i.e., there exists {; € 2'K so that |£,(¢,)| = q¢. Since K is compact, the
2-¢ {; € K are uniformly bounded. We therefore have

[l <2¢ C (7.1.7)

for0<C'.
2. Moreover, since |~U’§°}-| = |cos £/2] < 1, we have for all ¢ € 2/K,

I me278)| = B ©12C>0.

r==t41

I cee

7=t+1

2

Putting it all together we find for & = 2¢,

[Tc e = 1cd¢o) | T1 c(z‘ic,)’
j=1 1=0+1
> Cgq = C2t% |
By (7.1.7),
a+1e< |[T ceen| > 0 2% o ok
=1

Since K = inf, K, this is bounded below by a strictly positive constant. =

Let us now turn to the particular family of y¢ constructed in §6.4, and see how
these estimates perform. Weé have .

e~ N
wma(©) = (F5—) £nte),
with
N-1
en@ = Painte/n) = 3 (V1) Gwtesarn.
n=0

We start by establishing a few elementary properties of Py.

o v
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N-a1{N-14n
=Zn=0( n

LEMMA 7.1.4. The polynomial Py(z)

the follounng properties:
0<z<y = " Py(@) 2y N Pa(y),

0<z<1l = Py{z) <2V 'max (1,25)¥ 1.

Proof.
1. f0<z <y, then

V- py(x) =

N-1
Z (N—- l+n) - (N=1-n)
n

n=0

N-1
N-1+n AN—-1—
ZZ( ! )y(Nln)

n=0

2. Recall (see §6.1) that Py is the solution to

:z:NPN(l—z) + Q-2 Py(z) = 1.

3, it follows that Pn(1/2) = 2¥~1. For g <
have Py(z) < Pn(1) = 2N~ because Py is mcreasmg For «
applying (7.1.8) leads to Pn(z) <zVN-12N-1py(3) =2V 1 (2z)N !

On substituting z =

proves (7.1.9).

It is now easy to apply Lemmas 7.1.1 and 7.1.2. We have

’”X‘:‘(N_;M)}m

| n=0

Stflp | (€]

< 2N 12

n=0

- [2" en(1/2)]'? =

N—l

Lemma 7.1.1 allows us to conclude that the ny¢ are continuous. In view of the
graphs in Figure 6.3, which show the y¢ to have increasing degree of regularity
as N increases, this is clearly not optimal! Using X, for j > 1 immediately leads

to sharper results. We have, for instance,
@ = sup |En(€) Ln(26)]

= s [P (y) Pn(4y(1 - y))]/?

(because sin®¢ = 4sin?£/2 (1 —sin?¢/2)) .

= y~N-D py(y) . |

1/2
( -1 +n) 2_,.]
i

219
) z" satisfies
(7.1.8) .

(7.1.9)

1

2 We
2 3
. This

[P,
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If either y < 1/2 0ory 2 % + 3‘@ (implying 4y(1 ~'y) < 1), then
[Pn(y)Pn(4y(1 - y))] < 230D by (7.1.9). In the remaining window } + ¥2 >
¥ 2 §, we have

Py(y) Pv(ay(1-y) < 20D (1631 — )N

< oav-y 4\
= 37

(becausey’(l—y)s%ﬁorosys 1) .

Consequently g3 < 24V-1) 3-3(N-1/2 and K3 < (N - 1)[2— § 1253]. It follows
that asymptotically, for large N, y¢ € O*V with u = § (263 — 1~ .1887. A
slightly better value can be obtained by estimating g4 rather than g¢2; one finds
then x ~ .1936.

Note that y = 2 is & fixed point for the map Y+ 4y(1 —y), so that g >
[Pn(3/4)]* for any Ic leading to a lower bound on X and an upper bound on the
regularity of ¢. In terms of €,y 5 = 3 corresponds to § = =F; 'we already
saw earlier that +3% play a epecta.l role because {3, =§*}isan mvanant cycle
for multiplication by 2 modulo 2r. In the next subsectxon we will see how these
invariant cycles can be used to derive decay estimates for ¢.

7.1.2. Decay estimates from invariant cycles. The values of £ at an
invariant cycle give rise to lower bounds for the decay of ¢.

LEMMA 7.1.5. If {§0,&1,---,EM~1} C [~,7] is any non-trivial invariant
cycle (% e., §o # 0) for the map 7 = 2{ (modulo 2x), with mn = T{m_1, m =
1,---,N ~ 1, €p_y = &g, then, for all k € N,

'a(sz+l &I2C O+ lsz+l &D—Nw'c,
where K = Zm—o log |C(ém)}/(M log2), and C > 0 is independent of k.
Proof.
1. First note that thgre exists C; > 0 so that, for all k € N,
|sin(2*M &) 2 C; . (7.1.10)
Indeed, 2*M & = & (mod 2x), so that (7.1.10) follows if & # 0 or +x.

We already know that £ # 0; if §o = £, then §; = 0 (mod 27) and hence
& = 2M-1¢, = 0 (mod 27), which is impossible.

2. Now N
. in 2¢M o iags
l¢(2kM+l &) = gl.%ﬁ{_zfﬂ Hﬁwku ] eo)l .
=0
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Since £ is a trigonometric polynomial and £(0) = 1, there exists C; so
that |C(€)| 2 1~ C; |¢] > €22 Kl for |¢| small enough. Hence, for r

large enough,
Il €27 &) = [ e [-2C2 277 ol ]
7=rM j=rM
> exp{~27M*2Cy [Go| | et ol =y
Hence
(r+k)M -1
B2MH go)l > CF @Migl) Ny | [ £@M &)
=0
> Cy |L(Eo) L(&1) - LlEamr—1)I"HFH (1 +|2*M &)~V
> Cp 2°ME (14 2%M )N
> C(1+[2*M¥ gy VK o

We can apply this to the example at the end-of the last subsection: Lemma 7.1.5
imnplies 92" %1)| > C(1 + [2° )N+, with K = log|C(%) L(~%)|/2log2.
If £ has only real coeffic' 1*s (as is the case in most applications of practical
interest), then |C(—-2F) = ""F), a.n& K = log|L(%F)|/log2. The next short

invariant cycles are {3, %, ~ix }{2-;'»4;»—— etc.; each of them gives

an upper bound for the decay exponent of ¢.

In some cases one of these upper bounds on a can be proved to be a lower
bound as well. We first prove the following lemma.

LEMMA 7.1.6. Suppose that [—m, x| = DyUD; ---UDyy, and that there erists
q > 0 so that

IC(E) < q EeD
1L(€) £(26)| < ¢ £ € D
IC(€) L(26)---L(2M-1¢)| < oM £eDy .

Then [$(€)] < C(1 + [€])~N+K, with K = log g/ log 2.

Proof.

1. Let us estimate-lﬂ',’;'__',:, £(2“"£)|, for some large but arbitrary j. Since
§ € D, forsomem € {1, 2,---,M},

i1
II ce*9)| .

k=m

F~1
IIcz™e)

k=0

<¢
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We can now apply the same trick to 27™¢, and keep doing so until we
cannot go on. At that point we have

13~-1 I 21
[Tee*o <e| I] c@*e),
'kz() =j3—~1-—r

with at most M — 1 different L-factors remaining (i.e., 7 < M —1). Hence

T] ce*o)

k=0

j— M-t
< gmMH 4

¥

with ¢; defined as in (7.1.5). Consequently, with the definition (7.1.6),
1
< Y .
K, < TTog2 [C+jloggl],

and K = lim; .o K; < logg/log2. The bound on é now follows from
Lemma 7.1.2. »

In particular, one has the following lemma.
LEMMA 7.1.7. Suppose that N

()] < E(ZE) for €] < %
(7.1.11)
IL(E) L26)| < LR for B <] <.

Then |$(€)] < C(1 + [€])~N*%, with K = log|C(%)|/log2, and this decay is
optimal. .

Proof. The proof is a straightforwafd consequence of Lemmas 7.1.5 and
7.16. =

Of course, Lemma 7.1.7 is only applicable to very special £; in most cases
(7.1.11) will not be satisfied: there even exist £ for which £{2£) = 0. Similar
optimal bounds can be derived by using other invariant cycles as : reakpoints for a
partition of [—, 7], and applying Lemma 7.1.6. Let us return to our “standard”
example n¢. In this case Cohen and Conze (1992) proved that Ly () does
indeed satisfy (7.1.11), as follows.

LEMMA 7.1.8. ForalN € N, N> 1, Py(y) =51 (N -1+ ")y" satisfies

n=0
Pv(y)<Pn(}) ¥ 0<wy<} (7.1.12)
Pu(y) Pa(y(1-9) < [Pv(D))? o §<w<t. (7.1.13)

We start by proving yet another property of Py.
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LEMMA 7.1 9.

n(zT) = ~—N—[PN(z) Py(D)zV 71} . (7.1.14)

[
b
E
A

Pl(z) = NZI( -1+n) z"—lzNN—

n=

_ N[p,m(z) - (g)x” - (213’:11)&-’] .
(7.1.15)

(=} ~
N
2
3+
S
N
]
-

(1 2)Pyoi(z) = 1+N (N+n)_(N+n—-1)}xn

i
ey
+

=
—
2
!
b BN
+
3
S—
3
!
VN
2

Y g

= Pn(z) + (ZN‘l)z”(l—zz). (7 1.16)
3. Combining (7.1 15) and (7 1.16) gives
(- 2Py = N [P - (N1 )e]
Since Py(1) = V7 (N-,}+n) = (2N~1) (7.1.14) follows. =

We now tackle the proof of Lemma 7.1.8.

Proof of Lemma 7.1.8.
1. Since Py(y) is increasing on [0,1], we only need to prove (7.1.13).
2. Define f(y) = Pn(y) Pn(4y(1 —y)). Applying Lemma 7.1.9 leads to

reon N
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with
g(y) = Pn(y) Pn(4y(1 - v))(6y - 5)
—yV 2y - 1)Pn(1)Pr(4y(1 ~ 3))
+4(1 - )yt - )V Pv(1)Pr(y) - (7.1.17)
Since 4y(1 — y) < y for y > 3/4, we can apply (7.1.8) to derive ’

Pn(y) y™N*' < [4y(1 - )"+ Py (dy(1 - )

or
[4(1 - )V ' Puly) < Pr(4y(1-)) -
Substituting this into (7.1.17) leads to

9(y) < (6y - 5) Pn(4y(1-y)) [Pn(y) -y Py(1)].

The quantity in square brackets equals (1 ~ y)Py(y) 2 0 for y < 1, so
that g(y) < 0 for % <y < %. It follows that Py(y) Py(4y(1 — y)) is
decreasing on [, 3], which proves (7.1.13) for y < §.

.For 2 < y < 1 we follow a different strategy. Since Pn(y) <
(%})Nul Pn(3) by Lemma 7.1.4, it suffices to prove
ay\ V! 3

(%) Avwa-msra(l). (7.0.18)

But Py (4y(1 - ) < [1 - 4y(1 — )]~ = (2y - 1)~ (because (1 - z)¥
Py(z)=1-2zV Py(1-1)<1),and

m(a() sy o

where we have used Lemma 7.1.4 again, as well as

Pu(l) = (2NN—1) _ %(21{,\1) > 7}"57 4N

To prove (7.1.18) it is therefore sufficient to prove

’ N-1 , 1 /9\N-1
S —1)2g— (2 : 1.
] @-vsw (D) (7.1.20)
Since both (2y — 1)~ and y(2y — 1)~? are decreasing on [§, 1], it suffices
to verify that (7.1.20) holds for y = §, i.e., that

5\ ! 4

= < — .
(6) ~ 9vN
This is true for N > 13.
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5. It remains to prove (7.1.13) for <y<land 1 <N <12. Wedo this in
. two steps: y<yo—zi-£andy>yo Fory<-—“—’£i (il-y) >4
hence, again by Lemma 7.1.3,

- Pn(4y(1 - ) < By(1 — )]V~ 'Pu(l) = 6y(1 - )N 1.

Similarly Py (y) < (2)" ™" Py(3), so that
6\"' _ (5
Pul) Putasi-9) < (3) Pw(2) nera-pie

(%Q)N_l Py (g) , (7.1.21)

because y*(1 — y) is decreasing on 12 —iﬁC] One checks by numerical
computation that (7.1.21) is indeed smalIer than [Py(3)2 for 1 < N < 12.

A

6. For 3t¥2 y%< ¥ < 1 we use the bounds Py (4y(1-y)) < (2y—1)=*N and
PN(II) < (l ~1Pn(y0) to derive

'l N-1
Fn{4y(1 - y))Pn(v)

A

R N e

2V Pn(wo) , (7.1.22)

TN

where the last inequality uses that (2y — 1)~2 and y(2y — 1)~2 are both
decreasing in [yg, 1]. One checks by numerical computation that (7.1.22)
is smaller than [Py (3))? for 5 < N < 12.

7. It remains to prove (7.1.13) for 1 < N < 4 and -2—'*’3@ <y<1 For these
small values of N the polynomial Py (y) Py (4y(1—y))~ Pn(3)? has degree
at most 9, and its roots can be computed easily (numerically). One checks
that there are none in ]%, 1], which finishes the proof, because (7.1.13) is
satisfiediny=1. =

It follows from Lemmas 7.1.8 and 7.1.7 that we know the exact asymptotic decay
: of Ng(6):

| NB(E)] < O(L + [g])~NHosIPu(3/4)1/210g2 (7.1.23)




226 CHAPTER 7

For the first few values of N this translates into y¢ € C*~¢ with the following

estimates for a:
[4]

339
636
913

1.177
1.432
1.682
1.927
2.168
2.406

[
oW~

We can also use Lemma 7.1.7 to estimate the smoothness of y¢ a8 N—oo0.
Since -
1 gN-1 < PN(Q) < gN-1
vN M=

(use Lemma 7.1.4 for the upper bound, (7.1.19) for the lower bound),

log |Pn(3/4)] _ log 3
- Y
o~ 2log2 2log2
implying that asymptotically, for large N, n¢p € C*N with p = 1 — }-f'?'% o~
.2075.1 One does not, in fact, need the full force of Lemma 7.1.8 to prove this
asymptotic result: it is sufficient to prove that

N[1-O(N~'1ogN)] ,

Pn(y)<C3¥! fory<? (7.1.24)

Pn(y) Pn(4y(1-y) <C* ™D ford<y<1,  (1.1.25)

with C independent of N. The asymptotic result then follows immediately from
Lemma 7.1.6. The estimate (7.1.24) is immediate from Py(y) < Pn(3) <3N-!
for y < %; the estimate (7.1.25) follows easily from Lemma 7.1.4 a8 follows.
If $ <y< 02 then Pu(y) Py(dy(1-4)) < ()" (1691 ~ )V =
64421 — y)]¥-! < 3*N-D) because y*(l — y) is decreasing on [3,1]; if
<y < 1, then Pn(y) Pr(4p(1 - 1)) < )V 'Pv(}) = (B <
32(N-1)| This much simpler argument for the exact asymptotic decay of ¢ is due
to Volkmer (1991), who derived it independently of Cohen and Conze’s work.

7.1.8. . Littlewood—Paley type estimates. The estimates in this subsec-
tion are L! or L-estimates for (1 + |£])°¢ rather than pointwise decay es-
timates for ¢ itself. The basic idea is the usual Littlewood-Paley tech-
nique: the Fourier transform of the function gets broken up imto dyadic
pieces (i.e., roughly 2/C < Kl < 2*+1C) and the integral of each piece esti-
mated. If fﬂgqsyu d€|¢(€)] < CN for j € N, then [dE(1 + [ENI#(E)] <




i
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Cl1+ L2, 2°M] < oo if a < —log A/ log 2, implying ¢ € C*. To obtain esti.
mates of this nature, we exploit the special structure of ¢ as the infinite product

- of mg(277¢); the operator P, defined in §6.3 will be a basic tool in this derivation.

We will first restrict ourselves to positive trigonometric polynomials My(£).
(Later -on, we will take Mp(£) = [mq(£)]? to extend our results to non-positive
mp.) As in §6.3 we define the operator P, acting on 2w-periodic functions by

(Pof)E) = Mo (g) f (g) + Mo (54 w) r(§ +1r)' .

This operator was studied by Conze and Raugi and several of the results in.

this subsection come from their work (Conze and Raugi (1990), Conze (1991)}.
Similar ideas were also developed independently by Eirola (1991) and Villemoes
(1992). A first useful lemma is the foilowing. .

LEMMA 7.1.10. For all m > 0 and all 2x-periodic functions f,

x ™= m
[aerno = [ " aiemollmeto.  im

j=1

Proof.

1. By induction. For m =1,

[wne = [ alaa(§)s(5) + 20 (5+7) (5+7))
= 2 :;dc [Mo(OF(Q) + MolC+mf(C+m)]

2 ””/’:dc Mo(Q)F(C) = f 2:‘“ (-ﬁ-);‘fo (§-) f

% 3 -2

2. Suppose (7.1.26) holds for m = n. Then it holds for m = n + 1:

- [awrne = [ e

2%

= [ de M2 tOf@ )

1 —

+Mo(27 16 + m) (271 + )] [ Mo(279¢)
j=1

-— ng

x/2 e . N
: = [0 [H Mom’c)] Mo(OF(Q) + Mo(¢ +m)f(¢ + )]

B e e
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3x /2 n y
=2 [ ac | T] Mo2i0)| 1)
1=0

-n/2

o]

|
2"""“- n ’ .

= / - dE{HMo(T’E)} [zl .
P

Since M, is & positive trigonometric polynomial, it can be written as

J
z a, e | witha, =a_; €R
==J

Mo(€)

il

J

) b, cos(j€) .

1=0

One then finds that the (2J + 1)-dimensional vector space of trigonometric poly-
nomials defined by .

J
vy = {f(c); =Y f,e""}

I==-J

ié invariant for Ps. The action of Pp in V) can be represented by a (2J + 1) x
(2J + 1) matrix which we will also denote by P,,

“(Polee = 202604 ISk €<J] - (T.1.27)

with the cenvention a, = 0 if |r] > J. For M of the type

2K
MofE) = (coe%) L), (7.1.28)

-where L is a trigonometric polynomial such that L(n) # 0, the matrix P, has

very special spectral properties.

LEMMA 7.1.11. The values1,1,---,272%+! are eigenvalues for Po. The row
vectors ey = (j*)j=—s, .7, k=0,---,2K — 1 generate a subspace which is left
invariant for Py. More precisely, .

exPy = 27 %e, + linear combination of thee,, n <k .
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"Proof.

1. The factorization (7.1.28) is equivalent to

R S AT, TR MO W

J
> 6, 5* <1 =0 fork=0,---,2K-1. (7.1.29)
1=-J

Moreover, since Mp(0) = 1, Y a2, = Y azj+1 = 3. This means that the
sum of each column in the matrix (7.1.27) is equal to 1; € is thus a left
eigenvector of Py with eigenvalue 1.

2. For 0 < k < 2K — 1, define gy = e, P, i.e.,

(@)m = 2)_ *azyom .
]

T R g T e

For m even, m = 2¢,

(9r)2e = 2Z(j+€)"a21 = 275+ Z(u)mz (T’lcl) (2.7')"_"'021
7 m

2

www-. e »

Formodd, m=2¢+1,

(9x)aerr = 22(1 +2+ 1) a3
J
; EX 0. L kem
240 S+ ) Y (X)) @+ 1
m ¥
] Hence

k
- k
ekPD ’= g = 2 k+1 E (m)Ak—m €n ,
m=0

where

An = Y 03, @)™ = Y ag, (2 +1)"
7 7

by (7.1.29). =

A consequence of Lemma 7.1.11 is that the spaces E;,
i J
- Eo={feVy S if=0forn=0,-k-1},

b With 1 < k < 2K, are all right invariant for Py. The main result of this subsection
is then the following.
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THEOREM 7.1.12. Let A be the eigenvalue of Py|g,, with the largest absolute
value. Define F', a by -

F&) = (2m)772 T Mo(27%)
i=1
a = —log|A|/log2 .
IfIN <1, then Fe C*"¢ foralle > 0.

Proof.
1. Define f(€) = (1-cos&)¥. Since gx fle=o = Ofork <K -1, f € Eak.

2. The spectral radius p(Fp|g,, ) equals |Al. Since, for any 6§ > 0, there exists
C > 0 so that [|A™|| < C(p(A) + 8)™ for ail n € N, it follows that

/_'de(Pa"f)(f)SC(lAn+6>"‘.~ C o (7130)

3. On the other hand, f(§) > 1 for § < |£| < 7. Together with the bound-
edness of H 0 1 Mo(273¢) for |€| < m (derived as usual from |Mo(€)] <
1+ ClED), thls xmphes

/ & Fle)<C | / dg HMD(T’E)

2" e <iE|<2"x m-legl<aty T

sc [ «sery 1 M296) = df(P"f)(e)

2 lagilST =

(use Lemma 7.1.10)
<C'(IAj+8)™.

By the argument at the start of this subsection, this implies ' € C*~<. a

In fact, a slightly stronger result can be proved. If we extend the definition of
C" (n integer) to include all the functions for which the (n — 1)th derivative is
in the Zygmund class

.7: = {f; |flz+y) + flz—y) — 2f(x)|<C|y| for all z,y} ,

then lt is also true that F € C* if Po|g,, is diagonal (i.e., we can drop the € in
this case). Moreover, both this smoothness estimate and the estimate F € ¢
for all € > 0 in Theorem 7.1.12 are optimal if ¥ has no zero on [~m,x}. For &
proof, see Theorem 2.7 in Cohen and Daubechies (1991).
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REMARK. The same result can be derived via an equivalent technique,
which uses an operator P} defined in the same way as Pp, but with My(¢)
replaced by the factor L(€) in (7.1.28). In this case we define AL = p(PF), and
we factorize F(£) = [2(sin &/2)/€)*K (2x)~1/2 1,2, L(277¢€) to obtain

[ wro <c [ awI[iee

=1
2= |E|<2 x 2" lxglEl<2x ’

< cozmK [_:de[w&)"l] ©
< C2 ™KL Lo,

so that F € C®¢ with o = 2K ~ g% This method has the advantage that we

start directly with a smaller matrix Pu", so that the computation of the spectral
radius is simpler. The two methods are completely equivalent, as shown by the
following argument. If j is an eigenvalue of Fy, with eigenfunction f, € Exk,
then f, can be written as

7© = (°8)" 0@

Replacing Mp(€) by its factorized form in

wtul@ = Mo (§) 5 (5) + Ma(G+7) 2 (547)

we obtain after dividing by [sin2 ’;FCOSz §]N,

u2tg,(6) = L (g) 9 (g) + L (g +1r) % (g + w) ,

_ 22!(“‘ a

so that the eigenvalues of PF are exactly given by u”

In general, mg will not be positive. (Indeed, in the framework of orthonormal
wavelet bases, my is never positive, except for the Haar basis; see Janssen (1992).)
However, we can then define My = |mg}?; the same techniques lead to

/ dE IO <C2NOE 4o,

P ANTiRe

- where AL is the spectral radius for P, with L(£) = |£(€)|?. Hence

[ de (1+ D) 16(6)]

1/2

<Cl1+) e n/? j de |$(&)[? <00

n=0 2 aglE| <2
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if a+3 < N+ FEL Consequently p € C=~ fora < N+ KAz — 17

For the special y¢ of §6.4, the resulting a, for the first few values of N are:

B
s

a
5
915
1.275
1.596
1.888
2.158
2.415
2.661
2.902

Scmqamhwt\:a'z

These are much better than the values obtained from the pointwise decay of ¢
(see §7.1.2). The size of the matrix Pj increases with N (linearly), and I do not
know of any way to determine the asymptotics of its spectral radius as N—oo;
for asymptotic esf.imates, pointwise decay of ¢ is the best method.

7.2. A direct method. .

The smoothness results obtained at the end of §7.1.3 for y¢ with small N are
still not optimal. Moreover, Fourier-based methods can only give information
on the global Hilder exponent, whereas it is clear from Figure 6.3 that 2¢, for
instance, is smoother in some points than in others. In fact, we will see that
there exists a whole hierarchy of (fractal) sets in which 2¢ has different Holder
exponents, ranging from .55 to 1. Results such as these can be obtained by direct
methods, not involving ¢. For the sake of simplicity, 1 will explain the setup in
the general case, but expose the method in detail for the example 2¢ only, and
then state the general theorems on global and local regularity without proof.
Proofs can be found in Daubechies and Lagarias (1991, 1992). Similar results
about the global regularity were also proved (independently, and in fact before
Daubechies and Lagarias) in Micchelli and Prautzsch (1989), in the framework
of subdivision schemes.

The method is completely independent of wavelet theory. The starting point
is the equation

K
F(z) = ZC;. F(2z - k), (1.2.1)

k=0

with Zk—o cx = 2, and we are interested in thé compactly supported L!-solution
F, which, if it exists, is uniquely determined® (up to its normalization): since
F € I}, F is continuous, and (7.2.1) implies

oo

ko) = m ] [ ae F) [[mee),

j=1
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with m(€) = 1 K cx e=**¢, and Lemma 6.2.2 then tells us that support F =
{0, K]. Equation (7.2.1) can be considered as a fixed point equation. Deﬁne, for
functions g supported on [0, K}, T'g by

(Te)(z) = Z cx 9(2z - k) .

k=0

Then F solves (7.2.1) if TF = F. We will try to find this fixed point by the
usual method: find a suitable Fy,* define F; = T7F,, and prove that F, has
a limit. To determine F, note first that (7.2.1) imposes a constraint on the
values F(n), n € Z if F is continuous. Since support F = [0, K], we only need
to determine the F(k), 1 < k < K — 1; the other F(n) are zero. Substituting
z=k,1<k<K-1into (7.2.1) leads to K — 1 linear equations for the K — 1
unknowns F(k); the system of equations can also be read as the requirement
that the vector (F(1),---,F(K — 1)) be an eigenvector with eigenvalue 1 of a
(K — 1) x (K — 1)-dimensional matrix derived from the ci. It turns out that,
.modulo some technical conditions (see below), this matrix does indeed have 1
as a nondegenerate eigenvalue, so that (F(1),---, F(K — 1)) ¢an be fixed up to
an overall multrphca.tnve constant. Let us suppose this is done. One can prove
that 35 ' F(k) # 0, so we can fix the normalization so that "X ! FP(k) = 1.
(All this will be illustrated by an example below.) Define now Fy(z) to be the
piecewise linear function which takes exactly the values F(k) at the integers, i.e.,

Fo(z) = F(k)(k+1-z) + Fk+1){z—k) fork<z<k+1. (722
Successive applications of T define the F; = T7 R, i.e.,
K
Fij(2) = (TF)(x) =) o F;(2z—k) ; (7.23)
k=0

it easily follows that the F; are piecewise linear with nodes at the 2~7n € {0, K],
n € N. To discuss whether the F; have a limit as j—o0, and to study the
regnilarity of this limit, it is convenient to recast (7.2.3) in another form.

The key idea is to study the F;(z), Fj(z+1)-- . Fj(z+ K — 1) simultaneously,
for z € [0,1]. We define v;(z) € R¥® by

[vj(x)]k = F:,(Z"-k‘—l) ’ k= l,"',K, 26[0,1] . (724)
For 0 < z < }, (7.2.3), together with support F; C [0, K], implies that Fj,(z),
Fijpi(z + 1),--- ,Fju(x + K — 1) are all linear combinations of F,(2z),
F;(2z + 1),---, F;j(2z + K — 1). More precisely, in terms of v;(z),
vi41(z) = Tovs(2z) for0<z <}, (7.2.5)
where Ty is the K x K matrix defined by

(TO)mn = Cm-n-1, 1 <smn< K ) (7~26)
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with the convention ¢y = 0 for k < 0 or k£ > K. Similarly,

. v41(z) = Tiv(2r-1) fori<z < 1, (7.2.7)
where

* (Tl)mn = Cim-n, 1< m,n < K. (728)

Equations (7.2.5), (7.2.7) both apply for z = }: because of the special structure

of T, T1 and v; (in particular, (To)mn = (T1)mn+1, [(0))n = [v;(1)]s for

n = 2,---,K), the two equations are identical for r = 1. We can combine
(7.2.5) and (7.2.7) into a single vector equation as follows. Every z € [0,1] can
be represented by a binary sequence,

=Y difz) 2",
n=1

with dn(z)} = 1 or 0 for all n. Stricily speaking, two possibilities exist for every
dyadic rational z, i.e. every z of the type k2~?: we can replace the last digit

1 followed by all zeros by a digit 0 followed by all ones. This wili not cause

a problem, but to be clear we distinguish these two sequences by a subscript:
d} (z) for the sequence ending in zeros (the expansion “from above,” ie., the
expansion that will start by the same J — 1 digits as £ + 277 for J—»00), d;(z)
for the sequence ending in ones (expansion “from below”). For instance,

d‘{(%)z 1, d:(%) =0, n>22,

di($) =0, d(3)=1, n>2.

The two definition regions 0 <z < § and 3 <z < 1 of (7.2. 5) and (7.2.7) are
completely-characterized by d,(z): dl(z) 0 fr<i 1ifzr>3

For every binary sequence d = (dn)neN\{0} We also define its right shift rd
by .
(7d)n = dnpa, n =12,
It is then clear that 7d(z) = d(2z) if0 <z < 3, 'rd(:r) d(2x -1) lf <z<l
(For z = 1, we have two possibilities: 7d*(3) = d(()), 'rd"(z) d(1). ) Although
7 is really defined on binary sequences, we will make a slight abuse of notation
and write 7z = y rather than rd(x) = d(y). With this new notation, we can
rewrite (7.2.5), (7.2.7) as the single equation

”J+l(z) = Td;(z) ”J(T“) (7.2.9)

If the v; have a limit v, then this vector-valued functlon v will therefore be a
fixed point of the linear operator T defined by

(Tw)(z) = Tyy(x) w(rz) 5

T acts on all the vector-valued functions w : [0,1] — R that satisfy the
requirementis . .

@) =0, [wlx=0, [@(O0)= [w(1)la-1, k=2 N.- (1210

Y
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TR T T

(As a result of these conditions Tw is defined unambiguously at the dyadic
rationals: the two expansions lead to the same resuit.)

3 What has all this recasting the equations into different forms done for us?
- Well, it follows from (7.2.9) that

? v(2) = Ty, (e) Tay(a) - Tay(a) wo(T’2),

which implies
v)(Z) = vy46(2) = Tay(z) - Tay(z) loo(7z) —ve(r'7)] - (7.2.11)

In other words, information on the spectral properties of products of the Ty-
. matrices will help us to control the difference v, — v, 4., 80 that we can prove
v, — v, and derive smoothness for v. But let us turn to an example.

For the function 2¢ (7.2.1) reads

3

2(x) = ) ce 292 -k), . (7.2.12)
k=0
_with
_1+v3 0 3+4V3 0 _3-v3 _1-V3
Cg = 4 ) 1 = 4 ) 2 = 4 y C8 4
Note that
' co+ec =c+ec3 =1 (7.2.13)
and
2(52 = ¢ +3¢3, . (7214)

both of which are consequences of the divisibility of mo(£) = 4 Toheo Ck ek
i by (1 + e~¥)2. The values 2¢(1), 3¢(2) are determined by the system

2¢(1)\ _ 20(1) . _fa e
(24’(2)) =M ( 2¢(2)) y with M = (Cs Cz) '
Becausg of (7.5.13), the columns of M all sum to 1, ensuring that (1, 1) is a left
eigenvector of M with eigenvalue 1. This eigenvaine is nondegenerate; the right
eigenvector for the same eigenvalue is therefore not orthonormal to (1, 1), which
means it can be normalized so that the sum of its entries is 1. This choice of
(26(1), 2¢(2)) leads to

39(1) = 1+2‘/§. 2¢(2) = #

The matrices Tp, T) are 3 > 3 matrices given by

o 0 O a ¢ 0
To=|ga o], Th=|ao aa
D g o 0 0 ¢
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Because of (7.2.13), Tp and T; have a common left eigenvector e; = (1, 1, 1)
with eigenvalue 1. Moreover, for all z € [0, 1),

i

e1 - vo(z) e1- [(1 - z) w(0) + z vo(1)]

= (1-2) [26(1) + 26(2)] + z [26(1) + 26(2)]

(use (7.2.2))
= 1.
It follows that, for all = € [0,1], all j € N,
e1-v(2) = e1-Ty) - Tuy(x) vo(riz)
= ¢ -v(7T'z) {because e;Ty =€, for d =190, 1)
= 1.

Consequently, vo(y) —ve(y) € By = {w; e1-w = wy +wy+ws = 0}, the space
orthogonal to e;. In view of (7.2.11), we therefore only need to study products
of T;-matrices restricted to E) in order to control the convergence of the v;. But
more is true! Define e; = (1, 2, 3). Then (7.2.14) implies

eeTo = je2 + aper,
(7.2.15)
Ty = jes + mey,

withag = co+20 -4 = 558,03 = c1+203 -3 = 358, If we define
€ = e3 — 2a9 €1, then (7.2.15) becomes

e3To = 4 and Ty = Jed~fer, ored Ty = el -3 de .
On the other h@d,
| e} -w(z) = (1-2)ed-w(0) + zef-w(l) = —z;
consequently,
€] vi(z) = € Tu(s) v5_1(r2)
= ~3die) + 3 B vya(ra)
- ZJ:T"' dm(z) + 277 €} - w(r’2)

m=1

]
—22'"' dn(z) — 279 ¥z = —z.

m=1

ik
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It follows that € - [up(x) — ve(z)] = 0. This means that we only need to study
products of Ty-matrices restricted to Es, the space spanned by e; and €3, in
order to control v, — v,,,. But, because this is a simple example, E; is one-
dimensional, and Ty|g, is simply multiplication by some constant, namely the

third eigenvalue of T, which is lif@ for Ty, ‘—‘f@ for T}. Consequently,

o x
l+\/i}1 I"ﬁz"-ldj()

c, 7.2.16
4 143 ( )

where we have used that the v¢ are uniformly bounded.® Since l:—;—ﬁl <1,
(7.2.16) implies

flv, (x) — v,42(2)]| < [

v, () — vjae(x)l| < C 277,

witha = |log((1 + V3)/4)|/log2 = .550. It follows that the v, have a limit
function v, which is continuous since all the v, are and since the convergence is
uniform. Moreover v automatically satisfies (7.2.10), since all the v, do, so that
it can be “unfolded” into a continuous function F on [0, 3]. This function solves
(7.2.1), so that ¢ = F, and it is uniformly approachable by piecewise linear
spline functions F, with nodes at the k277,

26— Fylle < C 277 . (7.2.17)

It follows from standard spline theory (see, e.g., Schumaker (1981))7 that ¢ is
Holder continuous with exponent a = .550. Note that this is better than the best
result in §7.1 (we found a = .5 — ¢ at the end of §7.1.3). This Holder exponent
is optimal: from (7.2.12) we have

J .
20(277) = (”‘/3) 2@ ) = = (.‘* 3) 2(1) = €27,

4 4

hence

L 1@ - 200 = C2)
But this matrix method can do even better than determine the optimal Holder
exponent. Since v(z) = Ty,(,)v(7x), we have, for ¢ small encugh so that z and
z + t bave the same first j digits in their binary expansion,

v(z) ~v(z +1t) = Tuo) - Taye) [0(P2) = v(P (2 +1))] .
This can be studied in exactly the same way as v;j(z) — v;4¢(z) above; we find
e - v(z)—v(z+t)] = 0,
e -uiz)~-v(z+t)] = t.
For the remainder, only the T4|g, matter, and we find

X
l—ﬁ Z‘;nnl dn(z)
1+v3

flv(z) - vz + ) <Clt| + C 27 ’ (7.2.18)
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where t itself is of order 277. With the notation r;(z) = % 1 .1 da(z), (1.2.18)
can be rewritten as )

lv(z) - v(z + )| S CJt] + € 2-(e+BrNi | (7.2.19)

where 8 = |log}(1 — v3)/(1 + v3)||/log 2. Suppose r;(z) tends to a limit r(z)
for j—oo. If r(z) < 5% = .2368, then the second term in (7.2.19) dominates
the first, and v, hence ;¢, is Holder continuous with exponent a + fr(z). If
r(z) > i—jf-, then the first term, of order 2-7, dominates, and 3¢ is Lipschitz. In
fact, one can’even prove that ;¢ is differentiable in these points, which constitute
a set of full measure. This establishes a whole hierarchy of fractal sets (the sets
on which r(z) takes some preassigned value) on which 2¢ has different Holder
exponents. And what happens at dyadic rationals? Well, there you can define
r+(z), depending on whether you come “from above” (associated with d*(z))
or “from below” (d~(z)); r4+(z) = 0, r_(z) = 1. As a consequence, 2¢ is left
differentiable at dyadic rationals, z, but has Hélder exponent .550 when z is
approached from the right. This is illustrated by Figure 7.1, which shows blow-
ups of 2¢, exhibiting the characteristic lopsided peaks at even very fine scales.

1.5 T T T T

1

05

0.07 T T T 0.068 T
0.06 —
0.066} ]
005! ]
0.04¢ 0064} d
0-03 L i 1 L 1 It
248 249 25 251 252 24998 25 2.5002

Fi16. 7.1. The function 3¢(z) and iwe successive blounips near x = 2.5.

In this example, we had two “sum rules” (7.2.13), (7.2.14), reflecting that
mo(€) = 33, cx e ** was divisible by {(1 + ¢7%)/2)*. In general, mo
is divisible by ({1 + e %)/2)", and we have N sum rules. The subspace Ey

|
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will, however, be more than one-dimensional, which complicates estimates. The
general theorem about global regularity is as follows.
THEOREM 7.2.1. Assume that the cx, k = 0,---, K, satisfy Zfzo cx = 2

and
K

Y (-1)¥ K ey =0 fort=0,1, L. (7.2.20)
k=0

For every m = 1,:--,L + 1, define E,, to be the subspace of RrY orthogonal
to Uy = Span {e1, -+, em}, where e, = (1371, 22-1,... N?-1). Assume that
there exist 1/2 < A< 1,0< ¢ < L(€£ € N) and C > 0 such that, for all binary
sequences (d;);eN, and allm e N,

T, - TanlErysl S C A™27™ (1.2.21)

Then

1. there ezists a non-trimal continuous L'-solution F for the two-scale equa-
tion (7.2.1) associated with the c,, )

2. this solution F is ¢ times continuously differentiable, and

3. if A > 1, then the €th derivative FY of f is Hilder continuous, with
ezponent at least |In )|/ In2; if X = 1/2, then the (th derwative FY) of F

18 almost Lipschilz: it satisfies

IF® (2 +1) ~ FO (z)] < Clt| |In]l| .

REMARK. The restriction A > ] means only that we pick the largest possibte
integer £ < L for which (7.2.21) holds with A < 1. If £ = L, then necessarily
A >'3 (see Daubechies and Lagarias (1992)); if { < L and X < }, then we could
replace £ by £+ 1 and X by 2), and (7.2.21) would hold for a larger integer £. o

A similar general theorem can be formulated for the local! regularity fluctua-
tions exhibitéd by the example of ;¢. For a precise statement, more details and
proofs, I refer to Daubechies and Lagarias (1991, 1992).

When applied to the ¢, these methods lead to the following optimal Holder
exponents:

These are clearly better than what was obtained in §7.1.3; moreover, we see to
our surprise that 3¢ is continuvously differentiable, even though its graph seems
to have a “peak” at £ = 1. Blowups show that this is deceptive: the true
maximum lies a little to the right of 2 = 1, and everything is indeed smooth
{see Figure 7.2). The derivative of 3¢ is continucus, but has a very small Hilder
exponent, as illustrated by Figure 7.3. '
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FI1G. 7.2. The function 3¢(z) and successive blowups around z = 1.
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F1G. 7.3. The derivative of 3¢(x).
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Unfortunately, these matrix methods are too cumbersome to treat large ex-
amples. Another, more recent “direct method” has been developed in Dyn and
Levin (1989) and Rioul (1991); when applied to the y¢ with N = 2,3,4 it re-
produces the a-values above; since it is computationally less heayy, it can also
tackle larger values of N with better results than in §7.1.3 (see Rioul (1991)).

REMARKS.

1. Note the similarity of the matrices Ty, T} and Pp in §7.1.3 (see (7.1.27))!
Even the spectral analysis, with the nested invariant subspaces, is the same.
This shows that the result in Theorem 7.1.12 is indeed optimal: if A is the
spectral radius of Py|g,x = .T1lE,x, then

I(Thle )™ 2 C(:\ -em

so that X in (7.2.21) must be at least A2%, and the Holder exponent is
at most £ + |log A|/log 2 < }log A}/ log2. The difference between the two
approaches is that the present method also gives optimal estimates if Mp(£)
is not positive, unlike §7.1.3.

2. The condition (7.2.21) suggests that infinitely many conditions on the
To, T: have to be checked before Theorem 7.2.1 can be applied. For-
tunately, (7.2.21) can be reduced to equivalent conditions which can be
checked in a finite-time computer search. For details, see Daubechies and
Lagarias (1992).

3. In practice, it is not necessary to work with Ty, T; and restrict them
to Ezx. One can also define directly the matrices Ty, T corresponding
to the coefficients of mo(£)/((1 + e %)/2)¥; it turns out that bounds on
| Ta, -+ Ta, |Eaxc || are equivalent to bounds on || Ty, - Ty, || - 27 L™ (see
Daubechies and Lagarias (1992), §5). The matrices T; are much smaller
than T; (N — K) x (N — K) instead of N x N). o

-Since this method works for any function satisfying an equation of the type
(7.2.1), we can apply it to the basic functions in subdivision schemes. For the
Lagrangian interpolation function corresponding to (6.5.14), a detailed analysis
shows that F is “almost” C?: it is C?, and F” satisfies

|F'(z) - F'(z + )| < Clt| |log]tl{ .

This had already been obtained previously by Dubuc (1986). But our matrix
methods can do more! They can prove that F is almost everywhere differen-
tiable, and they can even compute F” where it is well defined. For details, see
again Daubechies and Lagarias (1992).

7.3. Compactly supported wavelets with more regularity.

By Corollary 5.5.2, an orthonormal basis of wavelets can consist of CV~! wavelets
only if the basic wavelet ¥ has N vanishing moments. (We implicitly assume
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that ¢ stems from a multiresolution analysis and that ¢, 1 have sufficient decay;
hoth conditions are trivially satisfied for the compactly supported wavelet bases
as constructed in Chapter 6.) This was our motivation to construct the n¢,
which lead to n with N vanishing moments. The asymptotic results in §7.1.2
show however that the y¢, y¥ € CPY with g ~ .2. This means that 80% of
the zero moments are “wasted,” i.e., the same regularity could be achieved with
only N/5 vanishing moments.

Something similar happens for small values of V. For instance, 3¢ is contin-
uous but not C!, 3¢ is C* but not C?, even though 29, 3% have, respectively,
two and three vanishing moments. We can therefore “sacrifice” in each of these
two cases one of the vanishing moments and use the additional degree of freedom
to obtain ¢ with a better Holder exponent than 2¢ or 3¢ have, with the same
support width. This amounts to replacing [mo(£){> = (cos? g)‘” Pn(sin? g) by
Imo(€)1? = (cos? §)V~1[Py_y(sin’ §) + a(sin® §)" cos£] (see (6.1.11)), and to
choose a so that the regularity of ¢ is improved. Examples for N = 2, 3 are
shown in Figures 7.4 and 7.5; the corresponding h,, are as follows:

N =2 %:5-‘375

h = %

hy = ;L

. hs = 7%

N =3 ho = .37432841633//2
hy = .109093396059//2
hy = .786941229301/v/2
h; = —.146269859213/v2
he = —.161269645631/v/2
hs = .0553358986263/v/2

These examples correspond to a choice of a such that max|p (To|g,), 2 (T1lg,)]
is minimized; the eigenvalues of Tp, 77 are then degenerate.® One can prove
that the Holder exponents of these two functions are at least .5864, 1.40198
respectively, and at most .60017, 1.4176; these last values are probably the true
Holder exponents. For more details, see Daubechies (1990b).

7.4. Regularity or vanishing moments?

The examples in the previous section show that for fixed support width of ¢, v,
or equivalently, for fixed length of the filters in the associated subband coding
scheme, the choice of the hy that leads to maximum regularity is different from
the choice with maximum number N of vanishing moments for ¥. The question
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most raguiar $for N = 2

0 1 2 3

Fi1G. 7.4. The scaling function ¢ for the most regular wavelel construction unih support
width 3.

~

15 T —r T
most reguias ¢ for N =3
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0 2 4
Fi1G. 7.5. The scaling function ¢ for the most regular wavelet construction with support

undth 5. )

then arises: what is more important, vanishing moments or regularity? The
answer depends on the application, and is not always clear. Beylkin, Coifman,
and Rokhlin (1991) use compactly supported orthonormal wavelets to compress
large matrices, i.e., to reduce them to a sparse form. For the details of this ap-
plication, the reader should consult the original paper, or the chapter by Beylkin
in Ruskai et al. (1991); one of the things that make their method work is the
number of vanishing moments. Suppose you want to decompose a function F(z)
into wavelets (strictly speaking, matrices should be modelled by a function of
two variables, but the point is illustrated just as well, and in a simpler way,
with one variable). You compute all the wavelet coefficients (F, ¥;.), and to
compress all that information, you throw away all the coefficients smaller than
some threshold ¢. Let us see what this means at some fine scale; j = —J, J €N
and J “large.” If F is CL~! and ¢ has L vanishing moments, then, for = near
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2~ 7k, we have
F(z) = F@Q7k) + FF(2k)(z~27"k)

(L i 1) FED k) (z— 277k + (2 - 27 k) R(2),

where R is bounded. If we multiply this by ¥(2/z - k) and integrate, then the
fiest L terms will not contribute because [dz zty(z) =0,£=0,--,L -1
Consequently,

'(F, 'l’—-l.kn

+o- +

i

I / dz (z — 277k)" R(z) 2772 (272 - k)

< C27iE-yn / dy lyi* lw(w)! -

For J large, this will be negligibly small, unless R is very large near k277, After
thresholding, we will therefore only retain fine-scale wavelet coefficients near
singularities of F or its derivatives. The effect will be all the more pronounced
if the number L of vanishing moments of 9 is large.® Note that the regularity
of ¥ does not play a role at all in this argument; it seems that for Beylkin,
Coifman, and Rokhlin-type applications the number of vanishing moments is far
more important than the regularity of 3.

For other applications, regularity may be more relevant. Suppose you want
to compress the information in an image. Again, yow decompose into wavelets
(two-dimensional wavelets, e.g., associated with a tensor product multiresolu-
tion analysis), and you throw away all the small coefficients. (This is a rather
primitive procedure. In practice, one chooses to allocate more piecision to some
coefficients than to others, by means of a quantization rule.) You end up with a
representation of the type

-

I= Y (I %) or
3kES

where S is only a (small) subset of all the possible values, chosen in function
of I. The mistakes you have made will consist of multiples of the deleted 1, ;.
If these are very wild objects, then the difference between I and T might well
be much more perceptible than if ¢ is samoother. This is admittedly very much
a hand-waving argument, but it suggests that at least some regularity might
be required. Some first experiments reported in Antonini et al. (1991) seem to
confirm this, but more experiments are required for a convincing answer.

The sum rules (7.2.20), equivalent to the divisibility of mg(£) by (1+e7 %)L+,
have another interesting consequence. In the example studied in detail, 2¢, we
saw that (7.2.13) and (7.2.14) implied that

er-v(xy=1, & vz)=-z

(we proved both for vj, so that they also hold for v = lim, . v,), or, in terms
of ¢ rather than v,

Hz)+p(z+1)+e(x+2) =1,
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(1 = 2ap) ¢(z) + (2 — 2ap) P(z + 1) + (3 — 2a¢) $(z +2) = —z

forall z € {0, 1]. Because support(4) = [0, 3], one easily checks that this implies,
forall y € R,

Z dy+n)=1,

nel

z (n+1-2a0) ply+n)=-y.
neZ

All polynomials of degree less than or equal to 1 can therefore be written as
linear combinations of the ¢(z — n). Something similar happens in general: the
conditions (7.2.20) ensure that all the polynomials of degree less than or equal
to L can be generated by linear combinations of the ¢(z — n). (See Fix and
Strang (1969), Cavaretta, Dahmen, and Micchelli (1991).) This can again be
used to explain why the condition f-émolg._., =0,£=0,---,L is useful in
subband filtering schemes. Ideally, one wants the low frequency channel, after
the filtering, to contain all the slowly changing features, and to find only true
“high frequency” features in the other channel. Polynomials of low degree are
essentially slowly changing features, and the sum rules (7.2.20) ensure that they
(or their restrictions to a large interval, to keep 1t all in L%(R); we disregard
border effects here) are in every V, i.e, they are given completely by the low
frequency channel.

In the design of FIR filters for subband coding, it is not customaty to pay
much attention. to the number of vanishing moments of mg, which is reflected *
by the “fatness” of the filter at £ = x.!? What follows is yet another argument
showing that in implementations where filters are cascaded, it is nevertheless
important to have at least some zero moments. Suppaose that we apply three
successive low pass filtering + decimation steps to a signal. If we call the original
signal f°, with Fourier transform fO(¢) = 3, f2 e, then the result of one

filtering + decimation is the sequence f1, where f1(¢) = Yon f1 €™ satisfies

1) = % [fo (g) L (g) + f°(§+1r)mo (§+1r)] . (7.4.1)

The second term can be viewed as the result of aliasing, due to the lower sampling
rate in the f!. Similarly, three such operations lead to

fey =232 [f" (g) mo (g) mo (-i-) mo (g) +7 “folding” terms] :

(74.2)
It follows that the product mg(§) mo(2€) mo(4€) plays an important role. Figure
7.6 shows what this product looks like for the ideal low pass filter, mg(¢) = 1
for |¢] < 7/2, 0 for n/2 < |€| < =. If the low pass filter is not ideal, then it will
“leak” a little into the high-pass region #/2 < |¢| < #. It is then important
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1 Imp(28) 1 S
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0 n/4 x/2 3x/4 x
| mg(48)|

ol I 4 J

0 n/4 n/2 3n/4 n

1 imo( &) mo(28) mo(45) |

- I ] o

0 n/4 2 3n/4 n
F1G. 7.8. Plots of mg(£), mo(2x), mo(4€) and of their product for the ideal low-pass filter.

to contain this leakage, especially when the filters are cascaded: it contributes
to the “folding” terms in (7.4.1) and can lead to audible or visible aliasing once
quantization is introduced and perfect reconstruction is no longer attained. In
the ideal case'in Figure 7.6, the “bump” of mo(2€) for £ € [37/4, =] is killed in
the product mo(£) mo(2£) mo(4€) because mo(¢) = 0 in this interval. The same
happens for extra “bumps” of mg(4£), resulting in mo(£) mo(2) mo(4€) = 1 if
£ € [0,x/8,= 0if £ € |n/8,7]. In the non-ideal case, a similar effect can be
achieved by imposing that mg have a zero of reasonable multiplicity at £ = =,
which “kills” the maximum of mg(2¢) in a concatenation. This phenomenon is
illustrated in Figure 7.7, where a wavelet filter is compared with a non-wavelet
perfect reconstruction filter. In Figure 7.7a we see plots of {mg(£)] for two or-
thonormal perfect reconstruction filters (i.e., |mo(€)J* + |mo(€ + 7)|2 = 1), each
with eight taps; the filter on the left corresponds to the example constructed in
§6.4, with two vanishing moments (i.e., mo has a zero with double multiplicity
at £ = ), and an extra zero at £ = 77 /9. The filter on the right is not a wavelet
filter, since mo(r) # 0 and hence my(0) # 1; it is constructed mare according to
standard wisdom, with an “equi-ripple” design: in this case the location of the
nodes is chosen so that the amplitude of the two ripples is the same as in the
one ripple in the wavelet filter on the left, while keeping the transition band as
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narrow as possible within this constraint. The resulting filter is a little steeper
than the wavelet filter (its first zero is at £ = .76x rather than .78x for the
wavelet example), and seems therefore closer to the ideal filter. (Of course, both
are quite far from the ideal case, but remember that we have used only eight
taps!) Figure 7.7b plots | mo(€) mo(2€) mo(4€)] for these two examples, and
Figure 7.7c- blows up these plots in the region 7/2 < £ < 7. It is clear that
in the second (non-wavelet) case the leakage into this high frequency region is
more important than in the wavelet case; this is true in L2-sense as well as in
amplitude (the highest peak at right is about 3 dB higher than at left). This
effect can become even more pronounced when larger filters are considered.!!

a) 10

jmg(&)1 Imgl &)
05
0‘1 4 1 Cit A i
0 n/2 r 0 a2 n

c) 0.03

T

0.02

0.01

T

nR

3n/4

A

nf2

In/4

al

Fic. 7.7. Comparison of thm' concalenations of two 8-tap low-pass filters unth the perfect

reconstruction property: (a) plots of {mo(§)l, (b) plots of {mo(£) mo(2€) mo(4€)}, (c) bloumps
of bforx/2< €< n. .

Notes.

1. Incidentally, this proves that the statement in Remark 3 on p. 983 of
Daubechies (1988b) is wrong; I made a mistake in the extraction of a
numerical value for 4 from Meyer’s proof.
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. This is essentially what was done in the Appendix of Daubechies (1988b).
Beware of the typos in that Appendix, however!

. If the restriction that F is a compactly supported L!-function is removed,
then many other solutions are possible. On the other hand, if we insist on
compact support and F € L', then necessarily Y 5 o cx = ‘2"‘“ for some
m € N, and F is the mth derivative of the compactly supported L-gblution
to the equation obtained after replacing the cx by 2~ ™cy; no generality is
lost by the restriction Y ey = 2. For proofs, see Daubechies and Lagarias
(1991).

. In all the examples we will consider, it is not really necessary to choose
the particular F constructed later: the algonthm would work with any Fy
with integral one.

. We implicitly assume that the ¢ are real. Everything still carries through

for complex ci, but then v(z) € CK.

. Equipping E, in this special case with the norm [||(a,~a — b,b)|}}* =
a’? + ® (equivalent with the standard Euclidian norm on E;), one
finds sup,¢ g, ||Toulll/ |l =~ .728,sup.ep, N1 T1ulll/|ijulll =~ 859, so that
Hvis1(z) — v, ()| < A%|||vi(z) — vo(2)]||, with A = .859, by (7.2.11). It
immediately follows that

A

J
loy@l < Hoo@I+C3 Nvk(z) = ve-1 ()]

k=1 [
lwo ()| + (1 = A)~! Clllvs(z) — vo()lI| ,

which is upiformly bounded in z and j.

JA

. The following argument also gives a direct proof. Suppose that 2-U+1) <
y — ¢ < 279, Then there exists £ € N so that one of the two following
alternatives holds: (£ - 1)2 7 <z <y<@27or(f-1)277 <z <27 <
y < (¢+1)277, We will only discuss the second case; the first is similar.
We then have - -

IF@) - 1)l < 1f(@) = fi@) + Ifslz) - f5(e279)
+f5277) - f;) + 1) - F@)

< 2027 +|f5(z) - (27 + () - fe27),

by (7.2.17). Because of the choice of ¢, there exists k € N so that z’ =
z~k and £2-7 = £2-7 - k are both in [0,1). We can moreover choose
binary expansions for z' and #27 with coinciding first j digits (choose
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the expansion ending in ones for #2~7, and if 2’ is dyadic, the expansion
ending in zeros for z’). It follows that

1H(E) - £ € Joyla) - v (8279))
= |Tayzy - Taye) o(T72') — vo(P? (€27 )] ||

< Cc2Y,
where we have used ||Ty, - - - T, | g, /| < C 2727, the boundedness of vy, and
vo(u) ~vo(u’) € E, for all u,w’. We can similarly bound |f,(y) — f;(£277));
putting it all together leads to
|f(z) - I S C' 27 < Oz - y|*,

which proves the Holder continuity with exponent a.

. This corrects a mistake in the first printing, where a too large value was

given for the Holder exponent for N = 2. I thank L. Villemoes and C.
Heil for pointing out this mistake to me. Incidentally, the N = 2 example

" is an instance where the best possible A in (7.2.21) is strictly larger than

10.

11.

mﬂﬂffP(Tolt:;),P(TﬂEz)]. In this case p(Toisl) = p(Tl]El) = g’ and
§( (ToT1?)]/1% ~ 1.09946... > 1.

Of course Beylkin, Coifman, and Rokhlin (1991) contains much more than
this! For a large class of matrices it turns out that after an orthonormal
basis transform using wavelets, dense N x N matrices reduce, to sparse
structures with only O(N) entries larger than the threshold ¢. The total
L?-error made by throwing away all the entries below € turns out to be
O(e), which is a much deeper result than the “compression” explained
here; it is essentially the (1) theorem of David and Journé, the proof of
which uses “hard” analysis. -

The argument below also holds for the biorthogonal case (see Chapter 8),
where the flatness of |mg| at £ = 0 and at £ = 7 need not be the same; it
is the multiplicity of the zero at £ = x that counts. ’

In Cohen and Johnston (1992), filters are constructed which optimize cri-
teria that are a mixture of “standard” wisdom and wavelet desiderata.

-~




CHAPTER 8

Symmetry for Compactly Supported
Wavelet Bases

All the examples we have seen so far of compactly supported orthonormal wavelet
bases are conspicuously non-symmetric, in contrast to the infinitely supported
wavelet bases we saw before, such as the Meyer and Battle-Lemarié bases. In
this chapter we discuss why this asymmetry occurs, what can be done about 1t,
and whether anything should be done about it. .

8.1. Absence of symmetry for compactly supported orthonormal
wavelets,

In Chapter 5 we already saw that a multiresolution analysis does not determine
¢, ¥ uniquely. This is again borne out by the following lemma.

LEMMA 8.1.1. If fo(z) = f(z — n) and go(x) = g(x — n), n € Z, constatute
orthonormal bases of the same subspace E of L?(R), then there erists a 2m-

periodic function a(€), with |al€)| = 1, so that §(£) = a(§)F(€).
Proof. '

1. Since the f, are an orthonormal basis for £ 3 g, g = 2n an fa,
with 5. lan|? = [lgl® = 1. Consequently, §(§) = a(§) f(£), wth

al6) = 3o, e~

2. As shown in Chapter 5, orthonormality of the f(- — n) is equivalent with
T 7€ = 20m)[? = (21) " ace. Sianilarly ¥, [§(€ ~ 2nm)[? = (20)7". It
follows that [a(§)| =1. =

However, we also have the following lemma.

LEMMA 8.1.2. If (an)nez i o finite sequence (all but finitely many an equal
0), and gf[a(f)l = 1, then an = aby n, for some ng € Z.

Proof.
1. Since |a(£)? =1, 3, an @y = bep. (8.1.1)

2. Define n;,ng so that an, # 0 3 a,,, and a, =0if n <n; or n > nj.
251
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. *®
3. By‘ (8.1.1), E" Q“ an.’.nz—nl = '615’—"1'0- But, by the deﬁnition ofﬂl, ng,
the sum consists of the single term a,, &,,, which is nonzero by definition.
Hence ny =ng. =

Together, these two lemmas imply that compactly supported ¢, ¢ are unique, for
a given.multiresolution analysis, up to a shift.

COROLLARY 8.1.3. If- f,g are both compactly, mpported and the
Ja = f(- = n), gn = 9(- — n), n € Z are both orthonormal bases for the same
space E, then g(z) = af(z — ng) for some a € C, |aj =1 and ng € Z.

Proof. By Lemma 8.1.1, §(§) = a(£)f(£), with e, = [dz g(z)f(z ~ n).
Because f, g have compact support, only finitely many a, # 0. Consequently,
by Lemma 8.1.2, a(£) = ae~*™¢, hence g(z) = af(z ~ ng)-

In particular, if ¢;, @2 are both compactly supported, and “ortho-
normalized”! scaling functions for the game multiresolution analysis, then ¢;
is a shifted version of ¢;: the constant o is necessarily 1, because by convention
Jdz ¢2(z) = 1 = [dz $1(z) (see Chapter 5). This uniqueness result can be
used to prove that, except for the Haar basis, all real orthonormal wavelet bases
with compact support are asymmetric.

THEOREM 8.1.4. Suppose that ¢ and o, the scaling ﬁmct:on and wavelet
associated with a multiresolution analysis, are both real and compactly supported.
If  has either a symmetry or an antisymmetry azis, then ¢ is the Haar function.

Proof.

1. We can always shift ¢ so that h, = [dz ¢(x) ¢(z —~ n) = 0 for n <0,
ho # 0. Since ¢ is real, so are the h,,. Let N be the largest index for which
h,, does not vanish: hy # 0, h,, = 0 for n > N. Then N is odd, because
N even, N = 2ny together with

2 by Bayze = 8¢9,
_ wouldleadtc\iaoontmdictionifl=no
2. Sineé h, = 0 for n <0, n > N, support ¢ = [0, N}, by Lemma 6.2.2.2 The
standard definition (5.1.34) then leads to support ¥ = [—ng, ng + 1], where
no = ¥=1. The symmetry axis is therefore necessarily at 3; we have either
¥(1 — z) = () or Y(1 — z) = —¢Y(z).

3. Consequently,
Yia(-z) = 2793927z +k+1)
= +¢; _k+1)(%),

which means that the Wj-spaces are invariant under the map z — 2.

SineeV}: & W, V, is invariant as well.
k>3
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4. Define now ¢(z) = ¢(N — z). Then the ¢(- — n) generate an orthonormal
basnsof%(smce%:smmantforzH~z),fdz¢(z) fda:¢(z)-1
andeupportgb—supportqs Itfollows&omCorollarySlSthatgs 0,
i, $(N — z) = ¢(z). Consequently,

b = V3 [do (o) $(22-m)

Ji/dz.ﬁm-z)an-’zﬂn, ‘

= V3 [dy o) day-N+m)=hwn. (812

5. On the other hand,
b0 = Y hn hnsn -

]

Y ham hamear + Z hamia Bamyatss
m m

1

3> ham Bamsze + Y hang-3mhang-3m-2
m m

{use (8.1.2) on the second term)
2 z hﬂm h2m+21 -

i

-

By Lemma 8.1.2, this implies hgzm = 8m mq@ for some mg € Z, |a] = 2-Y/2,
Since we assumed ho # 0, this means that k3, = én0 a. By (8.1.2),
An = hg = a as well, and Aam41 = @ O 0, in general. The normalization
Th, = V2 (see Chapter 5) fixes the value of a, a = 715

6. We have thus h,,,, = 75 6,,,,0, h2m+1 = é; 5,,‘,%, or mo(f) -~ %(1\+e—iN€).
It follows that @(€) = (21)~1/2 ((1 — e~N€)/iN¢), or ¢(z) = N-! for
0 <z < N, ¢(z) = 0 otherwise. If N = 1, then this gives exactly the Haar
basis; if N > 1, then the ¢(- — n) are not orthonormal, which contradicts
the assumptions in the theorem. »

REMARKS.

1. The nonexistence of symmetiic or antisymmetric real compactly supported
wavelets should be no surprise to anybody ﬁumlmr with subband coding:
it had already been noted by Smith and Barnwell (1986) that symmetry
is not compatible with the the exact reconstruction property in subband
filtering. The only extra result of Theorem 8.1.4 is that symmetry for ¢
necessarily implies symmetry for the h,, but that is a rather intuitively
true result anyway.

2. If the restriction that ¢ be real is lifted, then symmetry is possible, even if
¢ is compactly supported (Lawton, private communication, 1990). o
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The asymmetry of all the examples plotted in §6.4 is therefore unavoidable. But
why should we care? Symmetry is nice, but can't we do without? For some
applications it does not really matter at all. The numerical analysis applications
in Beylkin, Coifman, and Rokhlin (1991), for instance, work very well with very
asymmetric wavelets. For other applications, the asymmetry can be a nuisance.
In image coding, for example, quantization errors will often be most prominent
around edges in the images; it is a property of our visual system that we are
more tolerant of symmetric errors than asymmetric ones. In other words, less
asymmetry would result in greater compressibility for the same perceptual error.3
Moreover, symmetric filters make it easier to deal with the boundaries of the
image (see also Chapter 10), another reason why the subband coding engineering
literature often sticks to symmetry. The following subsections discuss what we
can do to make orthonormal wavelets less asymmetric, or how we can recover
symmetry if we give up orthonormality.

8.1.1. Closer to linear phase. Symmetric filters are often called linear
phase filters by engineers; if a filter is not symmetric, then its deviation from
symmetry is judged by how much its phase deviates from a linear function. More
precisely, a filter with filter coefficients a,, is called linear phase if the phase of
the function a(€) = ¥, ane ™ is a linear function of £, i.e., if, for some £ € Z,

a(§) = e [a(8)] - )

This mesns that the a,, are symmetric around ¢, a, = az¢—n. Note that according
to this definition, the Haar filter mo(¢) = (1 + e~*)/2 is not linear phase,
although the filter coefficients are clearly symmetric. This is because the hH®er
are symmetric around } ¢ Z; in this case

_ [ e imge)] if 0<E<n,
molt) = { el fmg(@)] it m<E< 2.

The phase has a discontinuity at «, where Ima| = 0 If we extend the definition
of linear phase to include also the filters for which the phase of a(£) is piecewise
linear, with constant slope, and has discontinuities only where |a(§)] is zero, then
filters with the same symmetry as the Haar filter are also included. To make
a filter “close” to symmetric, the idea is then to juggle with its phase so that
it is “almost” linear. Let us-apply this to the “standard” comstruction of the
N, NY, 85 given in §6.4. In that case we have

| ymo(©)? = (cos £/22N Pylsin? ¢/2),

and the coefficients y h,, were determined by taking the “square root” of Py via
spectral factarization. Typically this means writing the polynomial L$z), defined
by L(e¥) = Py (sm €/2), as a product of (z — z:)(z — Ze){z — 27 ')z - Z;1)
or (z — rg)(z — r;*), where z¢, r¢ are the complex, respectively, real roots of L,
and selecting one pair {z;, Z} out of each quadruple of complex roots, and one
value r¢ out of each pair of real roots. Up to normalization, the resulting m, is
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then

Nmol€) = (‘“") T -0 TLe =0
* k

The phase of xymg can therefore be computed from the phase of each contribu-
tion. Since
(€7 ~ Ry e™)(e™% — Ry €*) = e %(e~*¢ — 2Ry cosay + R} %) -
and
(e —re) = e~ %2 (eoiiﬁ —re e’f/z) ,
the corresponding pﬁase contributions are

_ (R? ~ 1) sin¢
D¢(¢) = arctg (—-—*—“T( 72) cost — 3R, cos al)

and +1 ¢
re
(£) = arctg (Tl — e '5) .

Let us choose the valuation of arctg so that ®, is continuous in [0,27], and
®,(0) = 0; as shown by the example of the Haar basis, this may not be the
“true” phase: we have ironed out possible discontinuities. To-see how hnear the
phase is, this ironing out is exactly what we want to do, however. Moreover, we
would like to extract only the nonlinear part of ®,; we therefore define

e(€) = 2e(§) — '-* = $el27) .

In §6.4 we systematically chose all the z;, 7, with absolute value less than 1 when
we constructed y¢. This is a so-called “extremal phase” choice; it results in a
total phase Wi () = ), W,(£) which is very nonlinear (see Figure 8.1). In
order to obtain mg as close to linear phase as possible, we have to choose the
zeros to retain from every quadruplet or duplet in such a way that ¥, (£) is as
close to zero as possible. In practice, we have 21¥/2) choices. This number can
be reduced by another factor of 2: for every choice, the complementary choice
(choosing all the other zeros) leads to the complex conjugate mg (up to a phase
shift), and therefore to the mirror image of ¢. For N = 2 or 3, there is therefore
-effectively only one pair ¢, ¥n. For N > 4, one can compare the 2LV/21-1
different graphs for ¥, in order to find the clooest. to linear phase. The net
effect of a change of choice from z,, Z, to zl s E, will be most significant if B,
is close to 1, and if a, is close to either O or 7. In Figure 8.1 we show the graphs
for ¥5) for N = 4, 6, 8, 10, both for the original construction in §6.4, and for
-the case with flattest ... Incidentally, in all cases the original construction
Zmrresponded to the least at ¥, i.e., to the most asymmetric ¢. The “least
asymmetnc" ¢ and ¢, associated with the flattest possible ¥, were plotted in

Fxgure 6.4 for N = 4, 6, 8, 10; the corresponding filter coefficients were given in
Table 6.3, for all N from 4 to 10.
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Fic 81 The non-hnear part Wioe(€) of the phase of mo(E) for N = 4,6,8, and 10,
Jor the extremal phase chorre (largest amplstude) and for the “closest to linear phase” choce
(Alattest curve). .

REMARKS.

1. In this discussion we have restricted ourselves to the case where my and
|C)? are given by (6.1.10) and (6.1.12), respectively. This means that the
¢ in Figure 6.4 are the least asymmetric possible, given that N moments
of i are zero, and that ¢ has support width 2N ~ 1. (This is the minimum
width for N vanishing moments.) If ¢ may have larger support width, then
it can be made even more symmetric. These wider solutions correspond
to a choice R # 0 in (6.1.11). The functions ¢ in the next subsection,
for instance, are more symmetric than those in Figure 6.4, but they have
larger support width.

2. One can achieve even more symmetry by going a little beyond the “stan-
dard” multiresolution scheme explained in Chapter 5. Suppose h,, are
the coefficients associated to & “standard” multiresolution analysis and the
corresponding orthonormal basis (compactly supported or not). Define °
functions @', ¢, ¥', ¥* by

$@) = Z 3 o),
% L boadz-n),
W) = 25 5D b ),

I

¢*(z)
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¥i(z) = % Y D) i ¢ (22 -n).
2 5 -
Then the same calculations as in Chspter 5 show that the functions
Yhia(2) = 27912 Mz — k), 93,,,4(&) = 2797 M3y3(2-% 1z — k)
(4, k € Z) constitute an orthonormal basis for L’(R) Since the recursions
above correspond to

$MO) = mol£/2) molE/A) mol(€/8) malE/16) -
= [T [mo2%*0) meZ5%)| ,

i=1
the phase of q3‘ can be expected to be closer to linear phase than that of

#(£) = (2-3€). Note also'that @2(€) = ¢1(£), ¥2(f) = (&)
hence 4’2( = ¢1(*I), Y2(z) = ¥u(-z). Figure 8.2 shows ¢,

‘ computed from the h, for N = 2, j.e., hg = —z%,hl Jzag;,hz —2#,

hy = 1,2};: (Unlike the previous construction, this “switching” makes

a difference even for N = 2.) For the “least asymmetric” h, given in
Table 6.3, this switching technique leads to slightly “better” ¢, but seems

to have little effect on 9. o

2

05
0

N
—

-
T

L

-2

-1 0 1 2

F1G. 8.2. Scaling funciion ¢ and wavelet Y1 obtained by applying the “switching trick”
to the 4-tap wavelet filters of §6.4.
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8.2. Coiflets.

In §7.4 we saw one advantage of having a high number of vanishing moments
for 1{; jt led to high compressibility because the fine scale wavelet coefficients
‘of a function would be essentially zero where the function was smooth. Since
[dz ¢(z) = 1, the same thmg can never happen for the (f,¢,x). Still, if
Jdz 2* ¢(z) =0 for £=1,---, L, then we can apply the same Taylor expansion
_argument and conclude that for J large, (f, ¢-sx) =~ 2772 f(27k), with an
error that is negligibly small where f is smooth. This means that we have a
particularly simple quadrature rule to go from the samples of f to its fine scale
coefficients (f, ¢-sx). For this reason, R. Coifman suggested in the spring of
1989 that it might be worthwhile to construct orthonormal wavelet bases with
vanishing”moments not only for ¢, but also for ¢.% In this section I give a brief
account of how this can be done; more details are given in Daubechies (1990b).
Because they were first requested by Coifman (with a view to applying them for
the algorithms in Beylkin, Coifman, and Rokhlin), I have named the resu]tmg
wavelets “coiflets,”
The goal is to find 4, ¢ so that

fd;cx‘q{r(x)=0, £=0,---,L-1 (8.2.1)

and

/dz¢(x)=l, /dzz‘¢(z).—.o, e=1,---,L-1 (8.2.2)

L is then called the erder of the coiflet. We already know how to express (8.2.1)
in terms of my; it is equivalent with

—€ L
mo(@) = (L5) £t (823)

What does (8.2.2) correspond to? It is equivalent to the condition "{7&'6—0 = 0,
£=1,---,L-1 Letus check what ¢'(0) = 0 means for m. Because (&) =
mo(£/2) ¢(£/2), we have

O = §mu(e/2) $E/2) + 3 molE/2) #(6/2) 5

hence X A
¢'(0) = 4 my(0) (2m)71/2 + 3 ¢(0),

or |, A .
mg(0) = (2x)'/2 ¢/(0) .

Consequently, fdz z¢(z) =0 is equivalent with mg(0) = 0. Simihri/y, one s:sea
that(8.2.2)isequivalentyzith(;§l ) = 0,{=1,..-,L~1, or with

mo(8) = 1 + (1-e B L), (824
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where £ is a trigonometric polynomial. In addition to (8.2.3) and (8.2.4), mg
will of course also have to satisfy |mgq(£)[2+1moe(§+7)1? = 1. Let us specialize to
L even (the easiest case, although odd L are not much harder), L = 2K. Then
(8.2.3), (8.2.4) imply that we have to find two trigonometric polynomials P;, P,
80 that

2

(Becmu;e(1 +;-;£) -;ex( 2 €) (1~ e"‘)”‘" e K¢ (2:3111 g)zk’)

But we already know what the general form of such P, P, are: (8.2.5) is nathing
other than the Bezout equation which we already solved in §6 1. In particular,
P has the form

P = 3 (K71+E) (e )+ (e §)K 1©,

k=0

where f is an arbitrary trigonometric polynomial. It then remains to taylor f
in mo(€) = ((1+e7%)/2)?X Py(£) s0 that Imo(§)I* + Imo(§ +7) = 11is
satisfied. With the ansatz f(£) = 52X~ f, =%, it is shown in Daubechies
(1990) how to reduce this “tayloring” to the solution of a system of K quadratic
equations for K unknowns. A heuristic, perturbative argument suggests that
this system will have & solution for large K, and explicit numerical solutions are
computed for K = 1,..-,5. Figure 8.3 shows the plots of the resulting ¢, y; the
corresponding coefficients are listed in Table 8.1. It is clear from the figure that
¢,y are much more symmetric than the y¢, x4 of §6.4, or even than the ¢, ¥ in
§8.2, but there is of course a price to pay: a coiflet with 2K vanishing moments
typically has support width 8K — 1, as compared to 4K — 1 for 2x¢.

(oo i)K Pi© = 1+ (sin? g)" Pi).  (825)

REMARK. The ansatz f(§) = E:’_‘; ¥ £, e~ ig not the only possible
one, but it makes the computations easier. For amall values of K (K = 1,2,3),
different ansatzes are also tried cut in Daubechies (1990b). It turns out that
the smoothest coiflets (at least at these small values for K) are not the most
symmetric ones; for K = 1, for instance, there exists a (very asymmetric) coiflet
with Hélder exponent 1.191814, whereas the coiflet of order 2 in Figure 8.3 is
not C?; both have support width 5. Similar gains of regularity can be found for
K = 2,3. For graphs, coeficients and more details, see Daubechies (1990b). o

8.3. Symmetric biorthogonal wavelet bases.

8~ As mentioned above, it is well known in the subband filtering community that
> symmetry and exact reconstruction are incompatible, if the same FIR filters are
used for reconstruction and decomposition. As soon as this last requirement is
- given up, symmetry is possible. This means that we replace the block diagram of

Figure 5.11 by Figure 8.4. Several questions naturally arise: what does Figure 8.4
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2 3
L=2 ¢ 2} L=2 v
h ] 1
0 —— -
0 14 4
-2
2 1 0 t 2 3 2 -1 0 1 2 3
1) 2 : v__
10 L=d ¢ 1 Lad
05 .
-0.5 -1
0 5 -5 . 0 5
1.5 ‘ 2
10} L=8 //\ ¢ 1 L=6 v
0.5 li . L
0 +—J N
05 -1
4 2 0 2 4 4 2 0 2 4
1.5 2 -
1.0 L = 8 Q 1 L - 8 v
0.5 {
0 \/\,-_4 0
- -1
4 2 0 2 4 -4 2 0 2 4
15 2 —
10 L=10 ¢ ] L=10 L A
05
0 0
05 — -1 - :
4 2 0 2 4 4 2 0 2 4

* Pia. 8.3. Coifisls ¥ and their corresponding scaling functions ¢ Jor L = 3,4,6,8, and 10,
The support width of ¢ and ¢ s 3L — 1 in all cases.
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-

Tasre 8.1

The coefficients for coiflets of order L = 2K, K = 1 t0 8. (The vtoefficients lsted are normal-
szed so that their sum 1 1; they are equal to the 2-3/2h,,.)

n hﬂ[ \/-2_ » n h'./ ﬁ
K=1|-2]-.051429728471 | K = 4 0} .353126452562
-1 .238979728471 1} 307157326198
0| .602850456942 2 | - .047112738865
1 .272140543058 3 | ~ 068038127051
2 | - 051420072847 4} 027813640153
3 | — 011070271529 51 .017735837438
6 | —.01075631B517
K=2{-4} .011587596739 7 | = .004001012886
~3 | —.029320137980 8 002652665946
-2 | ~.047639590310 ] 000895594520
~1 273021046535 10 | — .000416500671
0] .574682393857 11 | — .000183829769
1 294867193606 12 | , 000044080354
2 | - .054085607092 13 000022082857
3 | - .042026480461 14 | ~ .000002304842
4 016744410163 15 { - 000001262175
5 003967883613
6 | ~ 001289203356 | K =5 | ~10 | — 0001499638
7 | ~ 000509505399 -9 .0002535612
-8 1 .0015402457
K=3}-6| - 002682418671 -7 | - 0029411108
~5 005503126709 -6 | —.0071637819
-4 016583560479 -5] 0165520664
-3 | ~.046507764479 ~4 0199178043
~2 | ~.043220763560 -3 | —.0649972628
-1 .286503335274 ~2 | - 0368000736
0 561285256870 -1 .2080923235
1 .302983571773 . 0 5475054204
2 | - .050770140755 1 .3007068490
3| - 058196250762 2 | —.0438660508
4 024434094321 3| — 0746522389
5 011229240962 4 0291958795
8 | — .006369601011 5] .0231107770
7 | — .001820458916 6 | -.0139736879
8| .000790205101 7 | — 0064800200
9| .000329665174 8| .0047830014
10 | — 000050192775 9| .0017208547
11 | —.000024465734 10 | —.0011758222
N 11| ~.0004512270
K=4]-8] .000630961048 12| .0002137298
-7 | - 001152224852 13 ] .0000993776
-6 | —.006194524026 14 | - .0000292321
5| .011382450244 15 | ~.0000150720
-4 | .018867235378 16 | .0000026408
-3 | ~.057464234420 17 .0000014593
~2 | ~ 039652648517 18 | —~.0000001184
-1 .293667390895- 19 | - .0000000673
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mean in terms of multiresolution analysis? What do ¢ and d’ now stand for?
(They were coefficients of orthogonal projections in Chapter 5.) Is there an
associated wavelet basis? How dees it differ from the bases constructed earlier?
The answer is that, provided the filters satisfy certain technical conditions, such
-a scheme corresponds to two dual wavelet bases, associated with two different
multiresolution ladders. In this section we will see how to prove all this, and give
several families of (symmetric!) examples. Except for an improved argument due
to Cohen and Daubechies (1992), all these results are from Cohen,” Daubechies,
and Feauveau (1992). Many of the same examples are also derived independently
in Vetterli and Herley (1990), who present a treatment from the “filter design”
point of view.

=4

2| p— o ind 2] ]

g —»—21——»—&-—0-2[;—.— P

Fic 84 Subband filtering scheme unth ezact reconstruction but reconstruction fillers
different from the decompossison filters.

8.3.1. Exact reconstruction. Since we have now four filters instead of tv'vo, ‘
we have to rewrite (5.6.5), (5.6.6) es

0
w Y Mand, di=3 g
. P x

and ~
&=y [h,-,,. ¢k + fe-an b -
n

In the 2-notation introduced in §5.6, this can be rewritten as
&) = 3 [Me) Ba)+ () 3] 0a)
+5 [0 B=2) + () 7(-2)] S(-2).
Consequently, we require
h(z) R(z) + §(=) (=) = 2, (8.3.1)

h(z) R(-2)+ §(z) §(-2) = 0, (83.2)

where we assume A, §,h, 3 to be polynomials since the filters are all FIR. (For
simplicity, we use the term “polynomial” in a slightly wider sense than usual:




T b

SYMMETRY FOR COMPACTLY SUPPORTED WAVELET BASES 263

we also allow negative powers. In other words, E:;__ N, On 2" i8 a polynomial in
this terminology.) From (8.3.1) it follows that  and g have no common zeras;
consequently, (8.3.2) implies that

§(z) = R(=2)ple),  h(z) = ~g(-2)p(2) (8:3.3)
for some polynomial p. Substitution into (8.3.1) leads to
P(2) [h(~2)g(z) — h(2)g(~2)] =
The only polynomials that divide constants are monomials; hence
plz) =
for some a € C, k € Z, and (8.3.3) bacoines )
§) = ot B(-2),  gla) = ~a7M-Drk h(-2). (834)

Any choice for a and & will do; we choose @ = 1, k = 1, which makes the
equations (8.3.4) for g and § symmetric. “Substitution into (8.3.1) gives

h(z) h(z) + h{—z) h{—z) = 2. (8.3.5)

In terms of the filter coefficients, all this becomes

Y b Bogn = o, (8.3.6)

= (1) honpr,  Ga = (D" hiny, (8:3.7)

where we have implicitly assumed that all the coefficients are real. These equa-
tions are cbvious generalizations of (5.1.39), (5.1.34).

8.3.2. Scalmg functions and wavelets. Because we have two pairs of fil-
ters, we also have two pairs of scaling function + wavelet: ¢, and ¢,r;') They
are defined by
HE) = male/) HE/D, MO = ele/DHER), (638
VE) = mE/2) $E/2), ) = mE/2)9E/2),  (839)

where mg(£) = :35 Yonbn e, my(€) = ‘13 Y. 9n €7, 1o, 77, are defined
aunalogously. Note that {8.3.7) implies

mi(€) = e X meE+7), () = e X mel+n). (8.3.10)

WemmehapterBt.hatm order to generate wavelet Riesz bases, ¢ and
have to satisfy ¥(0) = 0 = 1/:(0) Anooensaryeondlttonistherefore my(0) =0=
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;(0); in terms of the polynomials /i{z), h(z) this is equivalent to h(—1) =0 =
h(—1). Substitution into (8.3.5) thenléad’ to (1) k(1) =2, or

(o) (5) -2

This_implies that we can normalize both h and h so that Yon hn = V2 =
Y- fin. Consequently, mqo(0) = 1 = 1ho(0), and we can solve (8.3.8) by defining
/

¢(§) = (@m)72 [] mo(279¢),

j=1

e = @o 2 I mo(@0).

i=1

The same arguments as in Chapter 6 show that these infinite products converge
uniformly on compact sets, and that ¢ and ¢ have compact support, with sup- |
port width given by the filter lengths. As finite linear combinations of ¢ and ¢,
¥ and ¥ also have compact support. This is by no means sufficient to guarantee
that the ¥, x = 277/2 ¢(279z — k) and 1, x are dual Riesz bases of wavelets,
however. Indeed, even in the orthogonal case (reconstruction filters = decompo-
sition filters), it was possible for ¥ to fail to generate an orthonormal basis (see
§6.2, §6.3). In this nonorthogonal case we have to be even more careful. Let us
summarize the different steps in the argument proving that we have dual wavelet
bases (with certain restrictions). .

First of all, if ¢, ¢ € L2(R) (which will have to be proved too! See below.)
then we can define bounded operators T; by

(T}fv 9) = Z (.f) ¢],k)(&j,k7 g) ’
k -

where
$ip = 2772 ¢(2;j$ — k), bix = 279/ $(2'iz -k,
as usual.® A consequence of the definitions (8.3.8), (8.3.9) is

¢1\,ﬂ(3) = Z hx-2n ¢0.k ' al,n = Z ’.‘k-zn éﬂ,k )
k k
'f’l.n(z) = z Gk—2n Dok » ‘a;l.n = Z ’.‘k—-zn &0,& )
- k k

together with the propetties of the filter coefficients imposed in §8.1, this implies
(as can easily be checked by substitution)

Z (fv %.k)(éo,kvg) = iz [(f!%,ﬂ)(&l,ﬂ)g) + (fv'l’lm)('l-'i:!"g)] 4
k n .
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The same trick can be applied for other values of j; “telescoping” all the identltles
together leads to

J
Y Yo h) e 9) = (T-s1f.9) = (Tufrg)
j=~-J ¢
=Y (fb-u-10)B-sorr9) = D (frun)bukr9)
k

k

Exactly the same arguments as in Chapter 5, used in the estimation of (5.3.9),
(5.3.13), respectively, show that (7,f,g) — @, (T_,f,9)—(f,9), for J—oo.
Consequently,

Jim E Z (L, M00.9) = {f.9) ., (8.3.11)

j=-J

or, in a8 weak sense,

= Jlim 2 Z(f,w,lw,z

J=.-J

This is not sufficient to establish that the 3, ., J:,,g constitute dual Riesz bases.
For one thing, the yiye or ',b,e may fail to constityte frames; in this case the
convergence in (8.3.11) could depend crucially on the order of summation. To
avoid this, we need to impose that

F 4
3 (v sad Y KA
F R ik

converge for all f € L?(R), or equivalently,
S ISeIE<AIAL S KABSP<AlfE.  (8312)
ik

Jik

If these upper bounds hold, then it follows from (8.3.11) that®
Y KAGRPZ AT AR Y KAdal? = A7 AR,
5.k 3.k

" so that we automatically have frames. But even then the ¢, , Jv,-,,, may merely be
(redundant) dual frames and not dual Riesz bases; this redundancy is eliminated
by the-requirement .

/ (Vs Yirpe) = b5y b (8.3.13)

which, exactly like in the orthonormal case (see §6.2), can be shown to be equiv-
alent with N
(o, ks o p) = O - (8.3.14)
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If the conditions (8.3.12) and (8.3.14) are satisfied (we will come back to
them shortly), then we do indeed have two multiresolution analysis ladders.

~-VhochcWeV_ycVac -,
oy CoC Vo, Vg e,

with Vp = Span {fosx; k€Z}, Vo = Span {dyy; k€ Z}. The spaces
W, = Span {y)x; k€ Z}, W, = Span {),,; k € Z} are again complements
of V,, respectively, V; in V,_,, respectively, V,_,, but they are not orthogonal
complements: typically the angle” between V,, W, or V,, W; will be smaller than
90°. This is the reason why we have to prove (8.3.12) in this case, whereas it was
automatic in the orthonormal case. Another way of seeing this is the following.
Because of the non-orthogonality we have

a Y (6,08 + 1(H 0] <3 110
k

k

<p [ij 1) + 2;1(1’, m)l*] ,

with @ < 1, 3 > 1 (in the orthogonal case, equality holds, with a = 3 = 1)
Unlike the orthonormal case, we cannot telescope these inequalities to prove
that the 9, ; constitute a Riesz basis: telescoping would lead to a blowup of the
constants: We therefore have to follow a different strategy. Note that (8.3.13)
implies that W, 1 V,, W; 1L V,. The two multiresolution hierarchies and their
sequences of complement spaces fit together like a giant zipper, and this is what
allows us to control expressions like 3~_"0 (£, 1,4}/

But let us return te the conditions (8.3.12) and (8.3.14). We already saw
how to tackle condition (8.3.14) in §6.3, in the simpler orthogonal case. Our
strategy here is essentially the same. We again define an operater F; acting on

2n-periodic functions,
2 2
(©) - () 1509,

()

a second operator P, is defined analogously. In terms of the Fourier coefficients
of f, the action of P, is given by

(Pohe = Y (z hm hm+l—2k) fe;

4

(Pof)(§) =

we will be mostly interested in invariant trigonometric polynomials for Fy. This
means that we can restrict our attention to the 2(N; — N;) + 1-dimensional
subspace of f for which fy =0if ¢ > N3 — N, (we assume h, 3 0ifn < N}
or n > Ny), on which P is represented by & matrix. Theorems 6.3.1 and 6.3.4
have the following analog.

THEOREM 8.3.1. The follounng three statements are equivalent:
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1. ¢,¢ € L*(R) and (do.x, doe) = Sre.

2. There ezist strictly positie trigonometric polynomials f,, fo invarsant for
Py, Py; there also exists a compact set K congruent to [~=x,n] modulo 2x
30 that

. —k . = —k
it MmO > 0,  inf | [ho(275)] > 0.

3. There ezist strictly positwe trigonometric polynomials fo, fo invarient for
Po, Py, and these are the only invariant polynomials for Py, Py (up to
normalization).

The proof is very similar to the proofs in Chapter-6, but a bit more compli-
cated. In §6.3, the functions fo, fo were simply constant; in this case, they are
essentially fo(€) = 3=, 16(6 + 2n0)%, fo(€) = &, (€ + 2r€)|>. For details on
how to adapt the proofs of §6.3 to the present case, see Cohen, Daubechies, and
Feauveaun (1992). .

Condition (8.3.14) therefore simply amounts to checking that two matrices
have a nondegenerate eigenvalue 1 and that the entries of the corresponding
eigenvectors define a strictly positive trigonometric polynomial. (Note that if the
trigonometric polynomial takes negative values. then ¢ ¢ L2(R). This happens
for some exact reconstruction filter quadruplets.) Condition (8.3.12) is something
we had not encountered in the orthogonal case. It turns out that this condition
is satigfied if any of the three conditions in Theorem 8.3.1 holds. The proof of
this surprising fact is in the following steps®:

o First, one shows that the existence of an eigenvalue A of Py with |A] > 1,
A # 1 would contradict the square integrability of ¢. It follows there-
fore from Theorem 8.3.1 that all the other eigenvalues of Py have abso-
lute value strictly smaller than 1 if the eigenvalue 1 is nondegenerate and
the associated eigenvector corresponds to a strictly positive trigonometric
polynomial. The proof of this step uses Lemma 7.1.10.

e Since mo(r) = 0 = thg(x), we have obviously Mo(r) = |mo(n)}* = 0 =
|ho(7)|? = Mp(®). We saw in Chapter 7 that this means that the columns
of the matrix repregenting P, all sum to 1, so that the row vector (of the
appropriate dimension) with all entries 1 is a left eigenvector for Py with
eigenvalue 1. It follows from the first point that p, the spectral radius of
Polg,, with By = {f; 3., fn = 0}, is strictly smaller than 1. One then uses
that f(€) = 1—cosé is in E) to prove (the estimates are analogous to those
in the proof of Theorem 7.1.12) that [, jqcqnr & 12 < C ()™

e Via Holder's inequality this implies [ d¢ |$(¢)[**~%) < oo for sufficiently
small 5. This can then be used to prove a “discretized” version, i.e.,
Yomez 18(€ + 7m)21-%) < C < o0 for all £ € R, again for sufficiently
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3

small . Because m; is bounded, v satisfies a similar bound,

Y e+ 2m) < C <00 (8.3.15,
meZ

e On the other hand, one can also prove that

sup Z [9(276))* < o0 . (8.3.16)
€z .

r<Ki<2n ;

Since ¢ is entire and $(0) = 0, |$/(¢)] < CJ¢| for sufficiently small |¢, so0
that 9___ [9(2€)|*' is uniformly bounded for |¢] < 27, and we only
need to concentrate on j > 0 in (8.3.16). But

1% 4 5o
ﬂtsggzﬂl,,l’b(cn S / d§ de’(E)i
Prgiel<d

<2 [ awer]ghe)

Vrglei<2t
) 1/2 2
d¢ |¢(§)|2} . [ / dz l:cqb(z)j’} ]

<c|

The second factor is finite because ¢ is compactly supported and in L?(R);
the first factor is bounded by CM, with |A] < 1, as shown above. This
establishes (8.3.16), which is also equivalent to

;}%ZW’( O < oo

1€Z

2 tegI<2n

“

e Finally, a combination of the Poisson summation formula and the Cauchy-
Schwarz inequality leads to

(sl < 2 [ a6 IHOP WP T 1623 + 2nm)=*".
k- m

It therefore follows from (8.3.15) and (8.3.16) that

Y WP < AR
5.k

For more details concerning this argument, see Cohen and Daubechies (1992).
In order to ensure that we have indeed two dual Riesz bases of wavelets, we
therefore only have to check that 1 is a nondegenerate eigenvalue of P, Py and
that the corresponding trigonometric polynomial is strictly positive.
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8.3.3. Regularity and vanishing moments. If the ¥;4, ¥ constitute
. dusal Riesz bases {of compactly supported wavelets, since we have assumed the
* “filters to be FIR), then we can apply Theorem 5.5.1 to link vanishing moments
of one function with regularity for the other: if ¥ € C™, then _sutomati-

cally [dz zf $(z) = 0 £ = 0,---,m.® This is equivalent with ;%'.JIM =0

for £ = 0,---,m. Because of (8.3.9) and $(0) = 1, this implies f”ﬁ‘le

for {=0,---,m. By (8.3.10) this implies that m, is divisible by {(1 +e"“)/2)"'
In order to produce regular 4, we therefore need to construet filter pairs myg, iy
such that mg(£) has a multiple zero at £ = .

Note that nothing prevents ¢ and ¥ from having very diﬁ'mnt regularity
properties, as illustrated by some of the examples below. If ¢ is much more
regular than ¥, corresponding to many more vanishing moments for ¢ than for
¢, then the two formulas

f = Z {fy Via) ¥in (8.3.17)
ik
= Z (fn J’j,k) wj.h ’ (8.318)
e .

both equally valid, have very different interpretations (Tchamitchian (1987)). In
practice, {8.3.17) is much more useful than (8.3.18): on the one hand, the large
number of vanishing moments of ¢ leads to much more “compression potential”
in the regions where f is reasonably amooth (see §7.4); on the other hand, the
“elementary building blocks” ;. are smoother. In Antonini et al. (1990) an
experiment was carried out with biorthogonal wavelets of this type: the same
filter pair was used twice, the second time with roles of decomposition and re-
construction filters exchanged. The case corresponding to (8.3.17) gave rise to
much better results after quantization than (8.3.18). As we already mentioned
in §7.4, it is not clear whether the high.number of vanishing moments of ¥ or
the regularity of d) is the most important factor; it is possible that they are both
important.

8.3.4. Symmetry. One advantage of biorthogonal over orthonormal bases
is that myg, 7o can both be symmetric. If the filter corresponding to my has an
odd number of taps, and is symmetric, i.e. mo(—£) = e**mgq(£), then mg can
be written as .

mo(€) = e~ po(cost), - (8.3.19)

where py is a polynomial. It then follows that g can be chosen of the same
form,

~ mo(€) = e™™ fo(oost) , (8.3.20)
where fiy is any polynomial that satisfies .

Po(z) 7o(2) + po(—2) Pol(~2) = 1; (8.3.21)
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we then have indeed

mo(€) Mmo(f) + molf +m) Mol +7) = 1, (8.3.22)

which is the same as (8.3.5). Polynomials g solving (8.3.21) can only be found
if po(z) and pp(—z) have no common zeros; once this is the case, there always
exist solutions by Bezout’s theorem (see §6.1). Note that this also means that
biorthogonal ‘bases are much easier to congtruct than orthonormal bases: we
need to solve only linear equations to find py satisfying (8.3.21) once py is fixed,
instead of. the spectral factorization needed in §6.1.
If the filter carresponding to mp has an even number of taps and is symmetric
. (such as, e.g., the Haar filter), then m; satisfies mg(~€) = e**$+€ my{£); hence

mo(f) = e %2 cog g Po(cosf) . (8.3.23)
One can then again choose g of the same type, ) '
o(€) = e /7 con fo(cost) (8.3.24)

equation (8.3.22) becomes

s pofcon) Fuleoed) + s §

which means that pg solves the Bezout problem
7} (@) (@) + P (-2 ho(-2) = 1,
with p¥(z) = 42 py(z).

Po(—cos§) Po(—cosf) = 1,

ExampLES. All the examples we give here have both symmetry and some
regularity. The trigonometric polynomials mgy and #p are therefore of type
(8.3.19), (8.3.20) or (8.3.23), (8.3.24), with pp(cos¢), fo(cos¢) divisible by
(1 + e~%)? for some ¢ > 0. Since we are dealing with polynomials in cos¢,
¢ will automatically be even; (1 + e™%)3 = de~% cos®§ = 2e~%(1 + cosf).
Consequently, we are looking for myg, mg of type

. £ u
(008 '2') go(cos &)
if they have an even number of taps (we have assumed that k = 0, i.e., that the
hy, hy, are symmetric around 0), or of type
€ U+l
e (o) mleost)

if the number of taps is odd (again we have taken k = 0, corresponding to
hi—n = hy, hi—n = hy,). In both cases, substitution into (8.3.22) gives
2L

E L
( -2-) qo(cose)é'o(cose)+(sin§ go(— cos £)do(— cos€) = 1, (8.3.25)
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ith L = £+ £ in the first case, L = £ +  + 1 in the second case. If we define
gm(cos €) Go(cos§) = P (sin2 §), then (8.3.25) reduces to

(1-2)" P(z) + PFP(1-3) = 1, (8.3.26)

an equation we already encountered in §6.1. The solutions to (8.3.26) are all
given by

L-1 ‘

_ L-14+m. L _

P(z)-—Z( m )x’“+.1: R(1 - 2z) ,
m=0

where R is an odd polynomial (see Proposition 6.1.2). We now present three

families of examples, based on different choices for R and different factorizations

of P into gp and go.

Spline examples. Here we take R = 0, and § = 1. It follows that
mo(€) = (cos§)N, N = 2, or mo(€) = e~%/? (cos §)V, N = 2¢ + 1, 50 that
cﬁ is a B-spline centered around 0, respectively % In the first case, we then have,
with N = 2¢,

mo(€) = (cosg)N l:éjl (£+i:ni+m) (sm2§) ,

m=0

in the second case, with N = 2/ + 1,

mo(€) = e /2 (mg)" 'f (f+fn+m) (,ma é)

m=0

In both cases we can choose £ freely, subject to the constraint that the eigenvalue
1 of Py is nondegenerate and that the associated eigenvector corresponds to a
strietly positive trigonometric polynomial (see §8.4.2). The result is a family of
biorthogonal béses in which )} is a spline function of compact support; for every
preassigned order of this spline function (i.e., fixed £), there exists an infinity
of choices for ¢, corresponding to different ¢ (with increasing support widths)
and different 4, with increasing number of vanishing moments. Note that dis
completely fixed by N alone, while mg, hence ¢ depends on both N, N. We have i
plotted the functions 3¢, 5 NV, 5 n$ and g y¥, for the first few values of
N, N, in Figures 8.5-8.7 (N = 1 in Figure 8.5, N = 2 in Figure 86, N = 3 in
Figure 8.7); the corresponding filters are given in Table 8.2. In all these cases,
the conditions derived in §8.4.2 are satisfied. A striking feature in Figures 8.5~
8.7 is that from some point on, increasing N (for fixed N) does not alter the
shape of ﬁ’va, one sees the “wrinkles” in the corresponding 5 ¢ and 5z N9
get ironed out as V' increases.
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"FiG. 8.5. Spline ezomples with N = 1, N = 8 and 5. For N = 1 (not plotted) one
finds the Hoar basis. One has support | yé ='[=N + 1, N], support 1 N¥ = support | N =

(-3, 21].
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1.5
1}

05¢

0

~-15 -

FIG. 8.6. Spline ezamples with N = 2, N = 2,4,8, and 8. Here support g N = [~N, N},
support 3 N = support 3 N = [—1}. ¥+ l]. As always, the plots of $, ¥ are in fact plots of
approzimations obtained by the cascade algorithm (see pp. 305-208), with 8 or © iterations.10
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FIG. B.7. Spline ezamples with N =3, N = 3,5,7, and 9. For N = 1 (not plotted), 3.1¢
1s not square sntegrable. Here support 3 n¢ = [N, N + 1], support 3 yt = support 3yt =
[——ﬁg—‘—, 1}3] The functions 3,3¢ and 33% are examples of the fact that the cascade algo-
rithm may diverge while the direct algorithm still converges (see Note 11 at the end of Chapter
6).
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The functions ;3% and 3% were first constructed in Tchamitchian (1987)
as an example of two dual wavelet bases with very different regularity prop-
erties. Here they constitute the first non-orthonormal example of the family
(N =1 = N gives the Haar basis). As in the orthonormal case, arbitrarily
high regularity can be attained with these examples, for both v and ¥. As a
spline function, ,;,,NJ) is piecewise polynomial of degree N — 1 and is CV~2
at the knots; the regularity of 5 y% can be assessed with any of the tech-
niques in Chapter 7. Asymptotically, for large N, one finds that NNy ECT

if N > 4.165N + 5.165 (m + 1). These spline examples have several remarkable
features. For one thing, all the filter coefficients are dyadic rationals; since divi-
sion by 2 can be done very fast on a computer, this makes them very suitable for
fast computations. Another attractive property is that the functions 5 y¥(z)
are known exactly and explicitly for all z, unlike the orthonormal compactly
supported wavelets we saw before.!! One disadvantage they have is that mq and
Tho are very unequal in length, as is apparent from Table 8.2. This is reflected in
very different support widths for ¢ and ¢; because they are determined by both
mo and g, ¥ and 9 always have the same support width, given by the average
of the filter lengths of mg, g, minus 1. The large difference in filter lengths for
g, Mo can be a nuisance in some applications, such as image analysis.

Examples with less disparate filter lengths. Even if we still take R = 0, it
is possible to find mo and 1y with closer filter lengths by choosing an appropriate
factorization of P(sin? §) into go(cos€) and Jo(cos&). For fixed ¢ + £ there is
a limited number of factorizations. One way to find them is to use spectral
factorization again: we determine all the zeros (real and pairs of conjugated
complex zeros) of P, so that we can write this polynomial as a product of real
first and second order polynomials,

P (z) = Aﬁ(z— z,;) f[(:x:2 — 2Rez,z + |2.)%) .

=1 1=l

Regrouping of these factors leads to all the possibilities for go and go. Table 8.3
gives the coefficients for my, 1o for three examples of this kind, for {+¢ = 4 and
5. (Note that £+ £ = 4 is the smallest value for which a non-trivial factorization
of this type is possible, with gp, §p both real.) For £ + £ = 4, the factorization
is unique, for £+ { = 5 there are two possibilities. In both cases we have chosen
¢,? so 8s to make the length difference of mg, 7y as small as possible. The'
corresponding wavelets and scaling functions are given in Figures 8.8 and 8.9.
In all cases the conditions of §8.4.2 are satisfied.

8.3.5. . Biorthogonal bases close to an orthonormal basis. This first
example of this family was suggested by M. Barlaud, whose research group in
vigion analysis tried out the filters in §6A, 6B for image coding (see Antonini et
al. (1990)). Because of the popularity of the Laplacian pyramid scheme {Burt
and Adelson (1983)), Barlaud wondered whether dual systems of wavelets could
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TaABLE 8.3

The coefficients of mq,tho for three cases of “variations on the spline case” unth filters of
ssmilar length, corresponding to £ + & = 4 and 5 (see text). For each filter we have also given
the number of (cos§/2) factors (denoted N, ﬁ). As in Table 8.2, multiplying the entries below

with V2 gives the filter coefficients Ry, hn.

coefficient of

) coefficient of !
N,N n e~ in my e~ in g
0. 557543526229 602949018236
IY =411, -1 .295635881557 .2668641}8443
N=41|2 -2| —-.028771763114 | —.078223266529
3, -3 | —.045635881557 | —.016864118443
4, -4 0 026748757411
0 .636046869922 .520897409718
IY =511, -1 .337150822538 244379838485
N=512 -2 —-.066117805605 | —.038511714155
3, -3 | —.096666153049 005620161515
4, —4 | —.001905629356 .028063009296
5 -b 009515330511 | O
0 .382638624101 .938348578330
IY =51, -1 242786343133 333745161515
N=512 -2 043244142922 | —-.257235611210
3, -3 000197904543 | —.083745161515
4, —4 .015436545027 038061322045
9, —5 007015752324 | O
LI - 2 —
i @ 4
1
0.5
0
o S
-05 . . AJ -1 N
-2 0 2 ~2 0 2 4
1.5
1l @
05 4
3]
~-0.5 .
4 "2 0 2 4 2 o0 2 a4

'

F1G. 8.8. The functions ¢, $,¢, Jf corresponding to the case N = 4 = N in Table 8.3.
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(a) 2 - 2
¢ v
- 1
1}
i
0 -1
-4 -2 0 2 4 -4 22 86 2 4

(b) 0.8 el : -

F1G. 8.9. The functions ¢, é, ¥, % corresponding to the two cases N = 5= N in Table 8.3.
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be constructed, using the Laplacian pyramid filter as either my or . These
filters are given explicitly by

—ae™ + 25e7% 4 (54 2a) + 25¢¥ — ae® . 18.3.27)

“For a = ~1/16, this reduces to the spline filter 47np as described under the

“spline examples” above. For applications in vision, the choice @ = .05 is es-
pecially popular: even though the corresponding ¢ has less regularity than 1,
it seems to lead to results that are better from the point of view of visual per-
ception. Following Barlaud’s suggestion, we chose therefore a = .05 in (8.3.27),
or

6 + S5cosé — .1cos 2§

- ( f) (1 + 3 sin? g) (8.3.28)

Candidates for g dual to this mg have to satisfy

mo(§)

mo(£) mo(€) + mo(€ +x) mo({ + ) =

As shown in §8.4.4, such /iy can be chosen to be symmetric (since my is sym-
metric); we also opt for Mg divisible by (cos £/2)? (so that the corresponding
¥, ¥ both have two zero moments). In other words, -

ofe) = (e §) P (s §)
(1-z)? (1 + fx) P@) + = (-g _4 ) P(l-1z) =

By Theorem 6.1.1, together with the symmetry of this equation for substitution
of by 1 — z, this equation has a unique solutson P of degree 2, which is easily

where

found to be P = 14 9,,__252
z) = g 35%
This leads to
. 3 : 8 § 2 . ¢
e S v _ 3 e B e 1T B
280° 5%" *3%0° tatoammt
3
~%6 e 380¢ - (8.3.30)

One can check that both (8.3.28) and (8.3.29) satisfy all the conditions in §8.4.2.
It follows that these g and My do indeed correspond to a pair of biorthogonal
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wavelet bases. Figure 8.10 shows graphs of the corresponding ¢, é, ¥ and ¥
All four functions are continuous but not differentiable. It is very striking how
similar ¢ and ¢ are, or ¥ and 1[) This can be traced back to a similarity of
mo ahd o, which is not immediately obvious from (8.3.27) and (8.3.30), but
becomes apparent by comparison of the explicit numerical values of the filter
coefficients, as in Table 8.4. In fact, both filters are very close to the (necessarily
nonsymmetric) filter corresponding to one of the orthonormal coiflets (see §8.3),
which we list again, for comparison, in the third column in Table 8.4. This
proximity of mg to an orthonormal wavelet filter explains why the My dual
to my is 8o close to myg itself. A first application to image analysis of these
biorthogonal bases associated to the Laplacian pyramid is given in Antonini et
al. (1990)-

o 2
1 1}
0
0— -1
2 o 2 -2 -1 0 1 2 3
'2r‘ * - v .
) 21y
1} 1
o___‘
0 -1
-2 0 2 2 -1 0 1 2 3

Fic 8.10. Graphs of ¢,¢,$.J: for the biorthogonal pawr construcied from the Burt-
Adelson low-pass filter.

M. Barlaud’s suggestion led to the accidental discovery that the Burt filter is
very close to an orthonormal wavelet filter. (One wonders whether this closeness
makes the filter so effective in applications?) This example suggested that maybe
other biorthogonal bases, with symmetric filters and rational filter coefficients,
can be constructed by approximating and “symmetrizing” existing orthonormal
wavelet filters, and computing the corresponding dual filter. The coiflet coeffi-
cients listed'in §8.3 were obtained via a construction method that naturally led
to close to symmetric filters; it is natural, thergfore, to expect that symmetric
biorthogonal filters close to an orthonormal basis will in fact be close to these
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Fute coefficients for (mo)gure, for the dual filter (tho)Burt computed wn this section, and for
a vey close filter (mp)coiner corresponding to an orthonormal basis of coiflets (see the entries

Jor k=1 i Table 8 1)

TABLE 8.4

n (m()) Burt (ﬁlo) Burt ("mlc_oj_@g

-3 0. —-010714285714 | 0.

-2 05 - 053571428571 | —.051429728471

-1 .25 .260714285714 238929728471
0 6 607142857143 602859456042
1 .25 260714285714 .272140543658
21 —05 — 053571428571 | —.051428972847
3| 0. —.010714285714 | —.011070271529

coiflet bases. The analysis in §8.3 suggests, therefore,
K-1

> (X5 *) i /2™ + on 5/2)“‘)}
k=1

mo(€) = (cos £/2)°% [

In the examples below we have chosen in particular

(¥7¢**) i g2 + oo 6/2)”‘]
and we have then followed the following procedure:

1 Find a such that l/j d¢ [1 — |mo(&)]? — |mel€ + x)l’}' is minimal (zero in

the examples below). This optimization criterium can of course be replaced
by other criteria (e.g., least sum of squares of all the Fourier coefficients of
1 — |mo(E)* — |mo({ + )2 instead of only the coefficient of e with
£ =1{). For the cases K = 1, 2, 3, the smaliest root for a is .861001748086,
3.328450120793, 13.113494845221, respectively.

2. Replace this (irrational) “optimal” value for a by a close value expressible
as a simple fraction.!? For our examples a = .8 = 4/5 was chosen for
K=1,a4=32=16/5for K=2ard a=13 for K = 3. For K =1, this
reduces then to the example above.

K-1

mo(§) = (cos £/2% [Z

k=0

3. Since my is now fixed, we can compute my. If we require that mg be also
divisible by (cos £/2)2K, then :

mol£) = (cos £/2)** Px((sin ¢/2)%), (8.3.31)

where P is a polynomial of degree 3K — 1. The same analysis as in
Daubechies (1990) skows that

K-1 '
Pe(a) = X (K3 tH)# + 0,

k=0 k
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thereby determining already K of the 3K coefficients of Px. The others
can be computed easily. For K = 2 and 3 we find

14, 4 8024 , 3776 , .
}.’2(:”) = 1422+ i + 8z 255 % + w2 (8.3.3)
P(z) = l+3z+623+7z3+301‘+4235—%i55£i-z°
1
4 1921766 . 648908 (8.333)

6075 6075

In Table 8.5 we list the explicit numerical values of the filter coefficients for mg,
g and the closest coiflet, for K = 2 and 3. We have graphed ¢, ¢, ¥, and ¢
for both cases in Figure 8.11. It is worthwhile to note that the computation of
the biorthogonal filters mg, 77g, 88 explained by the above procedure, is nuch
simpler than the computation in Daubechies (1990) of the orthonormal ccifiet
filters! This illustrates the greater flexibility of the construction of biorthogonal

wavelet bases versus orthonormal wavelet bases.

TABLE 8.5

Numerical values for the filters mo, g for biorthogonal bases close to coifiets, for the cases |
K = 2 and 3 (see text). The third column lists the coefficients of the orthonormal coiflet filter
to which mg ond fhg are very close. In order to compare the different cocfficients more easily,
we have expressed everything in decimal notation; in fact, the coefficsents of mg and vhg are

rational.
coefficients coefficients coeflicients of (mg)cointet

K n of my of o n<o0 nz20

2 0 575 575291895604 .574682393857
+1 28125 ..286392513736 273021046535 204867193696
+2 | -.0% —.052305116758 | —.047639590310 | —.054085607092
+3 | —-.03125 —.039723557692 | —.029320137980 | —.042026480461
Y4 0125 | .015925480769 .011587596739 016744410163
+5 0 003837568681 0 003967883613
+6 0 —-.001266311813 | O —.001289203356
+7 0 —.000506524725 | O — 000509505399

3].0 .5634765625 560116167736 .561285256870
+1 29296875 .296144908701 286503335274 302083571773
*2 | —.047607421875 | —.047005100329 | —.043220763560 | —.060770140755
+3 | —.048828125 ~ 055220135661 | — .046507764479 | —.058196250762 |
+4 .01904296875 .021983637555 016583560479 024434094321
+5 005859375 ,010536373594 005503126709 011229240962
+6 | —.0031738281256 | —.005725661541 | — 002682418671 | —.006369601011
+7 0 —.001774953991 | O —.001820458916
+8 0 000736056355 | O 000790205101

4 +9 0 000339274308 { 0 000329665174

10| O -.000047015908 | 0O - .000050192775
+11] © -.000025466050 | 0 - .000024465734
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Fic. 8.11. Graphs of $,¥,,¥ corresponding to Table 8.5. .
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Notes.
1. In the sense that the ¢, (- — n) are orthonormal, as are the #2(- — n).

2. Strictly speaking, Lemma 6.2.2 only proves support(¢) C [0, N]. A re-
cent paper by Lemarié and Malgouyres (1991) shows that support(¢) is
necessarily an interval, which in this case then has to be [0, N].

3. Nevertheless, AWARE, Inc. uses the asymmetric filters from §6.4 with ex-
cellent results in image and video coding. Note also that “perceptually”
small or large errors are difficult to quantify mathematically; the norm
most often used to measure “distance” is the £2-norm, but that is more
because this is the easiest norm to handle than for any other reason. All
experts agree that the £2-norm is not a good candidate for a “perceptua.l”
norm, but as far as I know, there is no agreement on a better candidate.

4. The n¢ from §6.4 do not have this property. The graph of | ()] is very
flat near £ = 0, sliowing that f;—, | NG ez = 0 for £=1.--N, but the

phase of n@(¢) does not share this property.

5. The proof that Ty is a bounded‘ operator is eaéy: if support ¢ = [~ Ny, Ny,
then
(tunl = |
Ny-k 1/2
< ( [« f(z)l’) 412  (by Cauchy Schwara);
~Ny -k
hence
Np—~k
> WhoonP < WY [ i@
k k —Ny~k
< el (N2 + No) AR {
N
Similarly, one proves that all the T; are bounded.
6. We have

£

i

Nf.9f < inf {}Lm Z 3 sl

Hsﬂ jm—a"

~

) < g “<1 (Z I(fr"':.l)lz) (Z '(¢J,ttg)| )

it
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oyt (Z '(f’*":,t)lz) Aligh?
< 7

A Z l(fij,l)lz .
2.

In

IN

The angle between two subspaces is defined as the minimum angle between
elements,
: -1 Ne N
angle (E,F) = inf cos™! 22l
*€E, fEF flell 151 -

The proof in Cohen, Daubechies, and Feauveau (1992) imposes a much
stronger decay condition on ¢, namely |§(£)} < C(1 + |€])~1/2~¢ (which is
known not to be satisfied in even some orthonormal cases) in order to derive

(8.3.15) and (8.3.16). The argument sketched here comes from Cohen and
Daubechies (1992).

The derivatives 9(¢), € = 0- - - m, are automatically boonded because ¥ has
compact support.

In the case N = 2 = N, a curious phenomenon happens. The function
2,26, although an element of L?([-2,2]) (hence also of L!([~2,2]), has
in fact a singularity at every dyadic rational. The true graph of 22¢ (or’
2,2¢) would therefore consist of a black rectangle (since our lines have some
thickness), but the graph in Fig. 8.6 is nevertheless a close approximation
in L? or L, although not in L™. I would like to thank Win Sweldens for
pointing this out to me.

Auscher (1989) and Chui and Wang (1991) contain another construction
of non-orthonormal wavelet bases where one of the two wavelets, say ¢, is
a compactly supported spline function, and is therefore also known exactly
and explicitly everywhere. In this construction the W,-spaces are orthogo-
nal, unlike here, and W, = W,. As a result, the dual wavelet 4 has infinite
support (compact support for both 4, 12; can only be achieved by giving up
the orthogonality of the W, ), with exponential decay. The associated mul-
tiresolution analysis is the same as for the Battle-Lemarié wavelets; ¢ is
chosen so that it is orthogonal to the B—sp’l\ine of the right order and all its

integer translates, and v is then given by (¢) = ¥(€)/[, 1W¥(€ +27k)|3:
Choosing a rational leads to myp, 1o with rational coefficients. Note that

there is nothing sacred about the original irrational values of a: changing
criterion in point 1 will lead to slightly different values of a.
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CHAPTER 9

Characterization of Functional
Spaces by Means of Wavelets

.

The major message of this chapter is that the orthonormal bases we have dis-
cussed for the last four chapters also give good (i.e., unconditional) bases for
many other spaces than L2, out-performing the Fourier basis functions in this
respect. Almost all the material in this chapter is borrowed from Meyer (1990),
but it is here presented in (I believe) a more pedestrian way, accessible to readers
with a Jower level of mathematical sophistication. (Meyer’s book also contains
much more on this subject than is explained in this chapter.) In §9.1 I start by
reviewing a classic theorem of pure harmonic analysis, the Calderén-Zygmund
decomposition. It can be found also in many textbooks (such as Stein (1970));
I include a detailed proof here as an illustration of techniques using different
(dyadic) scales, practiced in pure harmonic analysis long before wavelets came
along. Together with some other classic theorems, it leads to the proof that
wavelets are an unconditional bases for L?, 1 < p < oo. Section 9.2 lists
the characterizations, by means of wavelets, of other functional spaces, with-
out proof. Also included is a short discussion on the detection of singularities
with orthonormal wavelet bases. Section 9.3 treats expansions of L!-functions
by means of wavelets; since L! has no unconditional bases, wavelets cannot do
the impossible, but they still do a better job than Fourier expansions. Finally,
§9.4 points out an amusing difference in emphasis between wavelet and Fourier
expansions.

9.1. Wavelets: Unconditional bases for L?(R), 1 < p < co.

We start by proving the Calderén-Zygmund decomposition theorem.
THEOREM 9.1.1. Suppose f is a positive function in L'(R). Fit a > 0.
Then R can be decomposed as follows:

1. R=GUB,withGNB =§.
2. On the “good” set G, f(z) € a a.c.
3. The “bad” set B can be written as

B= U Qx, where the Q) are non-overlapping intervals,
keN
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and ag]Qk[’I/ dz f(z) <2a, forall keN.
. O .

Proof.

1. Choose L = 2¢.s0 that 2°¢fyds f(z) < a It follows that
L [+ g f(z) < a for all k € Z. This defines a first partition
of R.

2. Take a fixed interval Q = [kL, (k+ 1)L[ in this first partition. Split it into
two halves, [kL, (k+ 3)L| and [(k + 1)L, (k + 1)L[. Take either of the
halves, call it ', and compute Iy = ]Q’I"1 fq, dz f(z). If Ig- > a, then
put Q' in the bag of intervals that will make up B. We have indeed

o<l <11 [d=fe) = 20" [ e fla) <20

If Igr < o, keep going (split into halves, etc.), if necessary, ad infinitum.
Do the same for the other half of Q, and also for all the other intervals
[kL, (k + 1)L[. At the end we have a countable bag of “bad” intervals
which all satisfy (9.1.1); call their union B and the complement set G.

3. By the construction of B, we find that for any * ¢ B, there exists an
infinite sequence of smaller and smaller intervals Q;,Q2,Q3,--- so that

Z € Qq for every n, and |@nl™! Jo_dy f(y) < a. In fact, |Q,] = 31Qj-1]
for every j, and Q; C Q1. Because the @y shrmk to” z,

1Qal ™ f dy f(y) — f(z) a.lmost surely .

Since the left side is < a by construction, it follows that f(z) < a ae.
inG. ="

Note that the choice L = 2‘ implies that all the intervals occurring in this proof
are automatically dyadic intervals, i.e., of the form [k277, (k + 1)2~7{ for some
k.jeZ.
Next we define Calderén-Zygmund operators and prove a classical property.
DEFINITION.! A Calderdn-Zygmund operator T on R is an integral operator

TN = [d Kew) 16) CERY
for which the integral kernel satisfies
C
|K(z, )l £ —= T3’ (9.1.2)

(9.1.3)

8

Kz, y)| £ 77— ,
5 Ko s g5
and which defines a bounded operator on L2(R).

!5@; K(z,y)| +
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THEOREM 9.1.2. A Calderon-Zygmund operator is also a bounded operator
from L'(R) to LL_, (R).

The space L1,, (R) in this theorem is defined as follows.

DEFINITION. f € L1, (R) 1if there exsts C > 0 so that, for all a > 0,

{z: If(z)] 2 a}

C
<-—. A,
<< (914

The infinum of all C for which (9.1.4) holds (for all a > 0) is sometimes
called |flly: .2

EXAMPLES.

1. If f € L*R), then (914) is aut.omatlca.lly satisfied. Indeed, if
= {z; |f(z)| 2 a}, then

& |Sal < js dz |f(2)| < /. dz |f(2)] = Ul ;

hence
Wl < Wl
2. f(z) = |z|7!is in LY, since |[{z; |z|™' > a}} = 2. However,
f(z) = |z|Pisnotin L, 1f B> 1.

The name L}/, is justified by these examples: L}, extends L', and contains ~
the functions f for which [|f| “just” misses to be ﬁmte because of logmthmlc
singularities in the primitive of | f].

We are now ready for the proof of the theorem. .

Proof of Theorem 9.1.2.

1. We want to estimate |{z; |I'f(z)] 2 a}|. We start by making a Calderén-
Zygmund decomposition of R for the function | f|, with threshold a. Define

'now
[ f(z) if z€G,
glz) = ¢ o
[Q|™? / dy f(y) if z € interior of Qy ,
\ Qx
(0 if z€@G,
bz) =
f@) ~ Q]! -/Q dy f(y) if z € interior of Qi .

Then f(z) = g(z) + b(z) a.e.; hence Tf = Tg + Th. It follows that
|Tf(x)| 2 a is only possible if either [T'g(x)] > a/2 or |Tb(z)| > a/2 (or
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both); consequently, |
I{z: ITS(@)| 2 a}] (1)
- < |{m me@) 2 T} + [{zi T80 = T}

The theorem will therefore be proved if each of the terms in the right-hand
side of {9.1.5) is bounded by € || fl.:.

. We have

@) o mo@i2 ) s [a oo
’ {= [Te(=)12 %}

< / dz [Tg(z)* = |ITgl%s < Cllgh2 ,
3

(9.1.6)
because T is a bounded operator on L2. Moreover,

2 2 2
HgliZ /G dz g(z)? + /B dz lg(z)2—

- 1
a [ deife) + Siau i [ 1w
{use the definition of g, and |f{z)} < a on G)

. < a /G dz |f(z)] + 2,.: 20 /q dy 1f(o)

(use |Qa|™? [Q dy |f)! < 2a)

il

2

A

A

< 2 [dif) = 20l
éombining this with (9.1.6), we obtain \
o 8 i
= mo@i2 3} <= Ciflea . (9.0.7)
. We now concentrate on b. For each k, we define new intervals Q; by

“stretching” the Qx: Q; has the same center g, as Qy, but twice its length.
We define then B* = UpQ}, and G* = R\B*. Now

Bl < Y 1@ =2 iQl
k k

2

2 L [ e ve

(because |Q|"! /Q iz |(z)| 2 )

IA

IA

A

2
; "f"loI ’
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*

80 that )
{zesimo@nz Gl <iBI< 2 Ml . @18

4. It remains to estimate |{z € G*; [Tb(z)| > §}|. We have

2 fzeo iz 5} < / = [Tb(z)
{z€G*; ITH=x)|> %)
< [ dzTH2)] . (9.1.9)
-

5. To estimate this last integral, we separate the different contributions to b.
Define by (z) by

0 if z¢Qx,
be(z) = flz) - l&T / dy f(y) /if z € interior of Qy .

Then b(z) = )_, bir(z) a.e., since the Qi do not overlap. Consequently,
T = Y, Tb, and

L@ s [ amn@sE [ dmoel
= Y dz

x “R\Q;

= ; /l \q;dz I /Q ,. dy [(K(z,y) — K(z,u)] dx(y)

(y is the center of Qy; we can insert this
extra term because [, dy bx(y) = 0)

S foa® fo, K - Kol bl
(9.1.10)

! dy K(z,y) be(y)
Qx

IA

The difference K(z,y) — K(z, ) can be estimated by using the bound on
the partial derivative & K of K with respect to its second variable:

j dz |K(z,y) - K(z, )|
R\Q;

. 1
< - ey -
< /. «® /o dt 18K (2, e +t(y - )] - v ~ wal

1
< / dz [ dt Cly ~ pul (2 — yi) — ty — )]~
|z—ya|22Rs 0
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(where we write Qx = [yx - Rk, yx + Rxl,
Qr = lvr — 2Rk, yr + 2Ry[)

= R || du/ldt—g-—-c——
luf>2 o R |u-tuf?
. (after the substitution = =y, + Reu, y= yp-+ Ryv,

where {u|l>2, |v|<1)
< C’' (independent of k) .

Substituting this into (9.1.10) yields
/ dz |Th(z)] < ¢ Y / dy bk (v)]
G* k Qe

D> [, @ [If(y)l + o /Q dz tf(x)!]

20’ d 20! .
):, /Q 1) <20 e

IA

IA

Together with (9.1.7), (9 1.8), and (9.1.9), this proves the theorem. =

-

Once we know that T maps L% to L? and L! to Ll . we can extend T to
other LP-spaces by interpolation theorem of Marcinkiewicz.
THEOREM 9.1.3. If an operator T salisfies

ITflen, < Cillifliee (9.1.11)
ITfliga, < Ca2lifilee , (9.1.12)

where <P, @2 S po, thenfor p = L+ 3=t 2 = Lylat wth0<t <,

there exists a constant K, depencfmg on p1,q1, P2, q3, and t, so that
ITfllLe < K | fllee

Here L ,, stands for the space of all functions f for which
Iflles . = finf {C; {{z; |f(z)| 2} SC a9 forall a>0}Y/e

is finite.

This theorem is remarkable in that it only needs weaker bounds at the
two extrema, and nevertheless derives bounds on L9-norms (not L,,,) for in-
termediate values ¢.3 The proof of this theorem is outside the scope of this
chapter; a proof of a more general version car be found in Stein and Weiss
(1971). The Marcinkiewicz interpolation theorem implies that the L} — L} .-
boundedness proved in Theorem 9.1.2 is sufficient to derive LP— L? boundedness
for 1 < p < o0, as follows.
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THEOREM 9.1.4. IfT 1is an integral operator with mtegral kernel K satisfying
(9.1.2) and (9.1.3), and if T 1s bounded from L?>(R) to L%(R), then T exiends to
a bounded operator from LP(R) to LP(R) for all p with 1 < p < 0.

Proof.

1. Theorem 9.1.2 proves that T is bounded from L' to Ll by
Marcinkiewicz' theorem, T extends to a bounded operator from L” to LF -
forl <p<2. ,

2. For the range 2 < p < 0o, we use the adjoint T of T, defined by
Jae 0@ 7@ = [ s) TG

It is associated to the integral kernel K(z,y) = K(y,z), which also satis-
fies the conditions (9.1.2) and (9.1.3). On L?(R), it is exactly the adjoint
in L2-sense T™, so that it is bounded. It follows then from Theorem 9.1.2
that 7" is bounded from L! to L} ..x» and hence by Theorem 9.1.3, that it
is bounded from LP to L? for 1 < p < 2. Since for ’l, +i=1, T LP1r
is the adjoint of T : LI—L3, it follows that T-is bounded for 2 < g < oo.
More explicitly, for readers unfamiliar with adjoints on Banach spaces,
geL?

(ii'-1-+1 = l)
p 4
Hollzp =1 R

sup / dr / dy 7{y) K(z.9) 3(2)

pELP
‘H!ﬂLptl

= sup /dy fy) (Tg)(y)l o
gl p=1

sup  |\fllze WTglle < C IfllLe -

gELP
RoiLp=1

iTfle =  sup f dz (Tf)(x) 7(@)

I

IA

(Strictly speaking, changing the order of integrations in the third equality
is not allowed for all f,g, but we can restrict to a dense subspace where
there is no such problem.) = ’

~

We can now apply this to prove that if ¢ has some decay and some regularity
and if the Y;x(z) = 279/2 ¢(279x — k) constitute an orthonormal basis for
L3(R), then the 4;, also provide unconditional bases for L?(R), 1 < p < oo.
What we need to prove (see Preliminaries) is that if

F=3 cirvinel?,
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then

Y wikcpn yu € LP
1k

for any choice of the w; x = %1.

We will assume that 3 is continuously differentiable, and that both ¢ and ¢’
decay faster than (1 + |z})~ L

()], W' (=) <C+|z)) . (9.1.13)

Then ¢ € L?P for 1 < p < o0, and f = 2j,.c,.up,,; implies ¢, =
J dzf(z) ¥, (), because of the orthonormality of the ;.. We therefore want
to show that, for any choice of the w,, = %1, T,, defined by

Tof = Y wn (. Yy) Yy
1.k

is a bounded operator from L? to [”. We already know that 7}, is bounded from
L? to L?, since

1Zoflts = 3 Jwse (s o) = KA 0 = W12,

1k 2.k

80 the LP-boundedness will follow by Theorem 9.1.3 if we can prove that 7, is
an integral operator with kernel satisfying (9.1.2), (9.1.3). This is the content of
the following lemma.

LEMMA 9.1.5.
Choose w,x = x1, and define K(z,y) = ¥, , w;x¥,k(2)¥y,4(y). Then there
ezists C < 0o 8o that

|K (=, y)] < o7l
and
5 K| + [g K| < 525

Proof.

1. .

Kz, 0)l < Y (@) W)l
Jk ’
< CY 2+ k)T (4 27y ~ Ky
ik

(by (9.1.13)).

Find jo € Z so that 2 < |z — y| € 29%1. We split the sum over j into
two parts: j < jo and j 2 jo.
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2. Since Y-4(1+ Ja — k)™1¢(1 + |b— H)*~* is uniformly bounded for all
values of a,b,* we have

Z 22”(1-}-]2": k)11 4 |27y — Af) L
J=jo k

<C Z -3 <02-h+1 <
J=30 )

i
-yl

3. The part j < je is a little less easy.
do—1

S oo Z [+ 12792 ~ K1+ (277 - K~

j=~—ao

Z y Z !(1 + |2’z kl)(l + ngy - khl-q-.

J=-do+1

< gl+e Z 2 V(2 + [Pz ~ k)2 + 1Py - K| H0(9.1.14)

I=-30+1 k

Find ko € Z 50 that ko < 255K < ko + 1, and define ¢ = k — ko. Then
z;y +(2j T+yY k”)’
T-y l

24+ Py-k21 +l Ll

2+ ¥ zx-kl =2

2

similarly,

Consequently, with a = .2"5—;-",
S @+ 1Pz -k)2+ |2y - kY
&

ST [+l +8)A +la+ O <O+ la)™e 2
¢

80 that
9114) <€ ©C i ¥ (1+2f I D-H
Js—jo-ﬂ
< 3 o (1+2H~ ai-ﬂ)""'
J'=1 .

(because |z ~ y| < 270%Y)
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o
C 2 Z 21’(1 + 2.1’)—1-¢
3'=1

< <20 -yt
It thegefore follows that [K{z,y)| < Clz — y|~L.

IN

4, For the estimates on 8, K, 8, K, we write

10:K(z,y)] < Y 27 (2772 - k)| [9(2 7%z - k)|

1k

CY 27V [(1+ 27z - k(1 + ]2y - kD)
- J,*

IA

and we follow the same technique; we obtain without difficuity

10:K(z, )l 18,K(z,p)l <Clz-9|™*. =

’

From the discussion preceding the lemma it therefore follows that we have
proved the following theorem

THEOREM 9 1.6. If ¥ 15 C! and [p(z)], [¢'(z)] < C(1 +|=}) !¢, and of the
¥y k(z) = 277/2 {277z - k) constitute an orthonormal basis for L*(R), then
the {,k, 3,k € Z} aiso constitule an unconditional basis for all the LP-spaces,
1<p<oo.

9.2. Characterization of function spaces by means of wavelets.

Since the v, x constitute an unconditional basis for LP(R), there exists a charac-
terization for functions f € LP(R) using only the absolute values of the wavelet
coefficients of f. In other words, given f, then we can decide whether f € L? by
looking only at the |{f, ¥,x}|- The explicit criterion is, again for 1 < p < oo,

. 1/2
JeP®) > |3 S tall? lr/:,,k(x)l’} € P(R)
2.k

-

\/2
= )i, w2 X[ﬂk,ﬂ(k«rl)](*}} € LP(R) .
) 1.k

For a proof that these are indeed equivalent characterizations of LP(R), see Meyer
(1990).

Similarly, wavelets provide unconditional bases and characterizations for
many other functional spaces. We list a few here, without proofs.

The Sobolev spaces W*(R). The Sobolev spaces are defined by

wim = {fi [ 1+1ePY 1FQF <o)
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“ o

Their characterization by means of wavelet coefficients is

FeW' R) e Y IUf, vl 1+27%) <oo.

- j'k )
The Holder spaces C*(R). For 0 < s < 1, we define

C'(R) —_ {f E.Loo(?); B.I?,].) If(z"'";‘)“_ ,f(l')l <00} .

Fors=n+3,6 0<s <1, we define
C*(R) = {f € L™(R)NC™"(R); % fe C"} )

For integer values of 8, the appropriate spaces in this ladder are not the tra-
ditional C™-spaces (consisting of the functions that are n times continuously
differentiable), nor even the Lipschitz-spaces, but slightly larger spaces defined
by

& A, = “Zygmund class”

A
e

i

{f € L™(R) N C°(R); sup [zt h)+ f{:f h) - ) oo} \

which takes the place of C*(R), and

dn—l
A7 = {feL“(R)nC"“‘(R); W fGA.} .

For this ladder of Holder spaces one has the following characterization:

A locally integrable f is in C*(R) (s noninteger) or A” (s = n integer)
if and only if there exists C < oo so that,

~—

“I{f, doxdt <C forall ke Z,
(9.2.1)
NS, o)l SC 2790+ forall 20, keZ.

We have implieitly assumed here that ¥ € C7, with r > s.

For proofs and more examples, see Meyer (1990). Of the examples given
here, the only spaces that can be completely characterized (with “if and only if”
conditions) by Fourier transforms are the Sobolev spaces.

The corditions (9.2.1) characterize global regularity. Local regularity can

" also be studied by means of coefficients with respect to an orthonormal wavelet

™ basis. The most general theorem is the following, due to Jaffard (1989b). For
simplicity, we assume that ¥ has compact support and is C* (the formulation of
the theorem is slightly different for more general ).
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THEOREM 9.2.1. If f is Holder continuous with ezponent @, 0 < ax < 1, at
Zg, 1.€.,

|f(x) ~ f(z0)| < Clz — zo|* , (9.2.2)

then
max(|(f, ¥-,,&)| dist (zo, support(y_;)) ™} = O (2—@""’1') (923)

for j—o0. Conversely, if (9.2.3) holds and if f is known to be C* for somee >0,
then

(9.2.4)

|f(x) — f(zo)| £ Clz — zo|™ log

|z - zo}

We do not have exact equivalence between (9.2.3) and (9.2.2) here. The estimate
(9.2.4) is in fact optimal, as is the condition f € C*: if f is merely continuous, or
if the logarithm in (9.2.4) is omitted, then counterexamples can be found (Jaffard
(1989b)). Non-equivalence of (9.2.2) and (9.2.3) can be caused by the existence
of less regular points near o, or by wild oscillations of f(z) near zg (see, e.g.,
Mallat and Hwang (1992)). If we modify condition (9.2.3) slightly, then these
problems are circumvented. More precisely (again with compactly supported
¥ € C!), we have the following.

THEOREM 9.2.2. Define, fore > 0,
S(zo,7; €) = {k € Z; support(¥;)N)zo — €, To + €[# ¢}.

If, for some € > 0, and some @, 0 < a <1,

K Yol = ( ‘J'(§+a)) ’ (9.2.5)

kES(:o 133€)

then f is Holder continuous with expopent a in zo.

Proof.

1. Choose any  in |z¢ — 6 To+ e[ Since either ¥;x(z) # 0 or ¥, k(o) :,é 0
-implies k € §(z9,J;€), we have

Z (s ¥5) [sa(2) — (o))
= Z Yo v [ia(@) — Pin(zo)] -

i k€S8(zo.3:0)

f(@) — f(zo)

‘}t follows that

1f@) - fo)l <) C 2} +a) Z 9s.6(2) — ¥5,6(Z0)| -
i

k€S(xp,j;€)




CHARACTERIZATION OF FUNCTIONAL SPACES 301

2. Since ¥ has compact support, the number of k for which ¥;(z) # 0 or
¥;,x(zo) # 0 is bounded, uniformly in j, by 2 |support(y)]. Consequently,

Y ial(z) - dixl(zo)l

k€ S(zg,7:¢)
< C; max [¥50(z) — $jx(z0)l

<C 27 max [¥(277z — k) - 9(27720 ~ k)] .

Since ¥ is bounded and C?,
[W(279z - k) — Y(2 929 — k)| € C3 min (1, 27|z — o)) .

3. Now choose jj so that, 27° € |z — zg] < 27°*!. Then

Jo oo
@) - flza)l < CiCiCs [E 2 4 Y 29—
j=—o00 1=30+1

IA

C, [2"” + 2le-lio|y -—a:o|] <Cslz—zp|. m

REMARKS.
1. Similar theorems can, of coutié, be proved for U-spaces with a > 1.

2. If a = 1 {or more generally, a € N), then the very last step of the proof
does not work any more, because the second series will not converge. That
is why one has to be more circumspect for integer a, and why the Zygmund
class enters.

3. TheotemsQZIand922uealsotme|f¢}gnsmﬁnitesupport and ¢ and
¥/ have good decay at oo (see Jaffard (19§9b}) Compact support for ¢
makes the estimates easier. o

& -

Local regularity can therefore be studied by means of wavelet coefficients.
For practical purposes, one should beware, however: it may be that very large
values of j are needed to determine a in {9.2 5) reliably. This is illustrated by
the following example. Take

flx-a) = 2et=° . if z<a-1,
e l=—el if a~1<z<a+l,
e~ =-9[(z—~a— 1)’+1| if z>a+41;

lhiﬂ function is graphed in Figure 9.1 (with a = 0). This function has Holder
exfaments 0, 1, 2 at 2 = a — 1, a, a + 1, respectively, and is C™ elsewhere.
One can then, for each of the three points o = a — 1, a, or a + 1, compute
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t(x)
10}

05+

0 N R . N A N
- -2 -1 0 1 2 o
Fic. 9.1. This fonction is C™ except al z = —1,0 and 1, where, respectively, f, f/, and
1" ore disconti.. 1ous. ' .

A; = max {[(f, ¥;x); Zo € support (¥;4)}, and plot log A;/log2. If a = G,
then these plots line up on straight lines, with slope 1/2, 3/2 and 5/2, with pretty
good accufracy, leading to good estimates for . A decomposition in orthonormal
wavelets is not translation invariant, however, and dyadic rationals, particularly
0, play a very special role with respect to the dyadic grid {277k; j, k € Z}
of localization centers for our wavelet basis. Choosing different values for a
. llustrates this: for a = 1/128, we have very different (f, ¥;:), but still a
reasonable line-up in the plots of log A;/log 2, with good estimates for a; for
irrational a, the line-up is much less impressive, and determining a becomes
correspondingly less precise. All this is illustrated in Figure 9.2, showing the
plots of log A;/log2 as a function of j, for o = a —1, @, a + 1 and for the three
choices @ = 0, 1/128 and v2Z — 11/8 (we subtract 11/8 to obtain a close to zero,
for programming convenience). To make the figure, |(f,¥-;)] was computed
for the relevant values of k and for j ranging from 3 to 10. (Note that this
means that f itself had to be sampled with a resolution 2717, in order to have
a reasonable accuracy for the j = 10 integrals.) For a = 0, the eight points line
up beautifully and the estimate for a + } is accurate to less than 1.5% at all
three locations. For a = 1/128, the points at the coarser resolution scales do.not
align as well, but if a+ } is estimated from only the finest four resolution points,
then the estimates are still within 2%. For the irrational choice a = v2 — 11/8
no alignment can be seen at the discontinuity at a — 1 (one probably needs even
smaller scales), and the estimate for a + 1 at a, where f is Lipschitz, is off by
about 13% (interestingly enough, the estimate would be much better if the scale-
10 point were deleted); at a + 1, where f' is Lipschitz, the estimate is within
2.5%. This illustrates that to determine the local regularity of a function, it
is tore usefu] to use very redundant wavelet families, where this translational
non-invariance is much less pronounced (discrete case) or absent (continuous
case).’ (See Holschneider and Tchamitchian (1990), Mallat and Hwang (1892).)
Another reason for using very redundant wavelet families for the characterization
of local regularity is that then only the number of vanishing moments of ¥ limits
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. F10. 9.3. Estimates of the Holder exponents of f(z — a) (see Figure 8.1) at a — 1 (top),
o (middle), a +1 (bottom), computed from log As/ log 2, for different velues of a. (This figure
was coniributed by M. Nitssche, whom I would like to thank for her help.)
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the maximum regularity that can be characterized; the regularity of ¥ plays no
role (see §2.9). If orthonormal bases are used, then we are necessarily limited by
the regularity of ¢ itself, as is illustrated by choosing f = 3. For this choice we
have indeed (f,¢¥_;») = 0 for all j > 0, all k; it follows that with orthonormal
wavelets we can hope to characterize only regularity up to C™¢ if ¢ € C".

9.3. Wavelets for Li([o,1)).

Since L!-spaces do not have unconditional bases, wavelets cannot provide one.
Nevertheless, they still outperform Fourier analysis in some sense. We will il-
lustrate this by a comparison of expansions in wavelets versus Fourier series of
L([0, 1])-functions. But first we must introduce “periodized wavelets.”

Given a multiresolution analysis with scaling function ¢ and wavelet ¢, both
with reasonable decay (say, |¢(z)|, |¥(z)] < C(1 + |z|)~1~¢), we define

¢rx (@) = z bix(e+€), Py = Z Yir(z+€);

) tel tel
-
. and
VP = Span {#fy; k€Z}, WP = Span{y[}; keZ}.
Since Y,ez #(z +€). = 1° we have, for j > 0, ¢f%(zx) = 2792

Y2 fz -k +279) = 2//2, go that the V™, for j > 0, are all identi-
cal one-dimensional spaces, containing only the constant functions. Similarly,
because J-, ¥(z +£/2) = 0, WP = (0} for j > 1. We therefore restrict
our attention to the VP, W™ with j < 0. Obviously V¥, WJ* c VI,
a property inherited from the non-periodized spaces. Moreover, W™ is still
orthogonal to V**, because

1
/o dz $2% () 2% (2)

l L3
=y 2 / dz (279 + 279¢ - k) $(2-Iz + 2710 — ¥)
Lvel 0

241 —_—
= X M [ aywiely+ 2~ €) - k) Sy - F)
[ 4 .

tLrer
(because j < 0)
= Z (Wi x1qi1er Gir) = 0.
reZ - -

It follows that, a8 in the non-periodized case, VE% = VP* ® WI*. The spaces
P;"‘", Wf" are al] finite-dimensional: since ¢; 4, maint = ¢1,x for m € Z, and the
same is true for 1, both VP*" and W}'*" are spanned by the 2! functions obtained
from k = 0,1,---,2/l — 1, These 24! functions are moreover orthonormal; in
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e.g, W™ we have, for 0 < k, k' < 291 -1,

(dl,:’:' ’prk';) = Z (wj,k-}zlﬂr’ ﬁj,&') = 6k,k' .
N reZ

We have therefore a ladder of multiresolution spaces,
WrcVvicvic...,

with successive orthogonal compiements W§* (of VF* in VP{"), WP, .« , and
orthonormal bases {¢,.; k = 0,---201 — 1} in VP, {¢,0; k = 0,---, 20! -
1} in WP¥. Since U,e_NV" = L*([0,1]) (this follows again from
the corresponding non-periodized version), the functions in {#f} U {w}’,f :
-j € N, k = 0,---,2b0 — 1} constitute an orthonormal basis in L2([0, 1]).
We will relabel this basis as follows:

go(z) = 1 = ¢f5(z)

afr) = 'Pg,%' (x)

92(z) P o(@)

93() P1a(@) = ¥E5p(z~ §) = galz - 3)
au(z) = 'l"—’ezr,o(-'”)

li

925 () ¥ 0(@)

gueu(z) = YIZ5.(2) = gu(z—k277) for 0<k<SP -1

Then this basis has the following remarkable property.
THEOREM 9.3.1. If f i3 a conlinuous periodic function with period 1, then
there ezist o, € C so that

N
f-zangn

n=0

—0 g8 N-o0. (8.3.1)
Loe

1. Since the g, are ocrthonormal, we necessarily have a, = (f, gn). Define
Sy by

N
Snf =3 {f, 9n) 9n -
n=0
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In‘a first step we prove that the Sy are uniformly bounded, i.e.,
ISwfliLe £ C IfllLe (9.3.2)

with C independent of f or N.
.EN = 2 then 331 = Pmiv:;'; hence

24 1

(Swf)iz) = Z (f, %) () = [dv K,(z.9) f¥) ,

with 11
2y .
K, (z,y) = Y & Tu(2) &5 ) -
k=0
Consequently,
1
isuten <[ s [ o K] W1ee
z€[0,1] Jo
Now -

1
sup j dy |K,(z,y)

z€(0,1} Jo
LD |

< oup j d Y Y 6lae+ 0 oy + L)l

=€f0.1] k=0 teel
o0 3
< sup / dy 3 Y 2162z +0) - K 16(2'y - )
I k=0 (eZ
il 3y

<C'sup 3 Y 1o+ 2e-k)

k=0 tel
<c sup ) 19( +m)l,

meZ

and this is uniformly bounded if |¢(z)| < C(1 + |z])~}~*. This establishes
{9.3.2) for N = 24.

.IEN=24+m,0<m <2 -1, then

(Snf)z) = (Suf)(z) + Z (fy V250 ¥Poa(0) -
. k=0
Estimates exactly similar to those in point 2 show that the L™-norm of
the second sum i5 also bounded by C || f|| L, uniformly in j, which proves
(9.3.2) for all N.
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Proof.

1. Suppose, for simplicity, that ¢ is compactly supported, with support
¥ C [~L, L}. For sufficiently large j, this means that ¢? P (2 = o, x(2)
if {277k — zo| < 277. (Again, this is not crucial. For non-compactly sup-
ported 9, one only has to be a little more careful in the estimates below.?)

2. Form = 2 +k,om = fdz f(z) ¢_ji(z). Here _

support ¥_,x C [277(k—L), 279 (k+ L))
C {2."7.(120 —L-1), 27 (zo + L+ 1)}
(because |27k - 2| < 277) ;

fdz f(I) 'l’-—],k(z)

|#—zo|<277(L+1) . .
[dz [£(z) - f(=z0) — (z — z0) f'(z0)] P/*9(Pz — k)
je—zo|<27{L+1) -
= o(27/? 27%)
(use f(z) — f(zo) — (= — z0)f '(1'0) ofz - Zo),
and change variables: y = 2/(z — :n:o))
= o2/ = o(m™/?)
(because 2 < m < 27*1) .

i

Qm

i

This has the following corollary.

COROLLARY 9.4.2. If, for all m, C; m™3? < |an) < Ca m™¥2, with
C) > 0, C; < oo, then Y om=p Cm Gni 18 in C° for all a.< 1, but:snawhere
differentiable.

Proof. Immediate from Theorem922&ndLemma94l .

Let us now construct a very particular function. Take am = apyx = f;,
independently of k. Then

zamgm = Zﬁj Z 9294k

m=0 j=0

f: Bj Z S 972 (x4 20t - k)

=0 k=0 fcZ

o0

- g 212 g; Zw('z’z m) = Y 2/ g;F(¥z),

j=0 j=0
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where F(z) = 3 y(z —m) is a periodic function. We have

F(z) = Z F, e7¥m=

with 1
F, = - / dz F(z) @™ = 2 (2m) .
21r 0

In the special case where ¢ = YMeyer (see Chapters 4 and 5), support ¥ =
{6 % < |¢| < 4}, so that 4(27n) # 0 only if n = +1. Moreover, $(—27) =
¥(2r). Consequently, F(z) = A cos(2nz), and

i am gm(Z) = Ai B, 272 cos(2'2nz) .

m=0 =0

The “full” wavelet series of the left-hand side has a lacunary Fourier expansion!
If now the g, are chosen so that C1277 < 27/2 8, < C; 277, then we can apply
Corollary 9.4.2,% and conclude that the function is nowhere differentiable. For
this special case, this is in fact a well-known result about lacunary Fourier series:
2ge0 Y cos(A,z), with 37725 |v;| < 0o but v\, /+ 0, defines a continuous,
nowhere differentiable function.

On the other hand, if we take a function with a localized singularity, but
which is C™ elsewhere, such as, e.g., f(z) = |sin xz|~*, with 0 < a < 1, then
its wavelet expansion will be more or less lacunary (all the coefficients decay
very fast as —3—00, except the few for which 2~k is close to the singularity),
while the Fourier series is “full”: f, = yan~ 119 4+ O(n=3+2), with 7, # 0; the
effects of the singularity are felt in all the Fourier coefficients.

Notes.

1. There exist many different definitions of Calder6n—Zygmund operators. A
discussion of these different definitions and their evolution is given at the
start of Meyer (1990, vol. 2). Note that the bounds are infinite on the diag-
onal z = y; in general K will be singular on the diagonal. Strictly speaking,
we should be more careful about what happens on the diagonal. One way
to make sure everything is well defined is to require that 7" is bounded from
D to D’ (D is the set of all compactly supported C™ functions, T its dual,
the space of (non-tempered) distributions), and that if z ¢ support (f),
then (Tf)(z) = [dy K(z,y)f(y). It then follows that K does not com-
pletely determine T': the operator (T1f)(z) = (Tf)(x)+ m(z)f(z), with
m € L*(R), has the same integral kernel. See Meyer (1990, vol. 2) for a
clear and extensive discussion.

2. Note that || - |2 constitutes a (very convenient) abuse of notation. As

shown, for example, by |||z~ 17! + |z +1"lgs |, 2 Mz -1 | +
z1)"1) .+ the triangle inequality is not satisfied, so that ||.|:__ is
not a “true” morm. -

-
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3. If the “weak” is dropped, then the theorem is known as the Riesz—Thorin
theorem; in this case K = C}C3~*, and the restriction ¢ < p1, g2 < po is
not necessary.

Y Q+le-k)T 1+ -k < Z (1+]a— k)

k
< sup Z(Hua k|)~t- ‘<22(1+£)""<oo

0<a’'<1 =0

5. We can suppose without loss of generality that a > 0. Find k so that
k<a<k+1, Then

Y t+la—e) 1 +la+gy e
[

~k—1

< D A+ k+1D) 1+ (18- k- 1))

#=—00

k
4 (k=) (14 (e O

t=-k

* i A+ (E-k-1)) A+ (+E)]'*

2=k+1

k
<23 (14 (k- O] 17 (1+26)71¢
=0

+2 }: I+ (E-k-D] 7 (1+2k)7' < C1+]a))7'e.
t=k+1

6. In Note 9 of Chapter 5 we saw that } ,¢(z + €) = constant. Since
I, dz ¢(x) = 1, this constant is necessarily equal to 1.

Yo v+ = 3 (1) honyr $(22 + L~ n)
£ n

[/

3 (1™ b $(22 + k)
km

i

(k=€-n, m=-n+1)
= 0 (because Ehgm = Ehﬁm+1) .
8. By now, the reader has seen so many instances of this type of estimate

that I leave the proof of Lemma 9.4.1 for non-compactly supported but
well-decaying 1/ as an exercise.
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9. Yes, Meyer’s wavelet does not have compact suppert, and the proof of
Lemma 9.4.1 uses that ¢ is compactly supported. See, however, Note 8
above. .
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CHAPTER 10

Generalizations and Tricks for
Orthonormal Wavelet Bases

This chapter consists of several generalizations and extensions of earlier construc-
tions. These are not treated with the same detail as in the previous chapters.
Some of the topics are still developing, and I expect that any write-up on them
would look very different even two years from now. The sections cover multi- |
dimensional wavelets with dilation factor 2, via tensor product multiresolution
analysis, or via nonseparable schemes; orthonormal wavelet bases with dilation
factor different from 2, integer or non-integer; the “splitting trick” for better
frequency resolution (in fact, merely a special case of the “wavelet packets” of
Coifman and Meyer); wavelet bases on an interval.

10.1. Multidimensional wavelet bases with dilation factor 2.

For simplicity, we will consider only the two-dimensional case; higher dimensions
are analogous. One trivial way of constructing an orthonormal basis for L2(R?),
starting from an orthonormal wavelet basis ¥, .(z) = 279/2 $(27z — k) for
L?(R), is simply to take the tensor product functions generated by two one-
dimensional bases:

‘I’Jl k1, 23,k3 (11’32) = d’)hkl (2:1) Vya,kz (32) .

The resulting functions are indeed wavelets, and {¥,, i,; y3.k23 J1:J2, k1, k2 € Z}
is an orthonormal basis for L?(R?). In this basis the two variables z; and z; are
dilated separately.

There exists another construction, mare interesting for many applications,
in which the dilations of the resulting orthonormal wavelet basis control both
variables simultaneously. In this construction, one considers the tensor product
of two one-dimensional multiresolution analyses rather than of the corresponding
wavelet bases. More precisely, define spaces V,, j € Z, by

Vo = Vo®Vo = Span{F(z,y) = f(z)g(v); f,.9 € Yo},
FeV,aF2.2)eV,.

Then the V; form a multiresolution ladder in Z?(R?) satisfying
N3V CeVoCV,C Vg,

313
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This chapter consists of several generalizations and extensions of earlier construc-
tions. These are not treated with the same detail as in the previous chapters.
. Some of the topics are still developing, and I expect that any write-up on them
would look very different even two years from now. The sections cover multi- |
dimensional wavelets with dilation factor 2, via tensor product multiresolution
analysis, or via nonseparable schemes; orthonormal wavelet bases with dilation
factor different from 2, integer or non-integer; the “splitting trick” for better
frequency resolution (in fact, merely a special case of the “wavelet packets” of
Coifman and Meyer); wavelet bases on an interval.

10.1. Multidimensional wavelet bases with dilation factor 2.

For simplicity, we will consider only the two-dimensional case; higher dimensions
are analogous. One trivial way of constructing an orthonormal basis for L2(R?),
starting from an orthonormal wavelet basis ¥, 4(z) = 272/% $(277z — k) for
L?(R), is simply to take the tensor product functions generated by two one-
dimensional bases:

‘I’Jhkh 23,k3 (11’32) = w)hkl (2:1) Vya,ka (12) .

The resulting functions are indeed wavelets, and {¥,, &, y3.k23 J12J2; k1, k2 € Z}
is an orthonormal basis for L2(R?). In this basis the two variables z; and 23 are
dilated separately.

There exists another construction, maore interesting for many applications,
in which the dilations of the resulting orthonormal wavelet basis control both
variables simultaneously. In this construction, one considers the tensor product
of two one-dimensional multiresolution analyses rather than of the corresponding
wavelet bases. More precisely, define spaces V,, j € Z, by

Vo = Vo®Vo = Span{F(z,y) = f(z)g(y); f,9 € Vo} ,
FeV, & F¥.7)eV,.

Then the V; form a multiresolution ladder in L?(R?) satisfying
N3V CVoCV,,CV_5e-
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(Vs ={oh UV, = 1®).
jel i€ *
Sincd the ¢(- = n), n € Z, constitute an orthonormal basis for Vj, the product

functions 1‘

* Pomyna(T,Y) = dx—ni) Sz —ng), nynael,

constitute an orthonormal basis for V, generated by the Z2-translations of &
single function ®. Similarly, the -

Pjinyna (@) = @iy (2) Gjin, (¥)
= 2799279z —ny, 277y -n3), m,n2€Z,
constitute an orthonormal basis for V;. As in the one-dimensional case, we de-

fine, for each j € Z, the complement space W to be the orthogonal complement
in Vj_l of Vj. We have .

Visi = Vir®@Via=(V;0oW;)®(V;0 W))
= V;eVie[(W;eV)a(V,eW,) e (W;dW;)
= V,'GWJ‘.

It follows that W,.consists of three pieces, with orthonormal bases given

by the ¥;n,(2) Gjny(y) (for W; @ V;), @40, (T) ¥jn,(y) (for V; ® W;), and
i, (T) Vjna(¥) (for W; @ W;). This leads us to define three wavelets,

Th(z,p) = ¢(z) v()
v (z,y) ¥(z) ¢(y)
V(z,y) = ¥(z) ¥(y)

(h,v,d stand for “horizontal,” “vertical,” "diagénal,” respectively; see below).
Then

[

{¥} i, mai B2 €Z, A=h, vor d}
is an orthonormal basis for W;, and
($n; j€Z, neZl, A=h vord}

is an orthonormal basis for @z W; = L*(R?).

: je

If, in this construction, the original one-dimensional ¢ and ¢ have compact
support, then obviously so have ® and the ¥*. Moreover, the interpretation
in terms of subbend filtering of a decomposition with respect to such ag or-
thonormal basis of compactly supported wavelets, as explained in §5.6, carries
over to two dimensions. The filtering can be done on “rows” and “columns” in
“the two-dimensional array, corresponding to horizontal and vertical directions
in images, for example.” Figure 5.7 becomes, in two dimensions, the schematic
representation in Figure 10.1.

i
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&0 :nlumn-

o \\\ |

ﬁeolumm dre

a1:¢rlm||m
a4

Fia. 10.1. Schematsc representation of repeated low- and high-pass filtering, on rows and
columns, for a two-dimensional wavelet decomposition.

-

The d' correspond exactly to the wavelet coefficients (F,¥}y), with F =
Yn h¥®on. In an image, horizontal edges will show up in d* N , vertical edges
in d*¥, diagonal edges in d''4, as illustrated in the image exmnple below. (This
justifies the h, v, d superscripts.) Note that if the original image (c?) consists of
an Nx N army, then (apart from border effects; see also §10.6), every array
d'* consists of ¥ 5 x 3- elements, and can therefore be represented by an image
(magnitudes of the coefficients corresponding to grey levels) of one quarter the
size of the original. The whole scheme can therefore be represented as in Fig-
ure 10.2. Of course, one can decompose ¢? even further if more multiresolution
layers are wanted. Figure 10.3 shows this decomposition scheme on a real image,
with three multiresolution layers.

. & || e
dl,h
R & 1| 424
0 —
dl " dl"
oniginal decomposition into two layers

F16. 10.2. Schematic representation of the nisualization of the two-dimensional wovelet
tranaform of Figure 10.3. :

All this concerned two-dimensional schemes which have a tensor product
structure. One can also 'consider the case in which one starts from a two-
dimensional multiresolution analysis (with the V; satisfying all the obvious gen-

L anel
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into three multires

Amnlimagc,rlnd

On the wavelet components one clearly sezs that the &, ¢hb, @34 emphasize, respectively,

T A T —

olution layers.

providing.

picture, ¢ has boen. overezposed to make
M. Barloud for

-

In this

in the di* more apperent. | would Kke to thank

Fia. 10.3.
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eralizations of (5.1.1)—(5.1.6)) in which Vj is not a tensor product of two one-
dimensional Vy-spaces.! Some (but not alll) of the constructions done in one
dimension can be repeated for this case. More precisely, the multiresolution
structure of the V; implies that the corresponding scaling function @ satisfies

O(x,y) = Y hnuna®(22 11,2y - 1) (10.1.1)

ni,n3

for some sequence (hn)pez2- Orthonormality of the ®q,n forces the trigonomet-

ric polynomial ’
. 1 ¢ _

mo(g, () = E E hn, ng € (ni1E+ny() (10(1_2)

ny My
to satisfy

Imo(€, O + Imo(€ + 7, ) + mo(€, ¢+ 2 +imo(€ + 7, ¢ + 1Y% = 1. (10.1.3)

To construct an orthonormal basis of wavelets corresponding to this multireso-
lution analysis, one has to find three wavelets ¥!, %2, ¥3 in V_;, orthogonal to
Vo and such that the three spaces spanned by their respective integer translates
are orthogonal; moreover the ¥ (- ~ n) should also be orthonormal for each fixed
A. This implies that

i - £\ e ¢
\I’A(€)C) = my (212)@(21%) y

where the m;, mz, mz are such that the matrix

mo(f’ C) ml(&» C) ‘m2(£1 () m3(€)€)
mol€ +m,0)  miE+m0)  maf+mC)  ma(€+m)
7"0({1("‘“) ml(f!( +7r) m2(€'(+ﬂ’ m3(E!C+,r)

mo(€ + 7,0 +7) mu(€+m(+7) malf+x,(+7) malE+mC+w)
’ f (10.1.4)

is unitary. The analysis leading to this condition is entirely similar to the one-
diinensional analysis in §5.1; see, e.g., Meyer (1990, §I11.4).2

Note that the number of wavelets to be constructed can be determined by
an easy trick. In two dimensions, for example, V) is generated by the translates
of one function ®(z,y), over Z?; the space V_, is generated by the translates
of ®(2z, 2y) over %Z?, .or equivalently, by the Z>-translates of the four functions
®(2z,2y), ¥(27 - 1,2y), ®(2x,2y— 1), ®(2z 1,2y - 1). V_, is therefore “four
times as big” a8 V. On the other hand, each of the W-spaces is generated
by the Z*-translates of a single function ¥/ (z,y), and is therefore “of the same

. size” as Vp. It follows that one needs three (= four minus one) spaces W}

(hence three wavelets ¥} to make ﬂp%thnbomplement of Vg in V_;. This rule
may sound like “hand-waving,” but wé can‘alao rephrase (and prove) it in more
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mathematical terms: the number of wavelets is equal to the number of different
cosets (different from Z2 itself) of the subgroup Z? in the group %Z’.

In the general n-dimensional case, the same rule shows that there are 2" —~ 1
different functions m; to determine; they have to be such that the 2" x 2°-
dimensional matrix

Urs(Er,-oor8n) = Moy + 817, &n + 8,7) (10.1.5)

is unitary, with r =1,---,2" and 8 = (sy,---,8,) € {0,1}".2

In fact the unitarity requirement of (10.1.4) or (10.1.5) calls for a tricky bal-
ance: m;,mz,m3 have to be found so that the first row of (10.1.4) has unit
norm, which seems harmless enough, but we also simultaneously need orthogo-
nality with and among the other rows, which are all shifted versions (in £ or ()
of the first row. These correlations between the rows may be hard to juggle in
practice. It is useful to untangle them first, which can be done via the so-called
polyphase decomposition. We write, e.g.,

2mo(€,¢) = moo(26,20) + e *mo1(R€,2C0) + e “mo 2(26,2()
+ e ‘(€+c)m03(2€ 2()!

me, i =0, é, are defined similarly from my, £ = 1,---,3. One easily checks ~
that (10.1.3) is equivalent to

Imo,0(2€, 20)1? + [mo,1(26, 20)1% + Imo,2(26, 2)]* + Imoa(26, 20)* =1 .

Similarly, all the other conditions ensuring unitarity of (10.1.4) can be recast in
terms of the my, j; one finds that (10.1.4) is unitary if and only if the polyphase
matrix

mo0(£,¢) m10(€,() ma0(€,¢) mae(€,C)
mo,1(§,¢) m1,1(§,Q) m21(6,¢) m3a(€,Q)
mo2(£,¢) m12(£,¢) - m2.2(£,¢) ms2(£,0)
mo3(£, () mi3(§,¢) m23(6,¢) msaléC) .

(10.1.6)

is unitary.
In n dimensions, one similarly defives

2"/2”17-(61, Tt )sn) = Z e—‘.("&*’m_“:'e") mr,8(2€11 i yzfn) 1.
BG{D,I)" .

and the unitarity of U is équivalent to the unitarity of the polyphase matrix U/

defined by .

A Ur,S(Eh ter 16!&) = mf—l.s(‘fh v ’{ﬂ) . \ (10'17)
The construction therefore boils down to the following question: given my

(from (10.1.1), (10.1.2)), can my,---,man_; be found such that (10.1.6) is uni-

tary? In the two-dimensional case, and if mo(¢, () happens to be a real trigono-

metric polynomial, then one can even dispense with the polyphase matrix: it is
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easy-to check that the choice m;(£,¢) = e~%¥mg(€ + m,(), ma(¢,() = e HEHO
mo(€,¢ + 7), ma(€,¢) = e %mo(€ + 7, + 1) makes (10.1.4) unitary. If mg is
not real, then things are more complicated. At first sight one might even think
the task is impossible in general in the n-dimensional situation, where (10.1.7)
is a 2" x 2"-matrix: after all, we need to find unit vectors, depending continu-
ously on the £, (namely the second to last columns of (10.1.7)), orthogonal to a
unit vector (the first column of (10.1.7)), i.e., tangent to the unit sphere. But
it is well known that “it is impossible to comb a sphere,” i.e., there exist no
nowhere-vanishing continuous vector fields tangent to the unit sphere, except in
real dimensions 2, 4, or 8. The first column in (10.1.7) does not describe the full
sphere, however; in fact, because it is a continuous function of n variables (the
€1,--+,€n) in a 2"-dimensional space, and 2" > n, it only describes a compact
set of measure zero. This fact saves the day and makes it possible to construct
My, ,Man-1, a8 shown by Grochenig (1987); see also §I11.6 in Meyer (1990).
Grochenig's proof is not constructive; a different, constructive proof is given in
Vial (1992). Unfortunately, these constructions can not force compact support
for the ¥?: even if mg is a trigonometric polynomial (only finitely many hn # 0),
the m, are not necessarily.

10.2. One-dimensional orthonormal wavelet bases with integer
dilation factor larger than 2.

For illustration purposes, let us choose dilation factor 3. A multiresolution anal-
ysis for dilation 3 is defined in exactly the same way as for dilation 2, i.e., by
(5.1.1)(5.1.8), except that (5.1.4) is replaced by

feV,o f(¥)eVs.

We can use the same trick again as above: V; is generated by the integer
translates of one function, i.e., by the ¢(z — n), while V_, is generated by the
#(3z — n), or, equivalently, by the integer translates of three functions, ¢(3z),
¢(3z — 1), and ¢(3z — 2). V_, is “three times as big” as Vj, and two spaces of
the “same size” as Vj are needed to complement Vp and constitute V_;: we will
need two spaces W, W3, or two wavelets, ¢ and ¢?.

We can again introduce mg, m;, my by

HE) = mo(€/3) $(£/3),  HHE) = me(€/3)9(E/3), ¢=1,2.

Orthonormality of the whole family {m,..,%.,.,%m n € Z}, where ¢;,, is now
defined by

$1n(z) =372 §(373z ~ n)

(¥, are defined analogously), again forces several orthonormality conditions on
the my, which can be summarized by the requirement that the matrix

-
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mo(€) my(€) my(§)
mg (e + 3;5) m (E + ?31) ™y (E + %E) (10.2.1)

rofer3) m(er3) mle3)

is unitary. Again, one can restate this in terms of a polyphase matrix, removing
the correlations between the rows, Explicit choices of mg, m;,mz for which
(10.2.1) is indeed unitary have been constructed in the ASSP literature (see, e.g.,
Vaidyanathan (1987)). The question is then again, as in-Chapter 6, whether
these filters correspond to bona fide L2-functions ¢, ¢, and ¥?, whether the
1[:5‘,t constitute an orthonormal basis, and what the regularity is of all these
functions. We know, from Chapter 3, that 4! and ¥® must necessarily have
integral zero, corresponding to m;(0) = 0 = my(0). Since the first row of
(10.2 1) must have norm 1 for all £, it follows that mg(0) = 1 (which is necessary
anyway for the convergence of the infinite product ﬂ;" , Mo(372€) which defines

#(£)). The first column of (10.2.1) must also have norm 1 for all £, so that
mo(0) = 1 implies mo(2X) = 0 = mo(4X), i.e., mo(£) is divisible by 1teSre 3
If, moreover, any smoothness for y!, %2 is desired, then we need additional

* vanishing moments of ¢!, ¥?, which by exactly the same argument as before,
lead to divisibility of mo(£) by ((1 4+ e~*% + e~ 24)/3)L if ¢, ¢? € CL~}. One
is thus led to looking for mq of the type mo(€) = ((1 + e~% + e~ 3)/3)N L(¢)
such that [mo(€)[? + mo(€ + L) + Imo(§ + 47)12 = 1. If my is a trigonometric
polynomial, this means that L = |£}? is again the solution to a Bezout problem.
The minimal degree solution leads to functions ¢ with arbitrarily high regularity;
however, the regularity index only grows logarithmically with N (L. Villemoes,
private communication).* Once my is fixed, m; and ma have to be determined.
The design scheme explained in Vaidyanathan et al. (1989) gives a way to do
this. In this scheme, the matrix (10.2.1) (or rather, its z-notation equivalent)
is written as a product of similar matrices the entries of which are much lower
degree polynomials, with only a few parameters determining each factor matrix.5
If one imposes that the first column of a product of such matrices is given by
the mo we have fixed, then the values of these parameters are fixed likewise, and
my, my can be read off from the product matrix.®

If the compact support constraint is lifted, then other constructions are pos-
sible. In Auscher (1989) one can find examples where ¢ and ¥ are C™ functions
with fast decay (and infinite support).

One final remark about dilation factor 3. We have seen that mp must neces-
sarily be divisible by (1 4 e~% 4-e~2%)/3. This factor does not vanish for £ =«
(unlike the factor (1 + e~%)/2 for the dilation factor 2 case). However, if we
want to interpret mg as a low-pass filter, then mg(r) = 0 would be a good idea.
To ensure this, we need L(#) = 0, which means going beyond the lowest degree
solution to the Bezout equation for |L]3.

N
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Similar constructions can be' made for larger integer dilation factors. For
non-prime dilation factors a, one can generate acceptable m, from constructions
for the factors of a, although not all pessible solutions for dilation a can be
obtained in this way. For a = 4, e.g., one can start from a scheme with dilation
2 and filters mg and m;, and one can define the filters g, 7, , g, 3 (still
orthonormal; the”distinguishes them from the dilation factor 2 filters) by

mo(€) = mo(E)mo(£/2) ,  ma(E) = m{E)ma(€/2) ,
m1(§) = mo(E)ma(£/2) ,  ms(f) = mu(E)mo(£/2) .

(It is left to the reader as an exercise to prove that this leads indeed to an
orthonormal basis. One easily checks that the 4 x 4 analogue of (10.2.1) is
unitary.) Note that the function ¢ is the same for the factor 4 and the factor 2
constructions! We will come back to this in §10.5.

10.3. Multidimensional wavelet bases with matrix dilations.

This is a generalization of both §10.1 and §10.2: the multiresolution spaces are
subspaces of L?(R"), and the basic dilation is a matrix D with integer entries
(so that DZ™ C Z™) such that all its eigenvalues have absolute value strictly
larger than 1 (so that we are indeed dilating in all directions). The number of
wavelets is again determined by the number of cosets of DZ"; one introduces
again mg,m,, - -, and the orthonormality conditions can again be formulated
as a unitarity requirement for a matrix constructed from the mg,m;,--- . The
analysis for these matrix dilation cases is quite a bit harder than for the one-
dimensional case with dilation 2, and, depending on the matrix chosen, there are
a few surprises. One surprise is that generalizing the Haar basis (i.e., choosing
my so that all its nonvanishing coefficients are equal) leads in many cases to
a function ¢ which is the indicator function of a selfsimilar set with fractal
boundary, tiling the plane. For two dimensions, with D = (3 1), esg., one
finds that ¢ can be the indicator function of the twin dragon set, as shown in
Grochenig and Madych (1992) and Lawton and Resnikoff (1991). Note that such
fractal tiles may occur even for D = 2 Id if mg is chosen “non-canonically” (e.g.,
mo(£,{) = (1 + e + &€+ 4 ¢~#€+3)) in two dimensions—see Grichenig
and Madych (1992)). For more complicated mq (not all coefficients are equal),
the problem is to control regularity. Zero moments for the 3, do not lead to
factorization of mg in these multidimensional cases '(because it is not sufficient
to know zeros of a multi-variable polynomial to factorize it), and one has to
resort to other tricks to control the decay of ¢.

A particularly interesting case is given by the “quincunx lattice,” i.e., the
two-dimensional case where DZ? = {(m,n); m + n € 2Z}. In this case there
is only one other coset, and therefore only one wavelet to construct, so that the
choice for m, is as straightforward as it was for dilation 2 in one dimension. The
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conditions on mg, m; reduce to the requirement that the 2 % 2 matrix

(mo(e,c) ¢ )
mo(€+7,C+7) m(E+x,+nw)

be unitary. It is convenient to choose

m1(6.¢) = e ¥ mo(§ + 7, ( +7) .

Note that any orthonormal basis for dilation factor 2 in one dimension auto-
matically gives rise to a pair of candidates for mg,m; for the quincunx scheme:
it suffices to take mg(€,¢) = m¥ (€) (where m{ is the one-dimensional filter).”
Different choices for D can be made, however. Two possibilities studied in de-
tail in Cohen and Daubechies (1991) and Kovaéevié and Vetterli (1992) are
Dy=(} "})and D2 =(] _1). The same choice for mo leads to very different
wavelet bases for these two matrices; in particular;-if one derives, via the mecha-
nism explained abaove, the filter mg from the “standard” one-dimensional wavelet
filters nmyp in §6.4, then the resulting ¢ are increasingly regular if D, is chosen
(with regularity index proportional to N), whereas choosing D; leads to ¢ which
are at most continuous, regardless of N. Other choices for D may lead to yet
other families, with different regularity properties again. One can of course also
choose to construct two biorthogonal bases rather than one orthonormal basis,
a8 in §8.3; for the choices 1)y, D, several possibilities are explored in Cohen and
Daubechies (1991) and KovaZevi¢ and Vetterli (1992). In this biorthogonal case,
one can again derive filters from one-dinrensional constructions. If one starts
from a symmetric biorthogonal filter pair in one dimension, where all the filters
are polynomials in cos ¢, then it suffices to replace cos¢ by 1(cos£ + cos() in
every filter to obtain symmetric biorthogonal filter pairs for the quincunx case.®
Because of the symmetry of these examples, the matrices D; and D; lead to the
same functions ¢, ¢ in this case. One finds again that symmetric biorthogonal
bases with arbitrarily high regularity are possible (see Cohen and Daubechies
(1991)). The quincunx case is of interest in image processing because it treats
the different directions more homogeneously than the separable (tensor-product)
two-dimensional scheme: instead of having two favorite directions (horizontals
and verticals), the quincunx schemes treat horizontals, verticals, and diagonals
on the same footing, without introducing redundancy to achieve this. The first
quincunx subband filtering schemes, with aliasing cancellation but without ex-
act reconstruction (which had not been discovered even for one dimension at
the time) are given in Vetterli (1984); Feauveau {1990) contains orthonormal
and biorthogonal schemes, and links them to wavelet bases; Vetterli, Kovagevié,
and Le Gall (1990) discusses the use of perfect reconstruction quincunx filter-
ing schemes for HDTV applications. In Antonini, Barlaud, and Mathieu (1991)
biorthogonal quincunx decompositions combined with vector quantization give
spectacular results for image compaction.
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10.4. One-dimensional orthonormal wavelet bases with non-integer
dilation factors.

In one dimension, we have so far only discussed integer dilation factors > 2.7

Non-integer dilation factors are also possible, however. Within the framework of
a multiresolution analysis, the dilation factor must be rational'® (for a proof, see
Auscher (1989)). It had already been pointed out by G. David in 1985 that the
construction of the Meyer wavelet could be generalized to dilation a = &, for
k € N,k > 1; Auscher (1989) contains constructions for arbitrary rational a (see
also Auscher’s paper in Ruskai et al. (1992)). Let us illustrate for ¢ = 3 how
the factor 2 scheme has to be adapted. We start again from a multiresolution
analysis, defined as in (5.1.1)-(5.1.6), with § instead of 2 for the dilation factor.

We have again ¢ € VpC V_, = Span{dt(; - ~n)}, so that

¢(a:)=\/§ 5,,3 h?,¢(-:-x-n) :

(The reason for the superscript 0 will soon become clear.) Consequently,

Mz —20) = \/'Z ( z-&‘n) = \fgz;hg_u.ﬁ(gz-n),

(10.4.1)
and orthonormality of the ¢(- — 2¢) implies
S MW g =6, (10.4.2)

On the other hand, ¢(- — 1) is also in Vp, and can therefore also be written as a
(different) linear combination of the ¢(3 z — n),

Hr—1) = ‘/g >; h,’,n#(g-z—-n) . (10.4.3)

Orthonormality of the ¢(x —2¢ — 1), and ortl;ogonality of the ¢(z — 2¢ — 1) with
respect to the ¢(z — 2¢) then implies

): R o = b, (10.4.4)
E RARY ., =0. (10.4.5)
n

All this means that we have in fact twe mg-functions,

3@ =2 T me,  mie)= /2 5 mei
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What about m,? We define again, for j € Z, the space W; to be the orthogonal
complement in V,_; of V;. Note that V_, is generated by the #(3z-n)nel,
or, equivalently, by the even integer translates of three functions, namely

¢(-32- (::—2[)), ¢(52f (z—2l)~%), ¢(g (m—u)-l), tez,

corresponding ton = 3¢, n = 3+ 1, and n = 3¢ + 2. The space V; is generated

by the 2Z translates of two functions, ¢(z ~2¢) and ¢(x—2¢-1), £ € Z. It follows

that the complement space Wy is generated by the 2Z translates of a single func-

tion, Wp = Span {¢(- —2n); n € Z}, (“W, is half the size of 15.”) We expect

therefore an orthonormal basis of the type ;x(z) = (3)9/2 ¥ ((3)x — 2k),

J,’; €z )Tlus function ¢ can also be written as a imear combination of the
gz—n -

w(x)=\/§ 2,.: y..dﬁ(ga:-n) ,-

and orthonormality of the ¥(z — 2n), plus orthogonality with respect to the
¢(z ~ 2n), ¢(x — 2n ~ 1) implies

Y gnTw = bn, . (10.4.6)

> g B8y, Y gkl gy =0. (10.4.7)
n n

With the definition my(€) = /2 ¥, gae™"¢, the conditions (10.4.2), (10.4.4)-
(10.4.7) are equivalent to the unitarity of the matrix

my(£) my(£) m1(£)

o) meF) meF) | e
e+ 5) (T m ()

This matrix looks identical to (10.2.1), but this similarity is deceptive: in (10.4.8)
the first two columns are both given by low-pass filters, because they are both
related to the scaling function ¢ (m3(0) = 1 = m}(0)), whereas the second
column in (10.2.1) corresponds to a high-pass filter. Such m{, m; can indeed be
constructed (see Auscher (1989) for details and graphs). Note that m} and m
are closely related. The Fourier transforms of (10.4.1), (10.4.3) are

o=m3(3¢) 6(3¢). doec=mi(3e)d(5¢) . woan

implying

md(¢) (¢) = /2 mg(¢) $(Q)
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which should hold for almost all {. If éis continuous, then the following argument
shows that ¢ vanishes on some intervals. Since $(0) = (2r)~1/2, there exists o

so that for |¢] < a, [$(¢)] 2 (27)~1/2/2. Consequently, for || < a,
mo(¢) = e¥/2 mi(() ,

or
m(¢ 4 21) = —e3*/2 m}(¢ + 2m) ;

since m3, m} are also 2x-periodic, this implies md(¢ + 2m) = 0 = m}({ + 2n) for
¢l < . Tt follows that |¢(2 ¢ + 37)] = 0 for [¢| < a. In particular, this means

that ¢ cannot be compactly supported (compact support for ¢ means that ¢ is
entire, and non-trivial entire functions can only have isolated zeros). ~

Nevertheless, subband filtering schemes with rational noninteger dilation
factors, in particular with dilation %, have been proposed and constructed by
Kovagevié¢ and Vetterli (1993), with FIR filters. The basic idea is simple: start-
ing from c°, one can first decompose into three subbands, by means of a scheme
as in §10.2, and then regroup the two lowest frequency bands by means of a
synthesis filter corresponding to dilation 2; the result of this operation is ct,
while the third, highest frequency band after the first decomposition is d'. The
corresponding block diagram is Figure 10.4. If all the filters are FIR, then the
whole scheme is FIR as well. But didn't we just prove that there does not exist
a multiresolution analysis for dilation factor 3 with FIR filters? The solution
to this paradox is that the block diagram above does not correspond-to the
construction described earlier. A detailed analysis of Figure 10.4 shows that
this scheme uses two different functions ¢! and ¢?, with V; generated by the
#!(z — 2n), $*(z — 2n), n € Z. The argument used to prove that ¢ cannot have
compact support then no longer applies; and ¢!, ¢? can indeed have compact
support. The analog of (10.4.9) is now an equation relating the two-dimensional
vectors (¢*(€), $2(¢)) and (#*(2 €),4%(3 €)), however, and it is hard to see how
to formulate conditions on the filters that result in regularity of ¢!, ¢2.

. — h 3l 21 h*
CI

e ‘ 7 3| 21 o*
3} d

F’

F1G. 10.4. Block diagram corresponding to a subband filtering with dilation factor §, as
constructed in Kovadevié and Vetterli (1993). -

One may well‘wonder what the rationale is for these fractional dilation factors.
The answer is that they may provide a sharper frequency localization. If the
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dilation factor is 2, then ¢v is essentially localized between 7 and 27, as illustrated
by the Fourier transform of a “typical” % in Figure 10.5. For some applications,
it may be useful to have wavelet bases that have a bandwidth narrower than one
octave, and fractional dilation wavelet bases are one possible answer. A different
answer is given in Cohen and Daubechies (1990), summarized in the next section.

10}
LW ()1

05

e s

0 x 2n I 4=

Fic. 10.5. Modulus of |10¥(£)|, with nv as defined in §6.4.

10.5. Better frequency resclution: The splitting trick

Suppose that h,,g, are the filter coefficients associsted to an orthonormal
wavelet basis with dilation factor 2, i.e.,

1 4
mo(§) = 7 ; hne ™

satisfies .
Imo()F +Imo(§ +m)? = 1, (10.5.1)

and
gn = (=1)" hopya .

Then we have the following lemma.
LEMMA 10.5.1. Take any function f (not necessarily connected to wavelets
in any way) so that the f(- — n), n € Z are orthonormal. Define

Fi(z) = ) haf(z—n)

Fg (a:)

ll

Y. amf(z-n).

Then {Fy(- — 2k),F3(- — 2k); k € 2} is an orthonormal basis for
E = Span {f(-—n); n€Z}. .
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Proof.
1. Since [dx f(z) f(z — n) = bn0, we have

[ 15 @ = 6up, o T 1f(E+200P = (20 ne. (1052)
£

2 Fi(e) =) hae™f(£) = V2 mo(€)f(6) . (10.5.3)
Conseque?:tly, .

YIRE+rOP = 3. [1Fale+2xR)E + (e + 7+ 2wk
£

k
= 2 (2m)7 {imo(€)[? + Imaf€ + m[*]
(use (10.5.2) and (10.5.3))

= =1 (by (10.5.1)).
This implies
[é P A= ~ [ i e
=) j;df |y (€ + mO)[? e = 44 .
[

The orthonormality_of the Fy(r — 2k) is proved analogously, using Pg(f) s
V2 e mo(§ + ) f(€).

3. Similarly,

/ dzFy(z)Fy(z - 2k) = ju "t [Z RE+n0R€+ wt)] e ke
¢

(10.5.4)
and

> B +n0F(E+m0)
4

=Y [ﬁ'l(g + 2rk) Fa(€ + 21k) + By (¢ +m + 2mk)Fa(€ + w4+ m)j
k

=2(2m)7" [Mo(f)mo(f +7)e* +mg(€ + n)mo(g)e‘(tm]
=0,

which proves that the Fi(z — 2k) and the F3(z ~ 2¢) are orthogonal.
4. Finally, the F)(- — 2k), Fa(- — 2k) span all of F because

j@) = Y [ha Fi(z+26) + g2 Fa(z +20)] , (10.5.5)
[4
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and

flz-1) = Z [h2e+1 Fi(z +20) + gae41 Falz +2¢)] . (10.5.6)
7

We have indeed .
Y har e EE(€) + Y g 2 F(g)
4 ¢

[mo(€) + molE+ 7| mol©)fi(€)
+ [ + mEFm] mi(©)f©
= J(©) {Imal@)F + I (€)P] + [mo(€)malE + 7) + my(€fmE + 7))
= j©,
which proves (10.5.5). Similarly,

Z haes1 e*EF(E) + Z g2es1 €M E(E)

= e [mofe) mo(€ + )| mo(€)£(6)
+e~% {ml(f)'"ml(f‘Fﬁ)] my(E)£(€)
= (),
which