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The purpose of cluster analysis is to determine the inner structure of clus-
tered data when no information other than the observed values is available.
Interest in clustering has increased due to the emergence of new domains of
application, such as astronomy, biology, physics and social sciences. Most
clustering done in practice is based largely on heuristic or distance-based
procedures, such as hierarchical agglomerative clustering or iterative reloca-
tion procedures. These methods present two major advantages: their con-
struction is intuitive and the associated computational time is reasonable.
Nevertheless their lack of statistical basis appears to be a limitation for their
use, since classical questions in clustering such as the number of clusters, can
hardly be theoretically handled by heuristic procedures.

Clustering methods based on probability models offer a principal alter-
native to heuristic-based algorithms. In this context the data are viewed
as coming from a mixture of probability distributions, each representing a
different cluster. In addition to clustering purposes, finite mixtures of distri-
butions have been applied to a wide variety of statistical problems such as
discriminant analysis, image analysis and survival analysis. To this extent
finite mixture models have continued to receive increasing attention from
both theoretical and practical points of view.

In a mixture model based approach to clustering the data are assumed
to have arisen from a mixture of an initially specified number of populations
in different proportions. Let us note Y = {Y7,...,Y,} a random sample of
size n, where Y; is a g-dimensional random vector with probability density
function f(y;) on R?, and vy, its realization. We suppose that the density of
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Y, can be written in the form

flye) = Z Tpfp(Ye),

where f,(y:) is a component density of the mixture, and 7, the weight of
population p (with the constraints 0 < m, <1 and Zp 7, = 1). In many ap-
plications the component densities are assumed to belong to some parametric
family. In this case, they are specified as f(y;;6,), where 6, is the unknown
vector of parameters of the postulated form for the p!* component of the
mixture. Let ¢ = (7,...,mp_1,01,...,0p) denote the vector containing all
the unknwon parameters of the mixture. Section 1 will be devoted to the
formulation of mixture models in the parametric context.

Since we are interested in clustering it appears that one information is
missing regarding the observed sample: the assignment of data points to the
different clusters. A new random variable is introduced and noted Z;, that
equals 1 if data point y; belongs to population p, and 0 otherwise. We sup-
pose that variables {Z1, ..., Z,} are independent (with Z, = {Z1, ..., Zip})
and that the conditional density of Y; given {Z,, = 1} is f(y:;6,). Therefore
variables Zy, can be viewed as categorial variables that indicate the labelling
of the data points. Thus Z; is assumed to be distributed according to a multi-
nomial distribution consisting of one draw on p categories with probabilities
T1y...,Tp:

{Zﬂ, ey th} ~ M(l;ﬂ'l, Ce ,7TP>.

In terms of clustering, the p* mixing proportion can be viewed as the prior
probability that one data point belongs to population p. The posterior prob-
ability of Zy, given the observed value of y; will be central for clustering

purposes:
7Tpf(?Jt; 8p>
S e f (v 00)

In order to formalize the incomplete data structure of mixture models, let
X = (Y, Z) denote the complete data vector, whose only component being
observed is Y. This reformulation clearly shows that mixture models can
be viewed as a particular example of models with hidden structure such as
hidden Markov models or models with censored data.

If the label of each data point was observed, the estimation of the mixture
parameters would be straightforward since the parameters of each density

Tip = PY{th = HY; = Z/t} =
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component f(y:;60,) could be estimated only via the data points from popu-
lation p. Nevertheless the categorial variables are hidden, and the estimation
can only be based on the observed data Y. The main reason for the impor-
tant work on estimation methodology for mixtures is that explicit formulas
for parameter estimates are not available in a closed form, leading to the
need for iterative estimation procedures. Fitting mixture distributions can
be handled by a wide variety of techniques, such as graphical methods, the
method of moments, maximum likelihood and Bayesian approaches. It has
only been since 30 years that considerable advances have been made in the
fitting of mixture models, especially via the maximum likelihood method,
thanks to the publication of Dempster et al. (1977) and to the introduction
of the EM algorithm.

The purpose of the EM algorithm is the iterative computation of maxi-
mum likelihood estimators when observations can be viewed as incomplete
data. The basic idea of the EM algorithm is to associate a complete data
model to the incomplete structure that is observed in order to simplify the
computation of maximum likelihood estimates. Similarly, a complete data
likelihood is associated to the complete data model. The EM algorithm
exploits the simpler MLE computation of the complete data likelihood to
optimize the observed data likelihood. Section 2 is devoted to the general
description of the EM algorithm and to its general properties. Despite a wide
range of successful applications and the important work on its properties, the
EM algorithm presents two intrinsic limitations: it appears to be slow to con-
verge and as many iterative procedures, is sensitive to the initialization step.
This has lead to the development of modified versions of the EM algorithm,
which will be detailed in section 2.

Once the mixture model has been specified and its parameters have been
estimated, one central question remains: "How many clusters?”. Mixture
models present a main advantage compared with heuristic cluster algorithms
in which there is no established method to determine the number of clusters.
With the underlying probability model, the problem of choosing the number
of components can be reformulated as a statistical model choice problem.
Testing for the number of components in a mixture appears to be difficult
since the classical likelihood ratio test does not hold for mixtures. On the
contrary, criteria based on penalized likelihood, such as the Bayesian Infor-
mation Criterion (BIC) have been successfully applied to mixture models.
Nevertheless, it appears that those criteria do not consider the specific ob-
jective of mixture models in the clustering context. This has lead to the
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construction of classification-based criteria. These criteria will be discussed
in Section 3.

1. Mixture models in the parametric context
1.1 Definition of the model

Let Y = {Y1,...,Y,} denote a random sample of size n where Y; is a
vector of R?, y; its realization and f(y;) its density function. In the mixture
model context the density of Y; is supposed to be a mixture of P parametric
densities such that:

Flus ) =D mof (13 0p), (1)

with the constraint Zle mp = 1, P being fixed. Coefficients m, can be viewed
as the weights of the p component of the mixture, which is characterized
by parameter 6,. ¢ = (my,...,mp_1,01,...,0p) denotes the vector of param-
eters of the model.

Mixture models are reformulated as an incomplete data problem since the
assignment of the observed data is unknown. If we note X; = {Y;, Z;} the
complete data vector whose only component being observed is Y;, its density

function is then:
P

9z ) = [ [1mpf (s 6,))7. (2)
p=1
1.2 Clustering via mizxture models

When mixture models are used in the clustering context, the aim is to
provide a partition of the data into P groups, with P being fixed. The
populations’ weights are interpreted as prior probabilities of belonging to a
given population. Pr{Z;, = 1} = 7, represents the probability to assign one
data point to population p when the only available information about the
data are the weights of each group.

In the complete data specification the clustering procedure aims at re-
covering the associated label variables z1, ..., z, having observed vy, ..., yn-
After the mixture model has been fitted and its parameter 1) has been esti-
mated, a probabilistic clustering of the observations is provided in terms of
their posterior probabilities of component membership:

7Arpf(yﬁ ép) '
S Fef (v 00)

Tip = f;r {Zp = 1Yy =y} =

3
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Probabilities 7;1,...,7;p are the estimated probabilities that data point
belongs to the first, second, ..., P component of the mixture.

Instead of fuzzy classification results each data point can be assignated
to a particular population with the maximum a posteriori rule (MAP):

1 if p = Argmax {7y},
5 ¢
Ztp =

0 otherwise.

2. Fitting mixture models via the EM algorithm

The estimation of the parameters of a mixture can be handled by a variety
of techniques from graphical to Bayesian methods (see Titterington et al.
(1985) for an exhaustive review of those methods). Nevertheless the max-
imum likelihood method has focused many attentions, mainly due to the
existence of an associated statistical theory. Given a sample of n indepen-
dent observations from a mixture defined in 1.1, the likelihood function is:

Ly:v) =11 { T f (Y3 Hp)} :

t=1

The particularity of mixture models is that the maximization of the like-
lihood defined above with respect to v is not straightforward and requires
iterative procedures. The EM algorithm has become the method of choice
for estimating the parameters of a mixture model, since its formulation leads
to straighforward estimators.

2.1 General presentation of the EM algorithm

In the incomplete data formulation of mixture models let us note X the
complete data sample space from which x arises, )) the observed sample space
and Z the hidden sample space. It follows that X =Y x Z, and = = (y, 2).
The density of the observed data X can be written:

g(w;p) = fly; ¥)k(zly; ),

where f(y;1) is the density of the observed data and k(z|y;%) is the con-
ditional density of the missing observations given the data. This leads to
the definition of different likelihoods: the observed/incomplete-data likeli-
hood L(y;1) and the unobserved/complete-data likelihood £¢(x;4). These
likelihoods are linked with the relationship:

log L(w;1p) = log L(y; 1) + log k(z|y; ¥),

4
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with .
log £°(w;9) = > log g(w4; 1),
t=1
and b
log k(z|y; v) = Z Z 2p 10g B {Zyp|Yy = w1}
t=1 p=1

Since the hidden variables are not observed, the EM machinery consists of
the indirect optimization of the incomplete-data likelihood via the iterative
optimization of the conditional expectation of the complete-data likelihood
using the current fit for 1. If we note 1 the value of the parameter at
iteration h, it follows that:

log L(y; ¥) = Q(1h; ™) — H(1h; ™), (3)

with conventions:

Q(b; ™) = Eyum {log L(X; )|V},
H(p; W) = Eyu {logh(Z]Y;9)|Y},

where En) {-} denotes the expectation operator, taking the current fit 1"
for 9.

The EM algorithm consits of two steps:
- E-step: calculate Q(¢; ™),

- M-step: choose Y"1 = Argmax {Q(v; ¢ ™)},
P
The E- and M- steps are repeated alternatively until the difference |y ("*+1) —
1M changes by an arbitrarily small amount. Note that another stopping rule
could be the difference of log-likelihoods between two steps, |log £(y; 1) —
log L(y;v¥™)|. However if the log-likelihood is ”flat” with respect to 1 this
difference can be stable whereas parameter 1)) keeps changing.

The key property of the EM algorithm established by Dempster et al.
(1977) is that the incomplete data log-likelihood increases after each iteration
of the algorithm. The proof of this theorem is based on the definition of the
M-step that ensures

Q5 DY > Q(1p; ™),

5
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while the application of the Jensen inequality gives

H(; oY < H(1p; ™).

Put together and considering relation 2.1, these inequalities ensure the mono-
tonicity of the likelihood sequence:

log £ (y; v"*Y) > log L(y; ™).

This inequality proves that the EM sequence of likelihoods must converge if
the likelihood is bounded above.

2.2 Formulation of the EM algorithm for mixture models

When applied to the special case of mixture models the log-likelihoods
are written in the form:

n n P
log L(y;1) = Zlogf(yt;@z))=Zlog{2wpf<yt;ep>}
t=1 t=1 p=1

n n P
log L(z;9) = Y logg(wiv) = > > zplog{myf (ye; )}
t=1

t=1 p=1

Since the complete data log-likelihood is linear in the unobservable data zy,
the E-step only requires the computation of the conditional expectation of
the missing information given the observed data 1, using the current fit )"
for . It gives

Qs ™) ZZEW {Z|Y: = yi} log {mp f (v 6,)}

t=1 p=1
with
Eym ZplYi=u} = 55) Zp =1, =y} = Tt(;:)7
and (h—l) (h—l)
7_(h) f( t; )
t - .
YA <yt,e<h V)
Then

Qs ™ ZZ% log {m, f (ye: 0,)} .

t=1 p=1
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The M-step requires the global maximization of Q(w;1™) with respect
to 9 to give an updated estimate ("1,

For finite mixture models, the estimation of the mixing proportions is
done via constrained maximization of the incomplete-data log-likelihood which
gives:

ﬁ_}()thl) Dt Ttp _
n
This estimator has a natural interpretation: it summarizes the contribution
of each data point 7, to the p! component of the mixture via its posterior
probability of membership. As for the updating of 6, it is obtained as an
appropriate root of

n P 01 :
Sy plosfust)

t=1 p=1

2.3 Information matrix using the EM algorithm

Once the parameters of the mixture have been estimated via maximum
likelihood, a natural question is to assess the standard errors of the estimator
zﬂ. This can be done with the evaluation of the expected information matrix

2
DbOUT

with log L£(y; 1) being the incomplete-data likelihood calculated on the avail-
able observations, and Ey {-} designating the expectation operator with re-
spect to the random variable Y.

In practice this quantity is often estimated by the observed information
matrix calculated at 1), (w y), with the relationship

() =Ey {I(¢;Y)}.

T(4) =Ey { log £V ¢)}

Efron and Hinkley (1978) have provided a justification for this approxima-
tion. Since the data Y are considered as incomplete within the EM frame-
work, I(1;Y") will be denoted as the incomplete-data observed information
matrix.

The use of the EM algorithm is often motivated by the analytic form of
the observed-data likelihood, whose gradient or curvature matrices are diffi-
cult to derive analytically (which is typically the case for mixture models).
As the estimation problem has been solved using the missing-data framework
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of EM, the derivation of the information matrix I(1;y) can be simplified us-
ing the missing information principle introduced by Woodbury (1971).

Missing information principle

If we consider the formulation of mixtures as a missing-data problem, we
define the complete-data observed information matrix based on the complete-
data log-likelihood:

)
I°(¢;x) =
(i) = 5o

Since the incomplete data and the complete data likelihood are linked by

definition:

log L(x;v).

log L(y; ¢) = log L(z;¢) — log k(zy; ),
on differentiating both sides twice with respect to v, we have
I(sy) = I°(¢s2) = I (¥, 2),

where o

I, 2) = EMWT log k(zly; ¥)

is the missing-data observed information matrix. This term can be viewed
as the "missing information”, the consequence of having observed only y and
not z.

Since the complete-data are not fully observed, we take the conditional
expectation of both sides over Y that yields to:

I(;y) = Exy {I(¢; X)} —Ezp {I™ (¥, Z2)} (4)
Then the problem is to formulate the conditional expectations of I¢(¢;x)

and I (1, z) in directly computable terms within the EM framework.

Extracting the observed information matrix in terms of the complete-
data likelihood

Let us introduce the score notation such that:

0
S(y;v) = Wlogﬁ(y ;1)

S(aiv) = 5 log Li(wiv).

8
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Louis (1982) gives a formulation of the missing information matrix, in the
form:

Ezpy {I"™(, 2)} = Expy {S°(X;9)S°(X;9)"} = S(y;9)S(y; )",
meaning that the all the conditional expectations calculated in 4 can be

computed in the EM algorithm only using the conditional expectation of the
gradient and curvature of the complete-data likelihood.

Since S(y; 1) = 0 for 1) = v, Formula 4 is restated as:
I y) = Expy {1 X}y — Expy {S(X;0)5°(X;0) ],y -
Hence the observed information matrix of the initial incomplete-data problem

can be computed as the conditional moments of the gradient and curvature
matrix of the complete-data likelihood introduced in the EM framework.

2.4 Convergence properties of the EM algorithm

It has been seen in previous sections that the EM algorithm generates a
sequence (w(h)) h>o Which increases the incomplete data log-likelihood at each
iteration. The convergence of this EM-generated sequence has been studied
by many authors, such as Dempster et al. (1977) and Wu (1983). Under
some regularity conditions of the model, Wu (1983) shows the convergence
of the sequence 1™ to a stationary point of the incomplete-data likelihood.
The convergence of the EM algorithm to a local maximum of the incomplete
data likelihood has also been established by Wu (1983) under restrictive hy-
pothesis, that have been released by Delyon et al. (1999). One important
theorem is provided by Wu (1983):

Suppose that Q(v, ®) is continuous in both 1 and ®, then all the limit points
of any instance {y™Y of the EM algorithm are stationary points of L(1)) and
L(¢pM) converges monotonically to some value L* for some stationary point

P

Moreover in many practical situations £* will be a local maximum. In
general if the likelihood has several stationary points the convergence of an
EM sequence to a local/global maximum or to a saddle point will depend on
the choice of the starting value ¥, unless the likelihood is unimodal.

2.5 Modified versions of the EM algorithm

Despite appealing features, the EM algorithm presents some well docu-
mented shortcomings: the resulting estimate v can strongly depend on the

9
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starting position (%), the rate of convergence can be slow and it can provide
a saddle point of the likelihood function rather than a local maximum. For
these reasons several authors have proposed modified versions of the EM al-
gorithm: deterministic improvements (Louis (1982), Meilijson (1989), Green
(1990) for instance), and stochastic modifications (Broniatowski et al. (1983)
Celeux and Dielbolt (1985) Wei and Tanner (1990), Delyon et al. (1999)).
Broniatowski et al. (1983) proposed a Stochastic EM algorithm (SEM)
which provides an attractive alternative to EM. The motivation of the sim-
ulation step (S-step) is based on the Stochastic Imputation Principle, where
the purpose of the S-step is to fill-in for the missing data z with a single draw
from k(z|y;4™). This imputation of z is based on all the available amount
of information about 1 and provides a pseudo complete sample. More pre-

cisely the current posterior probabilities Tt(;) are used in the S-step wherein a

single draw from distribution M p(1; Tt(lh ) Tt(;)) is used to assign each ob-
servation to one of the component of the mixture. The deterministic M-Step
and the stochastic S-Step generate a Markov Chain " which converges to
a stationary distribution under mild conditions. In pratice a number of iter-
ations is required as a burn in period to allow 1»®) to approach its stationary
regime. In mixture models 100-200 iterations are often used for burn in.

This stochastic step can be viewed as a random perturbation of the se-
quence 1" generated by EM. This perturbation prevents the algorithm from
staying near an unstable fixed point of EM, and prevents stable fixed points
corresponding to insignificant local maxima of the likelihood. The Stochastic
EM algorithm provides an interesting alternative to the limitations of EM,
concerning local maxima and starting values.

Other stochastic versions of the EM algorithm have been proposed, among
them, the Stochastic Annealing EM algorithm (SAEM, Celeux and Dielbolt
(1992)) which is a modification of SEM, the Monte Carlo EM (Wei and Tan-
ner (1990)), which replaces analytic computation of the conditional expec-
tation of the complete-data log-likelihood by a Monte Carlo approximation,
and a stochastic approximation of EM (Delyon et al. (1999)). Nevertheless,
empirical studies from Dias and Wedel (2004) and Biernacki et al. (2003)
suggest the practical use of SEM in the context of mixture models, for its sim-
plicity of implementation compared with Monte Carlo-based improvements,
for its quick rate of convergence, and for its property to avoid spurious local
maximizers.

10
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3. Choosing the number of clusters via model selection criteria
Choosing the number of clusters is often the first question that is asked by/to
the analyst. Two approaches can be considered to answer this question. The
first one can be to fix this number and to propose different classifications.
Since every clustering method (heuristically or model-based) can be run for
a fixed number of groups, this strategy can be applied to any method. Nev-
ertheless, the question can be to score different classifications with different
numbers of clusters. In the model-based context, the choice of the number
of clusters can be formulated as a model selection problem, and it can be
performed with a penalized criterion, such as:

log Lp(y; ¢) — Bpen(P),

~

with log £p(y; 1) being the observed data log-likelihood for a mixture with P
clusters, calculated at 1) = v, 5 a positive constant and pen(P) an increasing
function with respect to the number of clusters.

3.1  Bayesian approaches for model selection

As previously described in the context of segmentation methods (77),
the purpose of model selection is to select a candidate model m; among a
finite collection of models {m, ..., m;}, in order to estimate function f from
which the data Y = {Y},...,Y,} are drawn. Each model is characterized by
a density g¢,,, whose parameters 1; are of dimension v;.

In the Bayesian context, ¢; and m; are viewed as random variables with
prior distributions noted Pr{m;} and Pr{«;|m;} for ¢; when model m; is
fixed. This formulation is flexible since additional information can be mod-
elled through prior distributions, and if no information is available a non-
informative prior can be used. The Bayesian Information Criterion (BIC)
developed by Schwartz (1978) aims at selecting the model which maximizes
the posterior probability Pr{m;|Y}. Using the Bayes formula:

Pr{Y|m;} Pr{m;}
Pr{Y} ’

Pr{m;|Y} =

and considering the case where the prior distribution Pr{m;} is non infor-
mative, the search for the best model only requires the computation of dis-
tribution Pr{Y|m;} which is the integrated likelihood of the data for model

11
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m;. This distribution can be approximated using the Laplace approxima-
tion method (see Lebarbier and Mary-Huard (2004) for more details), which
yields to the following penalized criterion:

BIC; = —2Pr{Y|m;} ~ —210g gm, (Y, 0;) + v x log(n),

where 1[)1 is the maximum likelihood estimator of ;. The BIC is used to
assess a score to each model m; and the selected model is such that:

MmpBrc = Argmax BIC;.

Interestingly regularity conditions for BIC do not hold for mixture models,
since the estimates of some mixing proportions can be on the boundary of
the parameter space. Nevertheless there is considerable practical support for
its use in this context (see Fraley and Raftery (1998) for instance). Other
approaches have been considered for Bayesian model selection (see Kass and
Raftery (1995) for a complete review on Bayes Factors for instance). Never-
theless the BIC has focused much attention, for its simplicity of implementa-
tion and for its statistical properties. Gassiat and Dacunha-Castelle (1997)
have shown that the use of BIC leads to a consistent estimator of the number
of clusters.

3.2 Strategy-oriented criteria

Other criteria have been defined for the special case of mixture models.
They can be based on Bayesian methods, on the entropy function of the mix-
ture, or on information theory. The reader is referred to McLachlan and Peel
(2000) for a complete review on the construction of those criteria. Empirical
comparisons of those criteria have been extensively used to determine the
"best” criterion. As noted by Biernacki et al. (2000), the use of the BIC can
lead to an overestimation of the number of clusters regardless the clusters
separation. Moreover estimating the ”true” numbers of clusters, which is the
objective of the BIC, is not necessarily suitable in a practical context. For
these reasons, Biernacki et al. (2000) propose a new criterion, the Integrated
Classification Criterion (ICL) that considers the clustering objective of mix-
ture models. In this paragraph we present the main steps of the construction

of ICL.

In a mixture model context, the integrated likelihood is noted f(y|mp)

12
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for a model m with P clusters. It is calculated such that:
flylmp) = | flylmp, ¥)h(bImp)di,
Up

with

n

Fylmp, ) = ] fwlmp,v),

t=1
Up being the parameter space of model mp, and h(y)|mp) a non-informative
prior distribution on 1. Instead of considering the incomplete-data integrated
likelihood for which the BIC approximation is not valid, the authors suggest
to use the complete-data integrated likelihood or integrated classification
likelihood:

f(y,z|mp) = f(yaZ’mPawh(?MmP)d%

Up
with

n P
fy,zlmp,¢) = H H {mpf (Y13 0,) 177 .
t=1 p=1
Then the idea is to isolate the contribution of the missing data z by condi-
tioning on z, and it follows that:

fy, zlmp) = f(ylz, mp) f (zlmp),
provided that h()|mp) = h(0lmp)h(m|mp).

The authors emphasize that the BIC approximation is valid for the term
f(y|z, mp), such that:

A
log f(ylz, mp) ~ maxlog f(y]z,mp,0) — 5~ log(n),

where A\p is the number of free components in #. Note that the parameter 0
which maximizes log f(y|z, mp, ) is not the maximum likelihood estimator.
Nevertheless, the authors propose to use the maximum likelihood estimator
as an approximation.

As for term f(z|mp) it can be directly calculated using a Dirichlet prior
D(d,...,0) on proportion parameters. It follows that:

ni HPF(‘Pé)
f<Z|mP) = /7'('1 ...,7TP Wﬂzpﬂ—pzldﬂ',

13
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with n, being the number of data points belonging to cluster p. Then pa-
rameter § is fixed at 1/2 which corresponds to the Jeffreys non-informative
distribution for proportion parameters.

The last steps of the construction of ICL consists in replacing the missing
data z which are unknown by the recovered label variables Z using a MAP
rule. Then an approximation of f(z|mp) is given when n is large. It follows
that:

- 1%
ICL<mP> = mgxlog f(yazymﬂﬁb) - gplog(n),

with vp the number of free parameters for model mp. Therefore the ICL
criterion is an 7 la BIC” approximation of the completed log-likelihood or
classification log-likelihood. Since this criterion considers the classification
results to score each model it has been shown to lead to a more sensible
partitioning of the data, compared with BIC.

The performance of ICL have been tested based on real and simulated
data sets. Compared with BIC, ICL tends to select a lower number of clusters
which provides good clustering results in real situations, compared with BIC
which tends to select a too overly high number of clusters. When the data
are simulated, ICL tends to select a lower number of clusters if the groups are
not well separated, contrary to BIC which finds the true number of classes.
From a theoretical point of view, no result has yet been demonstrated for
the properties of ICL.
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