A segmentation-clustering problem for the analysis of array CGH data

F. Picard, S. Robin, E. Lebarbier, J-J. Daudin

UMR INA P-G / ENGREF / INRA MIA 518

APPLIED STOCHASTIC MODELS AND DATA ANALYSIS
Brest May 2004
- Known effects of big size chromosomal aberrations (ex: trisomy).
 → Experimental tool: Karyotype (Resolution ~ chromosome).

- Change of scale: what are the effects of small size DNA sequences dele-
tions/amplifications?
 → Experimental tool: "conventional" CGH (resolution ~ 10Mb).

- CGH= Comparative Genomic Hybridization : method for the comparative
 measurement of relative DNA copy numbers between two samples (normal/disease,
test/reference).
 → Application of the microarray technology to CGH : 1997.
 → Last generation of chips: resolution ~ 100kb.
Microarray technology in its principle

Chromosome 1

Chromosome 2

Position sur le génome
Interpretation of a CGH profile

A dot on the graph represents

$$\log_2 \left\{ \frac{\text{# copies of BAC(t) in the test genome}}{\text{# copies of BAC(t) in the reference genome}} \right\}$$
Break-points detection in a gaussian signal

- $Y = (Y_1, ..., Y_n)$ a random process such that $Y_t \sim \mathcal{N}(\mu_t, \sigma_t^2)$.

- Suppose that the parameters of the distribution of the Y_s are affected by $K-1$ abrupt-changes at unknown coordinates $T = (t_1, ..., t_{K-1})$.

- Those break-points define a partition of the data into K segments of size n_k:

 $I_k = \{t, t \in [t_{k-1}, t_k]\}$,

 $Y^k = \{Y_t, t \in I_k\}$.

- Suppose that those parameters are constant between two changes:

 $\forall t \in I_k, Y_t \sim \mathcal{N}(\mu_k, \sigma_k^2)$.

- The parameters of this model are:

 $T = (t_1, ..., t_{K-1})$,

 $\Theta = (\theta_1, ..., \theta_K), \theta_k = (\mu_k, \sigma_k^2)$.

- Break-points detection aims at studying the **spatial structure of the signal**.
Estimating the parameters in a model of abrupt-changes detection

Log-Likelihood

\[\mathcal{L}_K(T, \Theta) = \sum_{k=1}^{K} \log f(y^k; \theta_k) = \sum_{k=1}^{K} \sum_{t \in I_k} \log f(y_t; \theta_k) \]

Estimating the parameters with \(K \) fixed by maximum likelihood

- Joint estimation of \(T \) and \(\Theta \) with dynamic programming.
- Necessary property of the likelihood: additivity in \(K \) (sum of local likelihoods calculated on each segment).

Model Selection: choice of \(K \)

- Penalized Likelihood: \(\hat{K} = \arg \max_{K} \left(\hat{\mathcal{L}}_K - \beta \times \text{pen}(K) \right) \).
- With \(\text{pen}(K) = 2K \).
- \(\beta \) is adaptively estimated to the data (Lavielle(2003)).
Example of segmentation on array CGH data

BT474 chromosome 1, $\hat{K} = 5$

BT474 chromosome 9, $\hat{K} = 4$
Considering biologists objective and the need for a new model

Segmentation: structure spatiale du signal

\[\theta_k = (\mu_k, \sigma_k^2) \]

Segmentation/Classification

\[\theta_p = (m_p, s_p^2) \]
A new model for segmentation-clustering purposes

- We suppose there exists a secondary underlying structure of the segments into P populations with weights $\pi_1, \ldots, \pi_P (\sum_p \pi_p = 1)$.

- We introduce hidden variables, Z_{kp} indicators of the population of origin of segment k.

- Those variables are supposed independent, with multinomial distribution:
 $$(Z_{k1}, \ldots, Z_{kP}) \sim \mathcal{M}(1; \pi_1, \ldots, \pi_P).$$

- Conditionnally to the hidden variables, we know the distribution of Y :
 $$Y^k|Z_{kp} = 1 \sim \mathcal{N}(1_{n_K} m_p, s_p^2 I_{n_k}).$$

- It is a model of segmentation/clustering.

- The parameters of this model are
 $$T = (t_1, \ldots, t_{K-1}),$$
 $$\Theta = (\pi_1, \ldots, \pi_P; \theta_1, \ldots, \theta_P), \text{ avec } \theta_p = (m_p, s_p^2).$$
- Mixture Model of segments:
 * the statistical units are segments: Y^k,
 * the density of Y^k is a mixture density:

$$
\log \mathcal{L}_{KP}(T, \Theta) = \sum_{k=1}^{K} \log f(y^k; \Theta) = \sum_{k=1}^{K} \log \left\{ \sum_{p=1}^{P} \pi_p f(y^k; \theta_p) \right\}
$$

* If the Y_ts are independent, we have:

$$
\log \mathcal{L}_{KP}(T, \Theta) = \sum_{k=1}^{K} \log \left\{ \sum_{p=1}^{P} \pi_p \prod_{t \in I_k} f(y_t, \theta_p) \right\}.
$$

- Classical mixture model:
 * the statistical units are the Y_ts,

$$
\log \mathcal{L}_P(\Theta) = \sum_{k=1}^{K} \log \left\{ \prod_{t \in I_k} \sum_{p=1}^{P} \pi_p f(y_t, \theta_p) \right\}
$$
An hybrid algorithm for the optimization of the likelihood

Alternate parameters estimation with K and P known

1 When T is fixed, the EM algorithm estimates Θ:

$$\hat{\Theta}^{(\ell+1)} = \arg\max_{\Theta} \left\{ \log \mathcal{L}_{KP}\left(\Theta, T^{(\ell)}\right) \right\}.$$

$$\log \mathcal{L}_{KP}(\hat{\Theta}^{(\ell+1)}; \hat{T}^{(\ell)}) \geq \log \mathcal{L}_{KP}(\hat{\Theta}^{(\ell)}; \hat{T}^{(\ell)})$$

2 When Θ is fixed, dynamic programming estimates T:

$$\hat{T}^{(\ell+1)} = \arg\max_{T} \left\{ \log \mathcal{L}_{KP}\left(\hat{\Theta}^{(\ell+1)}, T\right) \right\}.$$

$$\log \mathcal{L}_{KP}(\hat{\Theta}^{(\ell+1)}; \hat{T}^{(\ell)+1}) \geq \log \mathcal{L}_{KP}(\hat{\Theta}^{(\ell+1)}; \hat{T}^{(\ell)})$$

An increasing sequence of likelihoods:

$$\log \mathcal{L}_{KP}(\hat{\Theta}^{(\ell+1)}; \hat{T}^{(\ell+1)}) \geq \log \mathcal{L}_{KP}(\hat{\Theta}^{(\ell)}; \hat{T}^{(\ell)})$$
Mixture Model when the segmentation is known

Mixture model parameters estimators

\[\hat{\tau}_{kp} = \frac{\hat{\pi}_p f(y^k; \hat{\theta}_p)}{\sum_{\ell=1}^{P} \hat{\pi}_\ell f(y^k; \hat{\theta}_\ell)}. \]

- the estimator the mixing proportions is: \(\hat{\pi}_p = \frac{\sum_k \hat{\tau}_{kp}}{K} \).

- In the gaussian case, \(\theta_p = (m_p, s_p^2) \):

\[\hat{m}_p = \frac{\sum_k \hat{\tau}_{kp} \sum_{t \in I_k} y_t}{\sum_k \hat{\tau}_{kp} n_k}, \]

\[\hat{s}_p^2 = \frac{\sum_k \hat{\tau}_{kp} \sum_{t \in I_k} (y_t - \hat{m}_p)^2}{\sum_k \hat{\tau}_{kp} n_k}. \]

- Big size vectors will have a bigger impact in the estimation of the parameters, via the term \(\sum_k \hat{\tau}_{kp} n_k \).
Influence of the vectors size on the affectation (MAP)

- The density of Y^k can be written as follows:

$$f(y^k; \theta_p) = \exp \left\{ -\frac{n_k}{2} \left(\log(2\pi s_p^2) + \frac{1}{s_p^2} \left[(\bar{y}_k^2 - \bar{y}_k^2) + (\bar{y}_k - m_p)^2 \right] \right) \right\}$$

- $*(\bar{y}_k - m_p)^2*$: distance of the mean of vector k to population p
- $*(\bar{y}_k^2 - \bar{y}_k^2)$: intra-vector k variability

- Big size Individuals will be affected with certitude to the closest population

$$\lim_{n_k \to \infty} \tau_{kp0} = 1 \quad \left| \quad \lim_{n_k \to 0} \tau_{kp0} = \pi_{p0} \right| \quad \lim_{n_k \to \infty} \tau_{kp} = 0 \quad \left| \quad \lim_{n_k \to 0} \tau_{kp} = \pi_p \right.$$
Back to dynamic programming

- the incomplete mixture log-likelihood can be written as a sum of local log-likelihoods:

\[
\mathcal{L}_{KP}(T, \Theta) = \sum_k \ell_{kP}(y^k; \Theta)
\]

- the local log-likelihood of segment \(k\) corresponds to the mixture log-density of vector \(Y^k\)

\[
\ell_{kP}(y^k; \Theta) = \log \left\{ \sum_{p=1}^P \pi_p \prod_{t \in I_k} f(y_t; \theta_p) \right\}.
\]

- \(\log \mathcal{L}_{KP}(T, \Theta)\) can be optimized in \(T\) with \(\Theta\) fixed, by dynamic programming.
A decreasing log-Likelihood?

Evolution of the incomplete log-likelihood with respect to the number of segments.

\[f(y^k; \Theta) = 0.5\mathcal{N}(0, 1) + 0.5\mathcal{N}(5, 1) \]
When the true number of segments is reached (6), segments are cut on the edges.
Optimization of the incomplete likelihood with dynamic programming:

\[
\begin{align*}
\log \mathcal{L}_{KP}(T; \Theta) &= Q_{KP}(T; \Theta) - H_{KP}(T; \Theta) \\
Q_{KP}(T; \Theta) &= \sum_k \sum_p \tau_{kp} \log(\pi_p) + \sum_k \sum_p \tau_{kp} \log f(y^k; \theta_p) \\
H_{KP}(T; \Theta) &= \sum_k \sum_p \tau_{kp} \log \tau_{kp}
\end{align*}
\]

Hypothesis:

1. We suppose that the true number of segments is \(K^* \) and that the partitions are nested for \(K \geq K^* \).
 - Segment \(Y^K \) is cut into \((Y^K_1, Y^K_2) \):
 \[
 f(Y^K; \theta_p) = f(Y^K_1; \theta_p) \times f(Y^K_2; \theta_p).
 \]

2. We suppose that if \(Y^K \in p \) then \((Y^K_1, Y^K_2) \in p \):
 \[
 \tau_p(Y^K) \sim \tau_p(Y^K_1) \sim \tau_p(Y^K_2) \sim \tau_p.
 \]
An intrinsic penalty

Under hypothesis 1-2:

$$\forall K \geq K^*, \log \hat{L}_{(K+1),P} - \log \hat{L}_{(K),P} \simeq \sum_{p} \hat{\pi}_p \log(\hat{\pi}_p) - \sum_{p} \hat{\tau}_p \log(\hat{\tau}_p) \leq 0$$

The log-likelihood is decomposed into two terms

- A term of fit that increases with K, and is constant from a certain K^* (nested partitions)
 $$\sum_{k} \sum_{p} \hat{\tau}_{kp} \log f(y^k; \hat{\theta}_p).$$

- A term of differences of entropies that decreases with K: plays the role of penalty for the choice of K
 $$K \sum_{p} \hat{\pi}_p \log(\hat{\pi}_p) - \sum_{k} \sum_{p} \hat{\tau}_{kp} \log(\hat{\tau}_{kp}).$$

Choosing the number of segments K when P is fixed can be done with a penalized likelihood
The incomplete log-likelihood is decreasing from de $K = 8$

\[
\hat{L}_{KP}(\hat{T}; \hat{\Theta}) = \sum_k \log \left\{ \sum_p \hat{\pi}_p f(y^k; \hat{\theta}_p) \right\}.
\]
Decomposition of the log-likelihood

\[\sum_k \sum_p \hat{\tau}_{kp} \log f(y^k; \hat{\theta}_p) \]

Term of fit

\[K \sum_p \hat{\pi}_p \log \hat{\pi}_p - \sum_k \sum_p \hat{\tau}_{kp} \log \hat{\tau}_{kp} \]

Differences of entropies
Resulting clusters

Segmentation/Clustering $P = 3$, $K = 8$

Segmentation $K = 5$
Resulting clusters

Segmentation/Clustering $P = 4, K = 8$

Segmentation $K = 5$
Perspective: simultaneous choice for \(K \) and \(P \).

Incomplete Log-likelihood with respect to \(K \) and \(P \).
Conclusions:
- Definition of a new model that considers the *a priori* knowledge we have about the biological phenomena under study.
- Development of an hybrid algorithm (EM/dynamic programming) for the parameters estimation (problems linked to EM : initialization, local maxima, degeneracy).
- Still waiting for an other data set to assess the performance of the clustering.

Perspectives:
- Modeling :
 * Comparison with Hidden Markov Models
- Model choice:
 * Develop an adaptive procedure for two components.
- Other application field
 * DNA sequences (in progress)