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A FORTRAN subroutine to determine confidence limits of parameter values in non-linear models was written. This
subroutinewrites into an ouiput file a list of point coordinates, in theparameter space, forwhich the sum of squared
residuals between theoretical and observed values equals the threshold value that defines the confidence region.
This routine was used to determine parameter confidence limils of o different models describing the relationship
between the specific growth rate of a microbial population as a function of temperature, Both models have four
parameters and fit data almost equally well, although the structural correlation betweert parameters they yield is

considerably different.

Introduction

This introduction briefly presents the two models used
throughout this paper 1o illustrate the kind of results that
may be obtained with the program given in the appen-
dix. Both models give a relationship between the specific
growth rate of 2 microbial population and the tempera-
ture. Their parameter values may then be used to summa-
rize the behaviour of a strain as a function of temperature.
Two different models were used not for comparison, but
to illustrate two extreme conditions that may arise when
determining confidence limits for parameters.

The first model (Ratkowsky et al, 1983), which is an
extension of a previously published one (Ratkowsky ef
al., 1982), expresses the specific growth rate pth™ as a
function of the absolute temperature T(K),

p=16(r -7 Y- 7wy’

where T _ is the minimum temperature (K), T the
maximum temperature (K), & the regression coefficient
of the root of the specific growth rate versus absclute
temperature below the optimum temperature (K'h??),
and ca parameter which enablesthe model to beflexible
enough to fit data at emperatures above the optimum
temperature (K7),

‘The second model is new. It will be referred to here
as the ‘Cardinal Temperature Model’ as the three cardinal
temperatires are explicitly present in its expression,

2
(T = T+ T T+ T = T = T T

in

where y is the specific growth rate (h™), T'the absolute
temperature (), 7, the minimum temperature (K), T,
the optimum temperature {K), 7 the maximum tem-
perature (K), and Mo the specific growth rate at the op-
timum temperamre (¥,

Both models cover the full biokinetic temperature
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range from 7 _to 7 and have the same number of
parameters. Figure 1 summarizes the effects of the four
parameters of each model on the curve pattern.

Material and methods
Data

The data set was deduced from Figure 2 in the paper
submitted by Ratkowsky et al. (1983). This figure gives
the square root of the specific growth rate of Escherichia
colias a fanction of temperature. There are 15 available
points in this data set, so that the ratio of the number of
points over the number of parameters 10 be estimated
€15/4) is greater than three, which seems a reasonable a
priori. The numerical values used here are included in
the program listing to enable reproduction of the resulis.

Data Processing

All computations were carried out on a Apple Macintosh
Ifx computer with 8 Mbyte RAM, 160 Mbyte hard disk
and version 6.05 of the Maciniosh operating system.
Programs were written in FORTRAN using Langnage
Systems FORTRAN Compiler 2.0 (Language Systems
Corporation, 1989) under MPW 3.0 (Apple Computer
Inc., 1988), Parameterestimations and modelsirulations
were made with Mathematica (Wolfram Research Inc.,
1988). Graphics were drawn with Stafview 7 (Abacus
Concepts Inc., 1988) and SuperPaint (Silicon Beach
Software Inc,, 1989).

Parameter Estimation
The Sum of Squared Residuals (SSR) was used to charac-
terize the goodness of fit. The SSR is the sum of all the
points of the squared difference between observed 1
and theoretical p1°, specific growth rate values. The S5R
is therefore a function of the set of parameter values €
used to obtain u7,

SSR (@)= Tip, —uy)
4=1
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RATKOWSKY'S MODEL
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Figure I Effect of the four parameters of the Ratkowsky and of the Cardinal Temperature models, Parameters were varied one by one, giving four different

plots of the specific growth rate (h") versus temperature (K). The values of the varying parameter
parameters were always set to their default values which were: 6203, ¢= 0.035,

Twc= 313, T, . =323 for the Cardinal Temperatuze Model.

1., = 276, T, = 322 for the Ratkowsky model; and e,

are shown near each curve. The three remaining
=14, T_ =285,

87



Lobry, Rossa & Flandrois

The smaller the SSR, the better the fit. The set of
parameter values with the lowest SSR was found
using the built-in ‘FindMinimum' subroutine of
Mathematica (this routine is based on the usual steepest
descent gradient),

Confidence Region
Confidence regions were determined using the program
given in the appendix and described below.

When the 55K is used to characterize the goodness of
fit, a 1-o¢ confidence region for parameters is defined
according to Beale (1960) by the set of parameter values

& such that the SSR is less than a threshold,

{S:SSR (8)< SSR (B)(1+ E{)—ij iw,)}

where p is the number of parameters and nthe number
of points, This equation defines a confidence region for
parameter values in the parameter space. As the number
of parameters is not limited, this confidence region can
be described as a hypervolume bound by a hypersurface.
The extent of this hypersurface must then be estimated to
obtain confidence limits for parameter values,

One soluticn consists of computing a list of point
coordinates belonging to this hypersurface. The number
of points required to obtaina good representation of the
hypersurface is difficult to determine as itdepends on the
regulatity of the hypersurface. A hypersurface with many
singularities requires more points than a regular one to
obtain a good representation. As an indication, we used
10,000 points to represent the hypersurface for the Car-
dinal Temperature model, and 30,000 points for
Ratkowsky's model.

The main problem in locating points on the
hypersurface is to obtain a distribution as homogenous
as possible. The main steps in cursolution are as follows:
1. Random choice of a starting point at the surface of a
hypersphere of radius unity with its centre at the origin.
2. Translation and scaling of this hypersphere so as to
enclose the confidence region.

3. Convergence from the scaled starting point in the
direction of the optimal peint & 1o obtain the coordi-
nates of the point on the hypersurface that encloses the
confidence region.

4. Projection of points belonging to the hypersurface
onto different planesto obtain a graphical representation
of the confidence region. These staps are summarized by
Figure 2 for a model with two parameters.

1. Random Sampling

Ageneratorof pseudo-random numbers knowntobehave
satisfactorily for up 1o 100,000 successive calls (Chassé &
Debouzie, 1974) wasused to randomly choose a pointon
the surface of the hypersphere.

To obtain a homogenous distribution of points on the
surface of the hypersphere, we firstchoose a point inside
ahypercube by randomly selecting its coordinates within
the range [-1,11. When the point is outside the hypersphere
of radius 1, it is rejected and 2 new one is chosen until it
falls inside the hypersphere. When the pointis inside the
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hypersphere, all its coordinates are divided by its dis-
tance from the origin in order to project the point on the
surface of the hypersphere. A homogeneous distribution
of points at the surface of the hyperspere is thereby
obtained, though this solution only works for low-di-
mensioned spaces as the probability of obtaining a point
outside the hypersphere increases dramatically with the
space dimension (ef. Rubinstein, 1981). The program is
therefore limited to a maximum of eight parameters.

2. Transiation and Scaling

The translation of tlée hypersphere consists of moving its .
centre (o the point & where the SSR is minimum. Scaling
consists of modifying its radius with respect to each axis
to take into account scale differences for parameters. In
addition, as confidence regions are sometimes highly
asymmetrical with non-linear models, a different radius
may be used for values below or above optimal param-
eter values. The scaling constants are relalively easy to
choose when a biological, or graphical, interpretation of
the parameter exists: for instance the parameter 7___in
both medels is approximalely in the range [321-5,321+5],
However, when a parameler is meaningless this task
becomes mare difficult, and an iterated trial and error
method to delimit its extreme values is often the sole
solution,

3. Conwergence to Threshold Point

In order to determine the coordinates of the point cn the
hypersurface enclosing the confidence region and the
line which joins the starting point and &, we use a
simple iterative method based on a linear interpolation
(except that the square-root of SSR values is used to
compensale for its quadratic behaviour). The stop crite-
rion is that the relative difference between the current
3SR and the threshold value must be small,

Threshold — 85R
Threshold

< &

where € is a2 user-supplied small value, for instance 107,
The smaller ¢ is, the more accurate the location of the
point. Furthermore, to avoid convergence failure when
scaling is poor, the maximum permitted number of
iterationsisalso auser-supplied constant, forinstance 10,

4, Graphical Representations

When the dimension of the space parameter is greater
than two, a simple way to represent the hypersusface is
to projectit on different planes so asto obtain the shadow
of the hypersurface. In general, for p parameters,
(p*-p/2 projections are sufficient to represent the
hypersurface.

Results

Fit to Data
Figures 3 and 4 show thatboth models fit the data equally
well. A more sophisticated analysis would reveal that the
minimum SSR for the Ratkowsky's model is three times
greater than the minimum SSR for the Cardinal Tempera-
ture model andthat an autocorrelation berween residuals
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RANDOM SAMPLING OF STARTING
POINTS

r=1

\\ﬁfé\/“ STARTING POINT

TRANSLATION AND SCALING TO
ENCLOSE THE CONFIDENCE REGION

SCALED STARTING POINT

. CONFIDENCE REGION

B Parameter 1

CONVERGENCE TO THE

5 I CONFIDENCE REGION BOUNDARY

BOUNDARY POINT

B Parameter 1

SAVING COORDINATES OF
BOUNDARY POINTS INTO A FILE

QUTPUT FILE

Figure 2 Steps used to determine the confidence region parameter values, symbolized here for a model with two parameters.
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Figure 3 Ratkowsky model, The best fit of the model to the data is represented in the bottom left square. The confidence region is projected on six different
planes. Each cross represents 1 point belonging to the confidence region. 30,000 points were located for Lhese representations. Note the high strucrural
correlation between parameters T, and & and between parameters ¥ and <. The marginal zpproximative confidence limits for parametes values (cf.

Bates & Watts, 1988; Seber & Wild, 1989} have been indicated with dashed lines.

for Ratkowsky’s model is visible. However, this analysis
is cutside the scope of this paper as the data set is clearly
too poor for a biologically meaningful compatison of the
two models.

The optimal parameter values obtained here for
Ratkowsky’s model are consistent with previously pub-
lished estimates (Ratkowsky er al., 1983) with 275.985
versus 276 for T, and 321.604 versus 322 for T, _.

Confidenice Region
1. Ratkowsky's Model
A strong structural correlation is visible between pa-
rameters T and b, and between parameters 7 _and ¢
the projection of the confidence region on the corre-
sponding planes yields thin shadows (Figure 3). This

structural correlation between parameters is biologically
meaningless and is simply a consequence of the effect of
parameters on curve patterns. Re-examination of Figure
1 shows that 7, and #have an opposite effect on curve
patterns, 50 that an increase in 7, may be partly cor-
rected by anincrease in b, giving a thin confidence region
with its main axis approximately parallel to the bisection
of T -axis and b-axis. Likewise, a second look at Figure
1 shows that 7, __and c¢ have the same effect on curve
patterns, so that an increase in 7. may be party cor-
rected by a decrease in ¢, giving a thin confidence region
with its main axis approximately perpendicular o the
bisection of the 7, _-axis and c-axis.

Structural correlation for the determination of pa-
rameter confidence limits is tedious, since they tend 1o
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Figure 4 Cardinal Temperature model, The best fit of the rnodel to the data is represented in the bottom left square. The confidence region is projected
onsix different planes. Each cross represents 2 point belonging to the confidence region. 10,000 points were located for these representations. Note the
absence of high structural correlation berween parameters, The marginal appraximative confidence limits for parameter values (cf Bates & Watts, 1988;

Seber & Wild, 1989) have been indicated with dashed lines,

become large. This is clear for the binlogically meanin g
ful parameters of the Ratkowsky model: T ..spans over
5 K (320-325) and T over 20 K (257-286) with values
below the freezing point of water, which have no bio-
logical significance. Thus, structural correlation between
parameters shouldbe avoided asit giveslarge confidence
limits for parameter values, making comparisons difficult
and extrapolations dubious. Moreaver, the number of
starting points required to obtain a good representation
of the confidence region must be increased.

2. Cardinal Temperature Model

No high structural correlation between parameters is
visible for the Cardinal Temperature model (Figure 4).
The shadows of the confidence regions are always wide

and regular (this is a somewhat academic example as the
model was designed for this purpose). Consequenily,
confidence limits for parameter are acute: M, spans over
0.19 h' (1.30-149, T over 6 K (286-292), 7., over
27K (311.8-314.4) and T . over 0.8 K (320-320.8).

Conclusion

We have presented a subroutine for the determination of
confidence limits for parameter values in non-linear
models. The models used illustrate two extreme cases
with a high positive or negative structural correlation
between parameters on one hand, and the absence of
high structural correlations on the other hand, The Car-
dinal Temperature model whichwasbuilt toillustrate the
latter case may be useful in itself, since all ils parameters
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have 2 biological interpretation, but it must first be
validated with a more extensive biological data set.
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Appendix

<

C PFURFOSE
o ——
C DETERMINATION OF CONFIDENCE REGION FGR PARAMETER VALUES [N
G NON-LINEAR MODELS WITH UP TO & PARAMETERS.

¢ EXAMPLE OF APPLICATION WITH A 4 PARAMETER MODEL.

DEMO

<

C VARIABLES

[ o

C

CS55R NAME OF AN USER-SUPPLIED SUBROUTINE WHICH RETURNS THE SUM OF
[ SQUARED RESTDUALS BETWEEN OBSERVED AND THEORETICAL VALIFES.

[+
CPN NUMBER OF PARAMETERS IN THE MODEL

4

CPOPI VECTCR WHICH CONTAINS THE PARAMETERS VALUES SUCH THAT

c THE 558 15 MINIMUM.

c

CPINF  VECTOR WHICH CONTAINS THE PARAMETER LOWER BOUNDS TG

[« GENERATE STARTING POINTS.

c

CPSUF  VECTOR WHICH CONTAINS THE PARAMETER UPFER BOUNDSTO

c GENERATE STARTING POINTS.

4

CTHRES THRESHOLD VALUE FOR THE SSR WHICH MAY BE OBTAINED FROM :

<

C THRES = S5R(POPT)*(1~F¥*Flalpha; PN N-PN)/(N-FN)),

<

c WHERE N [S THE NUMBER OF POINTS IN THE DATA SET.

4 ACCORDING T BEALE (1960) Confidence regions in noti-linear estimaton.

c Journal of the Royal Sutstical Society Ser. B, 22: 41-88.

c

CMAXPT MAXIMUM NUMBER OF POINTS TO BE GENERATED.

[+

CSEED AN INITIAL CONDITION FOR THE PSEUDO-RANDOM NUMDERS
GENERATOR.

c

CFIIN  THENAMEQF THE QUTFUT FILE TO WRITE COORDINATES OF POINTS

<

CEPS DETERMINE THE ACCURACY OF RESULTS. DURING CONVERGENCE TG THE
C THRESHOLD, THE §TOP CRITERION 18 THAT (THRES-S5R)/THRES < EPS

[

€ MAXSSR A STARTING POINT IS REJECTED WHEN THE RATIO OF THE SSR AT THIS
POINT TCQ THE THRESHOLD VALUE [5 GREATER THAN MAXSSR:
(SSR/THRES > MAXSSE). THIS 1§ TO AVOID STARTING FROM A FOINT TQO
FAR FROM THE OPTIMAL POINT : IN THIS CASE CONYERGENCE 18 TOO
LONG AND SUBJECT TO FATLURE DUE TO NUMERICAL IMPRECISION.

MAXTT MAXIMUM NUMBER OF ITERATIONS ALLOWED FOR CONVERGENCETO
THRESHOLD

qn

PROGRAM DEMO

EXTERMAL SSR

REAL*8 55R POPT(8),PINF(E),P5UF{8), THRES SEED,EPS MAXSSR
INTEGFR PN MAXPT MAXTT

CHARACTER"30 FILN

<
C INTTIALISATION OF VARIABLES :
C

PN=d
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¢ POPT(I) : MuQOpe
PINF(1)-1.3
POPT(1-1.35615
PSUP(1)-1.5

CPOPT(2) : Tmin
PINF(2)=2655
POPT(2)-285.398
PSUP(D-292.0

C POPIT3): Topt
PINK(3}-311.8
POPT(%)=313.25
PSUP(3)=314.5

C POPT(4): Tmax
PINF(£=319.9
POPI(4)=320.234
PSUP(£)-320.8

THRES-0.0365811"(1+(4.0'3.36)/(15.0-4.00}
MAXPT=10000
SEED-0.1071966
FILN="OUTDEMO*
EP§=0.0001
MAXSSR-1.0E+05
MAXIT-500
[
€ CALLING SUBROUTINE CRUNCH:
c

CALL CRUNCH(SSR,PN POPT,FINF,PSUP,THRES,
& MAXPT,SFED,FILN EPS,MAXSSR MAXIT)
END

C SSR

CPURPOSE

e

& THIS FUNCTION RETURNS THE SUM OF SQUARED RESIDUALS BETWEEN OBSERVED
€ AND THEORETICAL VALUES. FOR CLARITY, EXPERIMENTAL DATA HAVE BEEN
CINCLUTGED DIRECTLY INSIDE THE PROGRAM, IT IS MORE USUAL, HOWEVER, TO

¢ READ DATA FROM A FILE AT THE LEVEL OF THE MAIN PROGRAM AND THEN TO

€ PASS VALUES TO THE SUBRQUTINE 53R VIA COMMON VARIABLES.

C
C COMPUTATION OF THE SSR IN THE CASE OF THE CARDINAL TEMPERATURE MODEL
©T1=MuOpt, T2 = Tmin, T3 = Topt, T4 = Tmax

[+
C VARIABLES
C—

<

CT INPUT VECTGR WHICH CONTAINS PARAMETER WALUES.

c

CP INPUT VARIABLE WEICH CONTAINS THZ NUMBER OF PARAMETIRS IN THE
MODEL

[«

C

REALS FUNCTION SSR(T.F}

INTEGER P

REAL"S T(E)

REALS A,B,T1,T2,T3,T4

T1=TCH)

T2=TL2)

T5T(3)

TAT(H)

A=T2+T4

B=T2"T4

S8R =

& (0.25-T1( {294 TE 2254 T2 +294 A 29 D- B2+
£ 00.56-T1(1-((296 TR 20296 T2~ +296 (A-296)-BY "2+
& (0.61.T1%1-((298 TR~ 2298 T3)=2 +298'(A-298) By "2+
& €0.79-T1%1-((300-T2)* 2)((300-T3)*2+300"(A-300)-BY))" 2+
& (0,94 T17(1-((302-T3) 202 T3)™2 +3027A-302)-B)) =2+
& (1.04-T1%1 {(304 T3 2)A((304- T2 +3047(A-3049) B} "2+
& {1.16-T1+(1{(306-T 3" 2)/A((306-T3)" 2 +306(A-306) By 2+
& (1.23-T1(1-(C308-T 3 2)/((308-T3) 2 +3087(A-308)- By 2+
& (.36 TI1-{(310-TH2)/ N0 2 +3107A 310 B2+
& (1,32 T ({312 T3 2)/((312-T3)2+31 2(A-312)-B))~2+
S (1.36-T1(1 ({31 4T ZACB1 4T3 2+ 3147(4-31 B "2+
& (134 T1 (1 LB1ETY "D/ (316 T8 "2+316(A-31 E)-BYy 2+
& (0.96-T1 11 L8 T D318 T3 2+ 187431 OB 2=
& (0.85-T1(1 (39T D315 T2+ 319r{A-3193-B 2~
& (0.165-T1(1-((320T) 2320 TR T+320(A-320-BY2
END

C CRUNCH

CPURPOSE

[o .

€ THE SUBROUTINE CRUNCH WRITES COORDINATES CF POINTS SUCH THAT
€ THE SSR FUNCTION EQUALS THE THRESHOLD VALUE IN ‘THE OUTPUT FILE.
<

[
SUBROUTINE CRUNCEI(SSR,PN,POPT, FINF, PSP, THRES,
& MAXET,SEED,FILN,EPS MAXSSR MAKIT}
EXTERNAL S5R
REAL"8 55R,POPT(E) PINF(S),PSUP(8) THRES SEED,EPS MAXSSR
INTEGER PN,MAXPT MAXIT
CHARACTER"30 FILN

<
C DECLARATION OF LOCAL VARIABLES:
C
REAL™® COORENT ETA(B),DF]NF(B),DPSU'FCS},COORSV(S),’T ETASV(S)
REAL'S LOWER,UPPER S5RLOW SSRUF NEW SSRNEW
INTEGER [TERNBR
LOGICAL QK

[o
C CHECKING PGFT VALUES:
[
IF(SSR(POF!, PN).GT THRES ) THEN
WRITE(*,") "ERROR FROM ROUTINE CRUNCH : S3R IS GREATER"
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WRITE("") "THAN THRESHOLD WITH OPTIMAL PARAMETER VALUES”
WRITE(" ") "THRESHOLD = *,THRES
WRITE("") "SSR = *SSR(POFT,PN)
STOP
END [F
C
C OPENING OUTFUT FILE:
C
OPEN{UNIT=34 FILE- FILN,STATUS="NEW?)
[
C INTERMEDIARY COMPUTATIONS:
[
DO 50,1-1,PN
DFINF()=(PCFT{D)-FINF{ Y SQRT{DBLEL PN}
DPSUP((}~(PSUR(T)- POPT{DYSQRT{DBLE(PNY)
50 CONTINUE
c
C MAIN LOOP OF THE PROGRAM,.
C REPETITION OF THE SAME WITH MAXFT DIFFERENT STARTING POINTS.
C
-1
1 I=I+1
[}
€ CHOOQSING A POINT AT RANDOM AT THE SURFACE OF A HYFERSHERE
C OR RADIUS 1.0 WITH I'TS CENTER AT THE GRIGIN:
C
CALL SPHERE(PN,COGR SEETS)

€ COMPUTATION OF THE CtYRRESPONDING PARAMETER VALUES (SCALING).
4]
DO 110J-1,PN
IF{COOR{}.GT.0.0YTHEN
TETA(}=POPT(I+COCRYIDPSUR()
ELSE
TETA{ = POPT(D+COORJDPINF()
END IF
110 CONTINUE
SSRUP-SSRCTETA, PN}
OK=TRUE.
c
CTESTING TF THE POINT IS OUTSIDE THE CONFIDENCE REGICGN:
c
IFSSAUP.LT.THRESYTHEN
WRITE(",") "WARNING 1 FROM SUBROUTINE CRUNCH"
SYRITE(" =) *SSK LESS THAN THRESHOLD WITH <
WRITE(*") “PARAM VALUE % DISTANCE FROM QPTIMAL PARAM VALUE"
DO 120,K=1,PH
WRITE(", 1000) TETA(K), 106*COOR(KISQRT{DELE(PNY)
120 CONTINUE

SWRITEC,) ™ 3
OK=.FALSE.
I=1-1
END iF
C
€ TESTING IF SSR/THRES 1§ NOT TOO BIG:
c

IF(SSRUP/THRES,GT MAXSSRYTHEN
WRITE(",") “WARNING 2 FROM SUBROUTINE CRUNCH"
WRITE(",") "SSR/THRES GREATER THAN : ", MAX55R
WRITE{"") "PARAM VALUE % DISTANCE FROM OFTIMAL PARAM VALUE"
DO 125 K=1,PN

WRITE(",1000) TETA(K), 100" COORK) SQRT(DBLE(FN))
125  CONTINUE

WRITE( ) = *
OK~ FALSE.
=11

END IF

c
C SAVING OCORDINATES:
c
DO 115,K=1,PN
TETASV(K)=TETA(K)
COORSVEI-COORKY
115 CONTINLE
<
€ CONVERGENCE TO THRESHOLD, INITIALIZATION;
<
IF(CKITHEN
LOWER=0.0
UPPER-1.0
DO 130,J=1,FN
TETA(=POFTQ)
1% CONTINUE
S5RLOW=SSR(TETA,PN)

ITERNBR=0
<
C CONVERGENCE TO THRESHOLD, MAIN LOOP:
<

200 NEW=LOWER+{UPPER-LOWERYSQRT((THRES-SSRLOW)/(SSRUP-SSRLOW))
ITERNBR-TTERNBR +1
BO 150)-1,PN
IF(COORY).GT.0.0)THEN
TETA{)+POPT()+NEWCGORYUYTPSUP()
ELSE
TETA{}-PCPT()+NEW"CCORYYDPINE(}
END IF

150 CONTINUE
SSRNEW=SSR(TETA,PN)
TF(SSRNEW.GT. THRESYTHEN

UPPER=NEW

ELSE

LOWER=NEW
END IF
IF(TTERNBR LT MAXITITHEN
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1F{ABSCTHRES SSRNEW}/THRES LT. EPS)THEN
WRITE(34,1000) (TETACK),K=1,PN)

E1SE
GOTO 200

WRITE(*,*) “WARNING 3 FROM SUBRGUTINE CRUNCH*
WRITE(™,") “NUMBER OF ITERATIONS GREATER THAN" MAXIT
WRITE("") "PARAM VALUE % DASTANCE FROM OPTIMAL PARAM VALUE"
DC 135, K=1.PN
WRITE(, 1000} TETASV(K), 100 COORSVIK) SQRT(DBLE(PN))
135 CONTINUE
W'RTTR',') " »
[-[1
END IF
END [F
IFQLLEMAXFTGO TO 1
CLOSE(34)
1000 FORMAT( B(F12.6))
END

c SPHERE
C PURPOSE
c—

€ THE SUBROUTINE SPHERE RETURNS RANDOM COORDINATES FOR A POINT
C BELONGING TO A HYPERSPHERZ OF RADIUS 1.0 WITH TT5 CENTER
C AT THE ORIGIN (0,0, .03

c

C VARIABLES

C———

CN ; SPACE DIMENSION : NUMBER OF CCORDINATES TO GENERATE.
c N 15 IN THE RANGE [2-8]

4

CCOOR  : COORDINATES OF THE POINTS RETURNED BY SPHETEST,

c

CSEED SEED FOR THE PSEUDO-RANDOM GENERATOR,

c IT5 VALUE HAS TO BE INITIALIZED BY THE CALLING PROGRAM
c WITHIN [0-1] AND NOT FURTHER MODIFIED.

c

C COMMENTS

O e

c

€ THE N COORDINATES OF A POINT ARE CHGSEN AT RANDOM WITHIN A

C HYPERCUBE. THE DISTANCE FROM THIS POINT TO THE ORIGIN (0,0,...,03 IS
€ OOMPUTED. IF THE DISTANCE 18 LESS THAN 1.0, THEN THE POINT [S INSIDE THE
& HYPERSPHERE, AND THE COORDINATES ARE NORMALIZED 50 THAT THE

€ DISTANCE TO THE ORIGIN EQUALS ONE. WHEN THE POINT IS QUTSIDE THE
C HYPERSPHERE, ANCTHER PCINT 15 CHOSEN AT RANDOM.

€ THIS ISTO OBTAIN A HOMGGENEOUS DISTRIBUTION OF THE

© POINTS ON THE SURFACE OF THE HY PERSPHERE.

[

€ THE OBSERVED MEAN NUMBER OF TRIALS TO OBTAIN A POINT WITHIN A
€ HYPERSPHERE 1S GIVEN HERE AS FUNCTION OF THE SPACE GIMENSION N =

[ .
€ N NUMBEROF TRIALS {MEAN OVER 1600}
c oz 1284
C % 1970
c £ 3243
< 5 oo
€ & 12153
C 7 2659
c B 62008
c
C
SUBROUTINE SPHERE(N,COOR SEED)
INTEGER N
REAL*S OOOR(8),SEED,5UM
$  SUM=0.0
c
C CHOICE OF N COORDINATES AT RANDGM:
c
DO 10,=1,N
COOR(D=2 0"RANDOM(SEED)-1.0
SUM=SUM +COOR(I"COOR)
10 CONTINUE
c
CTESTING WHETHER THE POINT 5 INSIDE THE HYPERSPHERE:
c
TF{ARS{SQRT(SUM) LE.1 0;THEN
B0 20,-1,N

COOR(-COOR(YSQRT(S UMY
20  CONTINUE
ELSE
GoTOS
END IF
END

< RANEOM
C PURPOSE

£— .

C THE FUNCTION RANDOM RETURNS A PSEUDO-RANDOM NUMBER WITHIN {0-1],
c

€ VARIABLES

c— .
€ X : SEED FOR THE PSEUDO-RANDCM GENERATOR,

C  ITS VALUE HAS TO BE INITIALIZED BY THE CALLING PROGRAM
C  WITHIN [0-1) AND NOT FURTHER MODIFIED.
c

[y

FUNCTION RANDOMX)

REAL"8 X,RANDOM
RANDOM=MOD{262144731257K,262144.0)/262144.0
X-RANDOM

END
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