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Abstract

The Euclid distance discriminant method is used to find protein coding genes in the yeast genome, based on the
single nucleotide frequencies at three codon positions in the ORFs. The method is extremely simple and may be
extended to find genes in prokaryotic genomes or eukaryotic genomes with less introns. Six-fold cross-validation tests
have demonstrated that the accuracy of the algorithm is better than 93%. Based on this, it is found that the total
number of protein coding genes in the yeast genome is less than or equal to 5579 only, about 3.8–7.0% less than
5800–6000, which is currently widely accepted. The base compositions at three codon positions are analyzed in details
using a graphic method. The result shows that the preference codons adopted by yeast genes are of the RG� W type,
where R, G� and W indicate the bases of purine, non-G and A/T, whereas the ‘codons’ in the intergenic sequences are
of the form NNN, where N denotes any base. This fact constitutes the basis of the algorithm to distinguish between
coding and non-coding ORFs in the yeast genome. The names of putative non-coding ORFs are listed here in detail.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The budding yeast Saccharomyces cere�isiae is an
important model organism for the Human Genome
Project. Due to the efforts of more than 600 scientists
worldwide, the first sequenced genome of an eukaryotic
organism, S. cere�isiae, has been completed (Oliver et
al., 1992; Dujon et al., 1994, 1997; Bowman et al., 1997;
Feldmann et al., 1994; Galibert et al., 1996; Johnston et
al., 1994, 1997; Bussey et al., 1995, 1997; Murakami et
al., 1995; Churcher et al., 1997; Dietrich et al., 1997;
Jacq et al., 1997; Philippsen et al., 1997; Tettelin et al.,
1997). Although this is a great scientific achievement,

much work remains to be done. The completion of the
Yeast Genome Project may be deemed as the first step
in a ‘Long March’ towards understanding the genetic
secret of this relatively simple organism. It is necessary
to clarify functions of genes and relationships of them.
However, to clarify the number of genes is even a more
critical task at present. The number of protein coding
genes in the yeast genome was estimated to be 5800–
6000 (Goffeau et al., 1996; Winzeler and Davis, 1997;
Mewes et al., 1997), which is currently widely accepted.
On the contrary, another group estimated recently that
the number should be less than 4700 (Mackiewicz et al.,
1999). The results are obviously controversial.

Historically, the codingness of an ORF or a fragment
of DNA sequence in the yeast genome was described by
using the Codon Bias Index (CBI) (Benetzen and Ben-
jamin, 1982) or the Codon Adaptation Index (CAI)
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(Sharp and Li, 1987). Although these indices were used
widely (Dujon et al., 1994), the coding properties of a
coding sequence are not sufficiently reflected by them.
For example, some ORFs shorter than 150 codons with
CAI�0.11 have identified phenotypes (Mackiewicz et
al., 1999). During the past decade, numerous advanced
gene-finding algorithms have been developed. See, e.g.,
a recent review paper written by Fickett (1996). A set of
745 sequences in the yeast genome was selected to
evaluate the gene-finding algorithm based on a corre-
spondence analysis (Quentin et al., 1999). Genes in the
same set were also predicted using the GeneMark pro-
gram (Borodovsky and McIninch, 1993) (see the discus-
sion of Quentin et al. (1999)). In this paper an
extremely simple gene-finding algorithm based on the
Euclid distance discriminant method is proposed. The
algorithm utilizes a graphic approach to explore the
difference between coding and non-coding sequences.
In addition, this simple gene-finding algorithm is useful
because it may be complementary with other existing
methods. Therefore, by joining them, more reliable
gene recognition results could be expected. Based on
the algorithm, a new index is proposed to describe the
codingness of yeast ORFs, which may be an appropri-
ate complement to CBI or CAI, which are already
widely used.

2. Materials and methods

2.1. The database

The S. cere�isiae genome DNA sequences were ob-
tained from a CD-ROM distributed from the Munich
Information Centre for Protein Sequences (MIPS), re-
leased in 1997. The data for classification of ORFs in
the yeast genome were downloaded from http://
speedy.mips.biochem.mpg.de, release, September 27,
1999 (Mewes et al., 1999) (the database is referred to as
MIPS database, hereafter). In the MIPS database, all
the ORFs are classified into six classes, which corre-
spond to known proteins, strong similarity to known
proteins, similarity or weak similarity to known
proteins, similarity to unknown proteins, no similarity
and questionable ORFs, respectively. The 1st, 2nd, 3rd,
4th, 5th and 6th classes include 3199 (18), 248, 869, 789
(1), 805 and 447 (8) entries, respectively, where the
figures in the parentheses indicate the numbers of
ORFs in the mitochondrial genome. The mitochondrial
ORFs are excluded here since the samples are too few
to have statistical significance. So in each of the six
classes, 3181, 248, 869, 788, 805 and 439 ORFs are
contained, respectively.

2.2. The gene-finding algorithm

The gene-finding algorithm presented in this paper is
based on the differences of single nucleotide frequencies
at the three codon positions between protein coding
ORFs and non-coding ones. Suppose that the occur-
rence frequencies of the bases A, C, G and T at the 1st,
2nd and 3rd codon positions in an ORF are denoted by
ai, ci, gi and ti, respectively, where i=1, 2, 3. Since
ai+ci+gi+ ti=1, the four real numbers ai, ci, giand
timay be mapped onto a point Pi in a three-dimensional
space Vi. The coordinates xi, yi and zi of Pi are deter-
mined by the so-called Z-transform for DNA sequence,
which transforms the nucleotide frequencies into a
three-dimensional curve, the Z curve (Zhang and
Zhang, 1991)

�
�
�
�
�

xi= (ai+gi)− (ci+ ti),
yi= (ai+ci)− (gi+ ti),
zi= (ai+ ti)− (gi+ci),

i=1, 2, 3. (1)

Define V=V1�V2�V3, i.e. the nine-dimensional
space V is the direct sum of the subspaces V1, V2 and
V3. Denoting the nine bases of V by u1–u9, we define

�
�
�
�
�

u1=x1, u2=y1, u3=z1,
u4=x2, u5=y2, u6=z2,
u7=x3, u8=y3, u9=z3.

(2)

Therefore, each coding ORF or non-coding DNA se-
quence is represented by a point or a vector, respec-
tively, in the nine-dimensional space V.

To complete the algorithm in a computer, usually a
training set of samples (ORFs) is needed. The training
set consists of two parts: one includes the positive
samples composed of true protein coding genes,
whereas the other includes negative samples composed
of non-coding DNA sequences. Suppose that there are
N samples in each part. In the positive samples the i-th
true coding ORF is described by a vector
(ui,1

1 , ui,2
1 , …, ui,9

1 )T, where ui,s
1 are the s-component of

the vector (s=1, 2, …, 9), and ‘T’ indicates a transpose
operator for a matrix. Similarly, in the negative samples
the i-th non-coding DNA sequence is described by a
vector (ui,1

2 , ui,2
2 , …, ui,9

2 )T, where ui,s
2 are the s-compo-

nent of the vector (s=1, 2, …, 9). The geometric
centers for the positive and negative samples in the
9-dimensional space V are denoted by U� 1 and U� 2,
respectively, where

U� 1= (ū1
1, ū2

1, …, ū9
1)T, U� 2= (ū1

2, ū2
2, …, ū9

2)T, (3)

and

ū s
1=

1
N

�
N

i=1

ui,s
1 , ū s

2=
1
N

�
N

i=1

ui,s
2 , s=1, 2, …, 9. (4)
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Suppose that a query ORF is indicated by a nine-di-
mensional vector U= (u1, u2, …, u9)T. To judge
whether this ORF is a true protein coding gene or not,
calculate the Euclid distance d(U, U� 1) between U and
U� 1, and the Euclid distance d(U, U� 2) between U and
U� 2, where

d(U, U� 1)=
� �

9

s=1

(us− ū s
1)2n1/2

,

d(U, U� 2)=
� �

9

s=1

(us− ū s
2)2n1/2

. (5)

A codingness index � is defined as

�=d(U, U� 2)−d(U, U� 1)+c, (6)

where c is a constant determined by making the false
positive rate and false negative rate identical in the
training set. If ��0, the query ORF is recognized as
coding gene, otherwise, if ��0, the ORF or DNA
sequence is recognized as a non-coding one.

3. Results and discussions

3.1. Definitions of sensiti�ity, specificity and accuracy

To evaluate the performance of the algorithm, we
have to discuss the definitions of the accuracy, sensitiv-
ity and specificity. The notations used here are the same
as in Burset and Guigo (1996). Denoted by TP the
number of coding ORFs that have been correctly pre-
dicted as coding, and denoted by FN the number of
coding ORFs that have been predicted as non-coding,
we define the sensitivity sn as

sn=
TP

TP+FN
. (7)

That is, sn is the proportion of coding ORFs that have
been correctly predicted as coding. Similarly, denoted
by TN the number of intergenic sequences that have
been correctly predicted as non-coding, and denoted by
FP the number of intergenic sequences that have been
predicted as coding, we define the specificity sp as

sp=
TN

TN+FP
. (8)

That is, sp is the proportion of intergenic sequences that
have been correctly predicted as non-coding. The accu-
racy is defined as the average of sn and sp.

3.2. Self-consistency and cross-�alidation tests

How to evaluate a gene-finding algorithm is an im-
portant issue. Usually, the accuracy of a gene-finding
algorithm is evaluated by the resubstitution and cross-
validation tests, respectively. The former reflects the
self-consistency, and the latter reflects the extrapolating
effectiveness of the algorithm. To evaluate the al-
gorithm, a training set and a test set are needed, which
should be independent of one another. In the MIPS
database, the first class includes 3181 known genes
residing in the 16 yeast chromosomes. Among them,
223 are intron-containing genes and the remaining 2958
are intronless. Randomly divide the 2958 intronless
genes into two unequal parts, in which the larger part
includes 1958 genes, whereas the smaller includes 1000
genes. The former is served as a training set, whereas
the latter is served as a test set. Both the training and
test sets should be accompanied by the counterparts of
negative samples. We have randomly selected about
6000 intergenic sequences with lengths longer than 300
bp from the 16 yeast chromosomes, and each of them
starts with ATG and ends with one of the stop codons.
Note that such sequences are unlikely to be ORFs,
because there are usually several stop codons within the
sequences. We randomly selected 1958 and 1000 inter-
genic sequences from the above 6000 sequences, which
form the training and test sets of the negative samples,
respectively. In summary, the training set includes 1958
positive samples (true genes) and 1958 negative samples
(intergenic sequences). The test set includes 1000 posi-
tive samples (true genes) and 1000 negative samples
(intergenic sequences). Using the sequences in the train-
ing set, the average vectors U� 1, U� 2 and the parameter c
(see Eq. (6)) are determined. Using these quantities, the
accuracy of gene-finding algorithm in the training and
test sets is calculated, which reflects the self-consistency
and extrapolating effectiveness of the algorithm. The
division of 2958 ORFs into two parts (1958 and 1000)
is random. Repeating the above random division proce-
dure three times, we have performed three resubstitu-
tion and cross-validation tests. In each case, the
constant c is determined by making the false positive
rate and false negative rate identical in the resubstitu-
tion test. The results of the cross-validation tests are
listed in Table 1, where the accuracy is defined as the
average of the sensitivity and the specificity. As can be
seen from Table 1, the accuracy in each cross-validation
test is always greater than 93%. This accuracy is com-
parable to that obtained by Quentin et al. (1999), based
on 745 sequences. Their algorithm performed slightly
better than our method, however, so far as we know,

Table 1
The accuracy of the algorithm for three different test sets

2Test set 31

94.6093.6093.00Sensitivity (%)
93.4093.10 93.00Specificity (%)

Accuracya (%) 93.05 93.8093.50

a Accuracy is defined as the average of the sensitivity and
specificity.
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no tests on recognizing all known yeast genes are
reported by them.

It should be pointed out that among the 6000 ran-
domly selected intergenic sequences, some sequences
may be coding regions containing introns, or code for
small proteins or peptides. To examine their influence
on the gene-finding result, we shuffle each of the 6000
intergenic sequence 20 000 times to destroy its possible
coding structure (yet the overall base composition is the
same as the original sequence). Then the shuffled se-
quences are used as the new negative samples in the
algorithm. It is found that the average vector for the
negative samples, the constant c, as well as the predic-
tive results are very similar to those when the original
negative samples are used. This means that the few
possible short coding sequences among the negative
samples do not affect the predictive result.

There are 223 intron-containing genes of the 1st class
in the MIPS database, whose introns have been re-
moved in advance. These ORFs are used as an indepen-
dent test set to perform another three-fold
cross-validation tests. Using the average vectors U� 1, U� 2

and the parameter c obtained for each of the three
training sets discussed above, the recognition for the
223 sequences is performed. Consequently, the accuracy
(defined as the sensitivity in this case) in each test is
always greater than 93%, based on the parameters
derived from the above three training tests. In other
words, a total of six cross-validation tests confirm that
the accuracy of the algorithm presented is better than
93%.

3.3. Apply the algorithm to find genes in the ORFs of
the 2nd–6th classes

After performing the resubstitution and cross-valida-
tion tests, the 1958 and 1000 positive samples (true
genes) are then merged. The 2958 negative samples are
selected randomly from the 6000 intergenic sequences
mentioned above. These 2958 positive and 2958 nega-
tive samples form a new training set. The random
selection is repeated three times. Consequently, we have
three combinations. For each combination the positive
samples are identical, whereas the negative samples are
different each time. The average vectors U� 1, U� 2, and the
parameter c obtained in each combination are averaged
over the three combinations, we find

U� 1= (0.2565 −0.0182 0.0910 −0.0038

0.1553 0.2644 −0.0438 −0.0259 0.2184),
(9)

U� 2= (0.0144 0.0142 0.2768 −0.0139

−0.0120 0.2824 0.0078 −0.0150 0.2605),
(10)

c= −0.017. (11)

We then apply the average vectors U� 1, U� 2, and the
parameter c listed in Eqs. (9)– (11) to recognizing genes
in the ORFs of the 2nd–6th classes in the MIPS
database. For each ORF calculate the vector U=
(u1, u2, …, u9)T, where u1–u9 are defined in Eqs. (1)
and (2). Based on the vectors U, U� 1, U� 2, and the
parameter c, calculate the codingness index �using Eq.
(6). If ��0, the query ORF is recognized as a coding
gene, otherwise, if ��0, the ORF or DNA sequence is
recognized as a non-coding one.

It should be pointed out that using the algorithm and
the parameters derived from the 1st class ORFs to find
genes in the 2nd–6th classes is based on an assumption
that both DNA sequences have similar statistical be-
haviors. This might not be so in some special cases, for
example, for some low-expressed genes. In this case, the
results of gene-finding in the 2nd–6th class ORFs
should be referred to with caution. We hope to see to
what extent the assumption is valid, based on a com-
parison between the results presented here and some
future related experiments.

According to the MIPS database, there are 248, 869,
788, 805 and 439 nuclear ORFs of the 2nd–6th classes
in the yeast genome. Consequently, 28, 112, 157, 215
and 355 are recognized as non-coding ORFs. The four
quantities TP, TN, FP and FN mentioned above can be
calculated, based on the above results and the sensitiv-
ity and specificity obtained. Compute TP, TN, FP and
FN for the 2nd class ORFs in the MIPS database first.
The total number of the 2nd class ORFs is 248, in
which 28 are recognized as non-coding. Assume that
both the sensitivity and specificity are all equal to 93%.
We have a set of four linear equations as follows:
TP/(TP+FN)=0.93; TN/(TN+FP)=0.93; TN+
FN=28 and TP+TN+FP+FN=248. Solving the
above set of equations, we find TP�219; TN�12;
FP�1 and FN�16. The number of real coding ORFs
of the 2nd class should be equal to TP+FN�235. Of
the 28 ORFs recognized as non-coding, statistically, 16
(FN) are actually coding. Similar calculations for the
3rd–6th class ORFs are performed. The results are
listed in Table 2.

Based on the above results, we re-estimate the num-
ber of protein coding genes in the 16 yeast chromo-
somes. The total number should be equal to: the
number of intronless genes in the 1st class (2958)+ the
number of intron-containing genes in the 1st class
(223)+ the number of those in the 2nd–6th classes,
including intronless and intron-containing genes, recog-
nized by the present algorithm (235+810+670+
620+63=2398, see Table 2). The sum is 5579. Note
that the accuracy is actually greater than 93%, so, this
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Table 2
The numbers of predicted coding and non-coding ORFs of the 2nd–6th classes

3 4Class 52 6

248Total number of ORFs (n)a 869 788 805 439
753 623219 577TP 59

12TN 55 110 172 350
4 8 13FP 261

57 4716 43FN 4
810 670TP+FNb 620235 63
112 15728 215TN+FNb 354

13TN+FPb 59 118 185 376
59/869=6.8% 118/788=15.0% 185/805=23.0%13/248=5.2% 376/439=85.6%(TN+FP)/nc

a The mitochondrial ORFs are not included.
b TP+FN, TN+FN and TN+FP indicate the numbers of real coding, predicted non-coding and real non-coding ORFs,

respectively, based on the assumption that both the sensitivity and specificity of the gene-finding algorithm are equal to 93.0%.
c The percentage of the real non-coding ORFs over the total ORFs in this class.

Table 3
The 28 ORFs of the 2nd class in the MIPS database, which are recognized as non-codinga

YEL004w YKL008cYCL069w YLR034cYAL004w YMR118c
YER039c YKL033w-aYAR061w YLR046cYDR033w YMR279c
YER185w YKR027wYDR107c YLR164wYBL009w YNL320w

YBR161w YGL054cYDR276c YKR105c YLR176c
YGR131w YLL051c YMR040wYDR384cYBR210w

a Of the 28 ORFs listed, statistically, 16 are actually coding. Unfortunately, we cannot identify them at present due to the limited
recognition accuracy achieved.

figure should be considered as an up-limit of gene
number in the yeast genome. The above estimate of
protein coding genes in the yeast genome is about
3.8–7.0% less than that of 5800–6000, which is widely
accepted (Goffeau et al., 1996; Winzeler and Davis,
1997; Mewes et al., 1997). The above estimate is based
on error analysis, i.e. we have considered the false
positive and false negative events in the prediction for
each class. So, it should be statistically reliable. As we
can see in Table 2, the ratio of non-coding ORFs in
each of the 2nd–6th classes is different, which is about
5.2% in 2nd class and 85.6% in 6th class. Meanwhile
our estimate (5579) is about 18.7% larger than 4700,
estimated recently by another group (Mackiewicz et al.,
1999).

The names of the non-coding ORFs of the 2nd–6th
classes recognized by the present algorithm are listed in
Tables 3–7, respectively. Some of them are actually
coding ORFs, but we cannot identify them at present
due to the limited accuracy achieved here. We list only
the number of such coding ORFs (i.e. FN) in the
footnotes of Tables 3–7, respectively, for the 2nd–6th
class ORFs in the MIPS database.

3.4. Graphic analysis of base composition at different
codon positions

As described in Section 2.2, the base composition of
an ORF at each codon position can be represented by
a point with coordinate (xi, yi, zi) in a three-dimen-
sional space Vi, where i=1, 2, 3. Therefore, a set of
ORFs is associated with three sets of three-dimensional
mapping points. The distribution pattern of these
points can be studied in a graphic approach (Zhang and
Zhang, 1991; Zhang and Chou, 1994). Using the
graphic method, we would like to get some insight into
the working mechanism of the algorithm and find the
reason why a considerable part of the ORFs in the
2nd–6th classes are actually not coding genes.

As mentioned above, the number of known genes is
3181, and the total number of the ORFs in the 2nd–6th
classes is equal to 248+869+789+805+447, i.e.
3158. For comparison, the 6000 intergenic sequences
are used as the negative samples. The graphs (Zhang
and Zhang, 1991; Zhang and Chou, 1994) correspond-
ing to these data sets are drawn and compared. To save
printing space, only the projections onto the x–y or
x–z planes are shown here. Consider the known genes
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Table 4
The 112 ORFs of the 3rd class in the MIPS database, which are recognized as non-codinga

YIL166c YLR064wYGL160w YNR056cYBL089w YDR249c
YGL186cYDR302w YJL091c YLR184w YNR059wYBL091c-a

YJL170c YLR251wYGR023w YNR063wYDR303cYBR074w
YGR065cYDR307w YJL193w YLR266c YOL079wYBR180w
YGR067cYDR366c YJR036c YLR283w YOL107wYBR220c

YJR124c YLR311cYGR077c YOL119cYBR293w YDR387c
YGR101wYDR411c YJR136c YLR365w YOL137wYCL001w-a

YKL037w YLR394wYCR023c YOL152wYDR413c YGR284c
YKL174c YML023cYHL035c YOL163wYEL045cYCR062w

YHR002wYEL064c YKL221w YMR088c YOR049cYCR087c-a
YKL222c YMR221c YOR053wYDL015c YER048w-a YHR035w
YKR030w YMR245wYHR048w YOR292cYER097wYDL119c
YKR088c YMR306wYDL199c YOR297cYER113c YHR130c
YKR103w YNL065wYHR142w YOR350cYDL206w YER119c

YHR181wYER184c YLL005c YNL109w YPL125wYDL228c
YLL037w YNL176cYIL025c YPL244cYFL027cYDR100w

YIL040wYFL040w YLL054c YNL203c YPR094wYDR115w
YIL054wYFR057w YLR010c YNL275wYDR119w

YLR050c YNL305cYIL088cYDR205w YGL104c

a Of the 112 ORFs listed, statistically, 57 are actually coding. Unfortunately, we cannot identify them at present due to the limited
recognition accuracy achieved.

Table 5
The 157 ORFs of the 4th class in the MIPS database, which are recognized as non-codinga

YML047c YOL162wYAL018c YDR306c YGR071c YJL108c
YML132w YOR044wYJL147cYDR438wYAL034c YGR110w

YJR013wYDR459c YMR010w YOR147wYGR125wYAR060c
YJR044cYDR492w YMR034c YOR175cYGR212wYAR068w

YMR101c YOR193wYJR116wYBL108w YGR293cYDR504c
YMR119w YOR228cYBL109w YDR524c YGR295c YJR161c
YMR155w YOR245cYJR162cYBR004c YHL041wYDR525w-a

YKL034wYDR543c YMR253c YOR365cYHL042wYBR099c
YMR324c YOR390wYKL219wYDR544cYBR147w YHL044w

YKL223wYEL033w YMR326c YPL087wYHL045wYBR168w
YKL225wYEL067c YNL008c YPL165cYHL048wYBR183w

YNL026w YPL189wYKR051wYER072w YHR054cYBR300c
YKR106wYER188c-a YNL101w YPL229wYHR133cYBR302c

YNL156c YPL246cYCL002c YFL015c YHR162w YLL023c
YNL297c YPL257wYLL031cYFL062wYCL038c YHR212c

YLR023cYFL063w YNL326c YPL264cYHR214w-aYCL073c
YLR036cYFL065c YNL336w YPL279cYHR217cYCR102w-a

YNL337w YPR071wYLR047cYIL029cYCR103c YFL068w
YNR062c YPR114wYDL123w YFR012w YIL089w YLR156w
YNR075w YDR367w*YLR159wYDL183c YIL090wYGL010w

YLR161wYGL041c YNR077c YMR292w*YIL174wYDL248w
YOL002c YOL047c*YLR241wYGL084cYDR018c YIL175w

YLR246wYGL124c YOL003cYIR040cYDR066c
YIR043c YLR414c YOL048cYDR084c YGL260w

YOL092wYLR463cYGL263w YIR044cYDR105c
YML033wYGR015c YOL101cYJL062wYDR126w
YML036wYGR016w YOL129wYJL097wYDR131c

a Of the 157 ORFs listed above, 154 are intronless and three are intron-containing (marked with *). Note that of the 157 ORFs
listed, statistically, 47 are actually coding. Unfortunately, we cannot identify them at present due to the limited recognition accuracy
achieved.
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Table 6
The 215 ORFs of the 5th class in the MIPS database, which are recognized as non-codinga

YGL057c YJR041c YLR404wYAL008w YNL311cYDL231c
YGL138c YJR120wYDR015c YML003wYAL064w YNL324w

YDR024wYAL066w YGL188c YJR157w YML038c YOL024w
YGL230c YKL044w YML084wYAR030c YOL038c-aYDR029w
YGR026w YKL051wYDR042c YML090wYAR040c YOL072w

YDR065wYAR047c YGR149w YKL097c YML107c YOL118c
YGR168c YKL102cYAR053w YML122cYDR102c YOL160w
YGR226c YKL158wYDR141c YMR003wYAR064w YOL166c

YDR179w-aYAR069c YGR290w YKL162c YMR007w YOR015w
YDR215cYAR070c YGR291c YKR032w YMR057c YOR024w

YHL005c YKR065cYDR274c YMR071cYBL048w YOR029w
YDR278cYBL049w YHL037c YKR073c YMR082c YOR068c

YHR067w YLL007cYBL071c YMR103cYDR315c YOR072w
YHR078w YLL014wYDR319c YMR122cYBR013c YOR080w

YDR344cYBR027c YHR095w YLL030c YMR141c YOR152c
YDR350cYBR058c-a YHR139c-a YLL033w YMR148w YOR183w

YHR140w YLL042cYDR396w YMR151wYBR085c-a YOR268c
YDR437wYBR096w YHR173c YLL059c YMR163c YOR314w
YDR524w-aYBR126w-a YIL012w YLR042c YMR187c YOR364w

YIL028w YLR049cYDR525w YMR191wYBR144c YOR376w
YEL010wYBR292c YIL037c YLR111w YMR252c YOR392w

YIL071c YLR112wYEL014c YMR254cYCL056c YPL041c
YEL059wYCL057c-a YIL086c YLR122c YMR258c YPL052w

YIL152w YLR124wYCL058c YMR259cYER044c YPL056c
YIR020c YLR199cYER050c YMR320wYCR001w YPL066w

YER066c-aYCR006c YIR020c-a YLR255c YNL017c YPL162c
YER091c-aYCR022c YJL027c YLR264c-a YNL038w YPL200w

YJL028w YLR265cYER135c YNL122cYCR025c YPR012w
YER140wYCR043c YJL064w YLR267w YNL143c YPR014c
YER172c-aYCR085w YJL077c YLR296w YNL146w YPR064w

YJL118w YLR312cYFL019c YNL150wYDL027c YPR098c
YJL136w-a YLR366wYDL054c YNL174wYFL021c-a YPR153w
YJL163c YLR376cYFR035c YNL179cYDL089w YPR170c

YFR042wYDL162c YJL215c YLR381w YNL211c YPR170w-a
YJR011c YLR400wYDL180w YNL269wYFR054c YDR535c*
YJR023c YLR402w YNL303wYGL006w-aYDL196w

a Of the 215 ORFs listed above, 214 are intronless and one is intron-containing (marked with *). Note that of the 215 ORFs listed,
statistically, 43 are actually coding. Unfortunately, we cannot identify them at present due to the limited recognition accuracy
achieved.

first. The projections of the 3181 mapping points onto
the x–y planes for the base composition at the 1st and
2nd codon positions are shown in Fig. 1(a) and (b),
respectively. The projection of these mapping points
onto the x–z plane for the base composition at the 3rd
codon position is shown in Fig. 1(c). As can be seen,
the distribution patterns of the projection points of the
three plots are considerably different. In Fig. 1(a), most
of the points are situated at the region where a1� t1

and g1�c1, i.e. purine bases are predominant at the
first codon position. In Fig. 1(b), most of the points are
situated at the region lacking G. In Fig. 1(c), most of
the points are at the region where A and T are predom-
inant. In summary, the preference codons of the yeast
protein coding genes are of the RG� W type, where R, G�
and W are the bases of purine, non-G and A/T, respec-

tively. For comparison, the projection of the mapping
points onto the x–y plane for the base composition at
the 1st ‘codon’ position of the 6000 intergenic se-
quences is shown in Fig. 2. Note that the ‘codon’ in an
intergenic sequence is meaningless. Because all the in-
tergenic sequences selected here begin with ATG, for
example, ATGGCGCAT…, the bases A, G, C… are
defined as at the first ‘codon’ position and so forth.
Since the distribution patterns of the points at the 2nd
and 3rd ‘codon’ positions are almost identical with that
at the 1st ‘codon’ position, they are not shown here.
Therefore, the ‘codons’ of the intergenic sequences are
of the type NNN, where N indicates any base.

It has been suggested that the first, second and third
position of the codons are associated, respectively, with
the biosynthetic pathway, hydrophobicity pattern, and
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Table 7
The 355 ORFs of the 6th class in the MIPS database, which are recognized as non-codinga

YGL182cYDR114c YJL135w YLR428c YOR102wYAL034c-b
YJL142c YLR434cYGL193c YOR105wYAL042c-a YDR133c

YGL204cYDR136c YJL150w YLR444c YOR121cYAL056c-a
YJL152w YLR458wYGL214w YOR135cYDR149cYBL012c
YJL169w YLR465cYBL053w YOR146wYDR154c YGL217c
YJL175w YML009w-aYGL218w YOR169cYBL062w YDR157w

YGL239cYDR187c YJL182c YML012c-a YOR170wYBL065w
YJL188c YML031c-aYGR011w YOR199wYBL070c YDR199w
YJL202c YML034c-aYBL073w YOR200wYDR203w YGR018c
YJL220w YML047w-aYGR025w YOR203wYBL077w YDR220c
YJR018w YML057c-aYBL083c YOR218cYDR230w YGR039w
YJR020w YML089cYGR045c YOR225wYDR241wYBL094c
YJR037w YML094c-aYBL107w-a YOR235wYDR269c YGR050c
YJR038c YML099w-aYGR051c YOR248wYBR051w YDR271c

YGR064wYDR290w YJR071w YML116w-a YOR263cYBR064w
YJR087w YMR046w-aYGR069w YOR277cYDR340wYBR089w
YJR128w YMR052c-aYBR109w-a YOR282wYDR355c YGR073c
YKL030w YMR075c-aYGR107w YOR300wYBR113w YDR360w
YKL036c YMR086c-aYBR116c YOR309cYDR401w YGR114c
YKL053w YMR119w-aYGR115c YOR325wYDR417cYBR124w
YKL076c YMR135w-aYBR134w YOR331cYDR426c YGR122c-a
YKL083w YMR153c-aYGR137w YOR333cYBR178w YDR431w
YKL111c YMR158c-bYBR206w YOR345cYDR442w YGR139w
YKL115c YMR158w-aYGR151c YOR379cYBR224w YDR445c
YKL118w YMR172c-aYBR226c YPL034wYDR455c YGR164w
YKL123w YMR193c-aYGR176w YPL035cYBR232c YDR467c
YKL131w YMR290w-aYBR266c YPL044cYDR491c YGR182c
YKL136w YMR304c-aYGR190c YPL073cYDR509wYBR277c
YKL147c YMR306c-aYCL006c YPL102cYDR521w YGR219w
YKL153w YMR316c-aYGR228w YPL114wYCL023c YDR526c

YEL075w-a YGR242w YKL162c-a YNL013c YPL136wYCL041c
YKL169c YNL028wYGR259c YPL182cYCL065w YER006c-a
YKL177w YNL089cYCR018c-a YPL185wYER046w-a YGR265w
YKL202w YNL105wYHL002c-a YPL205cYCR041w YER067c-a
YKR033c YNL114cYCR064c YPL238cYER084w YHL006w-a
YKR040c YNL120cYHL030w-a YPL261cYER138w-aYCR087w
YKR047w YNL170wYDL009c YPR002c-aYER145c-a YHL046w-a
YLL020c YNL171cYHR049c-a YPR038wYDL011c YER148w-a
YLR101c YNL184cYDL016c YPR039wYER165c-a YHR056w-a
YLR123c YNL198cYHR063w-a YPR050cYDL023c YER181c
YLR140w YNL205cYDL026w YPR053cYFL012w-a YHR125w
YLR169w YNL226wYHR145c YPR077cYDL032w YFL013w-a
YLR171w YNL228wYDL034w YPR087wYFL032w YIL060w
YLR198c YNL235cYIL066w-a YPR092wYFR036w-aYDL041w
YLR217w YNL266wYDL050c YPR099cYFR056c YIL068w-a
YLR230w YNL276cYIL071w-a YPR126cYDL062w YGL024w

YDL068w YLR232wYGL042c YNL296w YPR130cYIL100c-a
YLR252w YNL319wYIL156w-a YPR136cYGL052wYDL071c
YLR261c YNR005cYDL094c YPR142cYGL072c YIL163c
YLR269c YNR025cYIL171w-a YPR146cYDL151c YGL074c
YLR279w YOL013w-aYDL152w YPR150wYGL088w YIR017w-a
YLR282c YOL013w-aYIR023c-a YPR177cYGL102cYDL158c
YLR294c YOL035cYDL172c YBR090c*YGL109w YJL009w
YLR302c YOL037cYJL015c YER014c-a*YDL187c YGL118c

YDL221w YLR317wYGL132w YOL099c YLR202c*YJL022w
YLR322w YOL106wYJL032wYDR008c YGL149w
YLR334c YOL134cYDR034c-a YGL152c YJL067w
YLR339c YOL150cYJL075cYDR048c YGL165c

YDR053w YLR358cYGL168w YOR041cYJL086c
YLR379w YOR082cYJL120wYDR112w YGL177w

a Of the 355 ORFs listed above, 352 are intronless and three are intron-containing (marked with *). Note that of the 355 ORFs
listed, statistically, four are actually coding. Unfortunately, we cannot identify them at present due to the limited recognition
accuracy achieved.
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Fig. 1. Distributions of the mapping points for base composition at three codon positions of the 3181 protein coding genes in the
yeast genome in a three-dimensional space. (a) Projection onto the x–y plane for the 1st codon position; (b) projection onto the x–y
plane for the 2nd codon position; and (c) projection onto the x–z plane for the 3rd codon position. For more detailed explanation
regarding the graph, refer to Zhang and Zhang (1991) or Zhang and Chou (1994).

the alpha helix or beta strand forming potentiality of
the coded amino acids (Siemion and Siemion, 1994;
Taylor and Coates, 1989). Recently, it is reported that
there is strong correlation between the base frequencies
in the second codon position of genes and the corre-
sponding secondary structures in the encoded proteins
(Gupta et al., 2000; Chiusano et al., 2000). Chiusano et
al. (2000) attributed this relation to the hydrophobic
and hydrophilic amino acids encoded by codons having
U or A, respectively, in their second codon site. It is
also supposed that the specific codon choice is function-
ally needed in mRNA–rRNA interaction in ribosome,
which is responsible for monitoring the correct reading
frame during translation (Trifonov, 1987; Lagunez-

Otero and Trifonov, 1992; Lobry and Gautier, 1994).
These mean that the three codon positions are associ-
ated with different biological functions and the base
choices at these positions are usually specific. In the
case of yeast genome, the preferred codon usage pattern
is RG� W, and the difference of the two codon types, i.e.
RG� W and NNN, forms the basis to distinguish be-
tween coding and non-coding sequences. The present
algorithm is based on the difference of mapping point
distribution patterns between the two kinds of se-
quences. As we can see, the present algorithm works
well.

For comparison, the projection of the mapping
points for the base composition at the 1st codon posi-
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tion of the 3158 ORFs of the 2nd–6th classes in the
MIPS database, is shown in Fig. 3. Obviously, the
distribution pattern of Fig. 3 is in between those of Fig.
1(a) and Fig. 2, indicating that a part of ORFs of the
2nd–6th classes in the MIPS database are actually of
non-coding ones. This fact implies that the codons in
some ORFs of the 2nd–6th classes in the MIPS data-
base are of the RG� W type, whereas the ‘codons’ in
some other ORFs are of the NNN type. The latter
‘codons ’ do not code for any realistic proteins. This is
the reason why 23% (refer to the last row in Table 2) of
the ORFs of the 2nd–6th classes in the MIPS database
are non-coding.

In fact, the division between coding and non-coding
regions can be seen in a more intuitive manner by a
principal component analysis (PCA). PCA defines a
rotation of the variables of given data. The first derived
direction (a linear combination of the variables) is
chosen to maximize the standard deviation of the
derived variable, the second to maximize the standard
deviation among directions un-correlated with the first,
and so forth. For details about this method refer to
Dillon and Goldstein (1984). For the data set compris-
ing the values of u1–u9 of 3181 known genes and 6000
intergenic sequences, a plot based on the two most
important axes using the PCA is shown in Fig. 4. The
first and the second axis account for 34.3 and 15.9% of

Fig. 3. Distributions of the mapping points for base composi-
tion of the 3158 ORFs of the 2nd–6th classes in the MIPS
database in a three-dimensional space. Projection onto the
x–y plane for the 1st codon position. Specially note that the
distribution pattern here is in between those in Fig. 1(a) and
Fig. 2, indicating that a part of the ORFs of the 2nd–6th
classes in the MIPS database is actually non-coding. See the
legend of Fig. 1 for explanation of the graph.

Fig. 2. Distributions of the mapping points for base composi-
tion of about 6000 intergenic sequences in the yeast genome in
a three-dimensional space. Projection onto the x–y plane for
the 1st ‘codon’ position. It should be pointed out that the
distribution patterns for the 2nd and 3rd ‘codon’ positions
(not shown here) are almost identical to that for the 1st
‘codon’ position. Note that the ‘codon’ in an intergenic se-
quence is meaningless. The definition of ‘codon’ positions in
an intergenic sequence is arbitrary. See the legend of Fig. 1 for
explanation of the graph.

the total inertia of the nine-dimensional space, respec-
tively, and no other axis accounts for more than 10%.
The variation in the second axis is mainly because of a
small number of outliers, which are mostly short genes
or ORFs. The two principal axes are responsible for
separating the coding and non-coding sequences into
two clusters. The coding sequences are represented by
close cycles and the non-coding sequences are repre-
sented by open cycles. As we can see, the two clusters
appear to be distinct, with quite little overlap. The
closeness of any two regions in Fig. 4 reflects the
similarities of their base frequencies at the three codon
positions, implying that the base choices at the three
codon positions for most genes are quite different from
those of non-coding sequences.

4. Conclusions

A simple gene-finding algorithm with high accuracy
(93%) for the yeast genome is presented in this paper.
Six-fold cross-validation tests confirm the above accu-
racy. Using the algorithm, it is found that 751 ORFs
(about 23.8%) of the 2nd–6th classes classified in the
MIPS database are likely non-coding. The total number
of protein coding genes in the 16 yeast chromosomes is
estimated to be less than or equal to 5579. This estimate
is based on the assumption that the DNA sequences
coding for proteins in the 1st class ORFs have similar
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Fig. 4. The distribution of points based on the two most
important axes using the principal component analysis of the
nine variables u1–u9 for the 3181 known nuclear genes and
6000 intergenic sequences. Axis 1 is a derived direction (a
linear combination of the variables u1–u9) chosen to maximize
the standard deviation of the derived variable, and Axis 2 is
the direction to maximize the standard deviation among direc-
tions un-correlated with the first. For the values of u1–u9 of
3181 known genes and 6000 intergenic sequences, Axes 1 and
2 account for 34.3 and 15.9% of the total inertia of the
nine-dimensional space, respectively. The close cycles indicate
the known genes while the open cycles represent the non-cod-
ing sequences. Note that the two clusters appear to be distinct,
with quite little overlap. This fact constitutes the basis of the
present algorithm.

tions, which are very important for improving the
quality of the manuscript. We thank Mr. F.-B. Guo for
doing the principal component analysis. The present
study was supported in part by the 973 Project of
China (grant G1999075606).
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