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Abstract

Recursive segmentation is a procedure that partitions a DNA sequence into domains with a homogeneous
composition of the four nucleotides A, C, G and T. This procedure can also be applied to any sequence converted
from a DNA sequence, such as to a binary strong(G+C)/weak(A+T) sequence, to a binary sequence indicating the
presence or absence of the dinucleotide CpG, or to a sequence indicating both the base and the codon position
information. We apply various conversion schemes in order to address the following five DNA sequence analysis
problems: isochore mapping, CpG island detection, locating the origin and terminus of replication in bacterial
genomes, finding complex repeats in telomere sequences, and delineating coding and noncoding regions. We find that
the recursive segmentation procedure can successfully detect isochore borders, CpG islands, and the origin and
terminus of replication, but it needs improvement for detecting complex repeats as well as borders between coding
and noncoding regions. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

One generic feature of DNA sequences is that their
statistical properties are not homogeneously distributed
along the sequence (Sueoka, 1962). For practically any
feature of interest, such as the G+C content, the CpG
dinucleotide content, the periodicity-of-three, the A–T
strand asymmetry, the presence of protein-binding mo-
tifs, or the origin or terminus of replication, its density
along almost any DNA sequence fluctuates from posi-
tion to position. For many situations, these fluctuations
can be better explained by alternating homogeneous
domains (called segments in Elton (1974)) than by

random fluctuations in a homogeneous sequence.
If we accept a domain picture of DNA sequences, it

is natural to design computational approaches that
segment a DNA sequence into homogeneous domains,
and computer algorithms that accomplish such a seg-
mentation are commonly called segmentation al-
gorithms. Two well-known examples of segmentation
algorithms are the one based on hidden Markov model
by Churchill (1989, 1992) and the walking Markov
model algorithm by Fickett et al. (1992). Parallel stud-
ies on similar problems called ‘change-point problems’
(Carlstein et al., 1994) have been recently performed
and applied to segment DNA sequences (Braun and
Müller, 1998; Braun et al., 2000). In the biology com-
munity, however, most people still use the old-fash-
ioned ‘moving window’ approach, as in the case of the
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two recent papers on human genome sequence (Venter
et al., 2001; Lander et al., 2001).

One advantage of the widely-used sliding-window
methods is that their implementation is straightforward:
one calculates the density of a sequence feature of
interest within a window, moves the window along the
sequence, and recalculates the density again. However,
the choice of the window size and the moving distance
are, in general, arbitrary. If the window size is too
large, local fluctuations that contain significant biologi-
cal information may be averaged out. If the moving
distance is too long, one domain can be split between
two windows and its distinctive feature may not be
revealed. One example of the window size effect on the
G+C content fluctuation is illustrated in Li et al.
(1994).

Another drawback for the moving window approach
as well as any other sequential (left-to-right) ap-
proaches is that they are not appropriate for sequences
that exhibit hierarchical patterns. Consider the G+C
content, for example. If a seemingly homogeneous G+
C domain becomes heterogeneous under a more relaxed
criterion for being homogeneous, subdomains may
emerge. This ‘domains-within-domains’ phenomenon
can continue to emerge on smaller and smaller length
scales. There are many consequences of the domains-
within-domains phenomenon, such as the co-existence
of small and large domains, the slow decay of the
variance with the window size (Cuny et al., 1981; Li et
al., 1998; Clay et al., 2001), or the slow decay of
base–base correlations with length. Studies over the
last 10 years have shown that this hierarchical descrip-
tion of DNA sequences is quite prevalent (Li, 1992; Li
et al., 1994; Bernaola-Galván et al., 1996; Li, 1997a).

If the domains are organized in a hierarchical man-
ner, it is natural to segment DNA sequences recursively
(top-to-bottom). One such recursive segmentation for
DNA sequences was proposed in Bernaola-Galván et
al. (1996). Although this recursive segmentation al-
gorithm was originally developed for finding domains
that are homogeneous in base composition or G+C
content (Bernaola-Galván et al., 1996; Oliver et al.,
1999, 2001; Li, 2001c), it is the purpose of this paper to
show that there are many other applications of the
recursive segmentation algorithm to the analysis of
DNA sequences.

The original recursive segmentation algorithm seg-
ments an input sequence into domains with a homoge-
neous composition of the four nucleotides. For many
other potential applications, we apply a filter that con-
verts the original four-base DNA sequence into a k-
symbol sequence. The number of symbols, k, can either
be smaller or larger than four. For example, for detect-
ing G+C domains, a DNA sequence is converted to a
binary sequence with the two symbols S(strong)=
{C, G} and W(weak)={A, T}; for detecting domains

with a homogeneous dinucleotide composition, we con-
struct a 16-symbol sequence, in which each symbol
represents one dinucleotide. It is clear that applications
of the recursive segmentation algorithm are not re-
stricted to the five examples discussed in this paper. For
any new application, one only needs to design a new
filter for the sequence conversion.

2. Recursive segmentation

We follow the divide-and-conquer approach (see,
Cormen et al., 1990) proposed in Bernaola-Galván et
al. (1996). For a k-symbol sequence of length N, we
calculate at each position i (0� i�N) the entropy H of
the whole sequence, the entropy Hl of the subsequence
on the left side of the partition point, and the entropy
Hr of the subsequence on the right side of the partition
point defined by Shannon (1948)
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where Nj, Nj,l and Nj,r are the counts of symbol j in the
whole, the left, and the right sequence. As a measure of
the heterogeneity of the sequence we choose the maxi-
mized Jensen–Shannon divergence:
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If D� JS is large enough, we say that the sequence is
heterogeneous and should be segmented. We recursively
apply the same procedure to both the left and the right
subsequence, as long as D� JS stays above a given
threshold. If D� JS falls below that given threshold, the
recursion along the current path is stopped. This recur-
sive segmentation procedure is very similar to the pro-
cedure of growing a binary tree. When the
segmentation is continued, two branches of the tree are
generated; if it is stopped, that branch becomes a leaf.

The stopping criterion can be handled either in the
hypothesis testing or in the model selection framework.
In the hypothesis testing framework, we compute the
probability that the observed value of D� JS or a greater
value can be obtained by chance by the null hypothesis
that the sequence is homogeneous. The exact form of
the null distribution is hard to obtain (Pettitt, 1980).
Although an asymptotic approximation (large sample
size limit) is available in Horvath (1989), Csorgo and
Horvath (1997), it was questioned on whether this
approximation is good for finite sample sizes (Grosse et
al., 2002). An empirical functional form of the null
distribution is also suggested by numerical simulation
in Grosse et al. (2002).
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An alternative approach to determine the stopping
criterion was recently proposed in the model selection
framework (Li, 2001a,b), where a model is judged by a
combination of how good the model fits the data and
how complex the model is. The goal is to find a model
at the border between underfitting models (those that
do not fit the data well) and overfitting models (those
that fit the data too well by using too many parame-
ters). In order to balance the goodness-of-fit of the
model to the data with the number of parameters of the
model we use the Bayesian Information Criterion (BIC)
(Schwarz, 1978; Akaike, 1978; Raftery, 1995) defined
by

BIC= −2 log(L� )+ log(N) K, (3)

where L� is the maximum likelihood of the model, K is
the number of free parameters, and N is the sample size
(in our example, it is the sequence length). Among all
considered models we choose that model which mini-
mizes the value of BIC.

Deciding whether to proceed with a segmentation
can be considered as a comparison between two mod-
els: modeling the sequence as one single random se-
quence, and modeling it as two random subsequences
with different base compositions. If the first model is
better by a model selection criterion, the segmentation
is stopped; otherwise, it is continued. It is easy to show
that with BIC as the model selection criterion, in order
for the recursive segmentation to continue, the value of
2ND� JS has to exceed the threshold log(N)[2(k−1)+
1− (k−1)], or,

2ND� JS� log(N) k, (4)

where k is the number of different symbols in the
sequence.

We propose to use the relative increase of 2ND� JS

from the BIC threshold, log(N)k, as a measure of
stringency for the segmentation, and we call this rela-
tive increase the ‘segmentation strength’ (Li, 2001a,b)

s=
2ND� JS− log(N) k

log(N) k
. (5)

We continue the recursive segmentation process as long
as s�s0, where s0 is a threshold predefined by the user.
In the following sections, we will present five applica-
tions of the recursive segmentation algorithm to the
analysis of DNA sequences.

3. Detection of isochores

Isochores are large homogeneous G+C domains
that have been studied for over 20 years (Cuny et al.,
1981; Bernardi, 1989, 1995; Clay et al., 2001). Iso-
chores, whose definition was originally experimentally
based, were noticed as distinct components in density

gradient ultra-centrifugation (Thiery et al., 1976;
Macaya et al., 1976; Cuny et al., 1981). With the recent
completion of full genome sequencing projects, such as
the yeast, worm, fruit fly, mouse, or human genome
project, there is a renewed debate about the characteris-
tic properties of isochores (Nekrutenko and Li, 2000;
Häring and Kypr, 2001; Lander et al., 2001). One
reason for this debate is the lack of a sequence-based
definition of isochores. We use the recursive segmenta-
tion procedure to address this issue directly.

In order to apply the recursive segmentation al-
gorithm to the isochore problem, we convert a DNA
sequence to a binary sequence with the two symbols S
(C or G) and W (A or T). Given a threshold s0 for
segmentation strength, the algorithm segments the in-
put sequence into domains that are homogeneous by
that criterion. Since the degree of homogeneity is a
relative quantity, changing s0 leads to different seg-
mented domains. A large value of s0 results in fewer
large G+C domains, and a small value of s0 leads to
more small domains. There is no a priori reason to
select a certain values of s0, except for s0=0, which
corresponds to the default criterion based on BIC. We
determine an optimal value of s0 by segmenting se-
quences with a known isochore structure.

Some well studied isochores are the isochores in the
major histocompatibility complex (MHC) sequence on
human chromosome 6p21 (Beck et al., 1999). This 3.67
Mb long region contains 224 genes and has been linked
to many human genetic diseases, including common
diseases like rheumatoid arthritis and diabetes. There
are four domains in this region, with two of them
homogeneous enough to be called isochores. They are
positioned on the chromosome as follows: (telomere)–
(class I)–(class III)–(class II)–(extended class II)–(cen-
tromere) (Beck et al., 1999). Fig. 1 shows a recursive
segmentation result for the MHC sequence, with s0 set
to 20, 10, and 5.

Fig. 1 shows clearly that the segmentations at the
three known domain borders have the highest segmen-
tation strength (s=236.79, 170.84 and 288.49) (Li,
2001b,c). Class-III is the most homogeneous domain
among the four, class-II is the domain with the second
highest degree of homogeneity, and class-I is the least
homogeneous domain. The 642 kb class-III domain is
clearly a ‘good’ example of an isochore: it is larger than
300 kb, and it is homogeneous (at s0=10) except for a
few-kb region with a higher (G+C)% that can be
detected at s0=5. The border between the class-III and
-II domains is a ‘good’ example of an isochore border
because the (G+C)% change at this point is large. It is
not surprising that this is by far the best studied
isochore border (Fukagawa et al., 1995).

There are two technical remarks that requires further
explanation. The first concerns the choice of s0. Besides
the general requirement that s0�0, a selection of s0



W. Li et al. / Computers & Chemistry 26 (2002) 491–510494

usually reflects the choice of the length scale. Fig. 2
shows, in a log–log representation, the distribution of
segmentation strength of all recursive segmentations at
s0=0 when these segmentations are ranked. This plot is
roughly the same as the similar segmentation strength
profile at a s0�0 value, with all low-ranked segments
being removed. Since the number of segmentations is
the number of domains minus 1, it is easy to know the
required s0 value for obtaining certain number of do-
mains (e.g. s0=100 for four domains).

A second technical remark concerns the question
whether the domain borders determined by a recursive
segmentation algorithm are accurate. This problem will
be discussed more in Section 5 with the example of
detecting the origin and terminus of replication. Gener-
ally speaking, a border position is more accurately
determined when the sequence being segmented con-
tains only two domains. For the determination of the
isochore border in Fig. 1, for example, it is ideal to
include only class-III and -II domains with only one
segmentation. In most situations, however, the deter-

mined borders are robust and not very sensitive to an
addition or deletion of sequences far away from the
border.

We also apply the recursive segmentation algorithm
to detect isochores in the longest contig on chromo-
some 1 of C. elegans (Ainscough et al., 1998), with 8.57
Mb. Although it is possible to patch other contigs (this
contig–100 B gap–230 kb contig–1 kb gap–4.2 Mb
contig) to form a longer sequence, we adhere our
analysis to the originally given contig sequence in order
to avoid potential problems caused by the treatment of
gap sequences. Fig. 3 shows the segmented domains
with s0=5. A major portion of the sequence (6.2 Mb)
forms one domain at this level. This long homogeneous
domain is in strong contrast to the first 2 Mb sequence,
which contains many small domains with extreme G+
C contents, both high and low. Fig. 3 illustrates one
advantage of the recursive segmentation over the tradi-
tional moving window approaches: both large and
small homogeneous domains can be delineated at the
same time.

Fig. 1. Eleven domains segmented at s0=20 for MHC sequence. Sequence length is N=3,673,778 bases. (A) G+C% in a moving
window (window size is 150 kb, and moving distance 15 kb); domain borders (vertical dashed lines); and G+C% in segmented
domains (horizontal solid lines). (B) Segmentation strength s (vertical bars). The four known isochores (telomere is on the left side
and centromere on the right side) class-I, -III, -II, and extended class-II, and the isochore border between class-III and -II are
marked in the plot.
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Fig. 2. Segmentation strength of all segmentations obtained at s0=0 for MHC sequence. All segmentations are listed and ranked
(total number is 1259). The segmentation strength is plotted against the rank, both in logarithmic scale. The number of segmented
domains is the number of segmentations plus 1. With a raise of the s0 (e.g. s0=1, 10, 20, 100), the number of segments (and
domains) is reduced, as shown in the plot.

4. Detection of CpG islands

CpG islands are short segments of unmethylated
DNA sequences, usually (G+C)-rich and 5�-CG-3� din-
ucleotide rich, that are dispersed throughout the com-
paratively (G+C)-poor genome (Cooper et al., 1983;
Tykocinski and Max, 1984; Bird, 1986). CpG islands,
generally 0.5–2 kb in length, have approximately 60–
70% G+C content and are highly conserved through-
out evolution. It is believed that mammalian
chromosomes are organized into domains with charac-
teristic CpG island density, where the distribution of
the islands is correlated with the 5� ends of genes such
that the islands contain both the promoter and tran-
scription unit (Cross et al., 2000). CpG islands have
also been observed at the last exon and the 3� untrans-
lated region of genes (Gardiner-Garden and Frommer,
1987).

For computational detection of CpG islands, a stan-
dard sequence-based definition has been adopted which
does not directly account for the methylation state of
the sequence. This defines a CpG island as a region
greater than a few hundreds of bases in length, with

(G+C)% larger than 50%, and ratio of observed versus
expected number of CpG dinucleotides, O/E=
(CpG%)/(C%·G%), larger than 0.6, as proposed in Gar-
diner-Garden and Frommer (1987), Larsen et al.
(1992). In the standard sliding window approach for
detecting CpG islands, a moving average for the (G+
C)% and O/E statistics are calculated by moving a
window of length 100 bp and moving distance of 1 bp
across the sequence (Gardiner-Garden and Frommer,
1987). Various threshold levels for these CpG based
metrics and window sizes have been explored. For
example, it was suggested in Venter et al. (2001) to use
a more stringent value of 0.8 for O/E and Matsuo et al.
(1993) proposed using a larger window size of 500 bp
with moving distance of 10 bp for identification of CpG
islands.

Matsuo et al. (1993) also proposed that CpG density
(CpG%) may be used as a selection criterion for human
CpG island, rather than the combined G+C content
and ratio of observed versus expected CpG dinucle-
otides, since CpG density may be a predictor of methy-
lation state. Their studies showed that a CpG
dinucleotide count of greater than 6 per 100 bp might
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be an indicator that the region is unmethylated. This
was proposed as a simple criterion for CpG islands.
Here, we also chose to use the CpG density as the
evaluation metrics for selection of candidate islands.

In our alternative method for delineating the location
of CpG islands, we first preprocess the data, converting
the DNA sequence into a binary sequence with two 1s
corresponding to an observed CpG dinucleotide and 0
otherwise. In this way, CpG islands are characterized as
regions with a high density of symbols coded as 1.
Then, the recursive segmentation algorithm is applied
to the binary sequence to identify subsequences with
homogeneous 1 or 0 symbol composition, correspond-
ing to potential CpG-rich and -poor domains,
respectively.

In order to assess the accuracy of the computation-
ally predicted CpG islands, we examined in detail the
predictions of the segmentation method using a sample
sequence with both putative and experimentally confi-
rmed CpG islands. The sample DNA segment used was
from human chromosome 22q13.2–13.3 with GenBank
accession number AL022237. The GenBank annotation
for this sequence contained three putative CpG islands
with start and end base positions as follows: (c1)
4231–4718, (c2) 25125–26783 and (c3) 57881–

58762. Although it is not specified in the annotation
summary, these CpG islands were most likely derived
from the sliding window method described in Larsen et
al. (1992). A computer program implementing this al-
gorithm predicted the three CpG islands exactly at the
same locations, plus the fourth one at positions 3546–
3852.

In Fig. 4, four CpG related statistics are calculated
and displayed (i.e. CpG O/E, CpG%/GpC% ratio,
(G+C)%, and CpG%) demonstrating that the CpG
density (CpG%) is a valid indicator of CpG islands.
The thresholds used for prediction of CpG islands for
these statistics, given in the same order as above, are
0.6 (Gardiner-Garden and Frommer, 1987) and 0.8
(Venter et al., 2001), 0.6 (assuming GpC%�C%·G%,
as suggested by Bird (1986), 50% (Gardiner-Garden
and Frommer, 1987), and 6% (Matsuo et al., 1993).

When the segmentation was applied to the converted
binary version of this sequence, 30, 16 and 10 domains
were observed for the corresponding segmentation
strengths, s0=0, 0.5, and 1, respectively. In Fig. 4, the
10 homogeneous domains obtained with s0=1 are
shown, along with the domain borders as well as the
corresponding CpG densities. For the chosen level of
significance for CpG density (CpG%�6%), the first

Fig. 3. Nineteen domains segmented at s0=5 for the longest contig of chromosome 1 of C. elegans (see the caption of Fig. 1 for
an explanation of the plot).
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Fig. 4. CpG island detection for a human DNA sequence on 22q12.2–13.3 (AL022237). Several statistics are calculated in a
moving-window (window length is 500 bp, moving distance is 10 bp). (A) Observed over expected occurrence of CpG dinucleotide:
O/E=CpG%/(C%·G%). Two levels of O/E=0.6 and 0.8 are also drawn. (B) Observed occurrence of CpG dinucleotide over that
of GpC dinucleotide (CpG%/GpC%). The level of 0.6 is drawn. (C) G+C content. The level of 0.5 is drawn. (D) CpG content
(number of CpG dinucleotide in a window divided by the window length). The level of 0.06 is drawn. A recursive segmentation (with
s0=1) is applied to the 1/0 (part of CpG/not part of CpG) sequence, and the domain borders (long vertical dashed line) and CpG%
within the segmented domains are shown. The positions of three putative CpG island from the GenBank annotation, those of the
four CpG islands as predicted by a C program based on the algorithm in Larsen et al. (1992), as well as two CpG-island-containing
sequences (AJ236684 and AJ236656), are marked. (E) Segmentation strength of the nine segmentations.

annotated CpG island corresponds to one segmented
domain (start–end: 4231–4669), the second corresponds
to two segmented domains (start–end: 25125–25813,
and 25814–26783), and the third corresponds to one
segmented domain (start–end: 57682–59199) (see Fig.
4). Some domain borders match the annotated CpG
islands exactly: these consist of the left border of CpG
c1 and, left and right borders of CpG c2.

Two experimental CpG islands with GenBank acces-
sion numbers AJ236684 and AJ236656 were placed on
the sequence at the following coordinates: start–end:
3953–4808 and 26422–26894. These experimentally
derived CpG islands were obtained from the chromo-
some 22 CpG island libraries produced by Cross et al.
(2000), and satisfied the CpG related threshold statistics
for the assumed sequence-based definition (i.e. O/E=

0.77, (G+C)%=62.0%, CpG%=7.4% for AJ236684,
and O/E=0.94, (G+C)%=63.4%, CpG%=8.3% for
AJ236656). AJ236684 spans a region larger than both the
putative CpG island coordinate given in the GenBank
annotation and our segmentation domain, whereas
AJ236656 covers a smaller region (see Fig. 4). A likely
explanation for AJ236684 being larger than the predicted
size is that it may contain a core CpG island domain that
may be flanked by other sequences. In fact, the experi-
mental CpG island sequences are generated via MseI
restriction enzyme digestion, that may either result in
fragments with flanking sequences around a core CpG
domain (as seen above), or fragments with split or partial
CpG domains (Cross et al., 2000). This poses a challenge
in evaluation of computational CpG island predictions
relative to experimentally identified islands.
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A possible explanation for AJ236656 being smaller
than the predicted size is that there could be subdo-
mains within a CpG island. In fact, our recursive
segmentation method reveals that this is possible. The
second predicted CpG island by our method corre-
sponds to two segmented domains at segmentation
strength threshold s0=1, one with a borderline CpG%
of 6.1% and another one with a much higher CpG% of
12.8%. The third CpG island on Fig. 4 provides an-
other example: though it is one domain segmented at s0,
it becomes four domains segmented at s0=0.5. These
four domains are located at 57682–58130 (449 bases,
CpG%=6.2%), 58131–58699 (569 bases, CpG%=
1.39%), 58700–59191 (492 bases, CpG%=4.7%), and
59192–59199 (eight bases, CGCGCCCG, with
CpG%=3/8=37.5%). It is clear that between the
CpG-rich 449-bp subdomain and the last eight bases,
there are CpG-poor subdomains. The recursive segmen-
tation method is better suited in delineating these sub-
domains than a window-based approach.

5. Detection of replication origin and terminus

It is known that circular bacteria genomes are com-
partmented into two partitions by the replication origin
and terminus (Lobry, 1996a,b). At the replication
origin and terminus, (A−T)% or (G−C)% changes
sign, in a violation of the global strand symmetry of
A%�T% and G%�C% (Lin and Chargaff, 1967;
Karkas et al., 1968; Rudner et al., 1968; Fickett et al.,
1992). Possible mechanisms for strand symmetry and
asymmetry have been discussed in Lobry (1995),
Sueoka (1995), Francino and Ochman (1997), Frank
and Lobry (1999). Clearly, the strand asymmetry can be
used in a sequence analysis to locate the replication
origin and terminus in bacteria sequences (Frank and
Lobry, 2000).

If (A−T)% and (G−C)% change sign in the same
direction (e.g. from positive to negative) at the replica-
tion origin or terminus, one can combine the two to use
the (R−Y)% (R(purine, A/G), Y(pyrimidine, T/C)) to
detect replication origin and terminus. If the two
changes sign oppositely, one can use the (M−K)%
(M(amino, A/C), K(keto, T/G)) for that purpose. Both
situations are possible for bacteria sequences (McLean
et al., 1998; Grigoriev, 1998b). Here, a sequence in the
second situation, H. influenzae (Fleischmann et al.,
1995), is used for an illustration.

When a recursive segmentation is applied to the
amino(M)–keto(K) sequence (or R–Y sequence if
(A−T)% and (G−C)% change sign in opposite direc-
tions) converted from a circular bacterium sequence,
the two compartments separated by the replication
origin and terminus are expected to have different M/K
composition. Since we are only interested in the two

partition points, the segmentations with the two highest
segmentation strength are enough for matching the
replication origin and terminus. Subsequent segmenta-
tion in a recursion and stopping criterion are not
necessary.

Fig. 5 shows the result for H. influenzae bacterium
genome. Skew statistics of (M−K)%/(M+K)% (solid
lines), (A−T)%/(A+T)% (dotted line), and (G−C)%/
(G+C)% (dash line) are shown in a moving window
(window length=5 kb, moving distance 500 bp). The
two strongest segmentations (s=18.15 at position
616,967 and s=14.41 at position 1,503,627) are shown
by the long vertical lines. These two segmentation
points represent the 33.71 and 82.15% of the whole
genome. The distance between the two segmentation
positions is 48.44%, consistent with the typical distance
of half of the genome size. The skews (A−T)% and
(G−T)% both change sign at the segmentation point
at 616 kb, in opposite direction, as expected for a
replication origin.

In Grigoriev (1998b), the replication origin and ter-
minus is reported to be at 32.9 and 80.1% of the
genome, respectively. In Lobry (1996a), the replication
origin and terminus for this bacterium is listed as at
32.95 and 82.94%. Both are close, but not exactly
identical to our two largest segmentation positions. To
test how robust out segmentation point is, we design
the following experiment: rather than starting the se-
quence from the given end of the sequence, which is
usually provided arbitrarily, we rotate the starting posi-
tion around the circular bacterium genome. Fig. 6
shows the position of the first segmentation Imax (top
plot) and the corresponding 2ND� JS (bottom plot) as a
function of the sequence starting point i. If the result on
the first segmentation position is robust, rotating the
sequence starting point will more or less lead to the
same point near replication terminus. Similarly, when
the starting position is moved close to the replication
terminus, the Imax will be close to the replication origin.
Ideally, the Imax versus i plot should consist of two
plateaus. It can be seen from Fig. 6 (top plot) that Imax

does contain two major plateaus, but the level of the
plateau may change slightly.

In order to determine which plateau value should be
used as the candidate replication origin and terminus,
we make the following assumption: the 2ND� JS will
reach the highest value when the sequence starting
point coincides with either the replication origin or
terminus. In Fig. 6, when the starting point is rotated to
32.90%, a local (with respective to i ) maximum 2ND� JS

is reached, and the corresponding Imax is at 80.59%.
Similarly, when the starting point is rotated to 80.60%,
a local maximum 2ND� JS is reached, and the corre-
sponding Imax is 32.78%. Clearly, the best segmentation
is achieved (for M–K sequence) when the two partition
points are at 32.78–32.90 and 80.59–80.60%, and the
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two points should be the best candidate for the replica-
tion origin and terminus.

These adjusted segmentation points are drawn in Fig.
5 (shorter vertical lines): they are clearly shifted away
from the first two segmentations in a recursive ap-
proach. For replication origin, the adjusted position is
almost identical with the previous reported positions.
For replication terminus, the previous two reported
positions are not consistent with each other (80.1% in
Grigoriev (1998b) and 82.94% in Lobry (1996a)). Our
adjusted position is 80.59–80.60%, in-between the two.
In general, replication terminus may not be as well
defined as the replication origin. But it will still be
interesting to know whether our predicted position is
better than previously reported ones.

If the recursion continues, the two segmentations
with the next largest strength are s=3.50 at position
155,088 and s=1.04 at 451,651. The strengths of these
segmentations are much smaller than those at the repli-

cation origin and terminus. The strong global signal at
replication origin and terminus is in a clear contrast
with the relative weak signal obtained from a moving
window approach: it is not obvious from Fig. 5 that
one can identify an unique position where (A−T)%
and (G−T)% both change signs in opposite directions.
In fact, the cumulative skew plot used in Freeman et al.
(1998), Grigoriev (1998a,b) (also called ‘genomic land-
scapes’ in Lobry (1999)) takes the same advantage in
using a global, cumulative method. Our recursive seg-
mentation approach for detecting replication origin/ter-
minus should be considered similar to the cumulative
skew plot, except that our approach can be extended to
skew plots of more than two symbols.

Table 1 lists the determination of replication origin
and terminus in other bacteria genomes using the
method described above. Since our segmentation
method can only identify the two points with the
strongest signal, but not on which one is the replication

Fig. 5. Detection of replication origin and terminus in bacterium H. influenzae sequence. The first segmentation is obtained at
position 1,503,627 (or 82.16%) with the strength s=14.4, near the replication terminus. A second-stage segmentation is obtained at
position 616,967 (or 33.71%) with the strength s=18.15, near the replication origin. The shorter vertical lines are adjusted position
for the segmentation points (see Fig. 6). The reported putative positions of the replication origin (32.9% in Grigoriev (1998b) and
32.95% in Lobry (1996a)) and replication terminus (80.1% in Grigoriev (1998b), and 82.94% in Lobry (1996a)). Several statistics in
moving window (window length=5 kb, moving distance=500 bp) are also shown: (M−K)%/(M+K)% (M for amino, or A+C,
K for keto, or T+G) in solid line, (A−T)%/(A+T)% in dotted line, (G−C)%/(G+C)% in dashed line.
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Fig. 6. Adjusted position for putative replication origin and terminus for bacterium genome H. influenzae. How the first
segmentation result (no recursion) changes with the sequence starting point (rotating in the circular genome) is studied. Top: the first
segmentation point (Imax) as a function of the starting point i (rotating to the 3� direction in terms of percentage of the genome size)
(solid line). Bottom: the 2ND� JS as a function of i (solid line). Two local maxima (with respect to i ) of 2ND� JS are identified, and their
corresponding Imax’s. This technique identifies the replication origin and terminus at 32.78–32.90 and 80.59–80.60%.

Table 1
Predicted locations of replication origin and terminus for 12 bacteria genomes

Terminus positionOrigin position Distance (%)Genome

% bpbp %

50.37 910,606458,750 99.99B. burgdorferi (KM) 49.61 or 50.39
3,921,150E. coli (KM) 84.52 1,606,250 34.62 49.89 or 50.11

0.01 1,941,675B. subtilis (RY) 46.06350 46.06 or 53.94
69.09 209,250720,350 20.07C. trachomatis (KM) 49.03 or 50.97

596,400H. influenzae (KM) 32.58 1,475.425 80.62 48.03 or 51.97
H. pylori (RY) 8.08?134,775? 768,050 46.05 37.97?

0 295,4750 50.94M. genitalium (RY) 49.06 or 50.94
113,900?M. pneumoniae (RY) 13.95? 418,100? 51.21? 37.26?

0.04 2,044,550M. tuberculosis (KM) 46.351775 46.31 or 53.69
4.03 629,47544,825 56.63R. prowazekii (RY) 47.40 or 52.60

1,103,075R. prowazekii (KM) 99.23 666,750 59.98 39.25 or 60.75?
T. maritima (KM) 156,250 8.39 1,156,800 62.16 46.23 or 53.77

0.29 556,300 48.893300 48.59 or 51.41T. pallidum (KM)

It is indicated whether the purine–pyrimidine (R–Y) sequence or the amino–keto (M–K) sequence is used. The prediction locations
are listed in both basepair (bp) and in percentage of the total genome size (%). The distance between the two positions in percentage
of genome size is also given (in both direction). Problematic positions are labeled by question marks (?).

origin and which is the terminus, we rely on previously
published information (for the first nine sequences in
Table 1, the information provided by Grigoriev (1998b)
is used; for R. prowazekii, the original sequence paper
(Anderssen et al., 1998) is used; for T. maritima the

prediction of the replication origin by a tetramer skew
plot in Lopez et al. (2000) is used, though no informa-
tion on the replication terminus is available; for T.
pallidum the information given in Grigoriev (1998b)
cannot be used because the starting point of the se-
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quence had been shift since then, and we use the
information on replication origin from the original
paper (Fraser et al., 1998)).

Our segmentation procedure is applied to both the
M–K and R–Y sequences for all these bacteria
genomes. By the information provided in Grigoriev
(1998b), it is mostly known whether the M–K or the
R–Y sequence should be used. If this information is
not known, we rely on two other pieces of information:
whether the determined two positions differ by �50%
of the genome size, and whether the maximum segmen-
tation strength is higher. For genome R. prowazekii,
however, the R–Y sequence leads to the expected parti-
tion size, whereas K–M sequence leads to a higher
segmentation strength (both are listed in Table 1). The
replication origin of H. pylori should be close to posi-
tion 0, but as pointed out in Grigoriev (1998b), a false
positive signal is created at �8% due to a large inver-
sion. Our origin/terminus prediction of M. pneumoniae
does not match the positions given in Grigoriev
(1998b). Besides this sequence, prediction of replication
origin/terminus for all other bacteria genomes is consis-
tent with the previous results, though small differences
exist. It should be interesting to confirm which method
is more accurate.

6. Detection of complex patterns in telomeres

We have so far only discussed applications where the
number of symbols in the filtered sequence is smaller
than the original number of symbols. It is also possible
to move in an opposite direction: to expand the symbol
list. For example, all dinucleotide can be represented by
a set of 16 symbols. If a region distinguishes itself by
being abundant in certain dinucleotide, but not neces-
sarily being abundant in certain nucleotide, a segmenta-
tion using dinucleotides may provide a better detection
of this region than that based on nucleotide composi-
tion alone. As we have seen in Section 5, CpG-rich
regions do not necessarily (G+C)-rich, even though
most of the time the two are correlated.

To examine whether segmentation based on dinucle-
otides gives different result from that based on single
nucleotides, we use the same sequence discussed in Li
(2001a), the left telomere sequence (first 15 kb) of yeast
Saccharomyces cere�isiae chromosome 12 (Johnston et
al., 1997). It is known that yeast telomere contains both
telomeric and subtelomeric elements (Olson, 1991). The
telomeric element is the TEL sequence with a simple
5�-C1–3A-3� repeats at the tip of the telomere. The
subtelomeric elements mainly refer to the X and Y�
elements which are conversed in yeast telomeres
(Szostak and Blackburn, 1982; Chan and Tye, 1983;
Louis and Haber, 1990, 1992; Louis et al., 1994;
Wellinger and Sen, 1997).

Since TEL sequence is a simple repeat, it can be
detected even by a visual inspection of the sequence.
Subtelomeric elements X and Y� are defined by a con-
servation among yeast telomere at different chromo-
somes, and they may not be compositionally distinct by
itself. Fig. 7 shows the four base composition in a
moving window (window size=150 bp, moving dis-
tance=50 bp) for left telomere of yeast chromosome
12. X element is G-poor and C-rich, but Y� element
does not seem to be compositionally distinct. The do-
mains by segmenting the original four-symbol sequence
and by segmenting amino(AC)–keto(TG) sequence are
shown in Fig. 7. Both segmentations are able to detect
the rough region of the X element, but both fail to
detect the two Y� elements.

Segmentation result on the converted 16-symbol se-
quence is very close to that of the four-symbol se-
quence, though with one less domain. If X and Y�
elements are not compositionally distinct themselves,
we need to use other neighboring distinct sequences for
the detection. For example, X elements usually contain,
or locate nearby, the autonomous replication sequence
(ARS) (Chan and Tye, 1983). As we have known from
Section 5 that the mutation pattern near a replication
origin tends to lead strand asymmetry, either M–K or
R–Y sequence can be segmented to detect this position
(though this may not be true for all ARS sequences, it
is true for ARS’s near the telomeres (Gierlik et al.,
2000).

Y� elements are known to contain, or locate nearby,
a 36-bp repeat sequence (Horowitz et al., 1984). We
have applied a tandem repeat program (Benson, 1999)
to this sequence and the detected repeats are shown in
Fig. 7. Indeed, the two 36-bp repeats are next to the
two Y� elements (whose position is estimated by a
dot-matrix comparison with the known Y� element
using the DOTTER program (Sonnhammer and Durbin,
1995)). This 36-bp repeat is GT-rich (or AC-rich on the
opposite strand). Why was this distinct repeat not
detected by our recursive segmentation?

The reason for failing to detect the GT-rich 36-bp
repeat by the recursive segmentation is that the distinct
base composition in the repeat is confined to a local
region. Its base composition may be significantly differ-
ent locally, but not significant in a global scale. To
solve this problem, we relax the segmentation stopping
criterion first, then purge insignificant cuts afterwards.
For example, when the s0 is set between −0.7 and −1
for segmenting the 16-symbol sequence, many domains
(most are of very small size) are created. We then keep
only the segmentations that have s�0. These segmen-
tation points are shown in Fig. 7 (+ ), and they do
include borders separating the 36-bp repeats and their
neighboring sequence (only one out of two border).
This trick is similar to what is used in the binary tree or
recursive partitioning (Breiman et al., 1984; Zhang and
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Singer, 1999): one may not apply the stopping criterion
in the tree branching stage, but apply a criterion for
leave-merging.

7. Detection of coding–noncoding borders

Computational detection of protein-coding genes has
been a long-standing topic of computational biology
(Fickett, 1982; Staden and McLachlan, 1982). A typical
gene recognition program contains one or all of these
components: (1) a measurement of the coding potential
in a moving window along the sequence (Fickett and
Tung, 1992); (2) detection of ‘signals’ such as start/stop
codon and splicing sites; (3) consultation to external
information such as known protein sequences, cDNA,
and ESTs. For reviews on gene prediction, see Fickett
(1996), Claverie (1997), Burge and Karlin (1997). For
more publications on this topic, see an online resource
at http://linkage.rockefeller.edu/wli/gene/.

The coding potential measurement is obtained from
within a coding or noncoding region (as versus from
their borders). Such measurement can either be learned
from the data or can be based on a known biological
knowledge (the term ‘measures dependent and indepen-
dent of a model’ is used in Guigo (1999)). If we know
everything biologically about what makes a region cod-
ing or noncoding, the ‘model’ becomes a known knowl-
edge, and the difference between the two disappears.
However, the current biological knowledge about cod-
ing potential is still mainly limited to that of the codon
structure. The fact that coding regions, and not the
noncoding regions, consists of three-base unit, plus the
fact that these units are not used with equal probability,
provides a strong signal for coding potential. This
‘periodicity-three’ signal has been discussed in Fickett
(1982), Tiwari et al. (1997), Yan et al. (1998), Li (1998),
Grosse et al. (2000).

Due to the importance of codon position, we can
combine base and position information by converting a

Fig. 7. The left telomere (15 kb) of the yeast S. cere�isiae chromosome 12 sequence. (A) A% (solid line) and T% (dotted line) in a
moving-window (window size=150 bp, moving distance=50 bp). (B) Locations of four known genes in this region. (C) Regions
of tandem repeats. (D) G% (solid line) and C% (dotted line) in a moving window. (E) Locations of conserved ‘elements’ (TEL
sequence, two Y� elements, one X element). (F) Borders of segmented domains using M–K sequence (at s0=0). (G) Borders of
segmented domains for the four-symbol (original) sequence (at s0=0). (H) Borders of segmented domains for the 16-symbol
(dinucleotide) sequence (at s0=0). (I) Similar to (H), but the s0 is initially set at −0.7, then only the segmentations with s�0 are
saved. (J) Segmentation strength corresponding to segmentations in (H).

http://linkage.rockefeller.edu/wli/gene/
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Fig. 8. Detection of coding/noncoding borders. A DNA sequence near the right telomere of yeast S. cere�isiae (positions
304,354–306,925). The location of two genes are marked. Base composition for each one of the three phases is calculated in a
moving-window (window size=87 bp, moving distance=11 bp). Whenever the same base at three different phases exhibit different
composition, three curves diverge to form a ‘bubble’. One such bubble near the end of the first gene is marked. The variance (sum
over four symbols) is also plotted, as well as the mean and the median values (over all windows). The first segmentation point is
represented by a vertical line (not significant at s0=0, but significant at s0= −0.4).

DNA sequence to a 12-symbol sequence (Bernaola-Gal-
ván et al., 2000): A1 for nucleotide A in phase 1, A2 for
nucleotide A in phase 2, etc. If there is a difference
between the 12-symbol composition in coding and non-
coding regions, applying recursive segmentation may
detect these domains. In most bacterial and yeast se-
quences, the first codon position is A+G-rich (purine-
rich), second codon position is C-rich, and the third
codon position is A-rich, etc. (Mrázek and Kypr, 1994;
Li, 1999). In human sequences, the third codon position
is C-rich, etc. (Wada et al., 1991). Suppose a gene starts
from the phase 1, the above codon usage tendency will
imply that this region in the 12-symbol sequence is rich
in A1, G1, C2, A3, and C3. On the other hand, nearby
noncoding regions may not share this tendency.

We first illustrate this approach by a DNA sequence
from yeast chromosome 3 (positions 304,354–306,925).

This region is near the right telomere, and contains two
genes (YCR102C, a gene coding for alcohol dehydroge-
nase, positions 304,354–305,460; and YCR102W-A, a
gene similar to other membrane genes, positions
306,728–306,925). Base compositions for each base at
three phases (within a moving window: window
length=87 bp, moving distance=11 bp) are plotted as
a group. Any divergence between the three composi-
tions in the same group indicates a bias in three phases,
most likely caused by the codon usage in a coding
region. Such divergence forms a ‘bubble’ in the plot. On
the other hand, if the three compositions in a group
move together, there is no difference between the three
phases, most likely indicating a noncoding region.

Fig. 8 indeed shows some bubbles being formed in
the first gene (YCR102c), but not in the second gene
(YCR102W-A). To summarize divergence/bubble for
all four nucleotides, we define a sum of variance as:
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var= �
3

i=1

[(Ai%−A� %)2+ (Ci%−C� %)2

+ (Gi%−G� %)2+ (Ti%−T� %)] (6)

where A� % is the average of base composition of A in
three phases (A1%, A2%, and A3%), etc. If all three
compositions (e.g. for nucleotide A) move as one unit,
�i (Ai%−A� %)2=0 and there is therefore no variance.
We plot var by Eq. (6) in Fig. 8, and indeed it tends to
be higher than the mean/median value in the first gene,
but lower in the noncoding regions (though it is also
lower in the second gene).

The stopping criterion based on BIC for the 12-sym-
bol sequence is 2ND� JS�10 log(N) instead of 2ND� JS�
12 log(N) (Li, 2001a). The reason for this is that there
are three normalization conditions (constraints) for the
12 symbols, versus the one constraint in other cases.

Consequently, the segmentation strength is defined as
s= (2ND� JS−10 log(N))/(10 log(N)). For this yeast se-
quence in Fig. 8, there is no segmentation that is
significant at s0=0. Nevertheless, if the segmentation
stopping criterion is relaxed to s0= −0.4, one segmen-
tation appears at position 305,478, close to the coding/
noncoding border at 305,460. The second
coding/noncoding border is not detected even if the s0 is
further reduced. One can see from Fig. 8 that the var is
below the mean/median in the second gene, and it is
unlikely that we will detect the second gene by this
method. We will see later that segmenting a 12-symbol
usually does not lead to a significant segmentation at
s0=0.

The second example is a human DNA sequence from
chromosome 22 (total length=50,823 bp) which con-
tains one protein kinase chk2 gene (14 exons with

Fig. 9. The human protein kinase chk2 gene (on chromosome 22, 14 exons, sequence length N=50,824 bases). The following
information is shown: base compositions in three separate phases in a moving-window (window length=500 bp, moving
distance=20 bp) G1%, G2%, G3%, etc.; variance by Eq. (6); location of 14 exons, matches with the pattern GGTA. Exon regions
tend to have larger variances.
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Fig. 10. The first exon of the gene sequence shown in Fig. 9. Again, base compositions in three different phases are calculated in
moving windows (window length=300 bp, moving distance=16 bp). The variance calculated from Fig. 6 is shown, as well as its
mean and median (averaged over all windows). There is clearly a peak in the variance near the first exon (which is marked by a solid
bar). Matches to start codons (ATG), GGTA, and GGTG are shown in the plot. There is no significant segmentation at s0=0.
What are shown here are segmentations obtained at s0= −0.7 (total 22 domains).

cDNA length of 1632 bases). Fig. 9 shows 12-symbol
composition in a moving window (window size=500
bp, moving distance=20 bp), with the same nucleotide
in three different phases plotted together. The var
defined by Eq. (6) is also plotted in Fig. 9. It is clear
that exons 1, 2, 5, 7, 9, 10, 11, 12, 13 and 14 exhibit
peaks in the var value, whereas exons 3, 4, 6, 8 do not
seem to match any peaks. The segmentation result is
not shown because the first segmentation is not signifi-
cant at s0=0. Even if the s0 is reduced to a negative
value, the resulting segmentation points do not match
the exon borders.

Visual inspection of Fig. 9 seems to be able to
identity regions with high variances, whereas recursive
segmentation does not lead to any significant result. To
reconcile the two, we focus on a shorter region—the
first 4 kb sequence of the chk2-gene-containing se-
quence. Not only this region contain the largest exon

(319 bases, while all other exons are around 100 bp or
less), but also there is a clear peak in the variance plot.
Once again, no segmentation is significant at s0=0.
Only with a relaxed stopping criterion s0= −0.7, does
a recursive segmentation leads to 22 domains, half of
them are at or near the exon 1 (see Fig. 10). The
strongest segmentation is at position 2186 (s= −0.37),
corresponds to a position inside the exon (positions
2000–2318).

Using segmentation or coding measure alone might
be difficult to identify exon borders, and it is common
to complement this approach by other signals such as
putative splicing site. For example, we observed that
for 10 out of 14 exons in this gene, the donor splicing
site contains the pattern ‘G(−1)G(+1)T(+2)A(+3)’
(dinucleotide GT at the first and second position of the
intron, G at the last position of the exon, and A at the
third position of the intron), two exons contain ‘T(−
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1)G(+1)T(+2)A(+3)’, one exon contains ‘A(−
1)G(+1)T(+2)A(+3)’, and one exon contains ‘G(−
1)G(+1)T(+2)G(+3)’. Knowing this information,
we can use the consensus pattern GGTA to allocate 3�
end of exons. When GGTA is searched in this se-
quence, there is only one match around the position
2000 (Fig. 10). Combining this information with the
coding measure will point correctly to the first exon.

Note that both the locations of the start codon
‘ATG’ and those of the donor splicing site consensus
pattern ‘G(−1)G(+1)T(+2)A(+3)’ are too numer-
ous to be much helpful (see Fig. 10). A success gene
prediction program usually uses a combination of
many pieces of information (Guigo et al., 1992;
Solovyev et al., 1994; Uberbacher et al., 1996; Zhang,
1997; Burge and Karlin, 1997). It is interesting that
when GENSCAN program (Burge and Karlin, 1997) is
applied to this sequence, 10 exons are predicted ex-
actly, but four other exons (10, 11, 12, 14) are missed
completely.

8. Discussions

As can be seen in this paper, recursive segmentation
is a very general approach for DNA sequence analysis.
It is an interesting alternative to the traditional mov-
ing window approach. Admittedly, the moving win-
dow approach is simple, fast (O(N) computational
complexity vs. the O(N log(N)) complexity for recur-
sions), and usually provides an answer to questions of
interest to investigators. Nevertheless, recursive seg-
mentation approach can be more accurate; and it also
avoids the common problem in a moving window ap-
proach to select a window size and a moving distance.
We suggest to use recursive segmentation as a refine-
ment of the moving window approach, or a second-
stage analysis after a rough result is obtained from the
moving window approach.

To apply the recursive segmentation in DNA se-
quence analysis, one only needs to construct a filter to
highlight the feature to be segmented. With the filter,
the four-symbol DNA sequence is converted to a se-
quence of a new set of symbols. For isochore, it is the
G+C and A+T, for CpG island, it is the 5�-CG-3�
dinucleotide and others, for replication origin and ter-
minus, it is either purine and pyrimidine, or amino
and keto, for telomere sequences, it can either be the
original four nucleotides or 16 dinucleotides, and for
coding/noncoding detection, it is the 12-symbol that
combines base and codon position information or any
other symbol sets that include codon position informa-
tion, etc. It is not difficult to generalize these five cases
to any other application, once a filter is constructed.

One advantage of this unified framework for many

DNA sequence analysis tasks is to simplify the com-
puter program development: one core recursive seg-
mentation plus a number of filter subroutines are
enough for all these applications. Of course, each par-
ticular application needs its own parameter setting,
stopping criterion, and explanation of the output. If
the signal to be detected is regional instead of global,
we need to relax the stopping criterion during the
segmentation, then raise the criterion during the exam-
ination of the segmented result. This is what has been
done in detecting local repeats in telomere sequences.

It has also been observed that we are more success-
ful in detecting signal of interest when the number of
symbol is reduced (isochore, CpG island, replication
origin/terminus), and less successful when the number
of symbols is increased (telomere, coding/noncoding
borders). A direct explanation of this observation is
that domains with more number of symbols may not
exist on a global level. For example, none of the
domain borders in Figs. 9 and 10 are significant by
the BIC criterion (i.e. for s0=0). It is thus not surpris-
ing that they do not match the exon borders for this
gene. If the segmentation at the first few steps of the
recursion is not significant, subsequent segmentations
can be even more problematic.

The detection of isochore borders is the most natu-
ral application of the recursive segmentation. First, the
domain structure in (G+C)% does exist and is com-
mon in DNA sequences (Bernardi, 1989, 1995). Sec-
ond, the domains-within-domain phenomenon
(Bernaola-Galván et al., 1996; Li, 1997a,b) makes the
recursive segmentation a better choice than a moving
window approach for detecting hierarchical patterns.
Third, changing segmentation stopping criterion leads
to examination of domains at different length scales,
which is also convenient to investigators. We expect
that recursive segmentation has a good chance to be-
come the method of choice for isochore detection
(Oliver et al., 2001).

Since the recursive segmentation works on a global
scale (at least for the first few steps in the recursion)
whereas isochore borders are determined by the (G+
C)% change in a local region, there is an issue on the
robustness of the segmentation point result. This issue
can be addressed by selecting new starting and ending
point of sequence (ideally they are preferably domain
borders themselves) and examine whether the segmen-
tation point changes. It can also be addressed by per-
turbing the existing segmentation point in the final
result to see whether the likelihood (BIC) decreases
(increases). There is another issue on whether the first
few segmentations always have higher segmentation
strengths than the subsequence segmentations. For iso-
chore problem, we have observed that it is typically
true, but exceptions do exist.
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The detection of CpG island is perhaps relatively
easier than the isochore problem, because the converted
binary sequence (11 for 5�-CpG-3�, 0 otherwise) is
mostly 0’s, and clusters of 1’s are rare. If there is no
hierarchical pattern in these clusters, a moving window
approach applied to this binary sequence should detect
these clusters equally well. The success of our detecting
of CpG island in the example in Fig. 4 is probably
more a reflection of the observation in Matsuo et al.
(1993) that CpG% is as good a predictor of CpG
islands, at least for human sequences, as the standard
prediction using a combination of CpG O/E and (G+
C)%. Although CpG% criterion is simple and easy to
explain, it is surprising that it is not commonly used.

The detection of replication origin and terminus in
bacteria genomes is also relatively easier. The well-
known strand asymmetry near the replication origin
provides the basis for our segmentation design. An-
other simplification is that there is no need to segment
the sequence more than twice. Here we are facing the
same issue that segmentation is based on base/symbol
composition in a global scale whereas the strand sym-
metry near the replication origin is local. For this
purpose, we carried out a robustness test by rotating
the sequence starting point. When the starting point
falls on the replication origin (or the terminus), the best
segmentation result is achieved at the replication termi-
nus (or origin). This approach will determine the repli-
cation origin and terminus more accurately.

Detecting elements in telomere (or centromere) se-
quences using recursive segmentation works in an indi-
rect way. Certain elements (usually defined by
conserved regions among different telomere sequences)
may be accompanied by other unusual sequence pat-
terns, in particular the short repeat sequence. These
repeat sequences tend to be biased in their base compo-
sition (unless the repeat is ACGTACGT…), so in prin-
ciple detectable by a recursive segmentation. Our
example in Fig. 7 shows, however, that the base compo-
sition difference between the repeats and its neighbor-
ing sequence can be small and regional. In this
situation, a recursion design to relax the stopping crite-
rion first, then merge domains by eliminating insignifi-
cant segmentations later, may achieve the goal of
detecting repeats.

The most difficult but potentially more interesting
application of the recursive segmentation is the coding/
noncoding region detection. When a coding and a
noncoding sequence with a similar length joints to-
gether, there is usually a clear border in the 12-symbol
sequence (Bernaola-Galván et al., 2000), even though
the segmentation at the border may not be significant
by BIC criterion (see, Fig. 8). In a typical situation for
human genes, however, the signal from the border is
harder to detect for these reasons: (1) the initial se-

quence is not a ‘black-and-white’ type sequence with
one half being coding and another half being noncod-
ing; (2) coding sequence can be much shorter (e.g. less
than 100 bp in Fig. 9) than the noncoding sequence; (3)
the coding measure based on the 12 symbols may not
change dramatically at the exon borders, but more
gradually (see the var in Figs. 9 and 10).

For other applications, reasons c1 and c2 may
not cause any problems since recursion will automati-
cally take care of the uneven sizes of different domains
and the initial heterogeneity. For the 12-symbol case,
however, the main problem is that the first stage seg-
mentation in a recursion is typically not significant (at
s0=0). This initial lack of significance leads difficulty in
the subsequence segmentations. Interestingly, Fig. 9
shows that our coding measure based on the 12-symbol
sequence (i.e. var) is able to visually pick 10 exons
correctly out of total 14 exons (correct in the region,
not correct for the border), with four false negatives
(missing in a prediction) and perhaps three false posi-
tives (prediction does not correspond to a gene). But
recursive segmentation on the 12-symbol sequence does
not achieve this success rate. There are certainly rooms
for improvements in this application, perhaps by a new
filter with fewer number of symbols.

A final note is that besides the recursive segmentation
discussed in this paper, there are other alternative ap-
proaches for segmentation (Liu and Lawrence, 1999;
Ramensky et al., 2000; Guéguen, 2001). In particular,
the Bayesien segmentation is a distinct method that
does not address the question of whether the sequence
is homogeneous or not, but it calculates the posterior
probability of each position for being a change-point.
The Bayesian approach to change-point problem has at
least 25 years of history (Smith, 1975). A full discussion
of this topic as well as a comparison between the
Bayesian and recursive segmentation is outside the
scope of this paper.
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Appendix A. Source of the sequence used

� MHC sequence on human chromosome 6 was down-
loaded from Sanger Center: http://www.sanger.
ac.uk/HGP/Chr6/MHC.shtml (‘original consensus’
version, May 1999, N=3,673,778 bases).

� Longest contig of C. elegans chromosome 1 was
downloaded from Sanger Center: ftp://
ftp.sanger.ac.uk/pub/C.elegans–sequences/CHRO-
MOSOMES/CURRENT–RELEASE/ (last updated
April 2001, contig N=8,568,332 bases, from posi-
tion 1974932 to 10543263 out of 14,972,282 bases).

� A human CpG-island-containing DNA sequence on
chromosome 22q13.2–13.3 was obtained from Gen-
Bank/NCBI: http://www.ncbi.nlm.nih.gov/Entrez/
(accession number: AL022237, N=60,828 bases).

� Bacterium Haemophilus influenzae sequence was ob-
tained from GenBank/NCBI: http://www.ncbi.
nlm.nih.gov/Entrez/Genome/org.html (accession
number L42023, N=1,830,138, last updated May
1999). One hundred and fifteen undecided nucle-
otides were replaced randomly according to the ac-
tual base composition of the sequence.

� Yeast S. cere�isiae chromosome 12 sequence was
obtained from GenBank/NCBI (accession number:
NC-001144, N=1,078,172 bases, last updated April
2001).

� Yeast S. cere�isiae chromosome 3 sequence was also
obtained from GenBank/NCBI.

� A human chromosome 22 genomic sequence which
contains the kinase chk2 (RAD53) was obtained
from http://www.sanger.ac.uk/HGP/Chr22/ (N=
50,824 bases). The chk2 gene is consisted of 14 exons
with a total length of 1632 bases.

Appendix B. Program used

The recursive segmentation is carried out by a Perl
script written by us. To obtain a copy of the program,
please send email to wli@linkage.rockefeller.edu or
vic@cs.columbia.edu.
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Häring, D., Kypr, J., 2001. No isochores in the human chromo-
somes 21 and 22? Biochemical and Biophysical Research
Communication 280 (2), 567–573.

Horowitz, H., Thorburn, P., Haber, J.E., 1984. Rearrangements
of highly polymorphic regions near telomeres of Saccha-
romyces cere�isiae. Molecular and Cellular Biology 4, 2509–
2517.

Horvath, A.L., 1989. The limit distributions of likelihood ratio
and cumulative sum tests for a change in a binomial
probability. Journal of Multivariate Analysis 31, 148–159.

Johnston, M., Hillier, L., Riles, L., Albermann, K., et al., 1997.
The nucleotide sequence of Saccharomyces cere�isiae chro-
mosome XII. Nature 387 (6632 Suppl.), 87–90.

Karkas, J.D., Rudner, R., Chargaff, E., 1968. Separation of B.
subtilis DNA into complementary strands. II. Template
functions and composition as determined by transcription by
RNA polymerase. Proceedings of National Academy of
Sciences 60, 915–920.

Lander, E.S., Waterston, R.H., Sulston, J., Collins, F.S., et al.,
(International Human Genome Sequencing Consortium)
2001. Initial sequencing and analysis of the human genome.
Nature 409, 860–921.

Larsen, F., Gundersen, G., Lopez, R., Prydz, H., 1992. CpG
islands as gene markers in the human genome. Genomics 13,
1095–1107.

Li, W., 1992. Generating nontrivial long-range correlations and
1/f spectra by replication and mutation. International Jour-
nal of Bifurcation and Chaos 2, 137–154.

Li, W., 1997a. The study of correlation structures of DNA
sequences—a critical review. Computer and Chemistry 21,
257–271.

Li, W., 1997b. The complexity of DNA. Complexity 3, 33–37.
Li, W., 1998. Comments on ‘simplicity and complexity in gene

evolution’. Complexity 3, 10.
Li, W., 1999. Statistical properties of open reading frames in

complete genome sequences. Computer and Chemistry 23,
283–301.

Li, W., 2001a. New stopping criteria for segmenting DNA
sequences. Physical Review Letters 86, 5815–5818.

Li, W., 2001b. DNA segmentation as a model selection process.
In: Proceedings of the Fifth Annual International Confer-
ence on Computational Biology, Association for Computing
Machinery Press, New York, pp. 204–210.

Li, W., 2001c. Delineating relative homogeneous G+C do-
mains in DNA sequences. Gene 276, 57–72.

Li, W., Marr, T.G., Kaneko, K., 1994. Understanding long-
range correlations in DNA sequences. Physica D 75, 392–
416.

Li, W., Stolovitzky, G., Bernaola-Galván, P., Oliver, J.L., 1998.
Compositional heterogeneity within, and uniformity be-
tween, DNA sequences of yeast chromosomes. Genome
Research 8, 916–928.

Lin, H.J., Chargaff, E., 1967. On the denaturation of deoxyri-
bonucleic acid. H. Effects of concentration. Biochimica
Biophysics Acta 145, 398–409.



W. Li et al. / Computers & Chemistry 26 (2002) 491–510510

Liu, J., Lawrence, C.E., 1999. Bayesian inference on biopoly-
mer model. Bioinformatics 15, 38–52.

Lobry, J.R., 1995. Properties of a general model of DNA
evolution under no-strand-bias conditions. Journal of
Molecular Evolution 40, 326–330.

Lobry, J.R., 1996a. Asymmetric substitution patterns in the
two DNA strands of bacteria. Molecular Biology and
Evolution 13, 660–665.

Lobry, J.R., 1996b. Origin of replication of Mycoplasma
genitalium. Science 272, 745–746.

Lobry, J.R., 1999. Genomic landscapes. Microbiology Today
26, 164–165.

Lopez, P., Forterre, P., le Guyader, H., Philippe, H., 2000.
Origin of replication of Thermotoga maritima. Trends in
Genetics 16, 59–60.

Louis, E.J., Haber, J.E., 1990. The subtelomeric Y� repeat
family in Saccharomyces cere�isiae : an experimental system
for repeated sequence evolution. Genetics 124, 533–545.

Louis, E.J., Haber, J.E., 1992. The structure and evolution of
subtelomeric Y� repeats in Saccharomyces cere�isiae. Ge-
netics 1331, 559–574.

Louis, E.J., Naumova, E.S., Lee, A., Naumov, G., Haber,
J.E., 1994. The chromosome end in yeast: its mosaic nature
and influence on recombinational dynamics. Genetics 136,
789–802.

Macaya, G., Thiery, J.-P., Bernardi, G., 1976. An approach to
the organization of eukaryotic genomes at a macromolecu-
lar level. Journal of Molecular Biology 108, 237–254.

Matsuo, K., Clay, O., Takahashi, T., Silke, J., Schaffner, W.,
1993. Evidence for erosion of mouse CpG islands during
mammalian evolution. Somatic Cell and Molecular Genet-
ics 19, 535–543.

McLean, K.J., Wolfe, K.H., Devine, K.M., 1998. Base compo-
sition skews, replication orientation, and gene orientation
in 12 prokaryote genomes. Journal of Molecular Evolution
47, 691–696.
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