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Abstract

A multivariate analysis method called co-inertia analysis was used to determine the main

relationships between two data tables having identical rows. This method is available in the

ADE multivariate analysis package for Macintosh micro-computers. It was applied to two data

sets, one containing the amino-acid composition of 999 E. coli proteins, and the other the

values of 402 physico-chemical properties for the 20 natural amino-acids. There were strong

relationships between amino-acid physico-chemical properties and the composition of proteins.

The first common factor was hydrophobicity; it is linked to the biological environment of

proteins, either in the cytoplasm (or outside the cell), or in the non-polar environment of the

phospholipid bilayer of biological membranes. The second factor linked the expressivity of

protein genes and the propensity of amino-acids to form alpha helix / beta sheets. The third

factor showed that heavy, aromatic amino-acids tend to be avoided, except when they are

needed for structural or functional reasons. These results are discussed in terms of selective

pressure acting on amino-acid composition of proteins.
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Introduction

Standard multivariate analysis tools such as principal component analysis (PCA) or

correspondence analysis (CA) are very useful for summarizing a single set of numerical data as

simple interpretable factors. These multivariate analysis methods are available on numerous

commercial or freeware packages. The increase in the number of molecular databases freely

available on the Internet raises the question of how to take advantage of information from

different data sets. Combining such data requires sophisticated multivariate analysis tools which

can analyse more than one data set simultaneously. These methods are less common than the

usual PCA and CA. This paper illustrates the results that can be obtained by crossing two data

sets with the ADE package (Analysis of Environmental Data, Thioulouse et al., 1995), in

which these methods are implemented. We have attempted to cross information on amino-acid

physico-chemical properties and protein composition.

Multivariate analysis revealed that the between-species variability of protein composition is low

(Grantham et al., 1980), at least when compared with the between-species codon usage

variability. Three main interpretable factors underly the variability in the composition of E. coli

proteins (Lobry and Gautier, 1994). These factors are, in decreasing order of importance,

protein hydrophobicity , the expressivity level of their corresponding genes, and the aromaticity

of the proteins themselves.

The situation for amino-acids physico-chemical properties is more confused because the main

factors are not readily identified (Sneath, 1966). The datasets analysed and the methods used

also differed from author to author. From a dataset of 134 qualitative amino-acid properties,

Sneath (1966) tentatively identified the first three factors as aliphaticity, hydrogenation, and

aromaticity. Sjöström and Wold (1985) identified the first three factors from a dataset of 20

quantitative properties as being lipophilicity, side chain bulk, and electronic properties. Kidera et

al. (1985) found that 10 orthogonal factors were sufficient to represent almost all the variability

of 188 published indices, showing that these indices are very redundant. Nakai et al. (1988),
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working with 222 amino-acid indices and a hierarchical cluster analysis, found four main

clusters of amino-acid features, alpha and turn propensities, beta propensities, hydrophobicity,

and other physico-chemical properties.

This paper investigates the amino-acid composition of proteins and the physico-chemical

properties of amino-acids in parallel using the ADE package to perform a co-inertia analysis of

two datasets. The aim was not to predict protein composition (see Wold et al. (1987) and

Hellberg et al. (1986) for examples of predicting protein biological activity). The objective was

to find the major relationships between the physico-chemical properties of amino-acids and

protein composition.

System and methods

Algorithm

Co-inertia (or co-structure) analysis (Chessel and Mercier, 1993; Dolédec and Chessel, 1994) is

a "data coupling" approach to multivariate analysis. It allows the simultaneous analysis of two

data sets. In agronomy and ecology, these data sets are often an environmental table (physico-

chemical variables) and a floro-fauna table (species abundance) measured at the same sampling

points. Many methods have been suggested for analysing such data (see a review by Chessel

and Mercier,1993), one of the simplest from the theoretical point of view is co-inertia analysis.

Tucker (1958) described such an analysis under the name of inter-battery factor analysis in the

case of two PCA tables. The method has also been proposed as an alternative to canonical

analysis for environmental data (Gittins, 1985), and generalized to any type of table

(quantitative, qualitative, or contingency) by  Mercier (1991). It is also similar to the canonical

correspondence analysis (CCA) of ter Braak (1986) and the partial least square regression

method (PLS) used by Wold et al., 1987; Hellberg et al., 1986; Höskuldsson, 1988.
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Co-inertia analysis was used on to the two data sets described in the Data Sets. The data were

arranged in two tables, one with 20 rows (amino-acids) and 402 columns (physico-chemical

and biological properties), and the second with 20 rows and 999 columns (E. coli proteins).

The geometrical interpretation of co-inertia analysis is simple. Standard methods (PCA, CA,

and multiple correspondence analysis (MCA)) summarize a table by searching orthogonal axes

on which the projection of the sampling points (rows of the table) have the highest possible

variance. This characteristic ensures that the associated graphs (factor planes) provide good

representations of the initial data. Canonical correlation analysis searches successive pairs of

axes (ti and ui, one for each table) with a maximum correlation to extract information common

to both tables. By maximizing the covariance instead of the correlation, co-inertia analysis

maximizes the product of the correlation by the variances projected on axes ti  and ui :

cov(ti ,ui ) = cor(ti,ui ) var(ti )var(ui )

This ensures that these axes will correlate well together like canonical analysis axes, and also

real significance (i.e., a high percentage of explained variance) with respect to each table, like

PCA and CA axes. Another important feature of co-inertia analysis is that, like PLS, it can be

used when the number of variables is greater that the number of observations. This is obviously

unacceptable in standard methods like multiple regression, canonical analysis, or canonical

correspondence analysis.

It can also be shown that co-inertia analysis is the analysis of a crossed table having a simple

meaning. An element of this crossed table (999 rows and 402 columns) is the mean value of a

physico-chemical property weighted by the frequency of a specific amino-acid in the protein. If

p j ai( )  is the value of physico-chemical property j for amino-acid i, and fk ai( )  the frequency of

amino-acid i in protein k, then the generic term ckj  in the crossed table will be:

ckj = fk ai( )p j ai( )
i

∑
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See Chessel and Mercier (1993) or Dolédec and Chessel (1994) for a more detailed explanation

of the theory of co-inertia analysis.

Two sets of factor scores were obtained for the amino-acids (scores of the rows of both tables).

They were used to draw the standard factor maps, and to compare them to the PCA and CA

scores. We also obtained factor scores for the 402 properties and for the 999 proteins (scores of

the rows and columns of the crossed table).

Lastly, a permutation test was used to check the significance of the co-structure. This method

consists in repeated random permutations of the rows of the tables (i.e., of amino-acids),

followed by re-computation of the total variability (also called inertia). Comparing the inertia

obtained in the normal analysis with the inertias obtained after permutations provides an

estimation of the probability of finding the observed situation in the absence of relationships

between amino-acid properties and protein composition.

Implementation

Computations and graphical displays were obtained using the ADE package (Chessel and

Dolédec, 1993; Thioulouse et al., 1995). All computations were performed with ADE version

4.0 on an Apple PowerMacintosh 8100/80 with 16 megabytes RAM (random access

memory). The data type for floating point variables was long double (10 bytes). Computation

times were 10 seconds for the PCA, 15 seconds for the CA, and 56 minutes for the co-inertia

analysis using MC680x0 microprocessor emulation. Using a native compiler (generating

PowerPC601 microprocessor code) reduced the computation time 10-fold (about 1 second for

PCA and CA, 5 minutes for co-inertia analysis). Improvements in the algorithm should

provide computation times for co-inertia analysis comparable to those for PCA and CA: the

matrix from which eigenvalues and eigenvectors are computed will be of dimension min(n, p,
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q), with n = number of observations, p = number of variables in the first table, q = number of

variables in the second table (instead of min(p, q) as is now the case).

ADE 4.0 is made up of a series of small independent modules written in ANSI C. These

modules share the same simple user interface, and the computation code is isolated from the

user interface code. The programming system allows the programmer to avoid implementing

the user interface of the module he is writing: all the user interface details are automatically

handled by a library of C functions. The modules can be used independently of each other and

launched directly from the Macintosh Finder (stand-alone use), or they can be used through a

HyperCard interface. The user can click to set the parameters of an analysis, and use the

standard Macintosh dialogue windows (Figure 1). The latest version of ADE can be found at

the following URL: ftp://biom3.univ-lyon1.fr/pub/mac/ADE.

Data Sets

The first data table used described the amino-acid composition of a sample of proteins from E.

coli. The second contained various amino-acid properties. Both are readily available on the

Internet.

The protein data set contains the absolute amino-acid frequencies of 999 protein sequences

encoded by genes on the E. coli chromosome. Plasmid-encoded genes, partial sequences,

poorly documented open reading frames, protein of less than 100 amino-acids, and seleno-

cysteine containing proteins were all discarded. The N-terminal methionine was not removed

and post-translational modifications were not taken into account. The data set contained only a

single protein copy per locus to avoid overweighting due to sequence redundancy or DNA

polymorphism. This data set represents about 25 % of the estimated total number of

chromosome-encoded proteins in E. coli. It was extracted from the ECOSEQ6 collection

(Rudd, 1993). This data set is available and described at the following URL:
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ftp://biom3.univ-lyon1.fr/pub/datasets/CABIOS95. This data set is the same as the one

analysed with CA by Lobry and Gautier (1994).

The amino-acid data set is a compilation of 402 published physicochemical and biochemical

properties of the 20 amino-acids occuring naturally in proteins (Nakai et al., 1988). This data

set is available and described at the URL : ftp://ftp.genome.ad.jp/pub/db/genomenet/aaindex.

Two subset of this dataset have been analysed previously (Kidera et al., 1985, Nakai et al.,

1988).

Results

Co-structure significance

Figure 2 shows that the total variability of the dataset was far higher than the variability

computed after randomization of the rows (i.e., of amino-acids). Thus the co-structure between

the amino-acid composition of proteins and the properties of these amnino-acids is highly

significant.

Selection of factors

Figure 3 shows that three main factors explain the total variability of the co-inertia analysis.

They account for 52%, 16% and 13% of the explained variance, respectively. These 3 factors

therefore account for 81% of the total variability of the co-intertia analysis, and are a good

summary of the intial co-structure between protein composition and amino-acid properties.

Factor one (F1)

The 20 most important proteins for defining F1 are listed in Table 1. Those with a negative F1

score were all integral membrane proteins. They are all involved in membrane related functions,
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such as transport through the membrane (e.g., BtuC for vitamin B12 transport and PotB for

putrescine and spermidine transport, anchoring dehydrogenases to the cytoplasmic membranes

(e.g., SdhD for succinate dehydrogenase complex, FrdD for the fumarate reductase complex),

cytoplasmic membrane redox reactions (e.g., CyoD, the cytochrome o ubiquinol oxidase).

Figure 4 shows that these proteins are enriched in hydrophobic amino-acids (Ile, Leu, Met, Phe,

Trp) and tends to have fewer hydrophilic amino-acids (Arg, Asp, Gln, Glu, Lys). The proteins

with a positive F1 score were more heterogenous, including proteins enriched in hydrophilic

amino-acids (the histone-like DNA binding proteins Hns, and the single-strand binding protein

Ssb, which are very rich in positively charged residues in order to bind to the negatively

charged phosphate-sugar backbone of DNA). The distribution of the F1 score was bimodal,

showing that there were great differences between integral membrane proteins and the others in

terms of their amino-acid frequencies. Thus, the most important factor underlying the

differences in the amino-acid composition of proteins is their sub-cellular location. Proteins

buried in the membrane have few hydrophilic amino-acids.

  The 20 most important amino-acid indices for defining F1 are listed in Table 2. Those with a

positive F1 score are all clearly correlated with a hydrophilic scale, with higher values for

hydrophilic amino-acids. The polarity scale, as defined by Grantham (1974), is positively

correlated with the hydrophilic nature of amino-acids since water is a polar solvent; and the

transfer free energy to a lipophilic phase (von Heijne and Blomger, 1979) is greater for

hydrophilic amino-acids. The fact that the principal property value z1 (Wold et al., 1987) is on

the list of the most important amino-acid indices demonstrates the consistency of our results

with previous multivariate analyses. The amino-acid indices with a negative F1 score were

positively correlated on hydrophobic scale, such as the Kyte and Doolittle (1982) hydropathy

index, which assigns higher values to hydrophobic amino-acids (fig. 5). The normalized

composition of membrane proteins (Nakashima et al., 1990) also belongs to this group,

because the membrane proteins contain more hydrophobic amino-acids than hydrophilic ones.

Thus F1 reflects the hydrophilic character of amino-acids, with the hydrophobic and

hydrophilic scales negatively correlated.
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Factor two (F2)

The 20 most important proteins for defining F2 are listed in Table 1. Proteins with a high F2

score were often outer membrane proteins, like the porins OmpC and OmpF, the vitamin B12

receptor protein BtuB, the protease VII OmpT, and the long-chain fatty acid receptor FadL.

This was not, however, a general rule, since Ssb is a DNA-binding protein, TolB a periplasmic

protein associated with the inner membrane, and FliC the subunit protein which polymerizes to

form the filaments of bacterial flagella. The most striking feature of these proteins is that they

all have high Gly and Pro contents (Figure 4), and less Glu and Leu, which suggests that these

proteins have few alpha-helix domains. This is consistent with the X-ray cristallography study

of OmpF, which showed that each subunit of the porin consists of a 16-stranded anti-parallel

beta-barrel containing the hydrophilic pore. As the primary amino-acid sequence of OmpC is

similar to that of OmpF, they probably have similar 3D-structures, with little alpha-helix, for

OmpC. In contrast, proteins with a negative F2 score contain few Pro and Gly residues, which

suggests that these proteins are rich in alpha-helix structures. TolA, a periplasmic protein

associated with the inner membrane fits this picture; its domain II (62 % of total amino-acid)

has been shown by  circular dichroism studies to be predominantly alpha-helical in structure.

The trp operon repressor TrpR, whose structure was determined by X-ray crystallography and

NMR (nuclear magnetic resonance), also has a high helical content. Lastly, the phage shock-

associated protein PspA has the heptad repeats characteristic of proteins that can form coiled-

coil alpha-helices. Hence, F2 factor appears to be the alpha-helical content of proteins, which

induces a variability in terms of alpha-helix breaker amino-acid composition.

The 20 most important amino-acid indices for defining F2 are listed in Table 2. Those with a

positive value are all indices for the propensity of an amino-acid to be found in coils, turns or

beta-sheets. In contrast, indices with a negative F2 indicate only the propensity of amino-acids

to be found in an alpha-helix, with low values for Gly and Pro which are both known helix
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breakers, and also, to a lesser extent, for Asn, Ser and Thr. Ala, Gln, Glu, Leu, Lys, Met, Phe

and Trp, which are all preferentially found in alpha-helices (Figure 5) have high scores. Hence,

F2 reflects the spectrum between amino-acids that are mainly found in alpha-helices and

amino-acids that are found mainly in other conformations.

Factor three (F3)

The 20 most important amino-acid indices for defining F3 are listed in Table 1. There is no

special common feature for proteins with a positive F3 score, except that they all contain few

aromatic amino-acids. Proteins with a negative F3 score are enriched in aromatic amino acids

(e.g., cytochromes). F3 therefore represents a gradient of aromatic amino-acid content in

proteins. This gradient was interpreted as a compromise between selective pressure, that tends

to remove the expensive aromatic amino-acids, and structural or functional constraints which

impose a minimum aromatic content, at least for some proteins. This structural constraint is

illustrated by the correlation between aromatic amino-acids at positions i and i+4 in proteins

(Klingler and Brutlag, 1994).

The 20 most important amino-acid indices that define F3 are listed in Table 2. Indices with a

positive F3 score are correlated with the frequency of amino-acids in natural proteins, with low

values for rare amino-acids like Trp and Cys. Indices with a negative F3 score are positively

correlated with the molecular weight of amino-acids, for instance the aromaticity of amino-

acids because aromatic amino-acids are also the heaviest amino-acids. Thus, F3 reflects the

contrast between indices of amino-acid frequency in proteins and indices related to the size of

amino-acids.
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Discussion

The relationships between amino-acid physico-chemical properties and protein composition

shown by the first three factors of co-inertia analysis must be interpreted in terms of biological

and evolutionary constraints.

Factor 1

The overall hydrophobicity of proteins has been shown to be the major factor underlying

variations in the amino-acid composition of E. coli proteins (Lobry and Gautier, 1994). Their

hydrophobic character is also an important property discriminating between amino-acids

(Sneath, 1966). The co-inertia analysis shows that this factor, hydrophobicity, is the most

important factor underlying the variability of amino-acid composition of proteins and the

properties of amino-acids. This can be interpreted in terms of protein environment. There are

two very different environments for a protein, in a polar aquous environment (cytoplasm,

periplasm, outside the cell), or the non-polar environment of the phospholipid bilayer of

biological membranes. During the course of evolution, amino-acids were selected to enable

proteins to colonize these two environments. There was a selective advantage in amnio-acids

with a wide range of solubilities, so that proteins could be stable in both environments. This

kind of centrifugal selection ensures that the hydrophobicity of present day amino-acids in

proteins is a highly discriminating property, and is also a major characteristic of amino-acids.

Factor 2

The results of the co-inertia analysis are somewhat different from the results of analysing the

two data sets separately. The second factor underlying variability in protein composition is the

expressivity level (the extent to which the corresponding genes are expressed, see Gouy and

Gautier, 1982). As the major tRNA concentations are not the same for all species, it is not

surprising that this factor is not directly correlated with amino-acid indices, which are not
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specific of species. However, there may well be an indirect link via the helix-content of

proteins: poorly expressed genes are often regulatory genes that interact with DNA via their

alpha-helix structure. Conversely, the most active genes include those for the outer membrane

proteins, which are rich in beta-sheet. Although this rule may have many exceptions, it could

explain the coupling between the two analyses.

Factor 3

The results of the co-intertia analysis for the third axis are very similar to those obtained when

the data sets are analyzed independently. A simple explanation for this is that the amino-acid

content of a protein is subject to selective pressure because the cost, in terms of both energy and

matter for the cell, is not the same for all amino-acids. It is not surprising that the cost of heavy

and aromatic amino-acids is greater, so that they tend to occur less frequently.

Conclusion

Analysis of the co-structure of the two data sets helps to show how the variability of protein

composition depends on amino-acid properties, and, conversely, how amino-acids properties

vary with protein composition. The co-structure is in fact easier to interpret than the structure of

each data set alone, because each factor is analysed from two points of view, and is contrained

to explain both protein compositions and amino-acid properties. This works well because there

is a strong co-structure between the two data sets. This strong co-structure arises because

proteins are subject to selective pressure on their amino-acid compositions and the overall

avantages or disadvantages for a given function are linked to the physico-chemical properties of

their amino-acid content.

There is clearly a high local selective pressure on protein amino-acid contents, as indicated by

the amino-acids involved in the catalytic site of an enzyme. But there are only a few of these

crucial amino-acids (say 10), while the total number of amino-acids in a protein (may be 300).
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Hence, their contribution to the overall amino-acid composition of a protein is not likely to be

important. The information used in the co-inertia analysis to describe proteins is only their

overall amino-acid composition. As a result, the selective pressures demonstrated here act on

the overall protein amino-acid composition, and the most important factor is the subcellular

location of the proteins.
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Table 1. Names (according to Bachman, 1990) of the 20 most important proteins for defining

the first three factors of the co-inertia analysis. The first ten proteins have positive scores and

the last ten negative ones.

F1 F2 F3

HflK TolB Tsf

Hns FadL OsmY

Ssb OmpT RbsB

RpsN FliC AceF

DksA BtuB FruA

MsyB OmpC FepD

HimA OmpF RplI

TolA RlpA MopA

PrfB Ssb FimA

DamX FimH TolA

SdhD PriC TdcR

MreD PspA HyaC

CyoD CelC SoxR

FrdD RplT FdnI

PotB Hns BarA

MvrC TrpR RfaS

DmsC TolA RfaK

AppB FliT CysX

BtuC MprA NarV

BicA FlhD CybB
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Table 2. The 20 most important amino-acid indices for defining the first three factors of the co-

intertia analysis. The first ten indices have positive scores and the last ten negative ones. They

are referenced by their accession number in the data set, available at: ftp://ftp.genome.

ad.jp/pub/db/genomenet/aaindex (see Nakai 1988).

F1 F2 F3

WOLS870101 ISOY800108 NAKH900102

VHEG790101 PALJ810106 NAKH900101

HOPT810101 LEWP710101 JOND920101

ROSM880101 ROBB760112 NAKH920102

WOEC730101 QIAN880124 RADA880103

ROSM880102 CRAJ730103 OOBM770105

MEIH800102 RACS820113 JUNJ780101

OOBM770101 PALJ810105 OOBM770104

PRAM900101 PALJ810116 JUKT750101

GRAR740102 RACS820109 DAYM780101

DESM900102 MAXF760101 FAUJ880106

NAKH900110 PALJ810109 MCMT640101

MEIH800103 TANS770101 FASG760101

BIOV880102 PALJ810102 LEVM760107

EISD860103 LEVM780101 CHAM820101

JANJ780102 PRAM900102 FAUJ880103

FAUJ830101 GEIM800104 CHOC750101

KYTJ820101 LEVM780104 SNEP660103

BIOV880101 ISOY800101 CHAM830106

ROSG850102 GEIM800101 LEVM760102
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A B

C

D

Figure 1. Screen shots of some windows of the principal component analysis module of ADE

4.0. All the modules have an "Options" menu enabling the user to choose between the available

possibilities. Here, for example, it is possible to choose between PCA on correlation or on

covariance matrix (A). According to the option selected by the user, a dialogue window is

displayed, containing the parameters required for performing the computations (B). The user

can click on the buttons of this window to set the values of these parameters through standard

Macintosh dialogue windows (C). The values and a bar chart of eigenvalues is then diplayed

and the user is asked to enter the number of axes on which factor scores will be computed (D).
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*---------------------------------------------------------*
| ADE THINK C™ library * CNRS-Lyon *            JT/DC/MH  |
| CoInertia: Test w. one table fixed     06/12/94  21/46  |
*---------------------------------------------------------*
Warning: non uniform weighting. The results from permutations
are valid only if the row weights come from the fixed table.
-----
The fixed table is table 2: prot1r.fcta
number of random matching: 1000   Observed: 3.421822
Histogramm:  minimum = 1.880898, maximum = 3.421822
number of simulation X<Obs: 1000 (frequency: 1.000000)
number of simulation X>=Obs: 0 (frequency: 0.000000)

   |
   |**
   |***********
   |***************************
   |**************************************
   |**************************************************
   |**********************************************
   |*****************************************
   |****************************
   |****************
   |**************
   |*********
   |*****
   |*
   |*
   |
   |
   |
   |
•->|

Figure 2. Results of the permutation test. The test shows that the probability of obtaining a total

variability equal to 3.42 (i.e., the inertia obtained in the co-inertia anlaysis) using the hypothesis

of independence between amino-acid physico-chemical properties and protein composition is

less than 0.001.
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Figure 3. Eigenvalues bar chart of the co-inertia analysis. The first three eigenvalues are

obviously greater than the following ones. Starting from the fourth eigenvalue, the values

slowly decrease without any marked variations, showing that the rest of the structure can be

discarded. These first three eigenvalues acounts for 81% of the total variability (52%, 16%, and

13% respectively).
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Figure 4. First factor map of the 999 proteins. This graph is a collection of 20 elementary

graphs, all at the same scale, corresponding to the 20 amino-acids. Each elementary graph,

shows the F1 x F2 factor map (F1 is on the x-axis and F2 on the y-axis), with, for each protein,

a circle or a square whose size is proportional to the centered relative frequency of the

corresponding amino-acid in the protein. Circles indicate positive values and squares negative

ones. See text for interpretation.
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Figure 5. First factor map of the 402 amino-acid physico-chemical indices. Like figure 4, this

graph is a collection of 20 elementary graphs, all at the same scale, corresponding to the 20

amino-acids. Each elementary graph shows the F1 x F2 factor map (F1 is on the x-axis and F2

on the y-axis), with, for each index, a circle or a square whose size is proportional to the

standardized value of the index. Circles indicate positive values and squares negative ones. See

text for interpretation.


