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Abstract

Because of the base pairing rules in DNA, some mutations experienced by a portion of DNA during its evolution
result in the same substitution, as we can only observe differences in coupled nucleotides. Then, in the absence of a
bias between the two DNA strands, a model with at most 6 different parameters instead of 12 is sufficient to study
the evolutionary relationship between homologous sequences derived from a common ancestor. On the other hand
the same symmetry reduces the number of independent observations which can be made. Such a reduction can in
some cases invalidate the calculation of the parameters. A compromise between biologically acceptable hypotheses
and tractability is introduced and a five parameter reversible no-strand-bias condition (RNSB) is presented. The
identifiability of the parameters under this model is shown by examples.
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1. Introduction

Darwinian Evolution is based upon the interplay
of two driving forces: mutation of an organism
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features, and natural selection acting on the liv-
ing organisms. Nowadays the role of the DNA in
the evolutive processes has been recognised, and
the physical basis of the mutation process has been
identified. Mutation acts on the DNA and we call
mutation rate the probability that a descendant
has a difference in the genome if this is compared
to that of its parents. The substitution rate is the
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probability of finding a difference when comparing
the genomes of species to one of its ancestors.

We see that while the mutation is closely related
to the biophysical process of DNA damage, or repli-
cation error etc., the substitution is the result of
a mutation and of a population-dynamics process,
which has spread the former to the whole popula-
tion. A fundamental observation by M. Kimura in
1968 [1] argued that, in the case of neutral muta-
tions (i.e. those mutations which have no apparent
effect on the adaptation of an organism to the en-
vironment), we can deduce the mutation rate from
the substitutions, as they are actually the same.

Let’s consider an ancestor O at time t = 0 which
separates into two different evolutive lineages, re-
sulting in two different species, A and B at time
t. It would be useful to define a distance between
A and B and to have a tool to calculate it by just
comparing the genomes of A and B.

In order to study evolutionary distance between
homologous DNA sequences (descending from a
common ancestor) and their consequent relation-
ship, a model for nucleotide substitution can be in-
troduced. Generally, the process is assumed to be a
Markov chain, if some assumptions are made about
the underlying process. The general hypotheses
are:
– substitution rates do not depend on the position

along the DNA sequence;
– they are constant during evolutionary time;
– the two evolutionary lineages have the same

rates;
– DNA sequences are at the compositional equi-

librium when they start to diverge (nucleotide
frequencies are constant).

We will see that even with relaxing the last two hy-
potheses some calculations can be performed, but
it is worth noting that compositional equilibrium,
if the last assumption is verified, is maintained dur-
ing the course of evolution.

Denoting with fi the compositional equilibrium
frequency of the nucleotide i with i ∈ {A,T,G,C}
and with rij = ri←j the substitution rate from
nucleotide j to i in the unit time. The distance
between two sequences, can now be defined as

d = 2t
∑

i

fiµi = 2t
∑

i

fi

∑
j( 6=i)

rji . (1)

Since 1969, when Jukes and Cantor proposed
their first one-parameter model for nucleotide sub-
sitution in DNA, many different models of increas-
ing complexity have been published. The general
4-state Markov model has 12 independent param-
eters, G12 in fig.2 (for a review see Zharkikh [2]).
This number, and consequently the model com-
plexity, can be decreased by further conditions on
the parameters, leading to a plethora of different
models. A possible choice is to take into account
the property of no strand-bias, explained in fig.1. It
was introduced by Sueoka in 1995 [3] and we gen-
erally refer to it as type 1 parity rule or PR1. This
rule is easily understood thinking that, scoring the
substitution on one strand, the same substitution
can be obtained in two ways: A → C is observed
also if on the opposite strand T → G.

This means that we cannot discriminate substi-
tutions between two bases from those between their
complementary bases. In symbols:

rij = rı̄̄, (2)

where the bar means complementary nucleotide:
Ā = T and viceversa. And C̄ = G similarly.

The number of independent parameters is then
halved, so that the following substitution rates can
be introduced:

a≡ rAT = rTA

b≡ rAG = rTC

c≡ rCT = rGA

d≡ rAC = rTG

e≡ rCA = rGT

f ≡ rCG = rGC.

The notation introduced here is consistent with
the one previously used by Sueoka [3] and Lobry [4]

Equilibrium frequencies for such a model are eas-
ily derived from the master equations:

q̇i =
∑

j

(rijqj − rjiqi),

where qi denotes in general the probability of state
i.

These frequencies are given by:

f1 ≡ q∞A = q∞T =
1
2

b + d

b + c + d + e
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(3)

f2 ≡ q∞G = q∞C =
1
2

c + e

b + c + d + e
.

The intrinsic symmetry of the model is evident. In
this framework, in other words, there is only one
independent frequency, the other being deduced by
the normalization condition 2f1+2f2 = 1. We now
stress the fact that this is valid in a single strand
(type 2 parity rule or PR2 ). If PR1 is satisfied, then
as a consequence the frequency of a nucleotide in
a strand must be equal to that of its complement
in the same strand.

In the following we will resume some general re-
sults regarding PR1 algebra showing that, in many
cases, it is not possible to reconstruct the supposed
underlying mutation pattern because the indepen-
dent parameters outnumber the possible indepen-
dent observations.

2. Materials and Methods

In this section we will give some results regarding
the model introduced above, focusing on the num-
ber of actual independent possible observations.

2.1. General model

Given the substitution matrix R[4,4], whose en-
tries are the mutation rates per nucleotide per unit
of time, one can deduce the evolutionary matrix
P[4,4](t), whose entries pij(t) represent the proba-
bility of finding at a certain site the base i at time
t, given the base j at t = 0. Yet the divergence ma-
trix X[4,4](t) can be deduced, whose entries xij(t)
are the mutual probability of finding at time t the
base j in a sequence, given the base i at the same
site of the other sequence. Obviously, if the substi-
tution pattern is the same for both sequences, it
results in xij(t) = xji(t).

It is worth noting that the divergence matrix at
initial time is nothing but the diagonal matrix with
nucleotide frequencies on the diagonal.

The result of an evolutive process can be syn-
thetically represented as an initial diagonal diver-
gence matrix, multiplied on the left and on the

right by a certain number of substitution matrices
(corresponding to the generation steps in the two
evolution lineages), producing a final matrix

X(t) = R′m · · ·R′2R′1 X(0) Rt
1R

t
2 · · ·Rt

n

X(t) = P′ X(0) Pt (4)

xij(t) =
4∑

k=1

p′ik(t)fkpjk(t)

where the substitution matrices can, in principle,
all be different.

The entries of the divergence matrix are the ex-
perimentally observable quantities.

In our case the substitution matrix is R[4,4]:

� A T G C

A 1− a− c− e a c e

T a 1− a− e− c e c

G b d 1− b− d− f f

C d b f 1− d− b− f

obtained under the hypotheses of no-strand-bias,
I.E. PR1.

2.2. Non identifiability of some models

In the following we show that the mathematical
properties of the PR1 algebra are such that, deal-
ing with the general model, the parameters to es-
timate outnumber the possible independent obser-
vations, so that the model is untractable. As seen
in eq.(4)

X(t) = P′ X(0) Pt.

Now, several cases are possible, depending on
whether P′ = P or not. In the following, we will
assume that X(0) is already at compositional
equilibrium, I.E.

q0
A = q0

T = f1 = xAA(t = 0) = xTT (t = 0)

(5)

q0
C = q0

G = f2 = xCC(t = 0) = xGG(t = 0)

2.2.1. P′ = P
As P′ = P it is clear that X(t) is symmetric

(X(t) = Xt(t)). We have to estimate 6 parameters
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(6 mutation rates) and we have only 5 independent
observations. This happens because of the symme-
try xij = xji, the normalization conditions and
because xij = xı̄̄. In more detail:

xAG = xGA = xTC = xCT

xAC = xCA = xTG = xGT

xAT = xTA

xCG = xGC

xAA = xTT

xCC = xGG

Where xAA = xTT and xCC = xGG can be de-
duced by the other four using the normalization
(
∑

j xij = fi) and the equilibrium frequencies. We
find that xAG, xAC , xAT , xCG and one equilib-
rium frequency are the only independent observ-
able quantities.

2.2.2. P′ 6= P
In this case mutation rates double becoming 12;

so we have 12 parameters to calculate. Independent
observations, on the other hand, increase up to 7,
because of the lack of the symmetry xij = xji. Still
the model is intractable.

2.3. Reversible PR1 model

In this section we will deal with one of the previ-
ous models, the simplest one where P′ = P. In this
case simple calculations lead to an analytical ex-
pression for the divergence matrix, but the model
remains intractable. Yet we will see that by the im-
position of a certain property the model becomes
tractable, and a way to estimate the parameters
for a real data set will be proposed.

In the following we will assume again that the
initial divergence matrix is already at composi-
tional equilibrium. Further, we will treat the evo-
lutionary process as a continuous time process, be-
ing the time since the divergence very long. This
allows us to write the following equations to solve
the problem. The expression for the evolutionary
matrix is

P(t) = exp{Rt}; (6)

as it is the solution of the differential equations (see
Rodriguez et al. [5])

dP(t)
dt

= P(t)R (7)

dpij(t)
dt

=
4∑

k=1

pik(t)rkj . (8)

While the divergence matrix is given by

X(t) = P′(t)X(t = 0)PT (t) (9)

xij(t) =
4∑

k=1

p′ik(t)fkpjk(t); (10)

It is easily verified that, if P′ = P, then xij(t) =
xji(t).

Now, the expressions for xij(t) (the observables)
can be inverted to obtain the rates and then the
distance.

The strategy could be:
– solve the model, that is find the xij(t) as a func-

tion of rates;
– invert the above equations to get an expression

for the rates;
– substitute the observed quantities x̄ij in order

to have a numerical estimation of the rates;
– use these estimates to obtain the distance.

The expressions for xij can be deduced in a man-
ner analogous to that proposed by Takahata &
Kimura in 1981 [6] who deal with a slightly less
general model than this (model TK5 in fig.2). In
this way we get an expression for every entry of
the divergence matrix, but with five independent
expressions, as stated above. We repeat here the
reasons:
– the symmetry of the matrix xij = xji;
– the intrinsic symmetry of the model xij = xı̄̄;
– the normalization conditions

∑
j xij = fi.

Thus, we can write down the entire divergence ma-
trix by means of the following quantities:

P ≡ xAG = xGA = xTC = xCT

R ≡ xAC = xCA = xTG = xGT

Q1 ≡ xAT = xTA

Q2 ≡ xCG = xGC ,

S1 ≡ xAA = xTT
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S2 ≡ xCC = xGG

Where, as stated above, S1 and S2 can be deduced
by the other four using the normalization and the
equilibrium frequencies. We find that P,R, Q1, Q2

and one equilibrium frequency are the only inde-
pendent observable quantities.

2.4. Solution of the model

Deriving an analytical expression for the diver-
gence matrix is quite an easy task following [6].
Let’s consider for example the element xAC; its
derivative will be

dxAC

dt
=

d(qAqC)
dt

= qCq̇A + qAq̇C. (11)

It is worth giving a brief explication for this. We
said that we are considering the two lineages at
compositional equilibrium at the initial time, so
one would naturally say that q̇i = 0, and so the
above equation. Stating that we are at compo-
sitional equilibrium means that sampling the
whole considered sequence nucleotide frequen-
cies fi don’t change (apart from finite-size fluctua-
tions). It does not mean that there is no mutation
at all on each site; had this been the case, there
would be no evolution to study. The probability
for each nucleotide to mutate into another is given
by the master equation, and this is why we can
write xij as qi times qj , take the derivative, and
reexpress in terms of other qiqj products, I.E.
other X entries.

An example of derivative would be, for example,

q̇A = (dqC + bqG + aqT)− (a + c + e)qA. (12)

Substituting this and the analogue for q̇C in eq.(11)
and doing the same for all X entries we obtain a set
of linear coupled first order differential equations
which can be diagonalized and solved.

More detail on the derivation is reported in the
appendix A.

2.5. Reversibility

Until now we have stated that it is possible to
write the divergence matrix for this model, but it

would be of no use because we could never invert
five expressions and obtain six independent rates as
functions of the matrix entries. What can be done
is to reduce the number of independent parameters
by adding a relation between them. Many choices
are possible. One could be, following [6], a = f .
Another possible choice is to make the model time
reversible. We remember that time reversibility is
satisfied when

pijfj = pjifi ∀i, j. (13)

where pij are the entries of the evolutionary matrix
and fi the equilibrium frequencies. It is possible to
demonstrate that this property is equivalent to the
detailed balance (see appendix B) which reads

rijfj = rjifi ∀i, j. (14)

In our model detailed balance holds if and only if

be = cd. (15)

This can be deduced by inspection of equilibrium
frequencies expressions, or by a simpler rule [7],
reported here in appendix C. A general version of
reversible model has been studied by Yang [8], who
pointed out its ability of fitting the data better
than other models. Gu and Li [9] have shown its
robustness against violation of time reversibility.

3. Results and discussion

3.1. Estimation of the substitution rates

Due to the complexity of the expressions coming
from this model, it is hard to think that one can
find an analytic way to invert them and express the
rates as a function of the observables. Therefore
we chose a statistic way to perform this inversion,
based on the χ2 test. We write the χ2 as

χ2 =
∑
i,j

(x̄i,j − xi,j)2

x̄i,j
=

∑
i,j

x2
i,j

x̄i,j
− 1. (16)

It is easily seen that this quantity is always non-
negative, being zero when x̄i,j = xi,j , I.E. when
the model perfectly fits the observations. Clearly,
by performing a minimization on it we look at the
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same time for the best parameters. In this con-
test trying to minimize the χ2 as a function of six
parameters would outcome in a complete failure,
the algorithm would wander among the infinite
number of equivalent solutions. Enforcing the re-
versibility makes the estimation possible, as it will
be shown below.

3.2. A realistic example

As an application, we started from the multiple
alignment of rRNA sequences used in [10]. The ob-
served divergence matrix (unnormalized) between
Xenopus and Homo is reported here below.

Xenopus

A T G C

A 647 1 17 2

Homo T 3 523 11 18

G 17 9 903 28

C 8 21 25 691

By changing parameter values over 6 magnitude
orders we found that the χ2 criterion was well
shaped with only one global minimum (fig. 3). A
systematic exploration of all possible pairs of pa-
rameters showed that there were no strong struc-
tural correlations between parameters, except be-
tween b and c (fig. 4). As a consequence, parameter
values are easily estimated using standard non lin-
ear minimizing tools (note that it is advisable to
enforce parameter positivity during optimisation).
This example showed that parameter can be esti-
mated in practice from a realistically sized dataset.

3.3. Discussion

The most general model of evolution at the DNA
level has 12 parameters and this is too much for
practical purposes. If we try to simplify it by en-
forcing some parameter to be equal, then the num-
ber of possible sub-models rapidly increases be-
cause many ways of doing it are possible. At the

opposite side we find the only model which requires
all the parameters to be equal (JC).

It is clear that the number of published models
in the literature doesn’t cover all possible ones, and
only those coming from some biological or mathe-
matical justifications have been explored.

Under PR1 hypothesis, we are dealing with no
strand-bias models whose most general form has 6
parameters. We do not claim that models of this
class are the best in any way, but that they are
an interesting starting point. An important prop-
erty of these models is their convergence towards
PR2 state even if substitution rates are modified
during the course of evolution [11]. PR2 state is
a strong assumption and strand asymmetry has
been observed in many cases. But, as PR2 is usu-
ally observed at a genome scale level [4], the hope
is that, on average, with local deviations from PR1
hypothesis canceling out, this class of model is not
too bad an approximation. The biological moti-
vation leading to the no strand-bias models has an
important mathematical consequence, so, if it is
biologically reasonable to study these models, one
must be aware of the fact that the symmetry in-
volved inexorably reduces the number of indepen-
dent observations, making the model mathemati-
cally intractable.

3.4. Conclusion

As we have shown in section 2.2.1 comparing
the number of unknowns to possible independent
observations there is definitively no hope to esti-
mate the 6 parameters of the general form of the
no strand-bias model from pairwise DNA sequence
comparisons. There is no unique solution to a sys-
tem of M equations in N > M unknowns, in our
case there is an infinite number of way to choose
the six rates a, b, c, d, e, f in order to satisfy the
five independent equations defining the matrix X.
This result is extremely unpleasant because it cor-
responds to the most common situation with ex-
perimental data from present day DNA: fossil DNA
data are scarce and from a relatively recent past.
We clearly need further simplifications.

We have exhibited here an example of a model,
noted RNSB in figure 2, that combines the proper-
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ties of reversible models and no strand-bias mod-
els. It is important to note that this model has still
5 parameters free because if the intersection be-
tween the reversible model class and the no strand-
bias class were only –say– 3 parameter free mod-
els, there would not have been much flexibility left
for further research. We do not claim that this new
RNSB model is the best intersection between the
two classes. We just claim that the RNSB model
proves that it’s possible to do so with 5 free pa-
rameters, so that there is no bottleneck here for
further theoretical work on the parametric forms
for this class of DNA substitution models.
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Appendix A. Derivation of the divergence
matrix

In order to obtain the expressions for the diver-
gence matrix we define (following the notation in-
troduced above)

X± ≡ 2S1 ± 2Q1

Y± ≡ 2S2 ± 2Q2 (A.1)

Z± ≡ 4P ± 4R.

These expressions reduce the problem to six first
order ordinary coupled differential equations. This
system is block-diagonal, can easily be inverted and
its solution is:

X+ = ω[ω + (1− ω)eλ0t]

Y+ = (1− ω)(1− ω + ωeλ0t) (A.2)

Z+ = 2ω(1− ω)(1− eλ0t)

and

X− =
1
g2
{2β[αω − β(1− ω)]eλ1t +

+[ζω + β2(1− ω)]eλ2t +

+[ηω + β2(1− ω)]eλ3t}

Y− =
1
g2
{−2α[αω − β(1− ω)]eλ1t +

+[α2ω + η(1− ω)]eλ2t +

+[α2ω + ζ(1− ω)]eλ3t} (A.3)

Z− =
1
g2
{−2(δ − γ)[αω − β(1− ω)]eλ1t +

+[α(δ − γ + g)ω − β(δ − γ − g)(1− ω)]eλ2t +

+[α(δ − γ − g)ω − β(δ − γ + g)(1− ω)]eλ3t}

where

α≡ c− e

β ≡ b− d

γ ≡ 2a + c + e

δ ≡ b + d + 2f

ω ≡ 2f1 = 2fA = 2fT

λ0 ≡−2(b + c + d + e)

λ1 ≡−(2a + b + c + d + e + 2f)

λ2 ≡ λ1 + g

λ3 ≡ λ1 − g

g ≡
√

(δ − γ)2 + 4αβ

ζ ≡ 1
2
(δ − γ)(δ − γ + g) + αβ

η ≡ 1
2
(δ − γ)(δ − γ − g) + αβ

Combining all these, the entry for the divergence
matrix are obtained.

Appendix B. Reversibility and detailed
balance

We will show here the equivalence between time
reversibility and detailed balance.

7



B.1. DETAILED BALANCE ⇒ TIME
REVERSIBILITY

Let’s just remind that

P(t) = exp{Rt},
which can be developed as

P(t) = I + Rt +
1
2
R2t2 + · · · , (B.1)

or

pij = δij + rijt +
1
2

∑
k

rikrkjt
2 + · · · (B.2)

Equation (B.2) can be also written as:

pij = δij +

+
∞∑

n=1

s
(n)
ij

n!
tn, (B.3)

where

s
(n)
ij =

∑
k1k2···kn−1

ri,k1rk1,k2 · · · rkn−2,kn−1rkn−1,j

for n ≥ 2

(B.4)

s
(n)
ij = rij , for n = 1.

Now we will show that, if detailed balance is satis-
fied, then

s
(n)
ij fj = s

(n)
ji fi, ∀i, j, n. (B.5)

In fact, exploiting detailed balance,

s
(n)
ij fj =

∑
k1···kn−1

ri,k1 · · · rkn−1,jfj (B.6)

becomes ∑
k1···kn−1

ri,k1 · · · rj,kn−1fkn−1 =

=
∑

k1···kn−1

ri,k1 · · · rkn−1,kn−2rj,kn−1fkn−2 = · · ·

and finally

· · · =
∑

k1···kn−1

rk1,irk2,k1 · · · rj,kn−1fi. (B.7)

Reordering all the factors

∑
k1···kn−1

rk1,irk2,k1 · · · rj,kn−1fi =

∑
k1···kn−1

rj,kn−1rkn−1,kn−2rkn−2,kn−3 · · · rk1,ifi.(B.8)

As the sum is performed on indices k1 · · · kn−1 the
expression in (B.8) is equal to s

(n)
ji fi for all n ≥ 2.

So we have (B.5) for n > 1, and it is evident for
n = 1. Further, as δijfj = δjifi, we obtain pijfj =
pjifi Q. E. D.

B.2. DETAILED BALANCE ⇐ TIME
REVERSIBILITY

Let’s rewrite the formula

dP(t)
dt

= P(t)R;
dpij(t)

dt
=

∑
k

pik(t)rkj . (B.9)

Let’s compute the time derivative of pijfj ; if time
reversibility holds it will be equal to the time
derivative of pjifi. From the formula (B.9), as
equilibrium frequencies don’t depend on time

d

dt
(pij(t)fj) = fj

dpij(t)
dt

=
∑

k

pik(t)rkjfj . (B.10)

But
dpij(t)

dt
=

∑
k

rikpkj(t),

as P and R commute (evident from the solution).
The second expression in (B.10) can be written as∑

k

pik(t)rkjfj =
∑

k

rikpkj(t)fj . (B.11)

Because of the time reversibility the last expression
in (B.11) becomes∑

k

rikpkj(t)fj =
∑

k

rikpjk(t)fk. (B.12)

Finally

d

dt
(pji(t)fi) = fi

dpji(t)
dt

=
∑

k

pjk(t)rkifi. (B.13)

Subtracting the (B.13) from the (B.12), which are
equal, and keeping in evidence pjk(t) we finally
obtain
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∑
k

pjk(t)(rikfk − rkifi) = 0, (B.14)

and the detailed balance is satisfied Q. E. D.

Appendix C. Detailed balance: simple
check

A nice property of detailed balance is that there
exists a very easy way to state if it holds, even with-
out calculating equilibrium frequencies. Until now
we have seen that the detailed balance is fulfilled
when the equilibrium frequencies and the muta-
tion rates (from which the former depend) cancel
every term in the master equations.

Another way to check the detailed balance is to
consider three states in the system and the rates
connecting them. If the product of the three rates
which takes from a state to itself “clockwise” is
equal to that calculated “counter-clockwise”, then
the detailed balance holds. If we have three states
i, j, k then the above property will read

rikrkjrji = rijrjkrki.
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Fig. 1. Explication of the no strand-bias condition. If the

rates for a certain substitution are the same on both strands
of DNA, one can deduce the equivalence of this rate to the
one between the complementary bases.
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Schmidt’s work.
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Pairwise influence of parameters
 b and c near optimum
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Fig. 4. Near the optimal values for the parameters, only b
and c show a structural correlation.
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