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Summary. The seqinR package for the R environment is a library of utilities
to retrieve and analyse biological sequences. It provides an interface between i)
the R language and environment for statistical computing and graphics and ii) the
ACNUC sequence retrieval system for nucleotide and protein sequence databases
such as GenBank, EMBL, SWISS-PROT. ACNUC is very efficient in providing
direct access to subsequences of biological interest (e.g. protein coding regions, tRNA
or rRNA coding regions) present in GenBank and in EMBL. Thanks to a simple
query language, it is then easy under R to select sequences of interest and then
use all the power of the R environment to analyze them. The ACNUC databases
can be locally installed but they are more conveniently accessed through a web
server to take advantage of centralized daily updates. The aim of this paper is to
provide a handout on basic sequence analyses under seqinR with a special focus on
multivariate methods.

1.1 Introduction

1.1.1 About R and CRAN

R [8, 20] is a libre language and environment for statistical computing and
graphics which provides a wide variety of statistical and graphical techniques:
linear and nonlinear modelling, statistical tests, time series analysis, classifica-
tion, clustering, etc. Please consult the R project homepage at http://www.R-
project.org/ for further information.

The Comprehensive R Archive Network, CRAN, is a network of servers
around the world that store identical, up-to-date, versions of code and doc-
umentation for R. At compilation time of this document, there were 42
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mirrors available from 20 countries. Please use the CRAN mirror near-
est to you to minimize network load, they are listed at http://cran.r-
project.org/mirrors.html.

1.1.2 About this document

In the terminology of the R project [8, 20], this document is a package vignette.
The examples given thereafter were run under R version 2.1.0, 2005-04-
18 on Sat Apr 30 20:14:48 2005 with Sweave [5]. The last compiled version
of this document is distributed along with the seqinR package in the /doc
folder. Once seqinR has been installed, the full path to the package is given
by the following R code :

.find.package("seqinr")

[1] "/Users/lobry/Library/R/library/seqinr"

1.1.3 About sequin and seqinR

Sequin is the well known sofware used to submit sequences to GenBank, se-
qinR has definitively no connection with sequin. seqinR is just a shortcut,
with no google hit, for ”Sequences in R”.

However, as a mnemotechnic tip, you may think about the seqinR package
as the Reciprocal function of sequin: with sequin you can submit sequences
to Genbank, with seqinR you can Retrieve sequences from Genbank. This
is a very good summary of a major functionality of the seqinR package: to
provide an efficient access to sequence databases under R.

1.1.4 About getting started

You need a computer connected to the Internet. First, install R on your com-
puter. There are distributions for Linux, Mac and Windows users on the
CRAN (http://cran.r-project.org). Then, install the ape, ade4 and se-
qinr packages. This can be done directly in an R console with for instance
the command install.packages("seqinr"). Last, load the seqinR package
with:

library(seqinr)

The command lseqinr() lists all what is defined in the package seqinR:

lseqinr()[1:9]

[1] "AAstat" "EXP" "GC"
[4] "GC2" "GC3" "SEQINR.UTIL"
[7] "a" "aaa" "as.SeqAcnucWeb"

We have printed here only the first 9 entries because they are too numerous.
To get help on a specific function, say aaa(), just prefix its name with a
question mark, as in ?aaa and press enter.



1 SeqinR 1.0-2 3

1.1.5 About running R in batch mode

Although R is usually run in an interactive mode, some data pre-processing
and analyses could be too long. You can run your R code in batch mode in a
shell with a command that typically looks like :

unix$ R CMD BATCH input.R results.out &

where input.R is a text file with the R code you want to run and
results.out a text file to store the outputs. Note that in batch mode, the
graphical user interface is not active so that some graphical devices (e.g. x11,
jpeg, png) are not available (see the R FAQ [4] for further details).

It’s worth noting that R uses the XDR representation of binary objects in
binary saved files, and these are portable across all R platforms. The save()
and load() functions are very efficient (because of their binary nature) for
saving and restoring any kind of R objects, in a platform independent way. To
give a striking real example, at a given time on a given platform, it was about 4
minutes long to import a numeric table with 70000 lines and 64 columns with
the defaults settings of the read.table() function. Turning it into binary
format, it was then about 8 seconds to restore it with the load() function. It
is therefore advisable in the input.R batch file to save important data or re-
sults (with something like save(mybigdata, file = "mybigdata.RData"))
so as to be able to restore them later efficiently in the interactive mode (with
something like load("mybigdata.RData")).

1.1.6 About the learning curve

If you are used to work with a purely graphical user interface, you may feel
frustrated in the beginning of the learning process because apparently simple
things are not so easily obtained (ce n’est que le premier pas qui coûte ! ). In
the long term, however, you are a winner for the following reasons.

Wheel (the): do not re-invent (there’s a patent [10] on it anyway). At the
compilation time of this document there were 507 contributed packages
available. Even if you don’t want to be spoon-feed à bouche ouverte, it’s
not a bad idea to look around there just to check what’s going on in your
own application field. Specialists all around the world are there.

Hotline: there is a very reactive discussion list to help you, just make sure to
read the posting guide there: http://www.R-project.org/posting-guide.
html before posting. Because of the high traffic on this list, we strongly
suggest to answer yes at the question Would you like to receive list mail
batched in a daily digest? when subscribing at https://stat.ethz.ch/
mailman/listinfo/r-help. Some bons mots from the list are archived in
the R fortunes package.

Automation: consider the 178 pages of figures in the additional data
file 1 (http://genomebiology.com/2002/3/10/research/0058/suppl/
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S1) from [17]. They were produced in part automatically (with a propri-
etary software that is no more maintained) and manually, involving a lot
of tedious and repetitive manipulations (such as italicising species names
by hand in subtitles). In few words, a waste of time. The advantage of the
R environment is that once you are happy with the outputs (including
graphical outputs) of an analysis for species x, it’s very easy to run the
same analysis on n species.

Reproducibility: if you do not consider the reproducibility of scientific re-
sults to be a serious problem in practice, then the paper by Jonathan Buck-
heit and David Donoho [2] is a must read. Molecular data are available in
public databases, this is a necessary but not sufficient condition to allow
for the reproducibility of results. Publishing the R source code that was
used in your analyses is a simple way to greatly facilitate the reproduction
of your results at the expense of no extra cost. At the expense of a little ex-
tra cost, you may consider to set up a RWeb server so that even the laziest
reviewer may reproduce your results just by clicking on the ”do it again”
button in his web browser (i.e. without installing any software on his com-
puter). For an example involving the seqinR pacakage, follow this link
http://pbil.univ-lyon1.fr/members/lobry/repro/bioinfo04/ to re-
produce on-line the results from [1].

Fine tuning: you have full control on everything, even the source code for
all functions is available. The following graph was specifically designed to
illustrate the first experimental evidence [21] that, on average, we have
also [A]=[T] and [C]=[G] in single-stranded DNA. These data from Char-
gaff’s lab give the base composition of the L (Ligth) strand for 7 bacterial
chromosomes.
example(chargaff)
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This is a very specialised graph. The filled areas correspond to non-allowed
values beause the sum of the four bases frequencies cannot exceed 100
%. The white areas correspond to possible values (more exactly to the
projection from R4 to the corresponding R2 planes of the region of allowed
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values). The lines correspond to the very small subset of allowed values for
which we have in addition [A]=[T] and [C]=[G]. Points represent observed
values in the 7 bacterial chromosomes. The whole graph is entirely defined
by the code given in the example of the chargaff dataset (?chargaff to
see it).
Another example of highly specialised graph is given by the function
tablecode() to display a genetic code as in textbooks :
tablecode(dia = F)

Genetic code 1 : standard

u u u Phe
u u c Phe
u u a Leu
u u g Leu

u c u Ser
u c c Ser
u c a Ser
u c g Ser

u a u Tyr
u a c Tyr
u a a Stp
u a g Stp

u g u Cys
u g c Cys
u g a Stp
u g g Trp

c u u Leu
c u c Leu
c u a Leu
c u g Leu

c c u Pro
c c c Pro
c c a Pro
c c g Pro

c a u His
c a c His
c a a Gln
c a g Gln

c g u Arg
c g c Arg
c g a Arg
c g g Arg

a u u Ile
a u c Ile
a u a Ile
a u g Met

a c u Thr
a c c Thr
a c a Thr
a c g Thr

a a u Asn
a a c Asn
a a a Lys
a a g Lys

a g u Ser
a g c Ser
a g a Arg
a g g Arg

g u u Val
g u c Val
g u a Val
g u g Val

g c u Ala
g c c Ala
g c a Ala
g c g Ala

g a u Asp
g a c Asp
g a a Glu
g a g Glu

g g u Gly
g g c Gly
g g a Gly
g g g Gly

It’s very convenient in practice to have a genetic code at hand, and more-
over here, all genetic code variants are available :
tablecode(numcode = 2, dia = F)

Genetic code 2 : vertebrate.mitochondrial

u u u Phe
u u c Phe
u u a Leu
u u g Leu

u c u Ser
u c c Ser
u c a Ser
u c g Ser

u a u Tyr
u a c Tyr
u a a Stp
u a g Stp

u g u Cys
u g c Cys
u g a Trp
u g g Trp

c u u Leu
c u c Leu
c u a Leu
c u g Leu

c c u Pro
c c c Pro
c c a Pro
c c g Pro

c a u His
c a c His
c a a Gln
c a g Gln

c g u Arg
c g c Arg
c g a Arg
c g g Arg

a u u Ile
a u c Ile
a u a Met
a u g Met

a c u Thr
a c c Thr
a c a Thr
a c g Thr

a a u Asn
a a c Asn
a a a Lys
a a g Lys

a g u Ser
a g c Ser
a g a Stp
a g g Stp

g u u Val
g u c Val
g u a Val
g u g Val

g c u Ala
g c c Ala
g c a Ala
g c g Ala

g a u Asp
g a c Asp
g a a Glu
g a g Glu

g g u Gly
g g c Gly
g g a Gly
g g g Gly
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Data as fast moving targets: in research area, data are not always stable.
compare the following graph :
dbg <- get.db.growth()
plot(x = dbg$date, y = log10(dbg$Nucl), las = 1,

main = "The growth of DNA databases", xlab = "Year",
ylab = "Log10 number of nucleotides")
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with figure 1 in [14], data have been updated since then but the same
R code was used to produce the figure, ensuring an automatic update.
For LATEX users, it’s worth mentioning the fantastic tool contributed by
Friedrich Leish [5] called Sweave() that allows for the automatic inser-
tion of R outputs (including graphics) in a LATEX document. In the same
spirit, there is a package called xtable to coerce R data into LATEX tables,
for instance table 1.1 here was produced this way, enforcing a complete
coherence between the R code example and the table.

1.2 How to get sequence data

1.2.1 Importing raw sequence data from fasta files

The fasta format is very simple and widely used for simple import of biological
sequences. It begins with a single-line description starting with a character >,
followed by lines of sequence data of maximum 80 character each. Examples of
files in fasta format are distributed with the seqinR package in the sequences
directory:

list.files(path = system.file("sequences", package = "seqinr"),
pattern = ".fasta")

[1] "bb.fasta" "ct.fasta" "malM.fasta" "seqAA.fasta"

The function read.fasta() imports sequences from fasta files into your
workspace, for example:



1 SeqinR 1.0-2 7

seqaa <- read.fasta(File = system.file("sequences/seqAA.fasta",
package = "seqinr"), seqtype = "AA")

seqaa

$A06852
[1] "M" "P" "R" "L" "F" "S" "Y" "L" "L" "G" "V" "W" "L"
[14] "L" "L" "S" "Q" "L" "P" "R" "E" "I" "P" "G" "Q" "S"
[27] "T" "N" "D" "F" "I" "K" "A" "C" "G" "R" "E" "L" "V"
[40] "R" "L" "W" "V" "E" "I" "C" "G" "S" "V" "S" "W" "G"
[53] "R" "T" "A" "L" "S" "L" "E" "E" "P" "Q" "L" "E" "T"
[66] "G" "P" "P" "A" "E" "T" "M" "P" "S" "S" "I" "T" "K"
[79] "D" "A" "E" "I" "L" "K" "M" "M" "L" "E" "F" "V" "P"
[92] "N" "L" "P" "Q" "E" "L" "K" "A" "T" "L" "S" "E" "R"
[105] "Q" "P" "S" "L" "R" "E" "L" "Q" "Q" "S" "A" "S" "K"
[118] "D" "S" "N" "L" "N" "F" "E" "E" "F" "K" "K" "I" "I"
[131] "L" "N" "R" "Q" "N" "E" "A" "E" "D" "K" "S" "L" "L"
[144] "E" "L" "K" "N" "L" "G" "L" "D" "K" "H" "S" "R" "K"
[157] "K" "R" "L" "F" "R" "M" "T" "L" "S" "E" "K" "C" "C"
[170] "Q" "V" "G" "C" "I" "R" "K" "D" "I" "A" "R" "L" "C"
[183] "*"
attr(,"name")
[1] "A06852"
attr(,"Annot")
[1] ">A06852 183 residues"
attr(,"class")
[1] "SeqFastaAA"

A more consequent example is given in the fasta file ct.fasta which con-
tains the complete genome of Chlamydia trachomatis that was used in [6].
You should be able to reproduce figure 1b from this paper with the following
code:

out <- oriloc(seq.fasta = system.file("sequences/ct.fasta",
package = "seqinr"), g2.coord = system.file("sequences/ct.coord",
package = "seqinr"), oldoriloc = TRUE)

plot(out$st, out$sk/1000, type = "l", xlab = "Map position in Kb",
ylab = "Cumulated composite skew in Kb", main = "Chlamydia trachomatis complete genome",
las = 1)

abline(h = 0, lty = 2)
text(400, -4, "Terminus")
text(850, 9, "Origin")
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Note that the algorithm has been improved since then and that it’s more
advisable to use the default option oldoriloc = FALSE if you are inter-
ested in the prediction of origins and terminus of replication from base com-
position biases (more on this at http://pbil.univ-lyon1.fr/software/
oriloc.html). See also [18] for a recent review on this topic.

1.2.2 Importing aligned sequence data

Aligned sequence data are very important in evolutionary studies, in this
representation all vertically aligned positions are supposed to be homologous,
that is sharing a common ancestor. This is a mandatory starting point for
comparative studies. There is a function in seqinR called read.alignment()
to read aligned sequences data from various formats (mase, clustal, phylip,
fasta or msf) produced by common external programs for multiple sequence
alignment.

Let’s give an example. The gene coding for the mitochondrial cytochrome
oxidase I is essential and therefore often used in phylogenetic studies because
of its ubiquitous nature. Download on your local computer the following two
sample tests of aligned sequences of this gene (extracted from ParaFit [12]),
this can be done directly at R prompt in the R console with :

download.file(url = "http://pbil.univ-lyon1.fr/software/SeqinR/Datasets/louse.fasta",
destfile = "louse.fasta")
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download.file(url = "http://pbil.univ-lyon1.fr/software/SeqinR/Datasets/gopher.fasta",
destfile = "gopher.fasta")

The 8 genes of the first sample are from various species of louse (insects
parasitics on warm-blooded animals) and the 8 genes of the second sample
are from their corresponding gopher hosts (a subset of rodents) :
l.names <- readLines("http://pbil.univ-lyon1.fr/software/SeqinR/Datasets/louse.names")
l.names

[1] "G.chapini " "G.cherriei " "G.costaric " "G.ewingi "
[5] "G.geomydis " "G.oklahome " "G.panamens " "G.setzeri "

g.names <- readLines("http://pbil.univ-lyon1.fr/software/SeqinR/Datasets/gopher.names")
g.names

[1] "G.brevicep " "O.cavator " "O.cherriei " "O.underwoo "
[5] "O.hispidus " "G.burs1 " "G.burs2 " "O.heterodu"

louse <- read.alignment("louse.fasta", format = "fasta")
gopher <- read.alignment("gopher.fasta", format = "fasta")

The aligned sequences are now imported in your R environment. SeqinR
has very few methods devoted to phylogenetic analyses but many are available
in the ape package. This allows for a very fine tuning of the graphical outputs
of the analyses thanks to the power of the R facilities. For instance, a natu-
ral question here would be to compare the topology of the tree of the hosts
and their parasites to see if we have congruence between host and parasite
evolution. In other words, we want to display two phylogenetic trees face to
face. This would be tedious with a program devoted to the display of a single
phylogenetic tree at time, involving a lot of manual copy/paste operations,
hard to reproduce, and then boring to maintain with data updates.

How does it looks under R? First, we need to infer the tree topologies from
data. Let’s try as an illustration the famous neighbor-joining tree estimation
of Saitou and Nei [22] with Jukes and Cantor’s correction [9] for multiple
substitutions.
library(ape)
louse.JC <- dist.dna(x = lapply(louse$seq, s2c),

model = "JC69")
gopher.JC <- dist.dna(x = lapply(gopher$seq, s2c),

model = "JC69")
l <- nj(louse.JC)
g <- nj(gopher.JC)

Now we have an estimation for illustrative purposes of the tree topology
for the parasite and their hosts. We want to plot the two trees face to face,
and for this we must change R graphical parameters. The first thing to do is
to save the current graphical parameter settings so as to be able to restore
them later:
op <- par(no.readonly = TRUE)

The meaning of the no.readonly = TRUE option here is that graphical
parameters are not all settable, we just want to save those we can change at
will. Now, we can play with graphics :
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g$tip.label <- paste(1:8, g.names)
l$tip.label <- paste(1:8, l.names)
layout(matrix(data = 1:2, nrow = 1, ncol = 2),

width = c(1.4, 1))
par(mar = c(2, 1, 2, 1))
plot(g, adj = 0.8, cex = 1.4, use.edge.length = FALSE,

main = "gopher (host)", cex.main = 2)
plot(l, direction = "l", use.edge.length = FALSE,

cex = 1.4, main = "louse (parasite)", cex.main = 2)

gopher (host)

1 G.brevicep 

2 O.cavator 

3 O.cherriei 

4 O.underwoo 

5 O.hispidus 

6 G.burs1 

7 G.burs2 

8 O.heterodu

louse (parasite)

1 G.chapini 

2 G.cherriei 

3 G.costaric 

4 G.ewingi  

5 G.geomydis 

6 G.oklahome 

7 G.panamens 

8 G.setzeri  

We now restore the old graphical settings that were previously saved:

par(op)

OK, this may look a little bit obscure if you are not fluent in programming,
but please try the following experiment. In your current working directory,
that is in the directory given by the getwd() command, create a text file
called essai.r with your favourite text editor, and copy/paste the previous
R commands, that is :

l.names <- readLines("http://pbil.univ-lyon1.fr/software/SeqinR/Datasets/louse.names")
g.names <- readLines("http://pbil.univ-lyon1.fr/software/SeqinR/Datasets/gopher.names")
louse <- read.alignment("louse.fasta",format="fasta")
gopher <- read.alignment("gopher.fasta",format="fasta")
louse.JC <- dist.dna(x = lapply(louse$seq, s2c), model = "JC69" )
gopher.JC <- dist.dna(x = lapply(gopher$seq, s2c), model = "JC69" )
l <- nj(louse.JC)
g <- nj(gopher.JC)
g$tip.label <- paste(1:8, g.names)
l$tip.label <- paste(1:8, l.names)
layout(matrix(data = 1:2, nrow = 1, ncol = 2), width=c(1.4, 1))
par(mar=c(2,1,2,1))
plot(g, adj = 0.8, cex = 1.4, use.edge.length=FALSE,

main = "gopher (host)", cex.main = 2)
plot(l,direction="l", use.edge.length=FALSE, cex = 1.4,

main = "louse (parasite)", cex.main = 2)

Make sure that your text has been saved and then go back to R console
to enter the command :

source("essai.r")
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This should reproduce the previous face-to-face phylogenetic trees in your
R graphical device (we have assumed here that the files louse.fasta and
gopher.fasta are present in your local working directory). Now, your boss is
unhappy with working with the Jukes and Cantor’s model [9] and wants you
to use the Kimura’s 2-parameters distance [11] instead. Go back to the text
editor to change model = "JC69" by model = "K80", save the file, and in the
R console source("essai.r") again, you should obtain the following graph :

gopher (host)

1 G.brevicep 

2 O.cavator 

3 O.cherriei 

4 O.underwoo 

5 O.hispidus 

6 G.burs1 

7 G.burs2 

8 O.heterodu

louse (parasite)

1 G.chapini 

2 G.cherriei 

3 G.costaric 

4 G.ewingi  

5 G.geomydis 

6 G.oklahome 

7 G.panamens 

8 G.setzeri  

Nice congruence, isn’t it? Now, something even worst, there was a error
in the aligned sequence set : the first base in the first sequence in the file
louse.fasta is not a C but a T. Open the louse.fasta in your text editor,
fix the error, go back to the R console to source("essai.r") again. That’s
all, your graph is now consistent with the updated dataset.

1.2.3 Complex queries in ACNUC databases

As a rule of thumb, after compression one nucleotide needs one octet of disk
space storage (because you need also the annotations corresponding to the
sequences), so that most likely you won’t have enough space on your computer
to work with a local copy of a complete DNA database. The idea is to import
under R only the subset of sequences you are interested in. This is done in
three steps:

1. Select the database you want to work with the choosebank() function.
This function initiates remote access to an acnuc database. Called without
arguments, choosebank() gives the list of available databases:
choosebank()

[1] "genbank" "embl" "emblwgs" "swissprot"
[5] "ensembl" "emglib" "nrsub" "nbrf"
[9] "hobacnucl" "hobacprot" "hovernucl" "hoverprot"
[13] "hogennucl" "hogenprot" "hoverclnu" "hoverclpr"
[17] "HAMAPnucl" "HAMAPprot" "hoppsigen" "nurebnucl"
[21] "nurebprot" "taxobacgen" "greview"
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If you want to work with GenBank, for instance, you call choosebank()
with "genbank" as an argument and store the result in a variable in the
workspace:
mybank <- choosebank("genbank")
str(mybank)

List of 5
$ socket :Classes 'sockconn', 'connection' int 8
$ bankname: chr "genbank"
$ totseqs : chr "46533114"
$ totspecs: chr "292484"
$ totkeys : chr "1306555"

The list returned by choosebank() here means that in the database called
genbank at the compilation time of this document there were 46,533,114
sequences from 292,484 species and a total of 1,306,555 keywords.
For the following, the most important item is the first one of the list,
mybank$socket, which contains all the required details of the socket con-
nection.

2. Then, you have to say what you want, that is to compose a query to
select the subset of sequences you are interested in. The way to do this
is documented under ?query, we just give here a simple example. In the
query below, we want to select all the coding sequences (t=cds) from cat
(sp=felis catus) that are not (et no) partial sequences (k=partial).
We want the result to be stored in an object called list1.
query(socket = mybank$socket, listname = "list1",

query = "sp=felis catus et t=cds et no k=partial",
invisible = TRUE)

Now, there is in the workspace an object called list1, which does not
contain the sequences themselves but the sequence names that fit the
query. They are stored in the req component of the object, let’s see the
first ten of them:
sapply(list1$req[1:10], getName)

[1] "AB000483.PE1" "AB000484.PE1" "AB000485.PE1"
[4] "AB004237" "AB004238" "AB009279.PE1"
[7] "AB009280.PE1" "AB010872.UGT1A1" "AB011965.SDF-1A"
[10] "AB011966.SDF-1B"

The first sequence that fit our request is AB000483.PE1, the second one
is AB000484.PE1, and so on. Note that the sequence name may have an
extension, this corresponds to subsequences, a specificity of the ACNUC
system that allows to handle easily a subsequence with a biological mean-
ing, typically a gene.
Note that the component call of list1 keeps a trace of the way we
have selected the sequences. At this stage you can quit your R session
saving the workspace image. The next time an R session is opened with
the workspace image restored, there will be an object called list1, and
looking into its call component will tell you that it contains the names
of complete coding sequences from Felis catus.
In practice, queries for sequences are rarely done in one step and are more
likely to be the result of an iterative, progressively refining, process. An
important point is that a list of sequences can be re-used. For instance,
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we can re-use list1 get only the list of sequences that were published in
2004:
query(socket = mybank$socket, listname = "list2",

query = "list1 et y=2004", invisible = TRUE)
length(list2$req)

[1] 40

Hence, there were 40 complete coding sequences in 2004 for Felis catus in
GenBank.

3. The sequence itself is obtained with the function getSequence(). For
example, the first 50 nucleotides of the first sequence of our request are:
myseq <- getSequence(list1$req[[1]])
myseq[1:50]

[1] "a" "t" "g" "a" "a" "t" "c" "a" "a" "g" "g" "a" "g" "c"
[15] "c" "g" "t" "t" "t" "t" "t" "a" "g" "g" "c" "a" "c" "c"
[29] "t" "g" "c" "t" "c" "c" "t" "g" "g" "t" "g" "c" "t" "g"
[43] "c" "a" "g" "c" "t" "g" "g" "t"

They can also be coerced as string of character with the function c2s():
c2s(myseq[1:50])

[1] "atgaatcaaggagccgtttttaggcacctgctcctggtgctgcagctggt"

Note that what is done by getSequence() is much more complex than
a substring extraction because subsequences of biological interest are not
necessarily contiguous or even on the same DNA strand. Consider for
instance the following coding sequence from sequence AE003734:

AE003734.PE35 Location/Qualifiers (length=1833 bp)
CDS join(complement(162997..163210),

complement(162780..162919),complement(161238..162090),
146568..146732,146806..147266)
/gene="mod(mdg4)"
/locus_tag="CG32491"
/note="CG32491 gene product from transcript CG32491-RT;
trans-splicing"

To get the coding sequence manually you would have join 5 different pieces
from AE003734 and some of them are in the complementary strand. With
getSequence() you don’t have to think about this:
query(socket = mybank$socket, listname = "list3",

query = "N=AE003734.PE35", invisible = TRUE)
transspliced <- getSequence(list3$req[[1]])
tsaa <- getTrans(transspliced)
tsaa[1:50]

[1] "M" "A" "D" "D" "E" "Q" "F" "S" "L" "C" "W" "N" "N" "F"
[15] "N" "T" "N" "L" "S" "A" "G" "F" "H" "E" "S" "L" "C" "R"
[29] "G" "D" "L" "V" "D" "V" "S" "L" "A" "A" "E" "G" "Q" "I"
[43] "V" "K" "A" "H" "R" "L" "V" "L"

1.3 How to deal with sequence

1.3.1 Sequence classes

There are at present three classes of sequences, depending on the way they
were obtained:
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� seqFasta is the class for the sequences that were imported from a fasta
file

� seqAcnucWeb is the class for the sequences coming from an ACNUC
database server

� seqFrag is the class for the sequences that are fragments of other sequences

1.3.2 Generic methods for sequences

All sequence classes are sharing a common interface, so that there are very few
method names we have to remember. In addition, all classes have their specific
as.ClassName method that return an instance of the class, and is.ClassName
method to check whether an object belongs or not to the class. Available
methods are:

Methods Result Type of result
getFrag a sequence fragment a sequence fragment

getSequence the sequence vector of characters
getName the name of a sequence string
getLength the length of a sequence numeric vector
getTrans translation into amino-acids vector of characters
getAnnot sequence annotations vector of string

getLocationposition of a Sequence on its parent sequencelist of numeric vector

1.3.3 Internal representation of sequences

The current mode of sequence storage is done with vectors of characters in-
stead of strings. This is very convenient for the user because all R tools to
manipulate vectors are immediatly available. The price to pay is that this stor-
age mode is extremly expensive in terms of memory. They are two utilities
called s2c() and c2s() that allows to convert strings into vector of characters,
and vice versa, respectively.

Sequences as vectors of characters

In the vectorial representation mode, all the very convenient R tools for in-
dexing vectors are at hand.

1. Vectors can be indexed by a vector of positive integers saying which ele-
ments are to be selected. As we have already seen, the first 50 elements
of a sequence are easily extracted thanks to the binary operator from:to,
as in:
1:50

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
[19] 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
[37] 37 38 39 40 41 42 43 44 45 46 47 48 49 50

myseq[1:50]
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[1] "a" "t" "g" "a" "a" "t" "c" "a" "a" "g" "g" "a" "g" "c"
[15] "c" "g" "t" "t" "t" "t" "t" "a" "g" "g" "c" "a" "c" "c"
[29] "t" "g" "c" "t" "c" "c" "t" "g" "g" "t" "g" "c" "t" "g"
[43] "c" "a" "g" "c" "t" "g" "g" "t"

The seq() function allows to build more complexe integer vectors. For
instance in coding sequences it is very common to focus on third codon
positions where selection is weak. Let’s extract bases from third codon
positions:
tcp <- seq(from = 3, to = length(myseq), by = 3)
tcp[1:10]

[1] 3 6 9 12 15 18 21 24 27 30

myseqtcp <- myseq[tcp]
myseqtcp[1:10]

[1] "g" "t" "a" "a" "c" "t" "t" "g" "c" "g"

2. Vectors can also be indexed by a vector of negative integers saying which
elements have to be removed. For instance, if we want to keep first and
second codon positions, the easiest way is to remove third codon positions:
-tcp[1:10]

[1] -3 -6 -9 -12 -15 -18 -21 -24 -27 -30

myseqfscp <- myseq[-tcp]
myseqfscp[1:10]

[1] "a" "t" "a" "a" "c" "a" "g" "g" "g" "c"

3. Vectors are also indexable by a vector of logicals whose TRUE values say
which elements to keep. Here is a different way to extract all third coding
positions from our sequence. First, we define a vector of three logicals with
only the last one true:
ind <- c(F, F, T)
ind

[1] FALSE FALSE TRUE

This vector seems too short for our purpose because our sequence is much
more longer with its 1425 bases. But under R vectors are automatically
recycled when they are not long enough:
(1:30)[ind]

[1] 3 6 9 12 15 18 21 24 27 30

myseqtcp2 <- myseq[ind]

The result should be the same as previously:
identical(myseqtcp, myseqtcp2)

[1] TRUE

This recycling rule is extremely convenient in practice but may have sur-
prising effects if you assume (incorrectly) that there is a stringent dimen-
sion control for R vectors as in linear algebra.

Another advantage of working with vector of characters is that most R
functions are vectorized so that many things can be done without explicit
looping. Let’s give some very simple examples:

tota <- sum(myseq == "a")

The total number of a in our sequence is 350. Let’s compare graphically
the different base counts in our sequence :
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basecount <- table(myseq)
myseqname <- getName(list1$req[[1]])
dotchart(basecount, xlim = c(0, max(basecount)),

pch = 19, main = paste("Base count in", myseqname))
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dinuclcount <- count(myseq, 2)
dotchart(dinuclcount[order(dinuclcount)], xlim = c(0,

max(dinuclcount)), pch = 19, main = paste("Dinucleotide count in",
myseqname))
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codonusage <- uco(myseq)
dotchart.uco(codonusage, main = paste("Codon usage in",

myseqname))
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Sequences as strings

If you are interested in (fuzzy) pattern matching, then it is advisable to work
with sequence as strings to take advantage of regular expression implemented
in R. The function words.pos() returns the positions of all occurrences of
a given regular expression. Let’s suppose we want to know where are the
trinucleotides ”cgt” in a sequence, that is the fragment CpGpT in the direct
strand:

mystring <- c2s(myseq)
words.pos("cgt", mystring)
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[1] 15 854 909 919 987 1248

We can also look for the fragment CpGpTpY to illustrate fuzzy matching
because Y (IUPAC code for pyrimidine) stands C or T:

words.pos("cgt[ct]", mystring)

[1] 15 909 919

To look for all CpC dinucleotides separated by 3 or 4 bases:
words.pos("cc.{3,4}cc", mystring)

[1] 27 121 152 278 431 437 471 476 477 492 555
[12] 618 722 788 809 885 886 939 1043 1046 1190 1220
[23] 1263

Virtually any pattern is easily encoded with a regular expression. This is
especially useful at the protein level because many functions can be attributed
to short linear motifs.

1.4 Multivariate analyses

1.4.1 Correspondence analysis

This is the most popular multivariate data analysis technique for amino-acid
and codon count tables, its application, however, is not without pitfalls [19].
Its primary goal is to transform a table of counts into a graphical display,
in which each gene (or protein) and each codon (or amino-acid) is depicted
as a point. Correspondence analysis (CA) may be defined as a special case of
principal components analysis (PCA) with a different underlying metrics. The
interest of the metrics in CA, that is the way we measure the distance between
two individuals, is illustrated bellow with a very simple example (Table 1.1
inspired from [3]) with only three proteins having only three amino-acids, so
that we can represent exactly on a map the consequences of the metric choice.

df <- data.frame(matrix(c(130, 60, 60, 70, 40,
35, 0, 0, 5), nrow = 3))

names(df) <- c("Ala", "Val", "Cys")
df

Ala Val Cys
1 130 70 0
2 60 40 0
3 60 35 5

Let’s first use the regular Euclidian metrics between two proteins i and i′,

d2(i, i′) =
J∑

j=1

(nij − ni′j)2 (1.1)

to visualize this small data set:
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Ala Val Cys

1 130 70 0
2 60 40 0
3 60 35 5

Table 1.1. A very simple example of amino-acid counts in three proteins.

library(ade4)
pco <- dudi.pco(dist(df), scann = F, nf = 2)
myplot <- function(res, ...) {

plot(res$li[, 1], res$li[, 2], ...)
text(x = res$li[, 1], y = res$li[, 2], labels = 1:3,

pos = ifelse(res$li[, 2] < 0, 1, 3))
perm <- c(3, 1, 2)
lines(c(res$li[, 1], res$li[perm, 1]), c(res$li[,

2], res$li[perm, 2]))
}
myplot(pco, main = "Euclidian distance", asp = 1,

pch = 19, xlab = "", ylab = "", las = 1)
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From this point of view, the first individual is far away from the two others.
But thinking about it, this is a rather trivial effect of protein size:

rowSums(df)

1 2 3
200 100 100
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With 200 amino-acids, the first protein is two times bigger than the others
so that when computing the Euclidian distance (1.1) its nij entries are on
average bigger, sending it away from the others. To get rid of this trivial
effect, the first obvious idea is to divide counts by protein lengths so as to
work with protein profiles. The corresponding distance is,

d2(i, i′) =
J∑

j=1

(
nij

ni•
− ni′j

ni′•
)2 (1.2)

where ni• and ni′• are the total number of amino-acids in protein i and
i′, respectively.

df1 <- df/rowSums(df)
df1

Ala Val Cys
1 0.65 0.35 0.00
2 0.60 0.40 0.00
3 0.60 0.35 0.05

pco1 <- dudi.pco(dist(df1), scann = F, nf = 2)
myplot(pco1, main = "Euclidian distance on protein profiles",

asp = 1, pch = 19, xlab = "", ylab = "", ylim = range(pco1$li[,
2]) * 1.2)
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The pattern is now completely different with the three protein equally
spaced. This is normal because in terms of relative amino-acid composition
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they are all differing two-by-two by 5% at the level of two amino-acids only.
We have clearly removed the trivial protein size effect, but this is still not
completely satisfactory. The proteins are differing by 5% for all amino-acids
but the situation is somewhat different for Cys because this amino-acid is very
rare. A difference of 5% for a rare amino-acid has not the same significance
than a difference of 5% for a common amino-acid such as Ala in our example.
To cope with this, CA make use of a variance-standardizing technique to
compensate for the larger variance in high frequencies and the smaller variance
in low frequencies. This is achieved with the use of the chi-square distance
(χ2) which differs from the previous Euclidean distance on profiles (1.2) in
that each square is weighted by the inverse of the frequency corresponding to
each term,

d2(i, i′) =
J∑

j=1

1
n•j

(
nij

ni•
− ni′j

ni′•
)2 (1.3)

where n•j is the total number of amino-acid of kind j. With this point of
view, the map is now like this:

coa <- dudi.coa(df, scann = FALSE, nf = 2)
myplot(coa, main = expression(paste(chi^2, " distance")),

asp = 1, pch = 19, xlab = "", ylab = "")
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The pattern is completely different with now protein number 3 which is
far away from the others because it is enriched in the rare amino-acid Cys as
compared to others.

The purpose of this small example was to demonstrates that the metric
choice is not without dramatic effects on the visualisation of data. Depending
on your objectives, you may agree or disagree with the χ2 metric choice, that’s
not a problem, the important point is that you should be aware that there is
an underlying model there, chacun a son goût ou chacun à son goût, it’s up
to you.

Now, if you agree with the χ2 metric choice, there’s a nice representation
that may help you for the interpretation of results. This is a kind of ”biplot”
representation in which the lines and columns of the dataset are simultane-
ously represented, in the right way, that is as a graphical translation of a
mathematical theorem, but let’s see how does it look like in practice:
scatter(coa, clab.col = 0.8, clab.row = 0.8, posi = "none")

 d = 0.5 

 1 

 2 
 3 

 Ala 

 Val 
 Cys 

What is obvious is that the Cys content has a major effect on protein
variability here, no scoop. Please note how the information is well summarised
here: protein number 3 differs because it’s enriched in in Cys ; protein number
1 and 2 are almost the same but there is a small trend protein number 1 to be
enriched in Ala. As compared to to table 1.1 this graph is of poor information
here, so let’s try a more big-rooom-sized example (with 20 columns so as to
illustrate the dimension reduction technique).
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Data are from [16], a sample of the proteome of Escherichia coli. According
to the title of this paper, the most important factor foe the between-protein
variability is hydrophilic - hydrophobic gradient. Let’s try to reproduce this
assertion :

download.file(url = "ftp://pbil.univ-lyon1.fr/pub/datasets/NAR94/data.txt",
destfile = "data.txt")

ec <- read.table(file = "data.txt", header = TRUE,
row.names = 1)

ec.coa <- dudi.coa(ec, scann = FALSE, nf = 1)
F1 <- ec.coa$li[, 1]
hist(F1, proba = TRUE, xlab = "First factor for amino-acid variability",

col = grey(0.8), border = grey(0.5), las = 1,
ylim = c(0, 6), main = "Protein distribution on first factor")

lines(density(F1, adjust = 0.5), lwd = 2)
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1.4.2 Synonymous and non-synonymous analyses

Genetic codes are surjective applications from the set codons (n = 64) into
the set of amino-acids (n = 20) :
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The surjective nature of genetic codes
Genetic code number 1

Adapted from insert 2 in Lobry & Chessel (2003) JAG 44:235

gcagccgcggctaga
agg

cga
cgc

cgg
cgt

aac
aat
gac

gat

tgc

tgt

caa
cag

gaa

gag
gga

ggc
ggg

ggt
cac

cat
ata

atc
attctactcctgcttttattgaaa

aag
atg

ttc
ttt

cca
ccc

ccg
cct

agc
agt

tca

tcc

tcg
tct

taa

tag
tga
aca

acc
acg

act
tgg

tac
tat

gtagtcgtg gtt

AlaArg
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Phe
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Two codons encoding the same amino-acid are said synonymous while two
codons encoding a different amino-acid are said non-synonymous. The distinc-
tion between the synonymous and non-synonymous level are very important in
evolutionary studies because most of the selective pressure is expected to work
at the non-synonymous level, because the amino-acids are the components of
the proteins, and therefore more likely to be subject to selection.

Ks and Ka are an estimation of the number of substitutions per synony-
mous site and per non-synonymous site, respectively, between two protein-
coding genes [13]. The Ka

Ks
ratio is used as tool to evaluate selective pressure

(see [7] for a nice back to basics). Let’s give a simple illustration with three or-
thologous genes of the thioredoxin familiy from Homo sapiens, Mus musculus,
and Rattus norvegicus species:

download.file(url = "http://pbil.univ-lyon1.fr/software/SeqinR/Datasets/ortho.fasta",
destfile = "ortho.fasta")

ortho <- read.alignment("ortho.fasta", format = "fasta")
kaks.ortho <- kaks(ortho)
kaks.ortho$ka/kaks.ortho$ks
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AK002358.PE1 HSU78678.PE1
HSU78678.PE1 NaN
RNU73525.PE1 NaN NaN

The Ka

Ks
ratios are less than 1, suggesting a selective pressure on those

proteins during evolution.
For transversal studies (i.e. codon usage studies in a genome at the time it

was sequenced) there is little doubt that the strong requirement to distinguish
between synonymous and an non-synonymous variability was the source of
many mistakes [19]. We have just shown here with a scholarship example
that the metric choice is not neutral. If you consider that the χ2 metric is
not too bad, with respect to your objectives, and that you want to quantify
the synonymous and an non-synonymous variability, please consider reading
this paper [15], and follow this link http://pbil.univ-lyon1.fr/members/
lobry/repro/jag03/ for on-line reproducibility.

1.5 Acknowledgments

Please enter contibutors() in your R console.
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