Wellcome trust advanced course "Molecular Evolution"

Source of errors, solutions, method comparisons

Manolo Gouy CNRS - Université de Lyon

Hinxton 29 March - 9 April 2009

The Long Branch Attraction artefact

Phylogenetic analysis of eukaryotic small subunit ribosomal RNA

Phylogenetic analysis of RNA polymerase II large subunit

Hirt et al. (1999) Proc.Natl.Acad.Sci. USA 96:580

Is it possible to reconcile ribosomal RNAs and RNA polymerases?

The Long Branch Attraction artifact

[Felsenstein (1978) Syst Zool 27:401]

Philippe et al. (2000) Proc. Royal Soc. Lond. B 267:1213.

Van de Peer et al. (2000) Gene 246:1

The effect of the evolutionary model:

more realistic models are better

Mammalian phylogeny

Laurasiatheria

Euarchontoglires

Xenarthra

Afrotheria

Boreoeutheria

Resolution of the Early Placental Mammal Radiation Using Bayesian Phylogenetics

William J. Murphy,¹* Eduardo Eizirik,^{1,2}* Stephen J. O'Brien,¹† Ole Madsen,³ Mark Scally,^{4,5} Christophe J. Douady,^{4,5} Marsupialia Emma Teeling,^{4,5} Oliver A. Ryder,⁶ Michael J. Stanhope,^{5,7} Wilfried W. de Jong,^{3,8} Mark S. Springer⁴†

Phylogenetic analysis of LSU rRNA

Giardia

Desulfurococcus

Archaeoglobus

Methanobacterium

Peyretaillade et coll. (1998) Nucleic Acids Res 26:3513

The taxon sampling effect

"Molecular phylogeny of the kingdoms Animalia, Plantae, and Fungi" Gouy & Li (1989)

FIG. 2.—Unrooted phylogenetic tree inferred from rRNA sequences. A total of 2,971 sites were analyzed.

Early analysis with both few genes and few taxa.

"The Opisthokonta and the Ecdysozoa May Not Be Clades: Stronger Support for the Grouping of Plant and Animal than for Animal and Fungi and Stronger Support for the Coelomata than Ecdysozoa"

Phylogenetic trees from 780 single-gene families from 10 completed genomes and amalgamated into a single supertree. The phylogenetic tree that achieved the best score in 24 of the 26 analyses.

MOLECULAR BIOLOGY

AND EVOLUTION

672

Metazoan phylogeny

Rejection of the acoelomate, pseudocoelomate, coelomate concept; division lophotrochozoa / ecdysozoa

- Bilataria vs. cnidaria, porifera et ctenophora

Protostomes vs.
 Deutérostomes

Vol 452 10 April 2008 doi:10.1038/nature06614

LETTERS

nature

Broad phylogenomic sampling improves resolution of the animal tree of life

Deep phylogeny is difficult. It requires many genes and many taxa. Comb-like trees may be indicative of LBA artefact.

Resolving the phylogeny of a newly sequenced clade is difficult if it is not closely related to something already well placed.

Sampling several members of a new clade is very beneficial: slowly evolving lineages can be identified.

Accounting for across-sites rate variation is necessary in most cases (except for synonymous sites of protein-coding sequences).

In prokaryotes, horizontal transfers can deeply disconnect gene trees and species trees.

Comparison of method performances by sequence and tree simulation experiments

Guindon & Gascuel (2003) Syst. Biol. 52:696–704

Comparison of running times for various tree-building algorithms

TABLE 1. Average run times for various methods. The computing times were measured on a 1.8-GHz (1 Go RAM) PC with Linux. For PHYML, the number in parentheses is the average number of refinement stages.

Method	Simulations		Real data	
	40 taxa (500 bp)	100 taxa (500 bp)	218 taxa (4,182 bp)	500 taxa (1,428 bp)
DNADIST+ NJ/BIONJ	0.3 sec	2.3 sec	50 sec	2 min, 19 sec
DNADIST+ Weighbor	1.5 sec	22 sec	4 min, 52 sec	58 min, 40 sec
DNAPARS	0.5 sec	6 sec	4 min, 4 sec	13 min, 12 sec
PAUP*	3 min, 21 sec	1 hr, 4 min		-
$PAUP^* + NJ$	1 min, 10 sec	22 min	10 hr, 50 min	
MrBayes	2 min, 6 sec	32 min, 37 sec	·	
fastDNAml	1 min, 13 sec	26 min, 31 sec		
NJML	15 sec	6 min, 4 sec		
MetaPIGA	21 sec	3 min, 27 sec	4 hr, 45 min	9 hr, 4 min
MetaPIGA+ NJ	6 sec	23 sec	1 hr, 40 min	3 hr
PHYML	2.7 sec (6.4)	12 sec (8.3)	8 min, 13 sec (15)	11 min, 59 sec (13)

distance < parsimony ~ PHYML << Bayesian < classical ML NJ DNAPARS PHYML MrBayes fastDNAml,PAUP*</pre>

Guindon & Gascuel (2003) Syst. Biol. 52:696–704