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Markovian models of DNA sequence evolution

The evolution of a sequence site is modelled as follows:

there are substitution rates i->j, per time unit, that apply at any
time during the evolutionary process.

Matrix M of instantaneous substitution rates:

m,; = rate of i—>] substitution per
time unit.
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A, are such that column sums = 0
(A; = total mutation rate of i )

M = c Im m 2 m Here, M follows the convention
AC | TTTTC ¢ GC 1 m_yum ow- Lhe other convention
G Ny M4y column 19 often used in the
Mag | My | Mes G literature.

This most general model contains 12 free parameters. 2




Markovian models of DNA sequence evolution (continued)

Any matrix M of instantaneous substitution rates possesses two
major properties:

1) If F(z) 1s the vector of base frequencies at time ¢
dF (1)
dt

- MF(?)

2) If P(t) 1s the matrix of conditional substitution probabilities
after ¢ time units of evolution, P(t) = eM.

. ¢time unit .
ancestor: i ------- > j : descendant

P,(t) = proba j at t when i at 0



Equilibrium frequencies of a Markovian model

Any realistic Markovian model possesses its own set of equilibrium frequencies F,

dr, (1)
dt

such that =0 or MF, =0

[ F,, 1s the eigenvector associated to the eigenvalue 0 of M ]

If any sequence evolves with constant substitution rates, it will reach a fixed
composition, its equilibrium composition

Feq = (nA’ WT’ WC’ nG)
that will then remain unchanged.



Reversibility of Markovian evolutionary models

Mathematical definition :
Vij am; =mam; <=> Vijt mP(t)=mP (1)
(at base equilibrium frequencies)
Conceptual definition :
for any pair of nucleotides (i,j), i—=j flux = j—i flux

Consequences :

* The observation of two sequences at the extremities of a branch (during which
evolution followed a constant Markovian model) contains no information about
the direction of evolution.

?
SeqA < » SeqB

?
« Computations can be done as though the tree is unrooted.

But there 1s no biological justification for believing that the molecular
evolutionary process is reversible.




Reversibility of Markovian evolutionary models (continued)

?
SeqA < » SeqB

?
Only constraint: reversibility

General Time Reversible (9 parameters)

A | T | C|G

bﬂ:C dﬂ:C -A'C fﬂ:C
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CJTG eﬂ:G fﬂ:G -A'G

Eq. (74, 77, 7T, 1)

10 symbols but 9 parameters because m,+ 7w, + 7+ 75=1



Tamura & Ne1 93 (6 parameters)

4 A T C G

Al A, p, pr. | e,
M=|T/| g Mo | g Z—j + B, pr,

Cl B  |aZcupr] Mo prc

G| a, % +Br, | B B A

Eq. (7, 7, 77, 705)
This 1s the most parameter-rich reversible model for which one can

compute analytically the matrix P(t) = eM! of conditional
substitutions.

[ Tamura & Nei (1993) MolBiolEvol 10:512 ] !



Jukes & Cantor (1 parameter)

k| A|T|C|G
A |-M| T | r |
Tl r || r |1
Clr | r|-A]|T
G| r | r | r |-Ag

Eq. (1/4,1/4,1/4,1/4)

Kimura (2 parameters)

k| A|T|C|G
Al-M| r | r |ar
T|r |-A|ar]|r
Clr |ar|-As| r
Glar| r | r |-Ag

Eq. (1/4,1/4, 1/4, 1/4)

The Jukes & Cantor model has
been historically the first one to
be introduced.

Justification: simplicity.

Kimura’s 2-parameter model
aims at reflecting the fact that
transitions are more frequent
than transitions.



Felsenstein 81 (4 parameters)

K A T C G
A | -\ | Tty | Ty | Ty
M=
T | oy | -A | Mg | Moy
C | g | g | -Ae | e
G | mg | g | Mg | g
Eq. (my, mp, s, )
Felsenstein 84 (5 parameters)
k| A T C G
Al -\, pr., pr, a—2+ﬁnA
M=I|T| 5~ -t a—:+/5nT pr,
C| Bre |aZespn| -Ag pr
Gl b pn, | b1, | Ag

Eq. (v, 7Ty, T, TT5)
TR=T0p4 g Tby=T0c, Ty

Felsenstein’s 1981 model allows
for any arbitrary set of
equilibrium frequencies.

Felsenstein’s 1984 model was a
pioneering attempt to incorporate
both transition/transversion bias
and an arbitrary set of
equilibrium frequencies.



HKY-Hasegawa,Kishino,Yano: 5 params

k| Al T|C|G

A |-\, mab | mAD | mpa
T | n~b -\ | T b
C | ncb | mea| -\ c ncb
G | mga | ngb | mgb | -\ s

Eq. (;ty, 7tp, e, )

Tamura 92 (3 parameters)

k | A|T|C |G
1-6 1-6 1-6
A -}\,A 5 r 5 rla 5 r
1-6 1-60 [ 1-60
T ) r }\T a > r ) r
0 o | _ 0
C EI" aEr }\C Er
G aQr Qr Qr -}\'G
2 2 2

Eq.((1-6)12, (1-6)/2, 6/2, 6/2)

The HKY model is another way to
incorporate both
transition/transversion bias and an
arbitrary set of equilibrium
frequencies.

HKY and F84 are very similar
models.

This model aims at representing
two phenomena :

- sequence G+C content

- transition/transversion bias

10



GTR : 9 parameters
ET nr.Me.a,b,c.d e, f Model hierarchy

a=b=e=1
Tamura & Nei 93 : 6 parameters
Ta» Tp, T, B, O, Oy

Op = O
Olp/Tlp = Oly/Toy Ry
HKY : 5 parameters Felsenstein 84 : 5 parameters
Ty, Tp, T, @, D Ta» Tr, T, Py O
TA= Tit A= Ty
T~= T . o= O
c= g = T
Tamura 92 : 3 parameters
0, a,r Felsenstein 81 : 4 parameters
l@ =1/2 Tp, T, T, T
Kimura : 2 parameters
o, T A= Ttp=nt-=1/4

a=1
Jukes & Cantor: | parameter
r
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A biologically-motivated non-reversible Markovian model

Assumption: both DNA strands are replicated under the same conditions.

W

G A=T—C Symmetry of both stands vis a vis replication: w; =c,

Lobry & Sueoka 95 (6 param.)

C

My =Wy + Crc, more generally, m; =w; +c;

)

Vi, j mg=w;+cz=c;+ws=m;

k| A|T|C|G
Al-Alal|d]|b
M=|T ]| a|-A| b | d
Cle|c |-A| '
G|l c|e | f|-Ag

Eq. u/2v,u/2v,(v-u)/2v,(v-u)/2v)

u=>b+d;v=>b+c+d+e

Non-reversible : w,m, - = m-m

at equilibrium : [A]=[T] et [C]=[G]

Sueoka (1995) IMolEvol 40:318 19
Lobry (1995) JMolEvol 40:326
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Across sites evolutionary rate variation

Small subunit
ribosomal RNA
(18S or 16S)
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Modelling across sites evolutionary rate variation

Density f(r) of the

Gistribut The gamma distribution has no
gamma distribution :

biological justification, it was

f(r)= 1 ol ,=r/f chosen for its convenience.
I'(a)B”
.,
a: shape parameter o = 20N
(.06 /

f3: scale parameter
mean: of3
variance: of3?

Taking p=1/a, 0.04
mean = |

variance = 1/

Freguency

This allows to model (.02
the distribution of
evolutionary rates

around the mean rate.

o - | S T rer—ALLLT P
0 : -

No variation across sites : limit o, --> o Rate




Modelling across sites evolutionary rate variation (continued)

In many contexts, the gamma distribution is simplified by
discretization to allow easy computations.

Example of discretization in 4 classes of equal weight:

A

e

Q

-

=

= 1/4

O

A= 1/4

1/4
1/4
@ *—/—©@

rate
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Modelling across sites evolutionary rate variation (continued)

Frequently, an additional class of sites 1s allowed : invariable sites.

This 1s the G + I model.
The fraction I of invariable sites needs to be estimated from the data.

A

(1-1)/4

1-T)/4
(1-1)/4 S8

e
Q
-
=
on
O
H
\ (1-1)/4

_T. e ¢ rate
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Markovian models of protein sequence evolution

The evolutionary process 1s modelled by a matrix Q of the
rates ¢;; of amino acid replacements per unit time :

Q= (ql‘,j) i=1,..,20, j=1,..,20

As with nucleotide evolutionary models, there are equilibrium
amino acid frequencies:

() - 1,....20

18



General Time Reversible for DNA

Reversible Markovian models of protein sequence evolution

k | A| T]|C |G

A | — |am, | br, | cny,

T |an | — | du | en; Eq. (7, 7Ty, 7, TTG)
C |ba;|dn, | — | fag

G |cag|eng| fng | —

More generally, for a reversible Markovian substitution process :
q;; = S;- T, Sy =S;, fori #j
Thus ¢g;; can be decomposed in two components :

s;; represents the exchangeability of amino acids i and j
and t;, the equilibrium frequency of amino acid i.

There are 190 free parameters in such a model.

19



Empirical models of protein sequence evolution

190 free parameters are too many for them to be estimated from a single protein
sequence alignment.

Thus, empirically-derived values of exchangeabilities (s,) are used.

These have been computed from very large sets of homologous proteins :
* The PAM model (Dayhoff, 1978) was built from 1,300 highly similar
sequences (> 85 % identity) belonging to 71 families.

* The JTT model (Jones et al., 1992) was built from 16,300 sequences (> 85 %
1dentity).

 The WAG model (Whelan & Goldman, 2001) was built from 3,905 proteins
belonging to 182 families using a procedure that allowed for multiple
replacements on a single branch at a single site.

* The LG model (Le & Gascuel, 2008) was built from 49,637 proteins of 3,912

families and improved by accounting for across-sites evolutionary rate variation.
20



Schematic representation of the WAG amino acid replacement matrix

WAG
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The area of each bubble represents the amino acid exchangeability parameter

(s;;) for the replacement of amino acid i by amino acid j or vice versa.
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Jargon :

Model JTT means s;; are those from Jones et al. and x; were as
in proteins compiled by Jones ef al.

Applying WAG + F to a protein data set means that Whelan
and Goldman’s empirical exchangeability values (s;;) were
used and that equilibrium frequencies mt; were set to average
amino acid frequencies of the data set.
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