Wellcome trust advanced course "Molecular Evolution"

Markovian Models for Molecular Phylogenetics

Manolo Gouy CNRS - Université de Lyon

Markovian models of DNA sequence evolution

The evolution of a sequence site is modelled as follows: there are substitution rates i->j, per time unit, that apply at any time during the evolutionary process.

Matrix M of instantaneous substitution rates:

	L	Α	Т	С	G
	Α	$-\lambda_A$	m _{TA}	m _{CA}	m_{GA}
M =	Т	m _{AT}	$-\lambda_T$	m _{CT}	m _{GT}
IVI —	С	m _{AC}	m _{TC}	-λ _c	m _{GC}
	G	m _{AG}	m _{TG}	m _{CG}	-λ _G

 m_{ij} = rate of $i\rightarrow j$ substitution per time unit.

 λ_i are such that column sums = 0 (λ_i = total mutation rate of i)

Here, M follows the convention $m_{\text{colum, row}}$. The other convention $m_{\text{row,column}}$ is often used in the literature.

This most general model contains 12 free parameters.

Markovian models of DNA sequence evolution (continued)

Any matrix M of instantaneous substitution rates possesses two major properties:

1) If F(t) is the vector of base frequencies at time t

$$\frac{dF(t)}{dt} = MF(t)$$

2) If P(t) is the matrix of conditional substitution probabilities after t time units of evolution, $P(t) = e^{Mt}$.

ancestor:
$$i - \frac{t \text{ time units}}{t} - \frac{t \text$$

Equilibrium frequencies of a Markovian model

Any realistic Markovian model possesses its own set of equilibrium frequencies F_{eq} :

such that
$$\frac{dF_{eq}(t)}{dt} = 0$$
 or $MF_{eq} = 0$

[F_{eq} is the eigenvector associated to the eigenvalue 0 of M]

If any sequence evolves with constant substitution rates, it will reach a fixed composition, its equilibrium composition

$$F_{eq} = (\pi_A, \, \pi_T, \, \pi_C, \, \pi_G)$$

that will then remain unchanged.

Reversibility of Markovian evolutionary models

Mathematical definition:

Conceptual definition:

for any pair of nucleotides (i,j), $i \rightarrow j$ flux = $j \rightarrow i$ flux

Consequences:

• The observation of two sequences at the extremities of a branch (during which evolution followed a constant Markovian model) contains no information about the direction of evolution.

$$SeqA \leftarrow \xrightarrow{?} SeqB$$

• Computations can be done as though the tree is unrooted.

But there is <u>no biological justification</u> for believing that the molecular evolutionary process is reversible.

Reversibility of Markovian evolutionary models (continued)

$$SeqA \stackrel{?}{\longleftarrow} SeqB$$

Only constraint: reversibility

General Time Reversible (9 parameters)

	L	А	Т	С	G
	Α	$-\lambda_A$	$a\pi_{\!\scriptscriptstyle A}$	$b\pi_{\!\scriptscriptstyle A}$	$c\pi_{\!\scriptscriptstyle \mathcal{A}}$
M =	Т	$a\pi_{T}$	$-\lambda_T$	$d\pi_{T}$	$e\pi_{T}$
	С	$b\pi_{ extsf{C}}$	$d\pi_{ extsf{C}}$	$-\lambda_C$	$f\pi_{C}$
	G	$c\pi_{G}$	$e\pi_{G}$	$f\pi_{G}$	$-\lambda_G$

Eq.
$$(\pi_A, \pi_T, \pi_C, \pi_G)$$

Tamura & Nei 93 (6 parameters)

	L	А	Т	С	G
	Α	$-\lambda_{A}$	$eta\pi_{_A}$	$eta\pi_{_A}$	$\alpha_R \frac{\pi_A}{\pi_R} + \beta \pi_A$
M =	Т	$eta\pi_{_T}$	- λ _T	$\alpha_{\scriptscriptstyle Y} \frac{\pi_{\scriptscriptstyle T}}{\pi_{\scriptscriptstyle Y}} + \beta \pi_{\scriptscriptstyle T}$	$eta\pi_{\scriptscriptstyle T}$
	С	$eta\pi_{\scriptscriptstyle C}$	$\alpha_{\scriptscriptstyle Y} \frac{\pi_{\scriptscriptstyle C}}{\pi_{\scriptscriptstyle Y}} + \beta \pi_{\scriptscriptstyle C}$	-λ _C	$eta\pi_{\scriptscriptstyle C}$
	G	$\alpha_R \frac{\pi_G}{\pi_R} + \beta \pi_G$	$eta\pi_{_G}$	$eta\pi_{_G}$	-λ _G

Eq. $(\pi_A, \pi_T, \pi_C, \pi_G)$

This is the most parameter-rich reversible model for which one can compute analytically the matrix $P(t) = e^{Mt}$ of conditional substitutions.

Jukes & Cantor (1 parameter)

	V	Α	Τ	С	G
	Α	-λ _A	r	r	r
M =	Т	r	- λ _T	r	r
	С	r	r	-λ _C	r
	G	r	r	r	-λ _G

Eq. (1/4, 1/4, 1/4, 1/4)

The Jukes & Cantor model has been historically the first one to be introduced.

Justification: simplicity.

Kimura (2 parameters)

	۷	A	Τ	O	G
	A	$-\lambda_{A}$	r	r	α r
M =	Т	r	$-\lambda_{T}$	αr	r
	C	r	α r	-γ ^C	r
	G	α r	r	r	-λ _G

Eq. (1/4, 1/4, 1/4, 1/4)

Kimura's 2-parameter model aims at reflecting the fact that transitions are more frequent than transitions. Felsenstein 81 (4 parameters)

	K	Α	Т	С	G
M =	Α	-λ _A	$r\pi_{A}$	$r\pi_A$	$r\pi_{A}$
IVI —	Т	$r_{\pi_{T}}$	- λ _T	$r_{\pi_{T}}$	$r\pi_{T}$
	С	$r\pi_{C}$	$r\pi_{C}$	-λ _C	$r\pi_{C}$
	G	$r\pi_{G}$	$r\pi_{G}$	$r\pi_{G}$	-λ _G

Eq. $(\pi_A, \pi_T, \pi_C, \pi_G)$

Felsenstein's 1981 model allows for any arbitrary set of equilibrium frequencies.

Felsenstein 84 (5 parameters)

$$\mathbf{M} = \begin{bmatrix} \mathbf{L} & \mathbf{A} & \mathbf{T} & \mathbf{C} & \mathbf{G} \\ \mathbf{A} & -\lambda_{\mathbf{A}} & \beta \pi_{A} & \beta \pi_{A} & \alpha \frac{\pi_{A}}{\pi_{R}} + \beta \pi_{A} \\ \mathbf{T} & \beta \pi_{T} & -\lambda_{T} & \alpha \frac{\pi_{T}}{\pi_{Y}} + \beta \pi_{T} & \beta \pi_{T} \\ \mathbf{C} & \beta \pi_{C} & \alpha \frac{\pi_{C}}{\pi_{Y}} + \beta \pi_{C} & -\lambda_{C} & \beta \pi_{C} \\ \mathbf{G} & \alpha \frac{\pi_{G}}{\pi_{R}} + \beta \pi_{G} & \beta \pi_{G} & \beta \pi_{G} & -\lambda_{G} \end{bmatrix}$$

Eq. $(\pi_A, \pi_T, \pi_C, \pi_G)$ $\pi_R = \pi_{A+} \pi_G \quad \pi_Y = \pi_{C+} \pi_T$ Felsenstein's 1984 model was a pioneering attempt to incorporate both transition/transversion bias and an arbitrary set of equilibrium frequencies.

HKY-Hasegawa, Kishino, Yano: 5 params

	۷	Α	H	O	G
	Α	-λ _A	$\pi_{A}b$	π_A b	π _A a
M =	Т	$\pi_{T}b$	$-\lambda_{T}$	$π_T$ a	$\pi_{T}b$
	C	$\pi_{C}b$	π _C a	- λ _C	$\pi_C b$
	G	$π_G$ a	$\pi_{G}b$	$\pi_{G}b$	-λ _G

Eq.
$$(\pi_A, \pi_T, \pi_C, \pi_G)$$

Tamura 92 (3 parameters)

	L	Α	Т	С	G
	Α	$-\lambda_{A}$	$\frac{1-\theta}{2}r$	$\frac{1-\theta}{2}r$	$\alpha \frac{1-\theta}{2}r$
M =	Т	$\frac{1-\theta}{2}r$	$-\lambda_{T}$	$\alpha \frac{1-\theta}{2}r$	$\frac{1-\theta}{2}r$
	C	$\frac{\theta}{2}r$	$\alpha \frac{\theta}{2}r$	- λ _C	$\frac{\theta}{2}r$
	G	$\alpha \frac{\theta}{2}r$	$\frac{\theta}{2}r$	$\frac{\theta}{2}r$	-λ _G

Eq.($(1-\theta)/2$, $(1-\theta)/2$, $\theta/2$, $\theta/2$)

The HKY model is another way to incorporate both transition/transversion bias and an arbitrary set of equilibrium frequencies.

HKY and F84 are very similar

This model aims at representing two phenomena:

- sequence G+C content

models.

- transition/transversion bias

GTR: 9 parameters

$$\pi_{A}, \pi_{T}, \pi_{C}, a, b, c, d, e, f$$

$$a = b = e = f$$

Model hierarchy

Tamura & Nei 93: 6 parameters

$$\begin{array}{l} \pi_{A}, \pi_{T}, \pi_{C}, \beta, \alpha_{R}, \alpha_{Y} \\ \downarrow \alpha_{R}/\pi_{R} = \alpha_{Y}/\pi_{Y} \end{array}$$

HKY: 5 parameters

$$\pi_{A}, \pi_{T}, \pi_{C}, a, b$$

$$\pi_{A} = \pi_{T}$$

$$\pi_{C} = \pi_{G}$$

$$\pi_{C} = \pi_{G}$$

Tamura 92: 3 parameters

$$\theta$$
, α , r
$$\theta = 1/2$$

Kimura : 2 parameters

$$\alpha$$
, r $\alpha = 1$

Jukes & Cantor: 1 parameter

$$\pi_A, \pi_T, \pi_C, \beta, \alpha$$

$$\alpha = 0$$

Felsenstein 81: 4 parameters

$$\pi_A, \pi_T, \pi_C, r$$

 $\pi_{A} = \pi_{T} = \pi_{C} = 1/4$

A biologically-motivated non-reversible Markovian model

Assumption: both DNA strands are replicated under the same conditions.

$$\mathbf{G} \leftarrow \mathbf{A} = \mathbf{T} \rightarrow \mathbf{C}$$

$$| \mathbf{M}_{AG} = w_{AG} + c_{TC}, \text{ more generally, } m_{ij} = w_{ij} + c_{\overline{i}\overline{j}}$$

$$| \mathbf{Symmetry of both stands } vis \ a \ vis \ replication : w_{ij} = c_{ij}$$

$$| \mathbf{V}i, j \ m_{ij} = w_{ij} + c_{\overline{i}\overline{j}} = c_{ij} + w_{\overline{i}\overline{j}} = m_{\overline{i}\overline{j}}$$

Lobry & Sueoka 95 (6 param.)

	L	Α	Т	С	G
	Α	$-\lambda_A$	а	d	b
M =	Т	а	$-\lambda_{T}$	b	d
	С	е	С	$-\lambda_C$	f
	G	С	е	f	$-\lambda_G$

Eq. (u/2v,u/2v,(v-u)/2v,(v-u)/2v)u = b+d; v = b+c+d+e Non-reversible : $\pi_A m_{AC} \neq \pi_C m_{CA}$

at equilibrium : [A]=[T] et [C]=[G]

Across sites evolutionary rate variation

Small subunit ribosomal RNA (185 or 165)

Modelling across sites evolutionary rate variation

Density f(r) of the gamma distribution :

$$f(r) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} r^{\alpha-1} e^{-r/\beta}$$

 α : shape parameter β : scale parameter mean: $\alpha\beta$ variance: $\alpha\beta^2$

Taking $\beta=1/\alpha$, mean = 1 variance = $1/\alpha$

This allows to model the distribution of evolutionary rates around the mean rate. The gamma distribution has no biological justification, it was chosen for its convenience.

No variation across sites : limit $\alpha --> \infty$

Modelling across sites evolutionary rate variation (continued)

In many contexts, the gamma distribution is simplified by discretization to allow easy computations.

Example of discretization in 4 classes of equal weight:

Modelling across sites evolutionary rate variation (continued)

Frequently, an additional class of sites is allowed: invariable sites. This is the G + I model.

The fraction I of invariable sites needs to be estimated from the data.

Markovian models of protein sequence evolution

The evolutionary process is modelled by a matrix Q of the rates $q_{i,i}$ of amino acid replacements per unit time :

$$Q = (q_{i,j})_{i=1,..,20, j=1,..,20}$$

As with nucleotide evolutionary models, there are equilibrium amino acid frequencies:

$$(\pi_i)$$
 $i=1,\ldots,20$

Reversible Markovian models of protein sequence evolution

General Time Reversible for DNA

L	Α	Т	С	G
Α		$a\pi_{\!\scriptscriptstyle A}$	$b\pi_{\!\scriptscriptstyle A}$	$c\pi_{\!\scriptscriptstyle \mathcal{A}}$
Т	$a\pi_{T}$		$d\pi_{T}$	$e\pi_{\mathcal{T}}$
С	$b\pi_{C}$	$d\pi_{ extsf{C}}$		$f\pi_C$
G	$c\pi_{G}$	$e\pi_{G}$	$f\pi_{G}$	

Eq.
$$(\pi_A, \pi_T, \pi_C, \pi_G)$$

More generally, for a reversible Markovian substitution process:

$$q_{ij} = s_{ij} \cdot \pi_j, \quad s_{ij} = s_{ji}, \quad \text{for } i \neq j$$

Thus q_{ij} can be decomposed in two components: s_{ij} represents the <u>exchangeability</u> of amino acids i and j and π_i , the <u>equilibrium frequency</u> of amino acid i.

There are 190 free parameters in such a model.

Empirical models of protein sequence evolution

190 free parameters are too many for them to be estimated from a single protein sequence alignment.

Thus, empirically-derived values of exchangeabilities (s_{ij}) are used.

These have been computed from very large sets of homologous proteins:

- The PAM model (Dayhoff, 1978) was built from 1,300 highly similar sequences (≥ 85 % identity) belonging to 71 families.
- The JTT model (Jones et al., 1992) was built from 16,300 sequences (\geq 85 % identity).
- The WAG model (Whelan & Goldman, 2001) was built from 3,905 proteins belonging to 182 families using a procedure that allowed for multiple replacements on a single branch at a single site.
- The LG model (Le & Gascuel, 2008) was built from 49,637 proteins of 3,912 families and improved by accounting for across-sites evolutionary rate variation.

Schematic representation of the WAG amino acid replacement matrix

The area of each bubble represents the amino acid exchangeability parameter (s_{ij}) for the replacement of amino acid i by amino acid j or vice versa. 21

Jargon:

Model JTT means s_{ij} are those from Jones *et al.* and π_i were as in proteins compiled by Jones *et al.*

Applying WAG + F to a protein data set means that Whelan and Goldman's empirical exchangeability values (s_{ij}) were used and that equilibrium frequencies π_i were set to average amino acid frequencies of the data set.