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The evolution of a sequence site is modelled as follows:
there are substitution rates i->j, per time unit, that apply at any
time during the evolutionary process.
Matrix M of instantaneous substitution rates:

-λGmCGmTGmAGG

mGC-λCmTCmACC

mGTmCT-λTmATT

mGAmCAmTA-λAA
GCTA

M = 

mij = rate of i→j substitution per
time unit.

λi are such that column sums = 0
(λi = total mutation rate of i )

Here, M follows the convention
mcolum, row. The other convention
mrow,column is often used in the
literature.

Markovian models of DNA sequence evolution

This most general model contains 12 free parameters.
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ancestor: i ---------------------> j : descendant
Pij(t) = proba j at t when i at 0

Any matrix M of instantaneous substitution rates possesses two
major properties:

1) If F(t) is the vector of base frequencies at time t

2) If P(t) is the matrix of conditional substitution probabilities
after t time units of evolution, P(t) = eMt.

! 

dF(t)

dt
= MF(t)

t time units

Markovian models of DNA sequence evolution (continued)
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Any realistic Markovian model possesses its own set of equilibrium frequencies Feq:

! 

such that  
dFeq (t)

dt
= 0   or   MFeq = 0  

[ Feq is the eigenvector associated to the eigenvalue 0 of M ]

If any sequence evolves with constant substitution rates, it will reach a fixed
composition, its equilibrium composition

 Feq = (πA, πT, πC, πG)
that will then remain unchanged.

Equilibrium frequencies of a Markovian model
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Reversibility of Markovian evolutionary models 
Mathematical definition :

∀i,j  πjmji = πimij      <=>   ∀i,j,t  πjPji(t) = πiPij(t)
(at base equilibrium frequencies)

Conceptual definition :
for any pair of nucleotides (i,j),  i→j flux  =  j→i flux

Consequences :
• The observation of two sequences at the extremities of a branch (during which
evolution followed a constant Markovian model) contains no information about
the direction of evolution.

• Computations can be done as though the tree is unrooted.

But there is no biological justification for believing that the molecular
evolutionary process is reversible.

SeqA SeqB
?

?
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-λGfπGeπGcπGG

fπC-λCdπCbπCC

eπTdπT-λTaπTT

cπAbπAaπA-λAA
GCTA

General Time Reversible  (9 parameters)

Eq. (πA, πT, πC, πG)

10 symbols but 9 parameters because  πA+ πT + πC + πG = 1

Reversibility of Markovian evolutionary models (continued) 

M =

SeqA SeqB
?

?
Only constraint: reversibility
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-λGG

-λCC

-λTT

-λAA

GCTA
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Tamura & Nei 93 (6 parameters)

This is the most parameter-rich reversible model for which one can
compute analytically the matrix P(t) = eMt of conditional
substitutions.

Eq. (πA, πT, πC, πG)

[ Tamura & Nei (1993) MolBiolEvol 10:512 ]

M =
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-λGrrrG
r-λCrrC
rr-λTrT
rrr-λAA
GCTA

-λGrrα rG
r-λCα rrC
rα r-λTrT
α rrr-λAA
GCTA

Jukes & Cantor  (1 parameter)

Kimura (2 parameters)

Eq. (1/4, 1/4, 1/4, 1/4)

Eq. (1/4, 1/4, 1/4, 1/4)

M =

M =

The Jukes & Cantor model has
been historically the first one to
be introduced.
Justification: simplicity.

Kimura’s 2-parameter model
aims at reflecting the fact that
transitions are more frequent
than transitions.
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Felsenstein 84 (5 parameters)

Eq. (πA, πT, πC, πG)
πR= πA+ πG   πY= πC+ πT

M =

Felsenstein’s 1984 model was a
pioneering attempt to incorporate
both transition/transversion bias
and an arbitrary set of
equilibrium frequencies.

-λGrπGrπGrπGG

rπC-λCrπCrπCC

rπTrπT-λTrπTT

rπArπArπA-λAA

GCTA

Felsenstein 81  (4 parameters)

M =
Felsenstein’s 1981 model allows
for any arbitrary set of
equilibrium frequencies.

Eq. (πA, πT, πC, πG)
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-λG
πGbπGbπGaG

πCb-λC
πCaπCbC

πTbπTa-λT
πTbT

πAaπAbπAb-λAA

GCTA

M =

Eq. (πA, πT, πC, πG)

HKY-Hasegawa,Kishino,Yano: 5 params

The HKY model is another way to
incorporate both
transition/transversion bias and an
arbitrary set of equilibrium
frequencies.
HKY and F84 are very similar
models.
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Eq.((1-θ)/2, (1-θ)/2, θ/2, θ/2)

Tamura 92 (3 parameters)
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rM =

This model aims at representing
two phenomena :
- sequence G+C content
- transition/transversion bias
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GTR : 9 parameters
πA, πT, πC, a, b, c, d, e, f

Tamura & Nei 93 : 6 parameters
πA, πT, πC, β, αR, αY

HKY : 5 parameters
πA, πT, πC, a, b

Tamura 92 : 3 parameters
θ, α, r

Kimura : 2 parameters
α, r

Jukes & Cantor: 1 parameter
              r

θ = 1/2

α = 1

Model hierarchy

αR = αY

a = b = e = f

πA= πT
πC= πG

Felsenstein 81 : 4 parameters
πA, πT, πC, r

πA= πT= πC=1/4

Felsenstein 84 : 5 parameters
       πA, πT, πC, β, α

αR/πR = αY/πY

πA= πT
πC= πG

α = 0
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-λGfecG
f-λCceC
db-λTaT
bda-λAA
GCTA

Lobry & Sueoka 95 (6 param.)

Eq. (u/2v,u/2v,(v-u)/2v,(v-u)/2v)
u = b+d; v = b+c+d+e

Non-reversible : πAmAC ≠  πCmCA

at equilibrium : [A]=[T] et [C]=[G]

A biologically-motivated non-reversible Markovian model

G←A=T→C

w c

! 

mAG = wAG + cTC ,    more generally,   mij = wij + c
i j

Symmetry of both stands vis a vis replication :  wij = cij

"i, j  mij = wij + c
ij

= cij + w
ij

= m
ij

Assumption: both DNA strands are replicated under the same conditions.

M =

Sueoka (1995) JMolEvol 40:318
Lobry (1995) JMolEvol 40:326
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Lobry 1995
JMolEvol 40:326

Absolute base
compositions of
genomic fragments
of length ≥ 50 kb.
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Across sites evolutionary rate variation

Small subunit 
ribosomal RNA
(18S or 16S)
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! 

f (r) =
1

" #( )$#
r
#%1
e
%r /$

Density f(r) of the
gamma distribution :

α: shape parameter
β: scale parameter
mean: αβ
variance: αβ2

Taking β=1/α,
mean = 1
variance = 1/α

This allows to model
the distribution of
evolutionary rates
around the mean rate.

Modelling across sites evolutionary rate variation

No variation across sites : limit α --> ∞

The gamma distribution has no
biological justification, it was
chosen for its convenience.
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In many contexts, the gamma distribution is simplified by
discretization to allow easy computations.

Example of discretization in 4 classes of equal weight:

1/4

1/4
1/4

1/4

rate

fr
eq

ue
nc

y

Modelling across sites evolutionary rate variation (continued)
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(1-I)/4

rate
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Frequently, an additional class of sites is allowed : invariable sites.
This is the G + I model.
The fraction I of invariable sites needs to be estimated from the data.

(1-I)/4

(1-I)/4

(1-I)/4
I

Modelling across sites evolutionary rate variation (continued)



18

Markovian models of protein sequence evolution

The evolutionary process is modelled by a matrix Q of the
rates qi,j of amino acid replacements per unit time :

Q = (qi,j) i=1,..,20,   j=1,..,20

As with nucleotide evolutionary models, there are equilibrium
amino acid frequencies:

(πi)   i = 1,…,20
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More generally, for a reversible Markovian substitution process :
qij = sij . πj,    sij = sji ,     for i ≠ j

Thus qij can be decomposed in two components :
sij represents the exchangeability of amino acids i and j
and πi, the equilibrium frequency of amino acid i.

There are 190 free parameters in such a model.

Reversible Markovian models of protein sequence evolution

—fπGeπGcπGG

fπC—dπCbπCC

eπTdπT—aπTT

cπAbπAaπA—A
GCTA

General Time Reversible for DNA

Eq. (πA, πT, πC, πG)
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190 free parameters are too many for them to be estimated from a single protein
sequence alignment.

Thus, empirically-derived values of exchangeabilities (sij) are used.

These have been computed from very large sets of homologous proteins :
• The PAM model (Dayhoff, 1978) was built from 1,300 highly similar
sequences (≥ 85 % identity) belonging to 71 families.

• The JTT model (Jones et al., 1992) was built from 16,300 sequences (≥ 85 %
identity).

• The WAG model (Whelan & Goldman, 2001) was built from 3,905 proteins
belonging to 182 families using a procedure that allowed for multiple
replacements on a single branch at a single site.

• The LG model (Le & Gascuel, 2008) was built from 49,637 proteins of 3,912
families and improved by accounting for across-sites evolutionary rate variation.

Empirical models of protein sequence evolution
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The area of each bubble represents the amino acid exchangeability parameter
(sij) for the replacement of amino acid i by amino acid j or vice versa.

Schematic representation of the WAG amino acid replacement matrix
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Jargon :

Model JTT means sij are those from Jones et al. and πi were as
in proteins compiled by Jones et al.

Applying WAG + F to a protein data set means that Whelan
and Goldman’s empirical exchangeability values (sij) were
used and that equilibrium frequencies πi were set to average
amino acid frequencies of the data set.


