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Phylogenetic trees

Internal Branch: connects 2 nodes. External Branch: connects a node to a
leaf

Lengths of horizontal branches are proportional to evolutionary distances
between ancestral or extant sequences (unit = substitution / site).

Tree Topology = tree shape = node branching order
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Unrooted tree
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Each branch represents molecular evolution between its tips, but
the direction in which this evolution occurred is not specified.
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Rooted tree
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Evolutionary time flows from left to right on each branch.



Number of distinct unrooted tree shapes for n taxa
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Why parsimony ?
Let us consider a character in 4 species {1, 2, 3, 4} with states {x,x,y,y}. What

evolutionary history can have led to this final state ?

Identity by common descent: two 1 2 3 4
species share the same character state X X yy
because they inherited it from their last
common ancestor without change. X
Y
Y

Presence of homoplasy: identical states are observed although they were not
inherited, unchanged, from the last ancestor.

1 3 2 4 1 3 2 4
X y Xy Xy XY
X reversion Y convergence
X Y
Y Y

Scenarios with homoplasy require more evolutionary changes. Parsimony
assumes that convergence and reversions are rare and search for the history ©
that minimize these events. Parsimony applies very well if changes are rare.



Fitch Algorithm

The data

* a tree shape

* residues at the leaves of this tree

The problem : compute the minimal number of changes in the tree that can
explain these data.

C A

4 changes required

T

How to compute this number (4) exactly and efficiently for any tree size ?
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Fitch Algorithm (recipe)

Arbitrarily root the tree and recursively compute, at each node, two things:
* P: minimal number of changes in the sub-tree rooted by this node
* X: set of residues each equally possible for this node

To go one step up the tree, consider whether the sets X, X, share common
residues.

common residues no common residue
X;NX,, P+ P X,UX,, P+P,+1
XpPy  XpP, X, P, X,P,



Fitch Algorithm (example)

The calculation 1s initialized at tree leaves with:
X={residue present at this leave}, P=0

{A T} A

Example

{AG,T},2
{C,T},1

{C}0 {T},0 {G},0 {T}O0 <{A}0 {A},0 ¢ 9



Fitch Algorithm (proof)

Arbitrarily root the tree and recursively compute, at each node, two things:
* P: minimal number of changes in the sub-tree rooted by this node
» X: set of residues each equally possible for this node

1% case: X, N X, is not empty
X,NX,, P+P,

a:P+P,
VoEX NX,

Q:P, o.:P,

20 cage: X, N X, is empty
XU %y, Prv Pyt ] Q:P+P,+1 B:P+P,+1

VoeEeyx,,
VB EXx,
P, B:P, P, B:P, 0



Parsimony (1)

« Step 1:
For a given tree topology and a given alignment site, put site residues
at the leaves of this tree. Then, use Fitch algorithm to compute d, the smallest

total number of changes in the tree.

X: ancestral nucleotide e : Substitution event

Example: For this site and this tree shape, at least 3 changes are necessary to
explain the pattern of nucleotides present at tree leaves. Several distinct

scenarios are possible.
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Parsimony (2)

o Step 2:
— Compute d (step 1) for each alignment site
— Sum up d values for all sites
— This gives the length L of the tree

« Step 3:
— Compute value L (step 2) for all possible tree shapes.
— Retain the shortest tree (i.e., with smallest L value)

= the tree(s) requiring the smallest possible number of evolutionary

changes
= the most parsimonious tree(s).

Two major programs implement parsimony for molecular sequences
 PAUP* by David Swofford

 Protpars and dnapars programs of Joe Felsentein’'s PHYLIP package
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Parsimony : informative sites

@c x@ Whatever the chosen tree shape,
d = 1 for this site. Thus, this site
\ / does not contribute to choosing

6)xr—— x ——)(3) which tree shape has the smallest

/ \ L value.

@x x@ These sites do not contain information
supporting any tree shape: they are
uninformative. A site 1s informative iff it

® 2) contains at least 2 states each present at least
x\ /x twice.
(O)x—— x—8—y(3) Whatever the chosen tree shape,
\ d = 2 for this site.
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Some properties of Parsimony

Produces unrooted trees.

Algorithm and the principle apply very generally (e.g., DNA, proteins,
morphological data).

Changes cannot be uniquely located on a specific branch.

==> Parsimony does not allow to define unambiguously the length of
each tree branch. Only the sum total of branch lengths is
unambiguously defined.

Very often, several tree shapes are equally parsimonious (have same
L value, the smallest one).

The number of tree shapes grows very fast with the number of
analyzed sequences.

==> The search for the shortest tree must be restricted to a fraction of
all possible tree shapes.

A heuristic procedure determines the fraction of the space of tree
shapes that is explored.

There is no mathematical certainty to find the shortest tree.
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PHYLIP’s tree space exploration heuristic

1. Define an arbitrary order of sequences. Start with the first 3 sequences and the
unique possible tree. This gives the current candidate tree.

2. Evaluate addition of the next sequence in all possible positions in the candidate
tree; retain the best one. This gives a candidate tree with one more sequence.

3. Do local rearrangements : each internal branch defines 4 sub-trees: a, b, ¢, d
and a topology between them: Z> - <2 evaluate the 2 alternative topologies:

a b a c
>—< >—<

c d d b

and retain any better alternative as new candidate tree.

4. Repeat 2. and 3. as long as there remains sequences to process.

5. Do global rearrangements: evaluate all alternative positions of all sub-trees of
the candidate tree; retain any better alternative as new candidate tree. Stop

when no alternative position reduces the total tree length L.
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PHYLIP’s tree space exploration heuristic (continued)

This heuristics transforms an impossible computation (evaluate all possible tree
shapes) into one feasible in a few minutes for up to 30 - 40 sequences.

It is wise to repeat all of steps 1 - 5 changing the initial sequence order. Very
often, a shorter tree pops out in one of the repeats.

Local rearrangements are better called NNI’s (Nearest Neighbor Interchanges).
Global rearrangements are better called SPR’s (Subtree Pruning Regrafting).
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PAUP’s tree space exploration heuristic

Options to control the number of repeats of initial sequence orders:
hsearch addseg=random nreps=20

Options to control tree space exploration:
hsearch swap=NNI|SPR|TBR

where NNI and SPR are as above and TBR is Tree Bisection Reconnection:

a subtree is pruned, then rerooted, and regrafted somewhere else.
Thus, swap=SPR is equivalent to PHYLIP’s heuristics. Use of TBR produces

a much more extensive tree space search.

PAUP can also perform an exhaustive tree space exploration:
BandB

(stands for branch-and-bound) but this will last forever unless the number of
sequences is very small.
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Tree branch lengths in parsimony

There are very often different equally parsimonious ways to put
changes on tree branches. Consequently, there are no unique
parsimony-defined branch lengths. It is nevertheless possible to
compute minimum and maximum branch lengths.

However, on rooted trees, PAUP offers the possibility to always choose
the same strategy to place changes on branches.

X y x Yy X y x Yy
A y
A y
y y
accelerated delayed
transformation transformation
OPT=ACCTRAN OPT=DELTRAN

Under this condition, it is possible to compute unambiguous branch

lengths. But this is entirely arbitrary. .



Dealing with sequence gaps in parsimony

Gaps can be processed in two ways

* As missing data. This amounts to replacing the gap site by the
residue requiring the least number of changes at this site.

» As a 5" base or a 215t amino acid. Gap-to-residue changes count as

a residue-to-other-residue change. This is not satisfactory because a
gap of length n counts as n independent events.

In PAUP:

GAPMODE = MISSING|NEWSTATE
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PHYLIP’s implementation of protein sequence parsimony

Amino acid replacements are scored as the minimum number of
changes between two synonymous codons of these amino acids
according to the genetic code.

TTT Phe TCT Ser TAT Tyr TGT Cys
TTC Phe TCC Ser TAC Tyr TGC Cys
TTA Leu TCA Ser TAA stop TGA stop
TTG Leu TCG Ser TAG stop TGG Trp
CTT Leu CCT Pro CAT His CGT Arg
CTC Leu CCC Pro CAC His CGC Arg
CTA Leu CCA Pro CAA Gln CGA Arg
CTG Leu CCG Pro CAG Gln CGG Arg
ATT TIle ACT Thr AAT Asn AGT Ser
ATC TIle ACC Thr AAC Asn AGC Ser
ATA 1Ile ACA Thr AAA Lys AGA Arg
ATG Met ACG Thr AAG Lys AGG Arg
GTT Val GCT Ala GAT Asp GGT Gly
GTC Val GCC Ala GAC Asp GGC Gly
GTA Val GCA Ala GAA Glu GGA Gly
GTG Val GCG Ala GAG Glu GGG Gly

Examples: Met/Val scores 1; Val/Thr scores 2; Phe/GIn scores 3 20



Evolution of sociality in a primitively eusocial lineage of bees
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Leioproctus sp. (Chile)
Conanthalictus wilmattae
Goeletapis peruensis
Penapis penai

Penapis toroi
Protodufourea parca
Xeralictus timberlakei
Xeralictus bicusidariae
Sphecodosoma pratti
Systropha curvicornis
Systropha planidens
Dufourea novaeangliae
Dufourea malacothricis
Dufourea mulleri
Pseudapis unidentata
Lipotriches (Austro.) australica
Nomia tetrazonata
Dieunomia nevadensis
Dieunomia triangulifera
Nomioides facilis

Augochloropsis metallica:| solitary,

communal,

Megalopta genalis bl
semisocial

Neocorynura discolor
Augochlorella pomoniella
Agapostemon leunculus
Agapostemon tyleri
Rhinetula denticrus
Dinagapostemon sp. (573)
Dinagapostemon sp. (790)
Ruizantheda mutabilis
Ruizantheda proxima
Pseudagapostemon pissisi
Pseudagapostemon braziliensis
Habralictus sp. (786)
Caenohalictus sp. (577)
Caenohalictus sp. (578)
Caenohalictus sp. (788)
Sphecodes ranunculi
Sphecodes minor

Sphecodes cressonii
Sphecodes persimilis
Mexalictus arizonensis :|
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cleptoparasitic

Pachyhalictus sp. (357)
Chaetalictus sp. (603)
Lomatalictus sp. (604)
Thrincohalictus prognathus

H. (Seladonia) confusus

H. (Halictus) quadricinctus

H. (Halictus) rubicundus

L. (Lasioglossum) athabascense }
L. (Lasioglossum) scitulum

Areyijos

L. (Australictus) lithuscum
L. (Homalictus) punctatum
L. (Evylaeus) calceatum
L. (Dialictus) zephyrum

L. (Hemihalictus) lustrans

Kieyjos

Phylogeny of the halictid subfamilies, tribes, and
genera. Strict consensus of six trees based on equal
weights parsimony analysis of the entire data set of
three exons and two introns. Two regions within the
introns were excluded because they could not be
aligned unambiguously. Gaps coded as a fifth state or
according to the methods described in ref. 23 yielded
the same six trees. Bootstrap values above the nodes
indicate bootstrap support based on the exons introns
data set. Bootstrap values below the nodes indicate
support based on an analysis of exons only. For the
exons introns analysis the data set included 1,541 total
aligned sites (619 parsimony-informative sites), the
trees were 3,388 steps in length.

Advanced eusocial insects, such as ants, termites,
and corbiculate bees, cannot provide insights into
the earliest stages of eusocial evolution because
eusociality in these taxa evolved long ago (in the
Cretaceous) and close solitary relatives are no longer
extant. In contrast, primitively eusocial insects, such
as halictid bees, provide insights into the early
stages of eusocial evolution because eusociality has
arisen recently and repeatedly. I show that
eusociality has arisen only three times within halictid
bees.
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