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Abstract

We introduce a variant of the Erdős–Rényi random graph where the number of vertices is random

and follows a Poisson law. A very simple Markov property of the model entails that the Lukasiewicz

exploration is made of independent Poisson increments. Using a vanilla Poisson counting process,

this enables us to give very short proofs of classical results such as the phase transition for the giant

component or the connectedness for the standard Erdős–Rényi model.

1 The GPoi(α, p) model and its exploration

Fix α > 0 and let N ∼ P(α) be a random variable following a Poisson law of expectation α. We consider

the random graph GPoi(α, p), which conditionally on N is made of a classical Erdős-Rényi G(N, p)

random graph (i.e. N vertices where all (N
2 ) edges are independent and present with probability p)

that we call the core, together with an infinite stack of vertices, which are all linked to every vertex

of the G(N, p) with probability p independently. There is no edge between vertices of the stack. See

Figure 1.

Markov property. A step of exploration in GPoi(α, p) is the following: Fix a vertex ρ of the stack and

reveal its neighbors y1, . . . , yK with K > 0 inside the core. Then, see those vertices y1, . . . , yK as new

vertices of the stack, in particular erase all possible connections between vertices of the stack. The

key lemma is the following:

Lemma 1 (Markov property of GPoi(α, p)). Let K > 0 be the number of neighbors in the core of a given

vertex ρ of the stack in GPoi(α, p). Then K ∼ P(αp) and conditionally on K, the graph made after

removing ρ and placing its K neighbors in the stack has law GPoi(α(1− p), p).

Proof. Call N′ = N− K the remaining number of vertices after the revelation of the K neighbors of ρ

in the G(N, p) part. Then remark the following factorization:

P(K = k and N′ = n) = e−α αn+k

(n + k)!
·
(

n + k
k

)
pk(1− p)n

=

(
e−α(1−p) (α(1− p))n

n!

)
·
(

e−αp (αp)k

k!

)
.

The statement follows since conditionally on the status of the vertices (being in the stack, or in the

remaining part), all possible edges are i.i.d. present with probability p.
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Figure 1: Discovering the neighborhood of a vertex in the stack in the Poissonized version of

the Erdős-Rényi random graph. The stack is made of the white vertices on the left part while

the core is represented by the gray part.

Lukasiewicz exploration. In particular, successive explorations in GPoi(α, p) yields a sequence of inde-

pendent Poisson random variables with expectation αp, αp(1− p), . . . , αp(1− p)k, . . . whose total sum

is just a Poisson variable of parameter αp ∑i>0(1− p)i = α, recovering the total number of vertices N
as expected. We shall now assume that iteratively, the vertices explored are placed on top of the stack

and that we always explore the first vertex of the stack: we get the so-called Lukasiewicz exploration

of the graph GPoi(α, p), see Figure 2. We encode it in a process (Sk : k > 0), the Lukasiewicz walk,

defined by S0 = 0 and where ∆Sk = Sk − Sk−1 is the number of neighbors discovered at step k minus

one. Each new minimal record of S thus corresponds to the exploration of the connected component of

a new vertex of the initial stack. Using Lemma 1 we can write simultaneously for all k > 0

Sk = (P(αp)− 1) + (P(αp(1− p))− 1) + · · ·+ (P(αp(1− p)k−1)− 1)

= N
(

αp ·
k−1

∑
i=0

(1− p)i

)
− k = N

(
α(1− (1− p)k)

)
− k, (1)

where all the Poisson random variables written above are independent and where (N (t) : t > 0) is a

standard unit-rate Poisson counting process on R+. We shall only use the following standard estimates

on the Poisson counting process

N (t)
t

a.s.−−→
t→∞

1, and
(N (tn)− tn)√

n
(d)−−−→

n→∞
(Bt : t > 0), (2)

where (Bt : t > 0) is a standard linear Brownian motion.

2 Phase transition for the giant and Aldous’ critical limit

Let us use the Lukasiewicz exploration of the Poissonized version of the Erdős–Rényi random graph

to give a straightforward proof of the well-known phase transition for the size of the largest connected

component.

2.1 Existence of the giant component

Fix c > 0. Let α = n and p ≡ pn = c
n and denote by S(n) the resulting Lukasiewicz walk to emphasize

the dependence in n. Since we have (1 − c
n )[nt] → e−ct as n → ∞ uniformly over compact time
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Figure 2: Lukasiewicz exploration of the graph GPoi(α, p) obtained by concatenating the

iterative number of neighbors −1.

intervals, using (1) and the law of large numbers (2) we immediately deduce:

Proposition 2 (Fluid limit). We have the following convergence in probability for the uniform norm

over every compact of R+: (
n−1 · S(n)

[nt]

)
t>0

(P)−−−→
n→∞

(
1− e−ct − t

)
t>0 .

Figure 3: Graphs of the functions (1 − e−ct − t)t>0 for different of values of c: in blue

c = 1/2, in orange c = 1, in green c = 2 and in red c = 3.

We write Xn = oP(n) if the random variable satisfies Xn/n→ 0 in probability.

Corollary 3 (Phase transition for GPoi(n, c
n )). If c < 1 then asymptotically all connected components

of the core of GPoi(n, c
n ) are oP(n), whereas if c > 1 it contains a unique giant component of size

β(c)n + oP(n) where β(c) is the first positive root of 1− e−ct − t = 0, all others component sizes are

oP(n).

Proof. The size of the connected components in GPoi(n, c
n ) are given by the lengths of the excursions of

S(n) above its running infimum process S
(n)
k := inf{S(n)

j : 0 6 j 6 k}. When c > 1, fix ε ∈ (0, β(c)/2)

and let us consider

I(n) = inf
{

i 6 εn : S
(n)
i = inf

16j6εn
S

(n)
j

}
and J(n) = inf

{
i > I(n) : S

(n)
i = S

(n)

I(n) − 1
}

,
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so that S(n) performs an excursion above is running infimum over the time interval [I(n), J(n)]. By the

property of the Lukasiewicz exploration, this excursion coincides with the exploration of a connected

component C(n) of the stack of size J(n) − I(n) and the above proposition entails that I(n)/n→ 0 and

J(n)/n→ β(c) in probability as n→ ∞. In particular we have |C(n)| = β(c)n + oP(n) as desired. This

component is further split into ∆SI(n) + 1 components inside the core: Consider then

Ĩ(n) = inf

{
I(n) + 1 6 i 6 εn : S

(n)
i = inf

I(n)+16j6εn
S

(n)
j

}
and J̃(n) = inf

{
i > Ĩ(n) : S

(n)
i = S

(n)

Ĩ(n) − 1
}

,

then the excursion time [ Ĩ(n), J̃(n)] corresponds to the exploration of a subcomponent of C(n) inside

the core (after removing the vertex of the stack it contains), and similarly we deduce from the above

that Ĩ(n)/n→ 0 and J̃(n)/n→ β(c) in probability as n→ ∞, thus showing the existence of the giant

component inside the core. The control of the other excursions above S(n) (and of all excursions in the

case c < 1) is done similarly using the convergence of Proposition 2. A slight difficulty is that that

the convergence over every compact of R+ is not sufficient to prevent from unexpected deviations of

the process S(n) at large values kn such that kn/n → ∞. But notice that the number of vertices left

in the core after the first [xn] steps of exploration has law P(n(1− c/n)[xn]) whose expectation is

∼ ne−cx as n → ∞. By choosing x large, we can ensure that with high probability all components of

size comparable to n are described by the [xn] steps of S(n).

Back to the G(n, p) model. The analogous statements in the case of G(n, p) can be deduced from

the above results. The key idea for the depoissonization being that P(n) is concentrated around the

value n with
√

n fluctuations. Indeed, if we let N− ∼ P(n− n7/12) and N+ ∼ P(n + n7/12) then we

have the natural inclusions

G(N−, p) ⊂ G(n, p) ⊂ G(N+, p), (3)

which hold with high probability when n → ∞ because P(P(n − n7/12) 6 n) → 1 and P(P(n +

n7/12) > n) → 1 as n → ∞ (notice that we only coupled the cores of GPoi and not their stacks). By

Corollary 3, with high probability, both random graphs on the left-hand side and right-hand side of

the last display have a unique component of size ≈ β(c)n, all others being of size negligible in front of

n. A moment of thought enables to deduce that the same is true for the graph G(n, p) sandwhiched

between those two, and this is a classical result of Gilbert–Erdős–Rényi [3, 4].

2.2 Refined estimates

Let us turn to refined estimates on the clusters size still in the case α = n and p ≡ pn = c
n for c > 0.

CLT for the giant. In this regime, for fixed k > 0 we have n(1− (1− c
n )k) → ck as n → ∞ so using

(1) we deduce the following convergence in distribution

(S
(n)
k : k > 0) −−−→

n→∞
(N (c · k)− k : k > 0) .

When c > 1, using (2) we easily deduce the convergence in law of the time I(n) defined in the course

of the proof of Corollary 3 towards I := argmin{N (c · k)− k : k > 0}. In particular, the number

of connected components of GPoi explored before finding the giant converges to Kc = N (c · I)− I
which by a simple application of Markov property is a geometric random variable (whose success
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parameter is a posteriori β(c) by Corollary 3). Similarly, the time J(n) can be further estimated. Put

k = [β(c)n + x
√

n] for x ∈ R in a compact interval using (2) and notice that as n→ ∞ we have

S
(n)
k = N

(
n
(

1− (1− c
n

)[β(c)n+x
√

n]
)

︸ ︷︷ ︸
=β(c)n+xc(1−β(c))

√
n+o(n1/2)

)
− k ≈

(2)

√
n
(

Bβ(c) + x(c(1− β(c))− 1) + oP(1)
)

,

where (Bt : t > 0) is the Brownian motion appearing in (2). Combining those two arguments we easily

deduce that

J(n) − β(c)n√
n

(d)−−−→
n→∞

Bβc

1− c∗
, where c∗ = c(1− β(c)), (4)

which together with the convergence of I(n) establishes the central limit theorem for the size of the

giant component in GPoi.

Remark. In the case of the Erdős–Rényi G(n, c
n ) for c > 1 the central limit theorem of the size of the

giant makes appear a variance β(c)(1− β(c))/(1− c∗)2, see [5, 2]. The additional (1− β(c)) factor

can easily be explained if we conditioned our model to have a core of size n + o(
√

n). We suspect that

it is possible to derive the fixed-size Erdős–Rényi case from the above fact using soft arguments.

Critical case and Aldous’s limit. In the critical case p = 1
n we can give a analog of a result of Aldous

in the case of the standard fixed-size Erdős-Rényi [1] indicating that the size of the clusters in the

near critical regime is of order n2/3:

Proposition 4 (Near critical case). Fix λ ∈ R. For p ≡ pn = 1
n + λ

n4/3 with λ ∈ R, the Lukasiewicz

walk of GPoi(n, pn) satisfies (
n−1/3 · S(n)

[n2/3t]

)
t>0

(d)−−−→
n→∞

(
Bt + λt− t2

2

)
t>0

.

Proof. Putting k = [n2/3t] for t ∈ [0, A] in a compact time interval in the equation (1) yields to

S
(n)

[n2/3t] = N
(

n
(

1− (1− 1
n
− λ

n4/3 )[n2/3t]
)

︸ ︷︷ ︸
=tn2/3+λtn1/3− t2

2 n1/3+o(n1/3)

)
− [n2/3t] ≈

(2)
n1/3

(
Bt + λt− t2

2

)
.

Remark. We suspect it is possible to recover the result of Aldous on the fixed-size G(n, p) using the

above proposition and rather soft arguments. We however did not pursue this goal in this short note.

3 Connectedness

As another application of our Poissonization technique, let us give a short proof of the sharp phase

transition for connectedness in the fixed-size Erdős–Rényi [3, 4]:

Proposition 5. For c ∈ R we have

P

(
G
(

n,
log n + c

n

)
is connected

)
−−−→
n→∞

e−e−c
.

Proof. Let p ≡ pn = log n+c
n . We shall first prove the convergence of the proposition when the number

N of vertices of the Erdős–Rényi graph is random and distributed according to one plus a Poisson
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law of expectation n. Connectedness of this graph is equivalent to the fact that inside GPoi(n, p) all

vertices of the stack, except the first one, have a trivial connected component. This is the case if and

only if the Lukasiewicz walk (S(n)) starts with a (large) excursion and once it has reached level −1,

it makes only jumps of −1. Using (1) and (2), it is easy to see that the first hitting time τ
(n)
−1 of −1

by the process S(n) is concentrated around n and more precisely using similar calculations as in (4)

shows that

τ
(n)
−1 − n
√

n
(d)−−−→

n→∞
B1. (5)

Besides, since the increments of S(n) are Poisson and independent, by the Markov property of the

exploration we have that

P(ρ ∪ G(N, p) is connected) = P
(

∆S
(n)
i = −1, ∀i > τ

(n)
−1

)
= E

[
P(∆S

(n)
i = −1, ∀i > τ

(n)
−1 | τ

(n)
−1 )

]
= E

[
P
(
P(n(1− pn)τ

(n)
−1 ) = 0

)]
= E

exp

−n
(

1− log n + c
n

)τ
(n)
−1

 ,

and by (5) the random variable inside the expectation converges in probability to e−e−c
since τ

(n)
−1 =

n + OP(
√

n). The desired statement follows. To come back to the fixed-size G(n, p) model, notice that

the function φ(n, p) = P(G(n, p) is connected) is increasing in p for n fixed, but the monotonicity in

n is not clear. However, the natural inclusion G(n, p) ⊂ G(n + 1, p) enables to write

φ(n + 1, p) > P(G(n, p) is connected and the (n + 1)th vertex is connected to one of the first n vertices)

> φ(n, p)− P(Bin(n, p) = 0) > φ(n, p)− e−np.

Recalling that pn = log n+c
n we deduce that if 0 6 kn = o(n) then we have φ(n + kn, pn) > φ(n, pn) +

o(1). With the notation of (3) this shows that

P(G(N−, pn) is connected)− o(1) 6 P(G(n, pn) is connected) 6 P(G(N+, pn) is connected) + o(1),

and by sandwhiching, the middle term does converge to e−e−c
.
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Peres and Balázs Ráth for pointing to us a few shortcomings which greatly helped improving the note.

References

[1] D. Aldous, Brownian excursions, critical random graphs and the multiplicative coalescent, Ann.

Probab., (1997), pp. 812–854.

[2] B. Bollobás and O. Riordan, Asymptotic normality of the size of the giant component via a

random walk, Journal of Combinatorial Theory, Series B, 102 (2012), pp. 53–61.
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