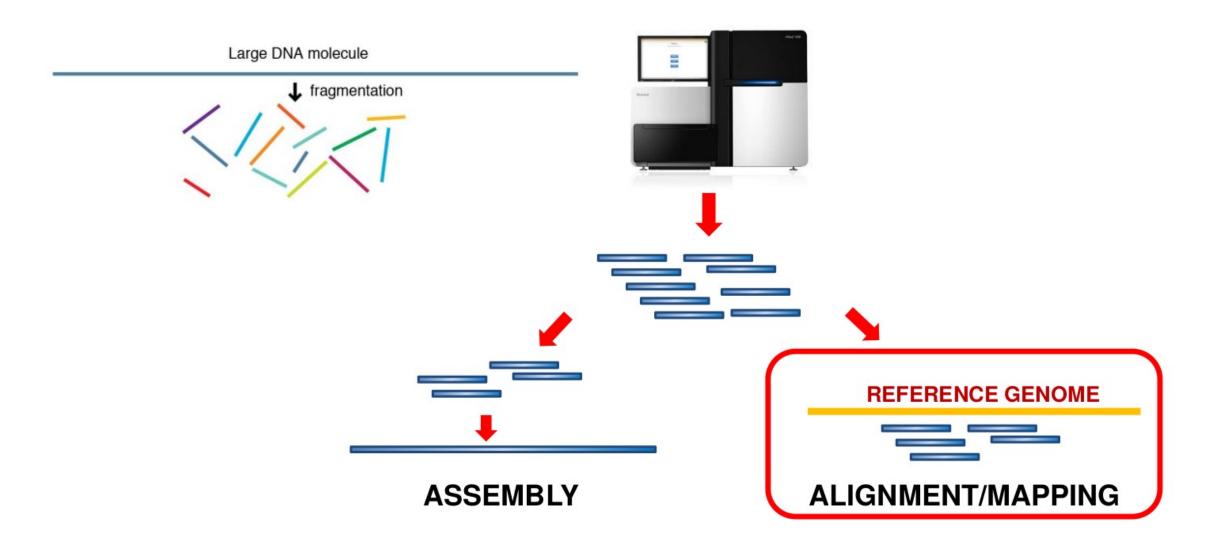
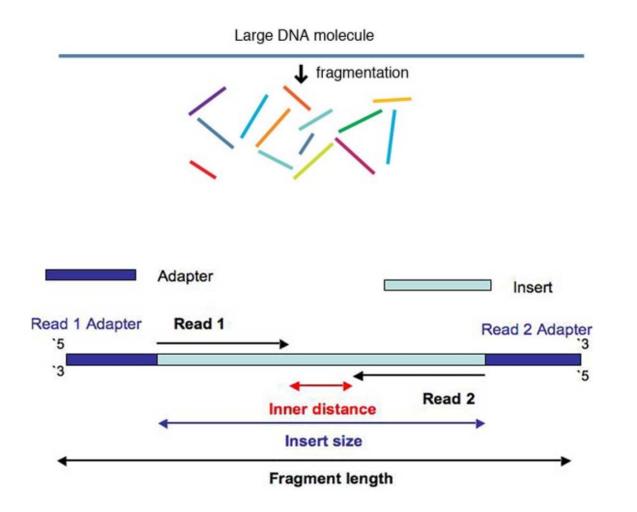
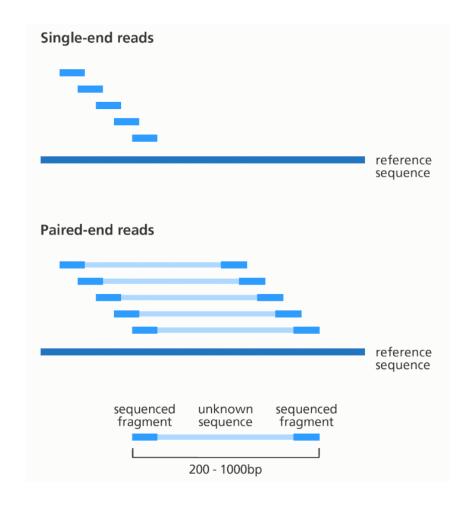
Mapping, SNP calling and the study of genetic variation in ecology and evolution

Formation CNRS 2023

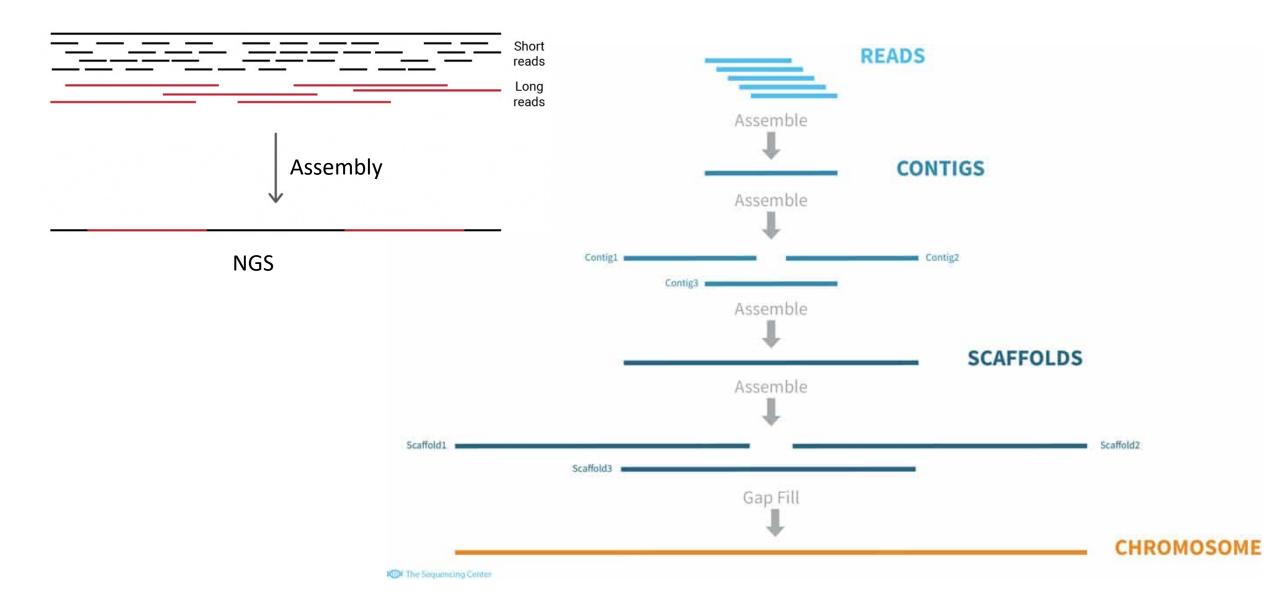

Table of contents

- General principles (NGS, assembly, mapping, SNP calling)
- Genetic variation
 - different types of mutations
 - describing genetic variation
- Mapping / SNP calling workflow
 - common software and file formats
 - reference genome
 - filtering of variant calls
- Applications in ecology and evolution

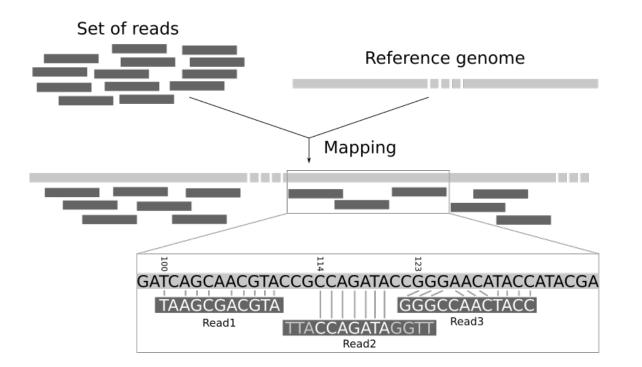

Table of contents

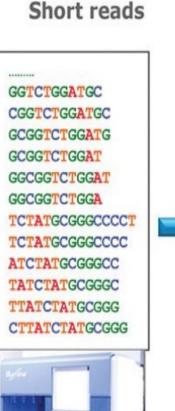

- General principles (NGS, assembly, mapping, SNP calling)
- Genetic variation
 - different types of mutations
 - describing genetic variation
- Mapping / SNP calling workflow
 - common software and file formats
 - reference genome
 - filtering of variant calls
- Applications in ecology and evolution

NGS principle



NGS Single-end vs paired-end reads





De novo assembly

Mapping / SNP calling principle

Alignment of reads to the reference genome and SNP calling

SNP:A->G

GTCTGGATGCT TCTATGCGGGCCCCT GGTCTGGATGC TCTATGCGGGCCCC CGGTCTGGATGC ATCTATGCGGGCC GCGGTCTGGATG TATCTATGCGGGC GCGGTCTGGAT TTATCTATGCGGG GCGGTCTGGAT CTTATCTATGCGGG GGCGGTCTGGAT CTTATCTATGCGG GGCGGTCTGGA CTTATCTATGCGG

GECEGTCTAGATECTTATCTATECEGECCCCT

Reference genome sequence

Table of contents

• General principles (NGS, assembly, mapping, SNP calling)

Genetic variation

- different types of mutations
- describing genetic variation
- Mapping / SNP calling workflow
 - common software and file formats
 - reference genome
 - filtering of variant calls
- Applications in ecology and evolution

Genetic variation

• Genetic variation (polymorphisms) refers to the differences found in the genome sequence between individuals within a population or species

(here, haploid)											
А	С	Т	Т	А	G	А	Т				
G	С	Т	С	А	G	Т	С				
G	С	G	С	А	G	Т	С				
А	С	Т	Т	-	G	Т	А				
G	С	Т	С	А	G	Т	С				
	A G G A	A C G C	ACTGCTGCGACT	ACTTGCTCGCGCACTT	ACTTAGCTCAGCGCAACTT-	ACTTAGGCTCAGGCGCAGACTT-G	A C T T A G A G C T C A G T G C T C A G T G C G C A G T A C T T A G T A C T T A G T				

11

(here, haploid)												
Ind1	А	С	Т	Т	А	G	А	Т				
Ind2	G	С	Т	С	А	G	Т	С				
Ind3	G	С	G	С	А	G	Т	С				
Ind4	А	С	Т	Т	-	G	Т	А				
Ind5	G	С	Т	С	А	G	Т	С				

How many:

- Sites

- Polymorphisms

- SNPs

- Alleles

- Haplotypes

(here, haploid)										
Ind1	А	С	Т	Т	А	G	А	Т		
Ind2	G	С	Т	С	А	G	Т	С		
Ind3	G	С	G	С	А	G	Т	С		
Ind4	А	С	Т	Т	-	G	Т	А		
Ind5	G	С	Т	С	А	G	Т	С		

How many:

- Sites / Positions: 8

(Polymorphic + monomorphic)

- Polymorphisms:6

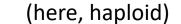
- SNPs: 5

(6 polymorphisms: 5 SNPs + 1 indel)

Alleles: 2, 1, 2, 2, 2, 1, 2, 3
(5 sites bi-allelic + 1 tri-allelic)
Haplotypes: 4

(here, haploid)											
Ind1	А	С	Т	Т	А	G	А	Т			
Ind2	G	С	Т	С	А	G	Т	С			
Ind3	G	С	G	С	А	G	Т	С			
Ind4	А	С	Т	Т	-	G	Т	А			
Ind5	G	С	Т	С	А	G	Т	С			
Sp2	G	Т	Т	С	А	А	Т	С			

How many:


- Sites / Positions: 8 (Polymorphic + monomorphic)
- Polymorphisms:6
- SNPs: 5

(6 polymorphisms: 5 SNPs + 1 indel)

Alleles: 2, 1, 2, 2, 2, 1, 2, 3
(5 sites bi-allelic + 1 tri-allelic)
Haplotypes: 4

• Genetic differences fixed between species = divergent sites / substitutions

Ind1	А	С	Т	Т	А	G	А	Т
Ind2	G	С	Т	С	А	G	Т	С
Ind3	G	С	G	С	А	G	Т	С
Ind4	А	С	Т	Т	-	G	Т	А
Ind5	G	С	Т	С	А	G	Т	С
Sp2	G	Т	Т	С	А	А	Т	С
Ind4 Ind5	A G	C C	T	T C	- A	G	T T T T	C A C C

```
In evolution, SNPs + divergent sites
are sometimes grouped under the
term SNV.
```

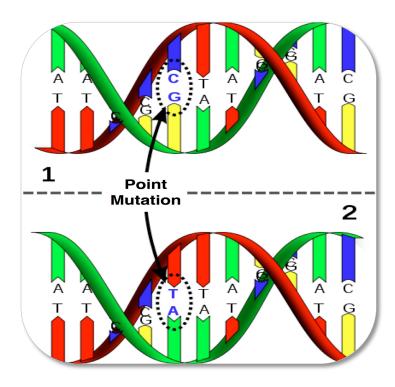
But different meaning in medicine ! (SNV = 0-1%; SNP = >1%)

• Genetic differences fixed between species = divergent sites / substitutions

Genetic variation

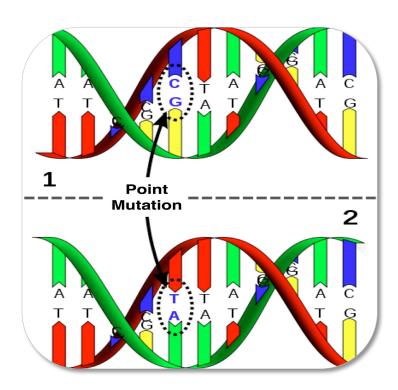
• The ultimate source of genetic variation is **mutation**

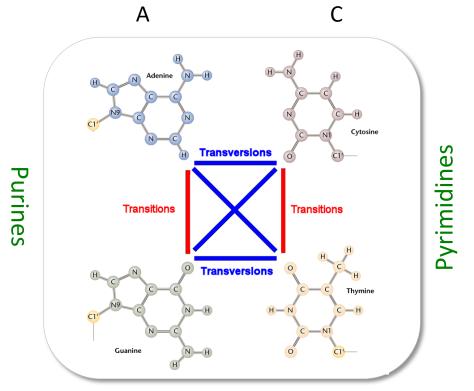
(here, haploid)


Ind1	А	С	Т	Т	А	G	А	Т
Ind2	G	С	Т	С	А	G	Т	С
Ind3	G	С	G	С	А	G	Т	С
Ind4	А	С	Т	Т	-	G	Т	А
Ind5	G	С	Т	С	А	G	Т	С
Sp2	G	Т	Т	С	А	А	Т	С

Different types of mutations that cause genetic variation

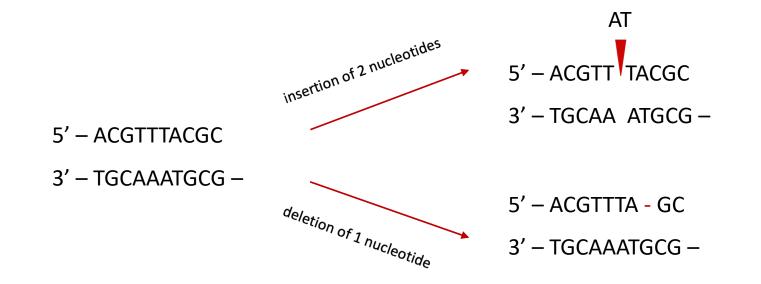
- point mutations (SNPs)
- small insertions/deletions (indels) STRs (microsatellites)
- segmental mutations
- transpositions
- chromosome fission/fusion
- aneuploidy and whole genome duplications


Point mutations (SNPs)


- Replacement of nucleotides without changing the number of nucleotides
- Arise by replication errors and spontaneous mutations (due to the instability of the DNA or induced by exogenous/endogenous sources)

Point mutations (SNPs)

- Replacement of nucleotides without changing the number of nucleotides
- Arise by replication errors and spontaneous mutations (due to the instability of the DNA or induced by exogenous/endogenous sources)

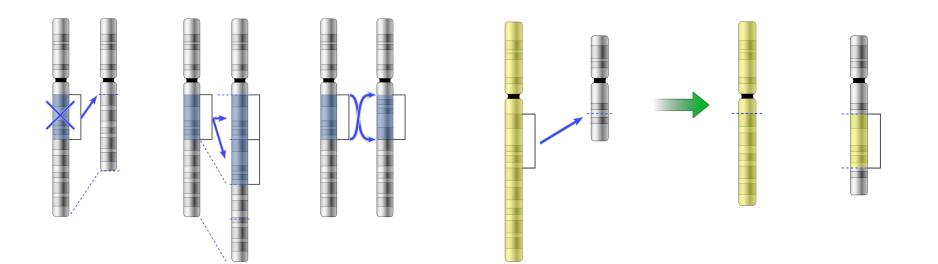


G

Small Insertions/Deletions (Indels)

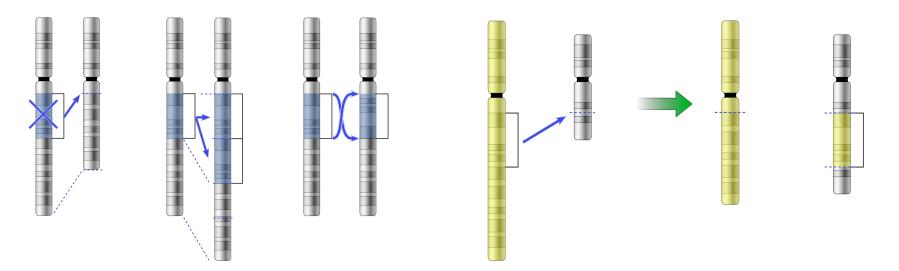
 small insertion and deletion of nucleotides from a sequence causing a change in the number of nucleotides (≥ 1 nucleotides)

STRs (microsatellites)


• Variation in the number of copy of small repeat units (classically of 4 bp)

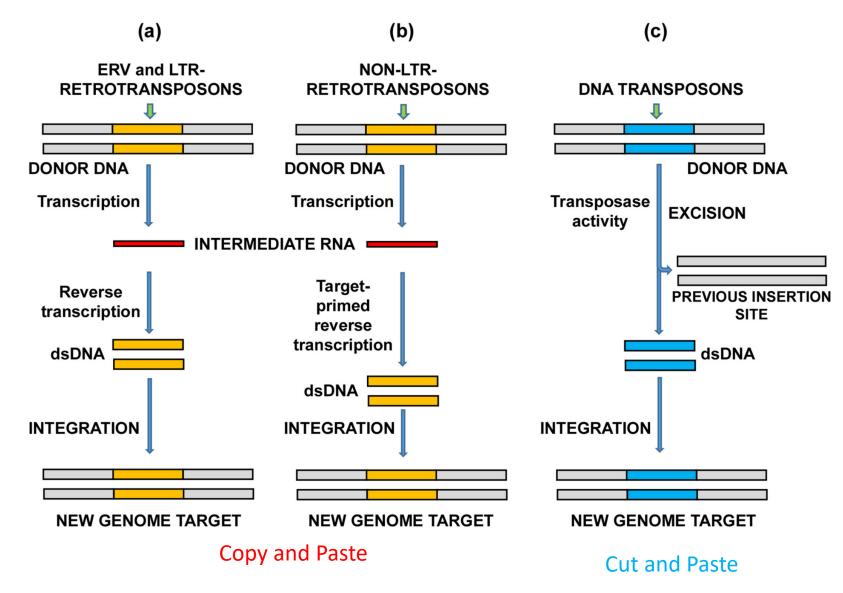
ATGCTATATATATATATATAGCATG ATGCTATATATATATATATAGCATG

• Can have many alleles and thus is more informative for example for individual identification or familial relationships reconstruction.

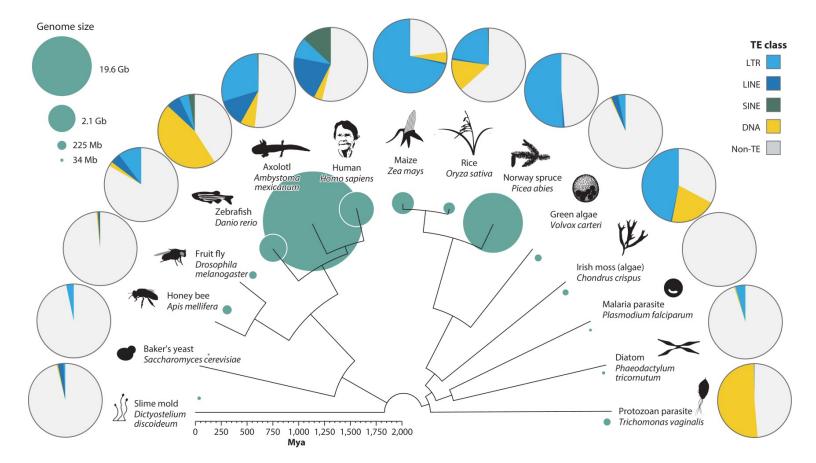

Segmental mutations

- Involving a change of \geq 50 bp (chromosomal rearrangements)
 - Large insertions and deletions
 - Duplications
 - Inversions
 - Translocations

Segmental mutations

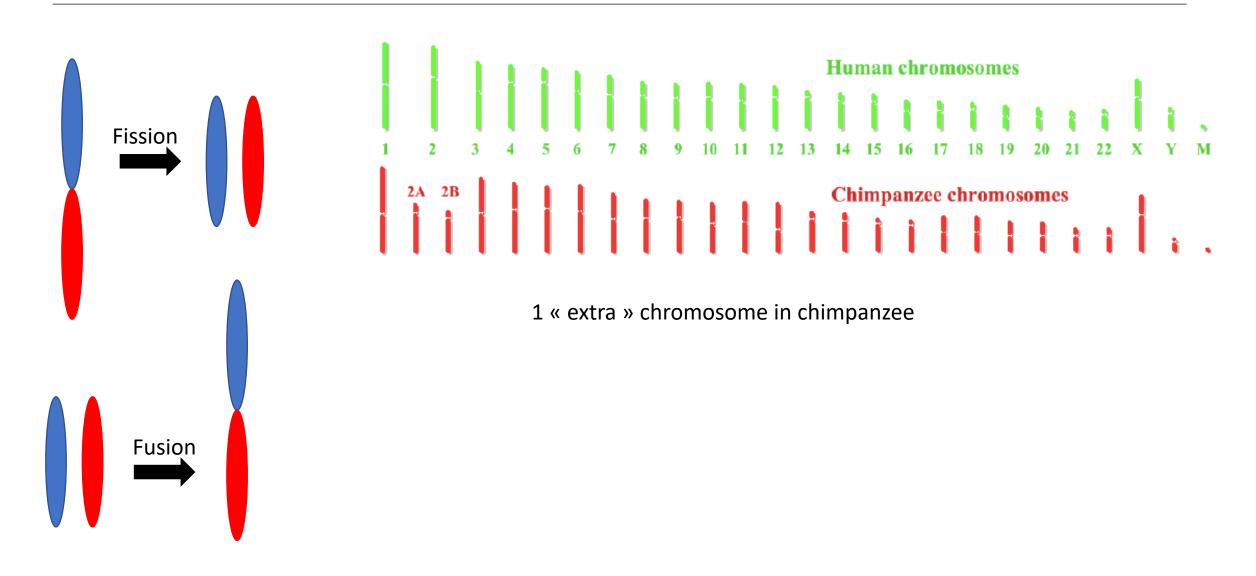

- Involving a change of \geq 50 bp (chromosomal rearrangements)
 - Large insertions and deletions
 - Duplications
 - Inversions
 - Translocations
- Segmental mutations can lead to <u>copy number variation (CNV)</u> among individual genomes.

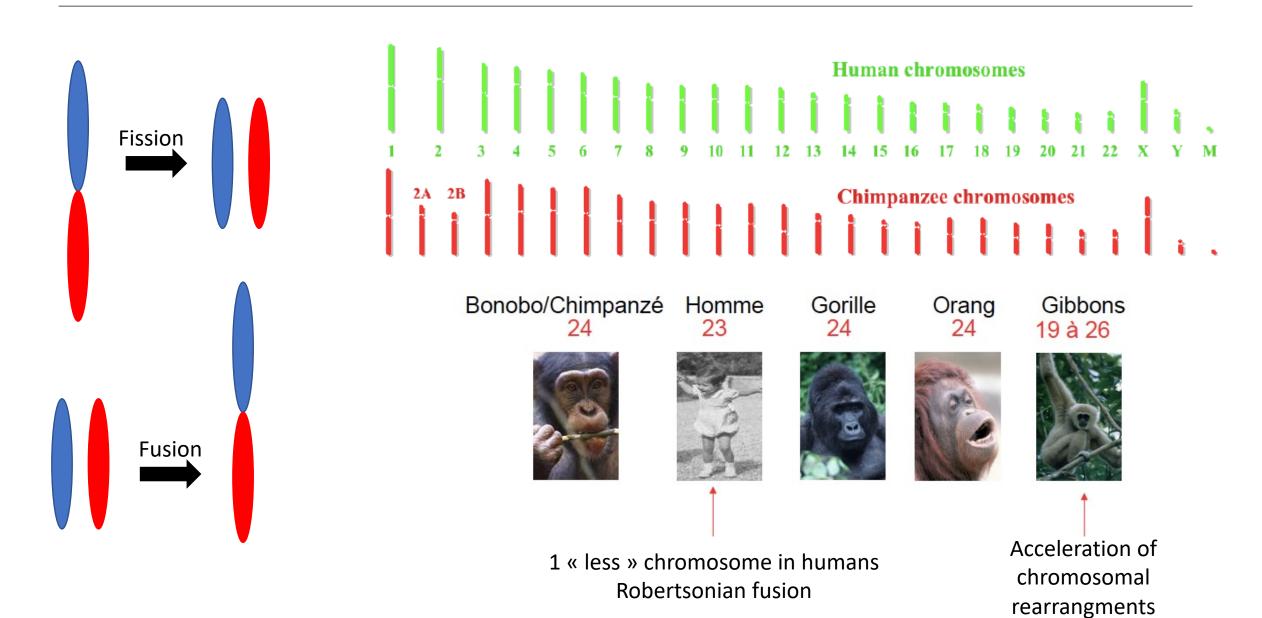
Transposable elements


Fambrini et al. 2020 Genesis

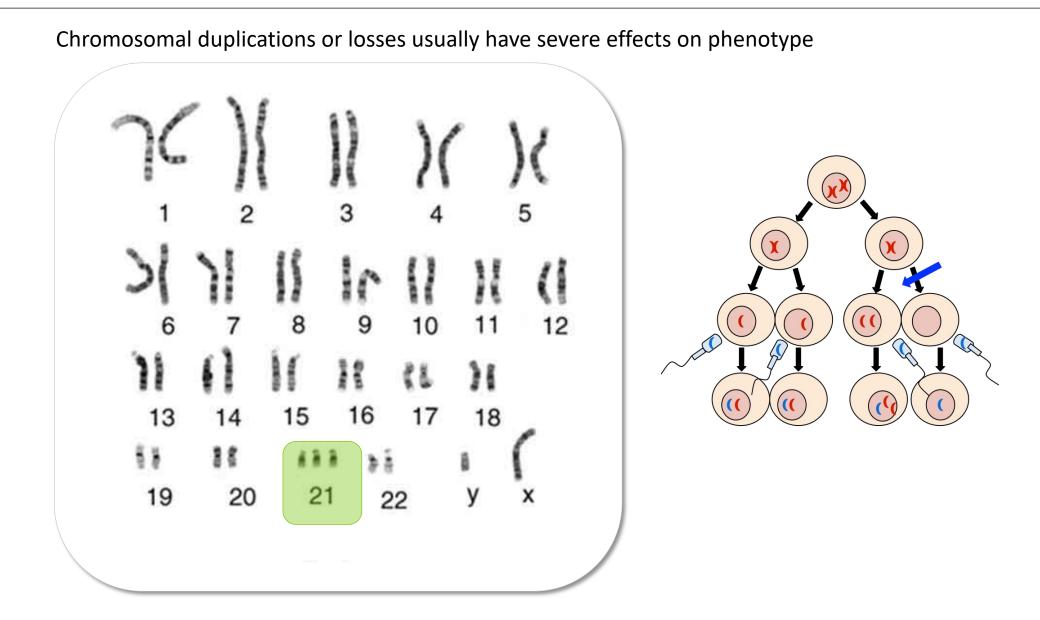
There are two main classes of transposable elements

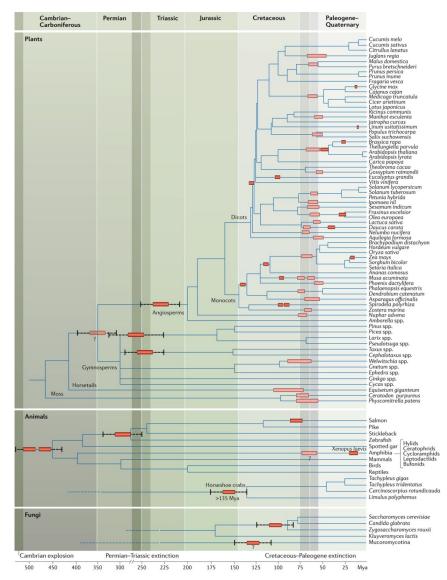
Transposable elements


• They occur in variable proportions in different genomes


Transposons and repetitive DNA sequences in the genome

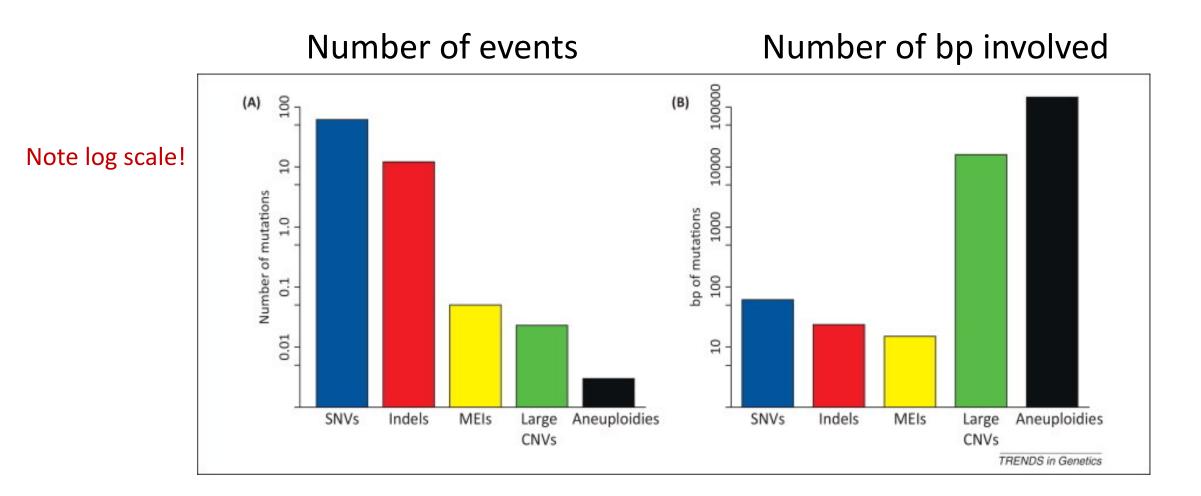
- DNA transposons create mutations by inserting themselves (presence/absence)
- Retrotransposons create copy-number variants
- They are one type of repetitive DNA (stretches of DNA sequences that occur in multiple copies in the genome)
- Repetitive DNA also corresponds to specific genome structures as centromeres & telomeres...


Chromosome fission/fusion


Chromosome fission/fusion

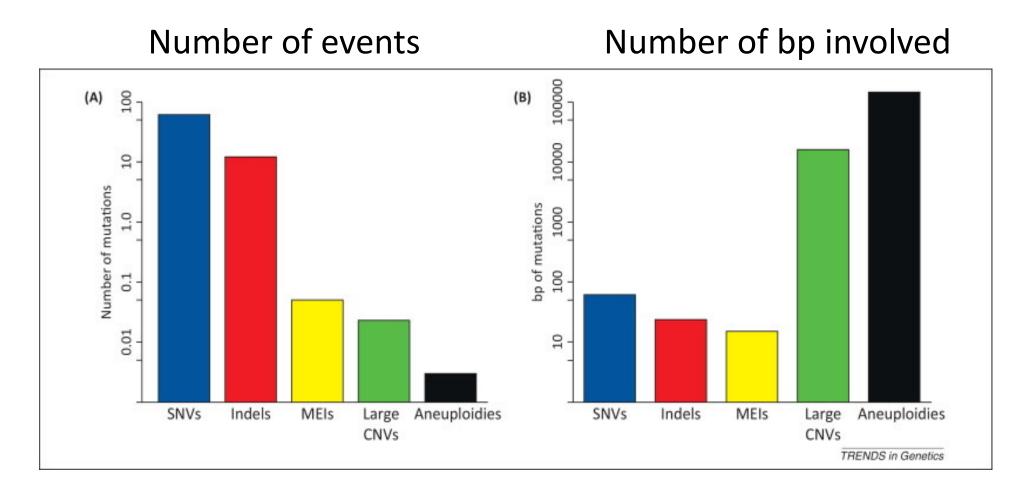
Aneuploidy

Whole-genome duplication



- Polyploidy, or whole-genome duplication (WGD), is usually an evolutionary dead-end
- Although polyploidy is a frequent and recurrent phenomenon, the number of WGDs that have become established in the long term is low
- If established, WGD leads to a sudden increase in genome size
- WGD is most common in the plant kingdom

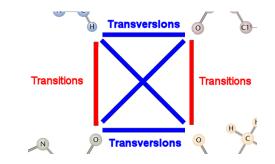
Different types of mutations that cause genetic variation

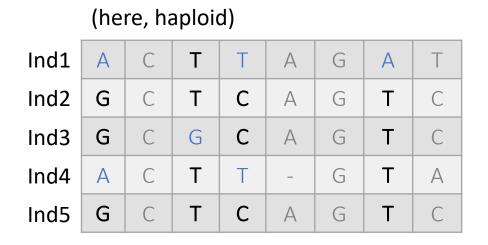

- point mutations (SNPs)
- small insertions/deletions (indels) STRs (microsatellites)
- segmental mutations
- transpositions
- chromosome fission/fusion
- aneuploidy and whole genome duplications

All these mutations have different underlying and repair mechanisms, and thus have different rates !

SNVs = single nucleotide variants MEIs = transposabe (or mobile) element insertions CNVs = copy number variants

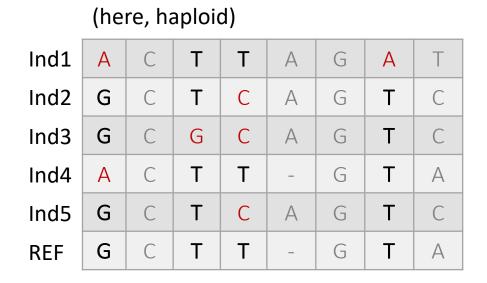
Campbell & Eichler 2013 Trends in Genet.

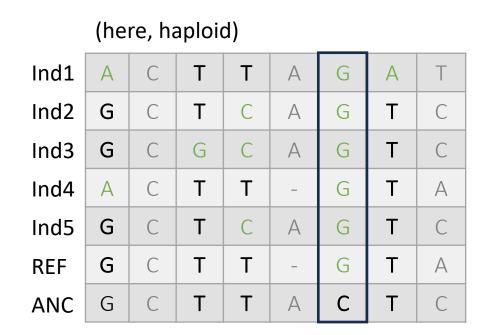


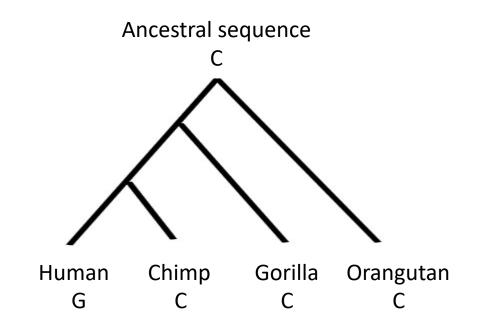

Much of the genetic variation we study consists of <u>bi-allelic SNPs</u> (mutation rate around 10^-8)

But there is also a lot of variability among point mutations (SNPs) !

- CpG (13-fold more mutable than non-CpG because of s. pontaneous deamination of methylated Cs in mammals) :
 CpG = 2% of the human genome, 19% of de novo mutations...
- AT-rich regions more easily repaired than CG-rich ones because double-bonded
- Transitions mutation rate 2-fold higher than Transversions mutation rate (G-T and A-C mispairing being most common)
- Male versus female mutations (number of replications)...




For our analyses, we keep only <u>bi-allelic SNPs</u>, where we observe two alleles:


- the most common variant is called the **major allele** and the least common variant the minor allele

For our analyses, we keep only <u>bi-allelic SNPs</u>, where we observe two alleles:

- the most common variant is called the major allele and the least common variant the minor allele
- the variant similar to the reference genome is the **reference allele** and the other one the **alternative allele**

For our analyses, we keep only <u>bi-allelic SNPs</u>, where we observe two alleles:

- the most common variant is called the major allele and the least common variant the minor allele
- the variant similar to the reference genome is the **reference allele** and the other one the **alternative allele**
- the variant similar to the ancestral genome is the **ancestral allele** and the other one the derived allele

• Assessing the level of genetic variation

2 9 12 13 14 15 3 4 5 6 7 8 10 11 16 1 A A С С Т С Т С G G С G G T Α Α Т С G A G Т А С Т G G С G А Α Α A G T A A C T G G С С G А Α G Α С C С G Ç С G G Т A Α Т G Т Α Α

Sequence alignment of four DNA sequences consisting of 16 nucleotides

• Assessing the level of genetic variation

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Α	С	G	С	G	Т	A	А	С	Т	G	С	С	G	T	А
Α	С	G	A	G	Т	T	А	С	Т	G	G	С	G	А	А
Α	С	G	A	G	Т	A	А	С	Т	G	G	С	G	A	А
Α	С	G	С	G	Т	A	А	С	Т	G	С	С	G	T	А

Sequence alignment of four DNA sequences consisting of 16 nucleotides

• number of segregating sites S

• Assessing the level of genetic variation

2 9 13 14 15 3 4 5 6 7 8 10 11 12 16 1 T A A C T G C С С G G G С Т Α Α С G A G Т A C T G G С G Α A Α A G T A A C T G G C G Α C G А Α A A С С Т G С С G С G T G T Α Α

Sequence alignment of four DNA sequences consisting of 16 nucleotides

- number of segregating sites S
- *S* = 4
- or 4/16 = 0.25 represents the density of segregating sites

• Assessing the level of genetic variation

2 9 12 13 14 15 3 4 5 6 7 8 10 11 16 1 A T С С С С Т С G G A G G T Α Α Т С G А G Т Т А С G G С G А Α Α C T G G С G T A A G А Α С G A Α С C С C С G G Т Α Α Т G G Т Α Α

Sequence alignment of four DNA sequences consisting of 16 nucleotides

• heterozygosity

• Assessing the level of genetic variation

2 9 12 13 15 3 4 5 6 7 8 10 11 14 16 1 A A С Т С Т С С G С G G G Α Α С G G Т T А С Т G G С А Α А G Α C T G С Т A A G Α С G А G G А Α С С С G С С G G Т A А Т G Ť Α Α

Sequence alignment of four DNA sequences consisting of 16 nucleotides

heterozygosity at a site j (site heterozygosity)

• Assessing the level of genetic variation

2 9 3 4 5 6 7 8 10 11 12 13 14 15 16 1 C G C G T A A C T G C C G Т Α Α A G T T A C T G G С G C G A Α Α A C G A G T A A C T G G C G A Α C T G C C G С G T A A С G T Α Α

Sequence alignment of four DNA sequences consisting of 16 nucleotides

- heterozygosity at a site *j* (site heterozygosity)
- $H_j = \frac{n}{n-1} (1 \sum_i p_i^2)$, where *n* represents the number of sequences/samples and p_i the frequency of the *i*th allele at site *j*

• Assessing the level of genetic variation

2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 16 A C G C G T A A C T G C C G T A A C G A G T T A C T G G C G A Α A C G A G T A A C T G G C G A A C G C G T A A C T G C C G T Α Α

Sequence alignment of four DNA sequences consisting of 16 nucleotides

- heterozygosity at a site *j* (site heterozygosity)
- $H_j = \frac{n}{n-1} \left(1 \sum_i p_i^2 \right)$, where *n* represents the number of sequences/samples and p_i the frequency of the *i*th allele at site *j*; $H_7 = \frac{4}{3} \left(1 \frac{1}{16} \frac{9}{16} \right) = \frac{4}{3} \cdot \frac{6}{16} = \frac{2}{4} = 0.5$; $H_{12} = \frac{4}{3} \left(1 \frac{1}{4} \frac{1}{4} \right) = \frac{4}{3} \cdot \frac{2}{4} = \frac{2}{3} = 0.67$

• Assessing the level of genetic variation

2 9 12 13 15 3 4 5 6 7 8 10 11 14 16 1 A T С С С С Т С G G А G G T Α Α Т С G А G Т T А С G G С G А Α Α C T G G С G Т A A А Α С G A G Α С С C С С G G Т Α А Т G G Т Α Α

Sequence alignment of four DNA sequences consisting of 16 nucleotides

• nucleotide diversity

• Assessing the level of genetic variation

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Α	С	G	С	G	Т	A	А	С	Т	G	С	С	G	T	А
Α	С	G	A	G	Т	Ť	А	С	Т	G	G	С	G	A	А
А	С	G	Α	G	Т	A	А	С	Т	G	G	С	G	A	А
Α	С	G	С	G	Т	А	А	С	Т	G	С	С	G	Т	А

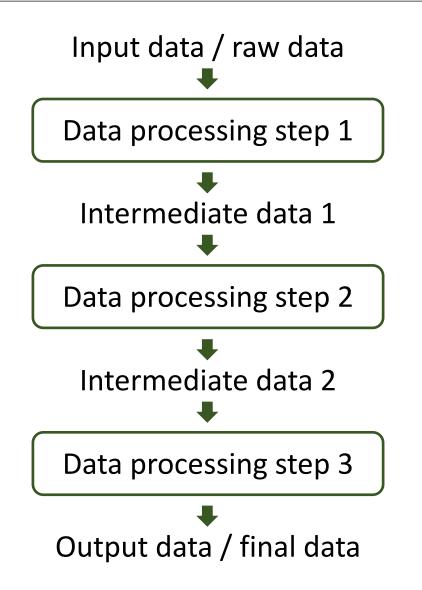
Sequence alignment of four DNA sequences consisting of 16 nucleotides

• nucleotide diversity is the average site heterozygosity over all sites in the sequence

• Assessing the level of genetic variation

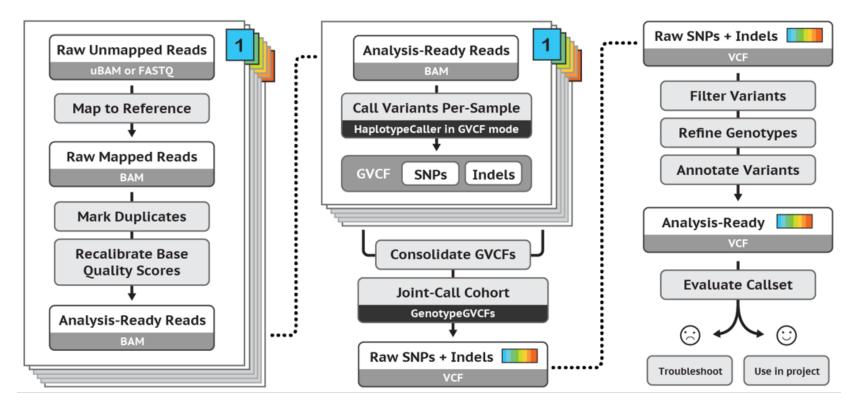
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
А	С	G	С	G	Т	A	А	С	Т	G	С	С	G	H	А
А	С	G	A	G	Т	Ħ	А	С	Т	G	G	С	G	A	А
А	С	G	A	G	Т	A	А	С	Т	G	G	С	G	A	А
А	С	G	С	G	Т	A	А	С	Т	G	С	С	G	Т	А

Sequence alignment of four DNA sequences consisting of 16 nucleotides

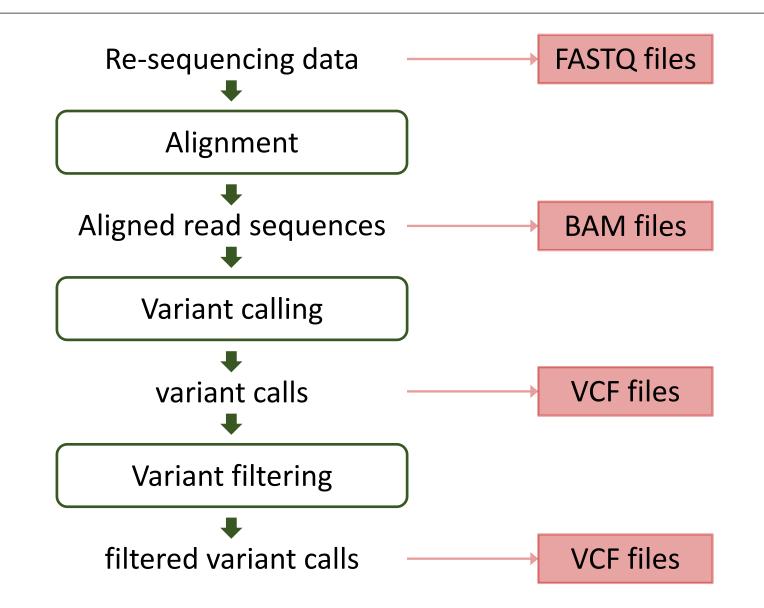

- nucleotide diversity is the average site heterozygosity over all sites in the sequence
- $\pi = \frac{1}{L} \sum_{j=1}^{L} H_{j}$, where L is the number of sites in the sequence, here L = 16

$$\rightarrow \pi = (0.667 + 0.500 + 0.667 + 0.667)/16 = 0.156$$

Table of contents

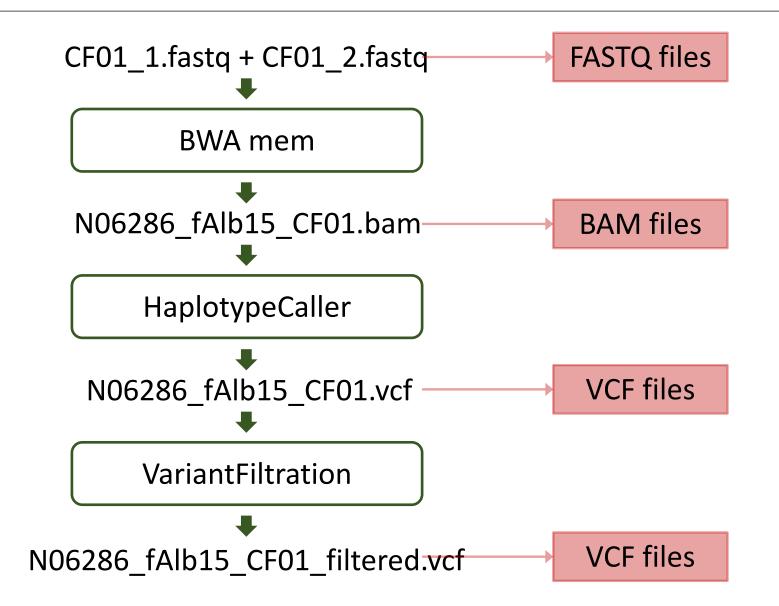

- General principles (NGS, assembly, mapping, SNP calling)
- Genetic variation
 - different types of mutations
 - describing genetic variation
- Mapping / SNP calling workflow
 - common software and file formats
 - reference genome
 - filtering of variant calls
- Applications in ecology and evolution

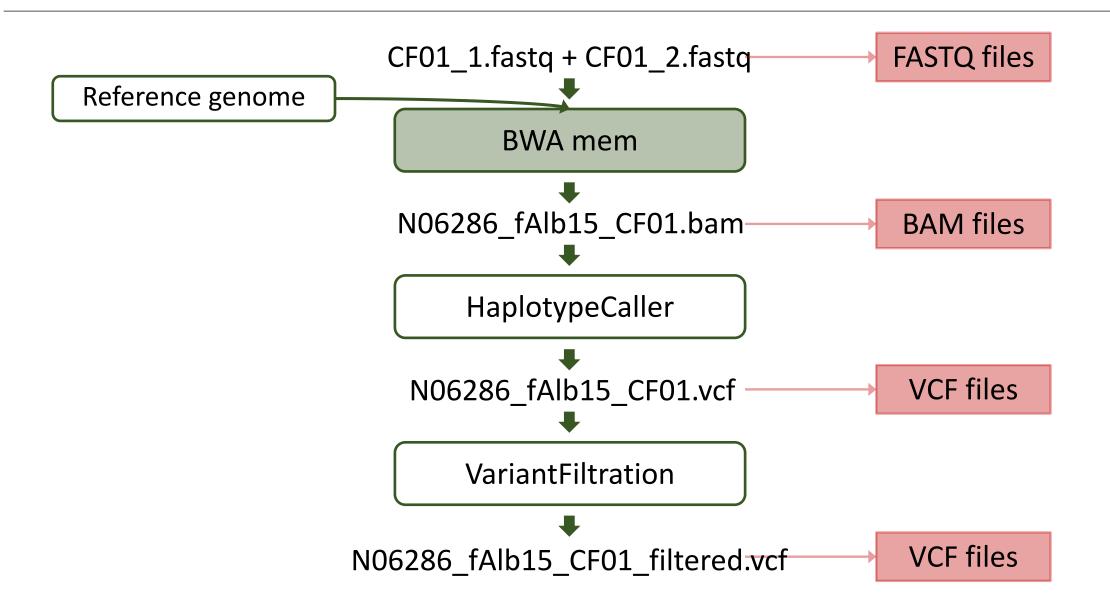
What is a workflow?


SNP calling workflow

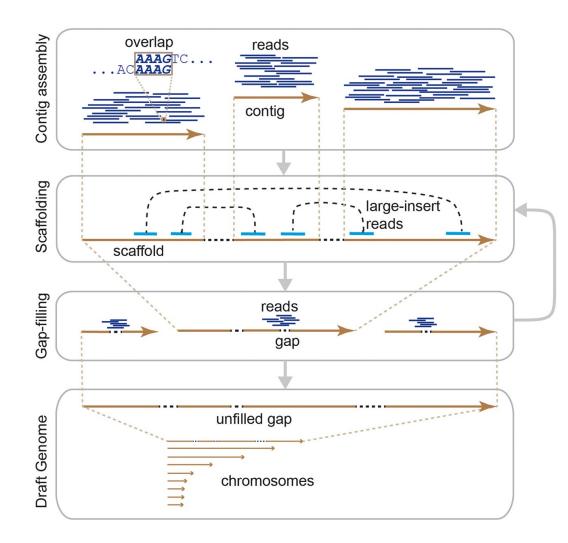
https://gatk.broadinstitute.org

Best Practices for SNP and Indel discovery in germline DNA - leveraging groundbreaking methods for combined power and scalability.

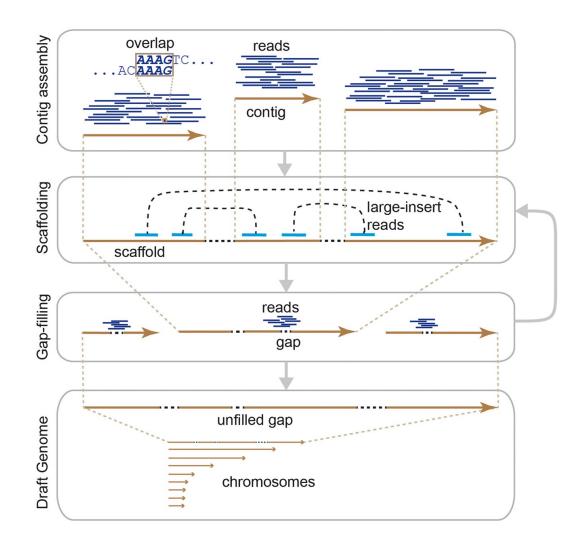

Basic workflow, one example


Workflow conventions

- Create a new output file in each processing step
 - Don't overwrite the input file!
- Use informative file names
 - include information about the sample(s) and eventual other input data
 - include information about the processing step
 - Use the correct file extensions (.fastq, .bam, .vcf, ...)
- Allocate appropriate computing resources


Basic variant calling workflow, one sample

Basic variant calling workflow, one sample



Reference genome

- The reference genome represents a template genome sequence of a species, typically the target species or a closely related species
- The reference genome covers those parts of the genome sequence that have been assembled and usually includes several gaps and may contain misassembled regions
- The reference genome can be assembled at the scaffold-level or at the chromosome-level

Reference genome – alignment quality

- The quality and contiguity of reference genome assemblies influence the alignment quality
- Alignment of reads to a divergent reference genome influences the alignment quality
- The proportion of repetitive DNA sequences in the genome influences the alignment quality
- Structural re-arrangements among the genomes of sampled individuals and the reference genome influence the alignment quality

ACGTTTGCGTCCCGCCCGATNNNNNN-----CGTAGTCGGGGTATGTAGNNGATTCTCTCAGT TCGGCGTATGTGGCGGATTCTCT

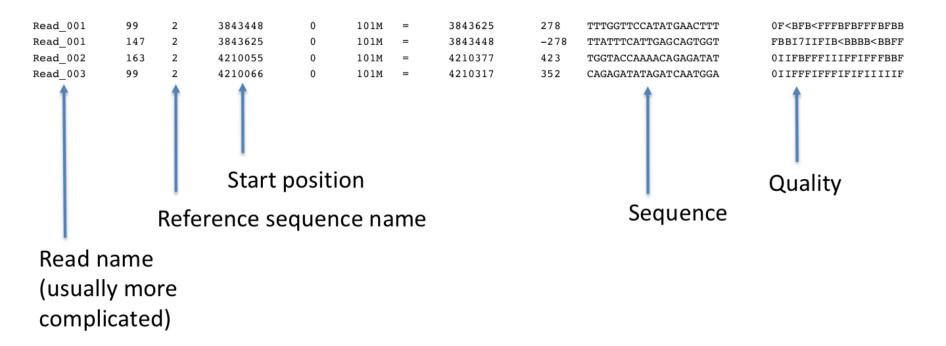
ATGTCTCG---TGTAGATCCG

ACGTTTGCGTCCCGCCCGATNNNNNN-----CGTAGTCGGGGTATGTAGNNGATTCTCTCAGT TCGGCGTATGTGGCGGATTCTCT

ATGTCTCG---TGTAGATCCG

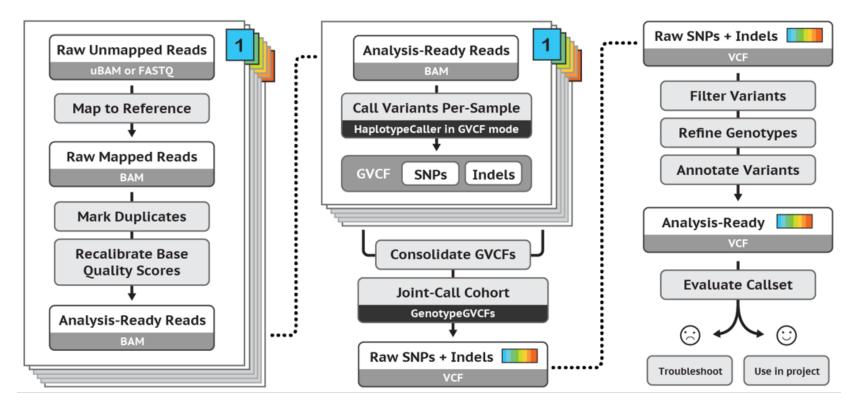
Can we trust the alignment of the second read?

Alignment – Burrows-Wheeler Aligner (BWA)

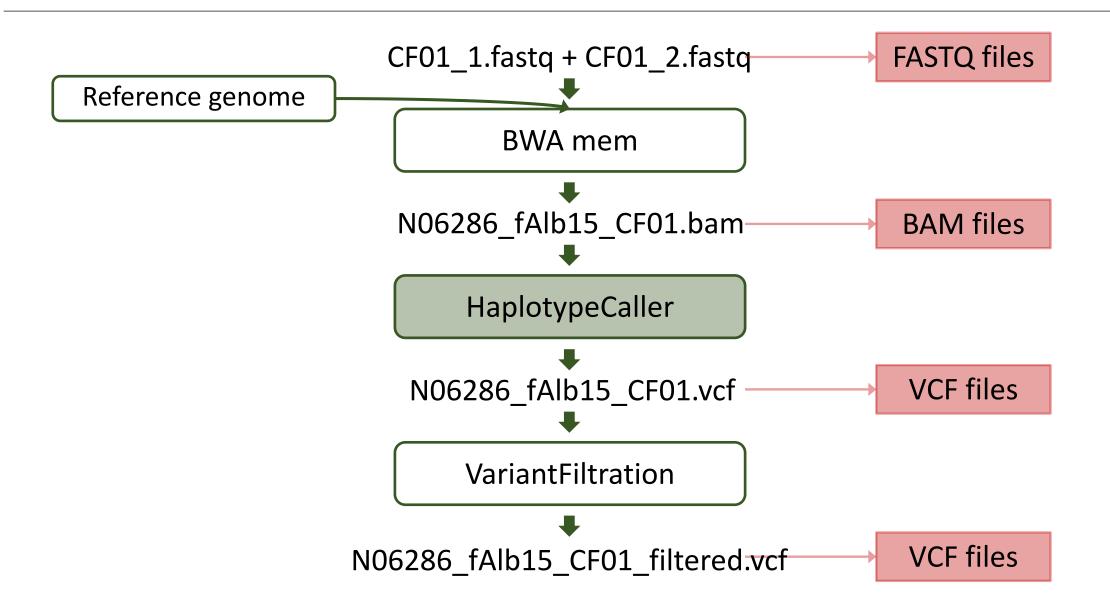

- BWA is a software package for mapping low-divergent short-read sequences against a large reference genome
 - <u>https://bio-bwa.sourceforge.net/</u>
- BWA-MEM is the latest version and supports split alignment and is generally recommended for high-quality read sequences
- The output from read mapping is a SAM format
- The BAM file is a binary representation of the SAM file

Sequence Alignment/Map (SAM) file

HEADER SECTION


<pre>@HD VN:1.6SO:coordinate</pre>	
@SQ SN:2 LN:243199373	
<pre>@PG ID:bwaPN:bwaVN:0.7.17-r1188 CL:bwa mem -t 1 human_g1k_v37_chr2.fasta HG00097_1.fq HG00097_2</pre>	.fq
<pre>@PG ID:samtools PN:samtools PP:bwaVN:1.10 CL:samtools sort</pre>	
<pre>@PG ID:samtools.1 PN:samtools PP:samtools VN:1.10 CL:samtools view -H HG00097.bam</pre>	

ALIGNMENT SECTION


SNP calling workflow

https://gatk.broadinstitute.org

Best Practices for SNP and Indel discovery in germline DNA - leveraging groundbreaking methods for combined power and scalability.

Basic variant calling workflow, one sample

Detecting variants in reads

 Reference:
 ACGTTTGCGTCCCGCCCGATNNNNNN-----CGTAGTCGGGGGTATGTAGNNGATTCTCTCAGT

 Samples:
 ...TCGGCGTATGTGGCGGATTCTCT...

...TCGGGGTATGTAGCGGATTCTCT ...

...TCGGCGTATGTGGCGGATTCTCT...

...TCGGGGTATGTAGCGGATTCTCT ...

...TCGGGGTATGTGGCGGATTCTCT ...

...TCGGCGTATGTGGCGGATTCTCT...

...TCGGGGTATGTAGCGGATTCTCT ...

...TCGGGGTATGTAGCGGATTCTCT ...

GGGGTATGTGGGGATTCTCT...

Reference and alternative alleles

Reference: ACGTTTGCGTCCCGCCCGATNNNNN-----CGTAGTCGGGGTATGTAGNNGATTCTCTCAGT ...TCGGCGTATGTGGCGGATTCTCT... Samples: ...TCGGGGTATGTAGCGGATTCTCTTCGGCGTATGTGGCGGATTCTCT... ...TCGGGGTATGTAGCGGATTCTCTTCGGGGTATGTGGCGGATTCTCTTCGGCGTATGTGGCGGATTCTCT... ...TCGGGGTATGTAGCGGATTCTCTTCGGGGTATGTAGCGGATTCTCT ... GGGGTATGTGGCGGATTCTCT... ...TCGGGGTATGTGGCGGATTCTCT... Reference allele: the allele in the reference genome G Α Alternative allele: the allele NOT in the reference genome G С

Variant call format (VCF) file

The variant call format (VCF) file consists of a <u>header</u> and a list of variant call <u>records</u>

##fileformat=VCFv4.2

##ALT=<ID=NON_REF,Description="Represents any possible alternative allele not already represented at this location by REF and ALT">

##FILTER=<ID=LowQual,Description="Low quality">

##FILTER=<ID=PASS,Description="All filters passed">

##FORMAT=<ID=AD,Number=R,Type=Integer,Description="Allelic depths for the ref and alt alleles in the order listed">

##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Approximate read depth (reads with MQ=255 or with bad mates are filtered)">

##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality">

##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">

##FORMAT=<ID=...

##GATKCommandLine= ...

##INFO=<ID=AC,Number=A,Type=Integer,Description="Allele count in genotypes, for each ALT allele, in the same order as listed">

##INFO=<ID=AF,Number=A,Type=Float,Description="Allele Frequency, for each ALT allele, in the same order as listed">

##INFO=<ID=AN,Number=1,Type=Integer,Description="Total number of alleles in called genotypes">

##INFO=<ID=BaseQRankSum,Number=1,Type=Float,Description="Z-score from Wilcoxon rank sum test of Alt Vs. Ref base qualities">

##INFO=<ID=DP,Number=1,Type=Integer,Description="Approximate read depth; some reads may have been filtered"> ##INFO=<ID=...

##contig=<ID=N00001,length=26618703>

##source=HaplotypeCaller

#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT ATL_FSP08-001_M

N00001 14 . G A 2886.43 . AC=30;AF=0.063;AN=478;BaseQRankSum=1.28;DP=1099;... GT:AD:DP:GQ:PGT:PID:PL:PS 0/0:5,0:5:15:..:0,15,134

Variant call format (VCF) file

The variant call format (VCF) file consists of a <u>header</u> and a list of variant call <u>records</u>

##fileformat=VCFv4.2

##ALT=<ID=NON_REF,Description="Represents any possible alternative allele not already represented at this location by REF and ALT">

##FILTER=<ID=LowQual,Description="Low quality">

##FILTER=<ID=PASS,Description="All filters passed">

##FORMAT=<ID=AD,Number=R,Type=Integer,Description="Allelic depths for the ref and alt alleles in the order listed">

##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Approximate read depth (reads with MQ=255 or with bad mates are filtered)">

##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality">

##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">

##FORMAT=<ID=...

##GATKCommandLine= ...

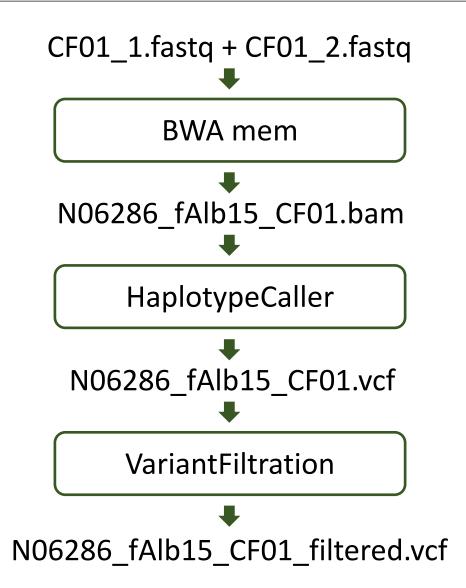
##INFO=<ID=AC,Number=A,Type=Integer,Description="Allele count in genotypes, for each ALT allele, in the same order as listed">

##INFO=<ID=AF,Number=A,Type=Float,Description="Allele Frequency, for each ALT allele, in the same order as listed">

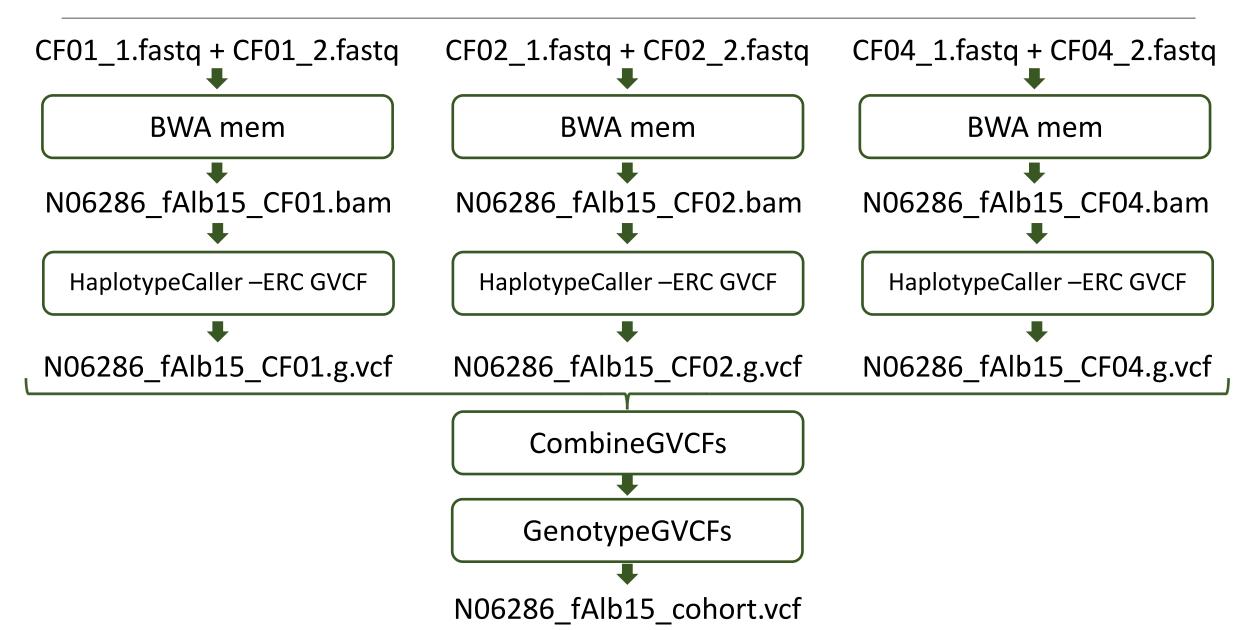
##INFO=<ID=AN,Number=1,Type=Integer,Description="Total number of alleles in called genotypes">

##INFO=<ID=BaseQRankSum,Number=1,Type=Float,Description="Z-score from Wilcoxon rank sum test of Alt Vs. Ref base qualities">

##INFO=<ID=DP,Number=1,Type=Integer,Description="Approximate read depth; some reads may have been filtered"> ##INFO=<ID=...

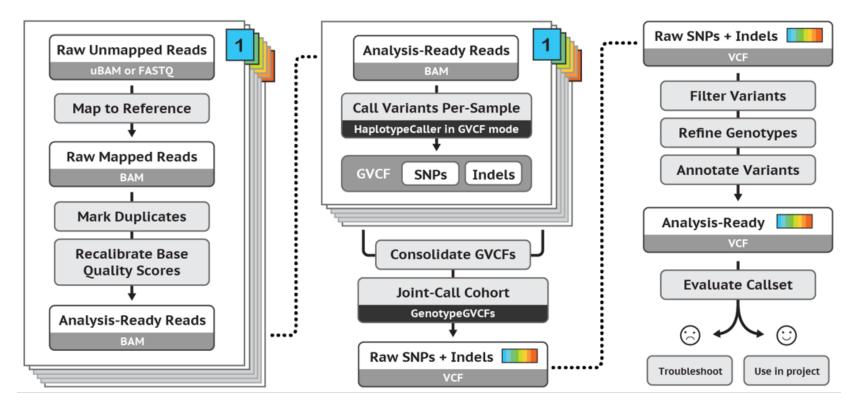

##contig=<ID=N00001,length=26618703>

##source=HaplotypeCaller

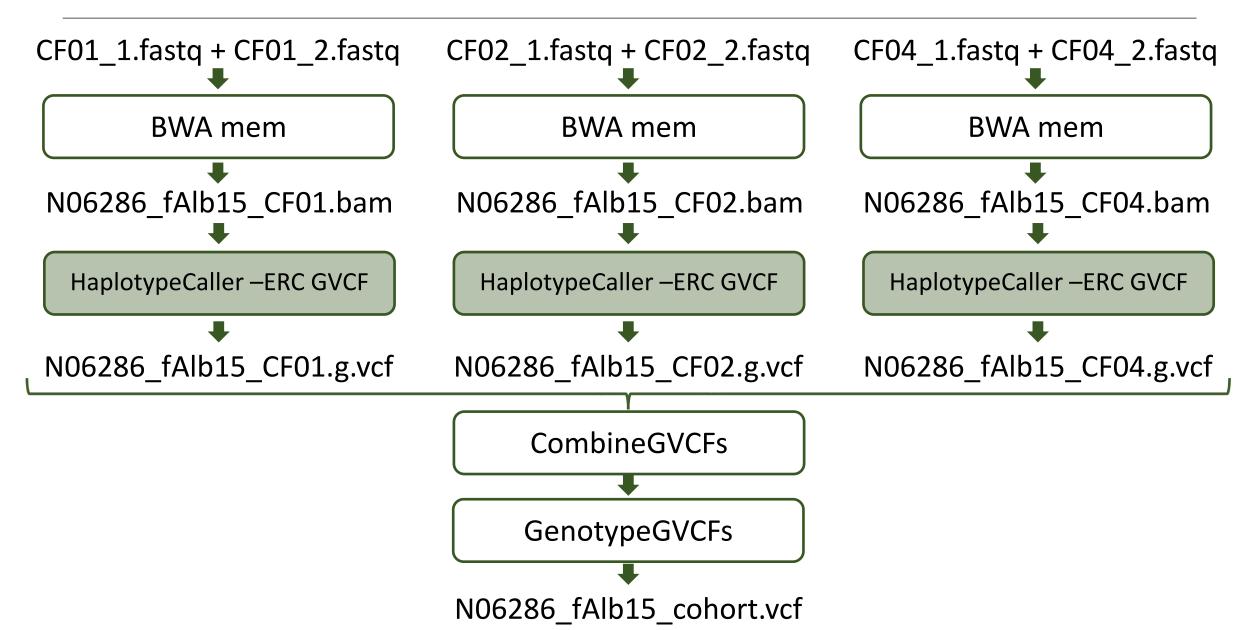

#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT CF01

N00001 14 . G A 2886.43 . AC=30;AF=0.063;AN=478;BaseQRankSum=1.28;DP=1099;... GT:AD:DP:GQ:PGT:PID:PL:PS 0/0:5,0:5:15:..::0,15,134

Basic variant calling workflow, one sample



Basic variant calling workflow in cohort


SNP calling workflow

https://gatk.broadinstitute.org

Best Practices for SNP and Indel discovery in germline DNA - leveraging groundbreaking methods for combined power and scalability.

Basic variant calling workflow in cohort

Difference between a GVCF and a VCF file

Regular VCF file

##fileformat ##ALT ##FILTER ##FORMAT ##GATKCommandLine ##INFO ##contig ##source

#record header
variant call records

GVCF file

##fileformat
##ALT
##FILTER
##FORMAT
##GATKCommandLine
##GVCFBlock
##INFO
##contig

##source

#record header non-variant block records variant call records

- A GVCF file has records for all sites, whether there is a variant call or not
- Adjacent non-variant sites merged into blocks

Variant call format (VCF) file for a cohort

The variant call format (VCF) file consists of a <u>header</u> and a list of variant call <u>records</u>

##fileformat=VCFv4.2

##ALT=<ID=NON_REF,Description="Represents any possible alternative allele not already represented at this location by REF and ALT">

##FILTER=<ID=LowQual,Description="Low quality">

##FILTER=<ID=PASS,Description="All filters passed">

##FORMAT=<ID=AD,Number=R,Type=Integer,Description="Allelic depths for the ref and alt alleles in the order listed">

##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Approximate read depth (reads with MQ=255 or with bad mates are filtered)">

##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality">

##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">

##FORMAT=<ID=...

##GATKCommandLine= ...

##INFO=<ID=AC,Number=A,Type=Integer,Description="Allele count in genotypes, for each ALT allele, in the same order as listed">

##INFO=<ID=AF,Number=A,Type=Float,Description="Allele Frequency, for each ALT allele, in the same order as listed">

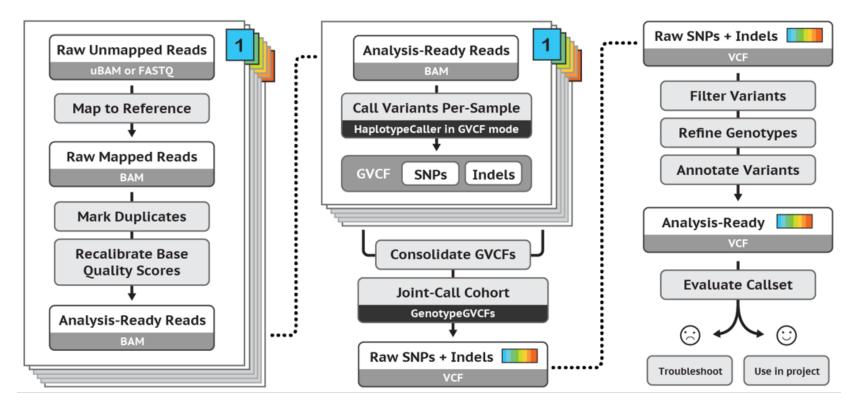
##INFO=<ID=AN,Number=1,Type=Integer,Description="Total number of alleles in called genotypes">

##INFO=<ID=BaseQRankSum,Number=1,Type=Float,Description="Z-score from Wilcoxon rank sum test of Alt Vs. Ref base qualities">

##INFO=<ID=DP,Number=1,Type=Integer,Description="Approximate read depth; some reads may have been filtered"> ##INFO=<ID=...

##contig=<ID=N00001,length=26618703>

##source=GenomicsDBImport


##source=GenotypeGVCFs

##source=HaplotypeCaller

#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT CF01 CF02 CF04

SNP calling workflow

https://gatk.broadinstitute.org

Best Practices for SNP and Indel discovery in germline DNA - leveraging groundbreaking methods for combined power and scalability. There are two recommended best practices for variant call filtering

- Variant quality score recalibration (VQSR)
 - VQSR is a machine learning algorithm than can be trained to recognize likely false variant calls
 - VQSR requires an input of likely true variant calls, it's application is thus limited to model organisms, but recommended if possible
- GATK hard filters
 - Filters based on information contained in the VCF

https://gatk.broadinstitute.org/hc/en-us/articles/360035531112--How-to-Filter-variants-either-with-VQSR-or-by-hard-filtering

GATK hard filters

The variant call format (VCF) file consists of a <u>header</u> and a list of variant call <u>records</u>

##fileformat=VCFv4.2

##ALT=<ID=NON_REF,Description="Represents any possible alternative allele not already represented at this location by REF and ALT">

##FILTER=<ID=LowQual,Description="Low quality">

##FILTER=<ID=PASS,Description="All filters passed">

##FILTER=<ID=hard_filt,Description="QD < 2.0 || FS > 60.0 || MQ < 40.0 || MQRankSum < -12.5 || StrandOddsRatio > 3 || ReadPosRankSum < -8.0">

##FORMAT=<ID=AD,Number=R,Type=Integer,Description="Allelic depths for the ref and alt alleles in the order listed">

##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Approximate read depth (reads with MQ=255 or with bad mates are filtered)">

##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality">

##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">

##FORMAT=<ID=...

##GATKCommandLine= ...

##INFO=<ID=AC,Number=A,Type=Integer,Description="Allele count in genotypes, for each ALT allele, in the same order as listed">

##INFO=<ID=AF,Number=A,Type=Float,Description="Allele Frequency, for each ALT allele, in the same order as listed">

##INFO=<ID=AN,Number=1,Type=Integer,Description="Total number of alleles in called genotypes">

##INFO=<ID=BaseQRankSum,Number=1,Type=Float,Description="Z-score from Wilcoxon rank sum test of Alt Vs. Ref base qualities">

##INFO=<ID=DP,Number=1,Type=Integer,Description="Approximate read depth; some reads may have been filtered">

##INFO=<ID=...

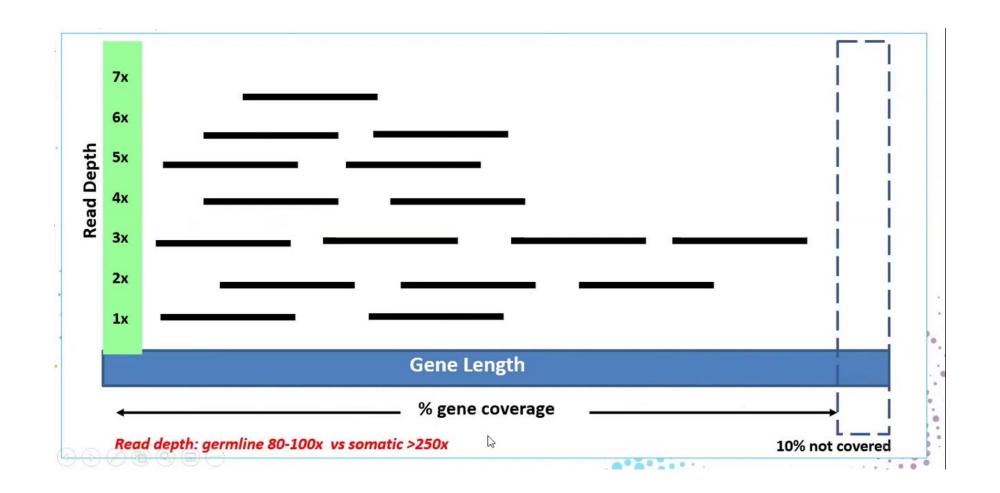
##contig=<ID=N00001,length=26618703>

##source=GenomicsDBImport

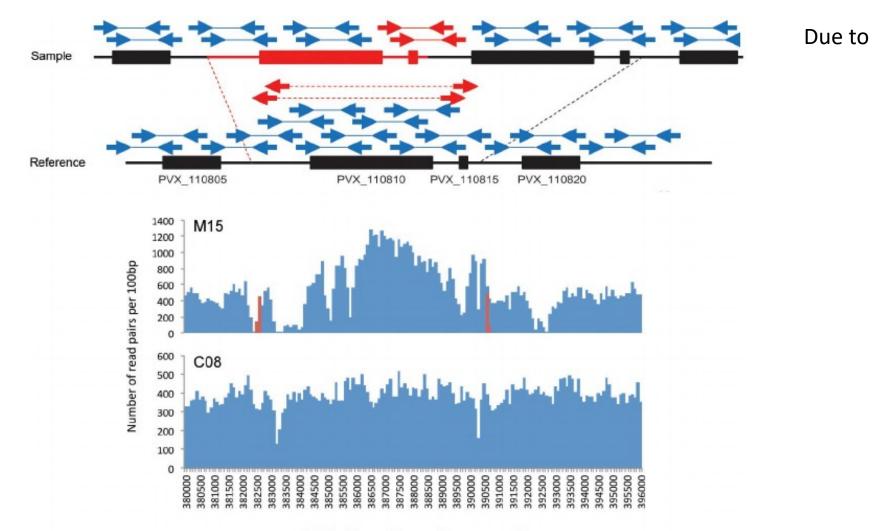
##source=GenotypeGVCFs

##source=HaplotypeCaller

#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT CF01 CF02 CF04

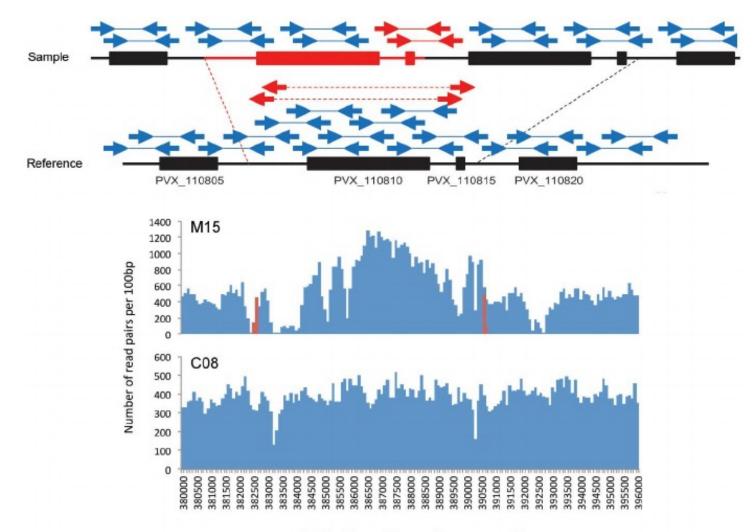

Additional variant filtering criteria

- In addition to the basic filtering steps, filtering adjusted to the study organism is recommended
- Remember!
- The <u>quality and contiguity of reference genome assemblies</u> influence the alignment and variant calling quality
- <u>Alignment of reads to a divergent reference genome</u> influences the alignment and variant calling quality
- The proportion of <u>repetitive DNA sequences</u> in the genome influences the alignment and variant calling quality
- <u>Structural re-arrangements, such as CNVs</u>, among the genomes of sampled individuals and the reference genome influence the alignment and variant calling quality


Additional variant filtering criteria

- Remove indels (GATK)
- Keep only mono-allelic and bi-allelic sites (GATK)
- Remove sites overlapping repetitive regions (VCFtools)
- Remove sites with extreme coverage values (VCFtools)
- Apply quality score filtering (VCFtools)
- Identify and remove sites overlapping with copy number variants

Depth versus Coverage



Mismapping

Nucleotide position on chromosome 6

Mismapping

Due to errors in assembly or variation among individuals

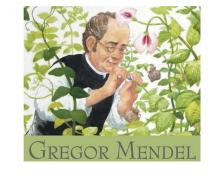
Result in mismapping and collapsed regions

Result in variation of coverage

Table of contents

- Genetic variation
 - different types of mutations
 - describing genetic variation
- SNP calling workflow
 - common software and file formats
 - reference genome
 - filtering of variant calls
- Applications in ecology and evolution

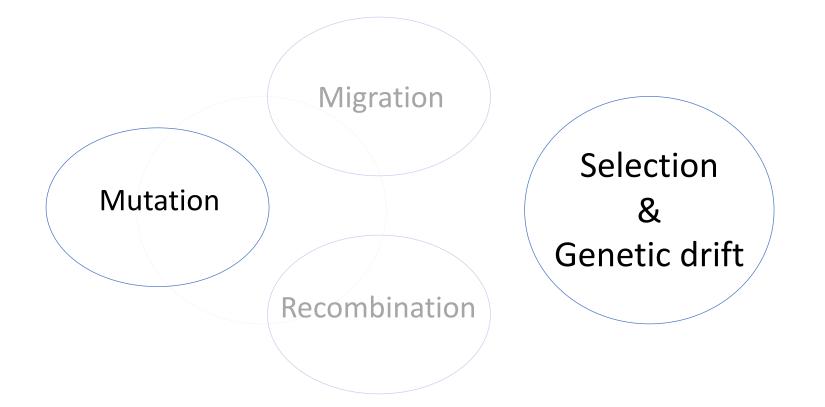
Evolution can be seen as simply a consequence of these conditions...



Individuals vary in traits that govern reproduction and survival...

...and resources are not endless such that there is competition and thus selection...

Heritability


Selection

...and traits important to survival and reproduction are genetically controlled and inherited, then...

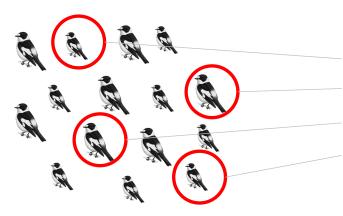
Evolution

Evolution

- Central questions in evolutionary genetics
 - How are changes in the genome generated?
 - Why is the genome changing over time?

- Central questions in evolutionary genetics
 - How are changes in the genome generated?
 - Why is the genome changing over time?

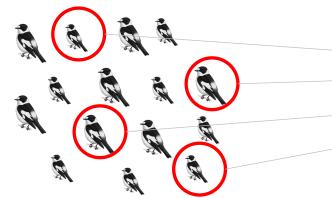
Evolution is a process influenced by


- mutation
- genetic drift
- natural selection
- demography
- recombination

- Central questions in evolutionary genetics
 - How are changes in the genome generated?
 - Why is the genome changing over time?

Evolution is a process influenced by

- mutation
- genetic drift
- natural selection
- demography
- recombination


sequencing of a sample of individuals

А	С	Т	Т	А	G	Т	А
G	С	Т	С	А	G	Т	С
G	С	G	С	А	G	Т	С
А	С	Т	Т	А	G	Т	С

- Central questions in evolutionary genetics
 - How are changes in the genome generated?
 - Why is the genome changing over time?

Evolution is a process influenced by

- mutation
- genetic drift
- natural selection
- demography
- recombination

sequencing of a sample of individuals

А	С	Т	Т	А	G	Т	А
G	С	Т	С	А	G	Т	С
G	С	G	С	А	G	Т	С
А	С	Т	Т	А	G	Т	С

statistical inference

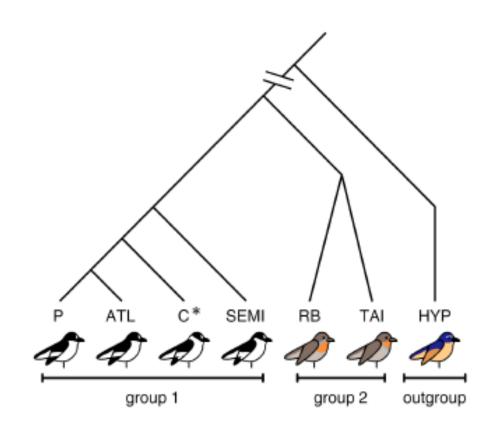
- Central questions in evolutionary genetics
 - How are changes in the genome generated?
 - Why is the genome changing over time?

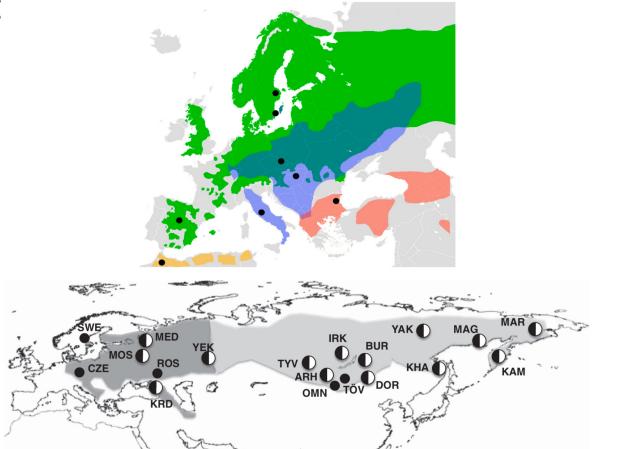
Evolution is a process influenced by

- mutation
- genetic drift
- natural selection
- demography
- recombination

Information is contained in allele frequency data (amongst others)

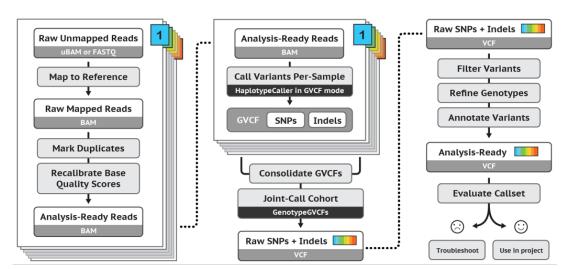
ed in allele frequ

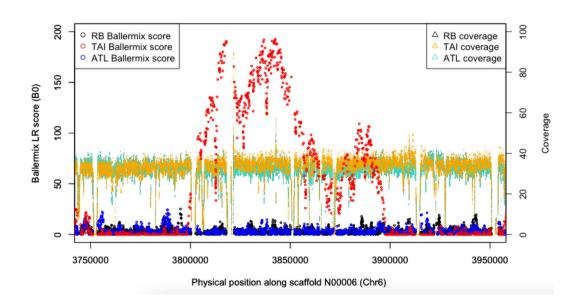

sequencing of a sample of individuals


А	С	Т	Т	А	G	Т	А
G	С	Т	С	А	G	Т	С
G	С	G	С	А	G	Т	С
А	С	Т	Т	А	G	Т	С

statistical inference

SNP calling practical - overview


• SNP calling and detection of balancing selection in *Ficedula* flycatchers



SNP calling practical - overview

- SNP calling and detection of balancing selection in *Ficedula* flycatchers
- Perform SNP calling in a subset of *Ficedula* flycatcher individuals
 - starting from recalibrated BAM files to a filtered VCF file
- Description of genetic variation and detection of balancing selection across two selected scaffolds
- Quality assessment and interpretation of signatures of balancing selection

